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The elastic-plastic contact between a sphere and rigid flat is analyzed under perfect slip and full stick
conditions for a wide range of the sphere mechanical properties. The analysis provides comparison of
the contact load, contact area and distribution of the contact pressure for these two contact conditions. It
is found that the contact conditions and mechanical properties have little effect on the global contact
parameters. However, the evolution of the plastic zone with increasing interference is substantially
different for contacts under perfect slip or full stick conditions.

Nomenclature

a = contact area radius

ac = critical contact area radius:
√

Rωc in slip,
√

Rδc in stick

A = contact area

Ac = critical contact area: πRωc in slip, πRδc in stick

A∗ = A/πRωc in slip, A/πRδc in stick

Cν = pmc/Y0 = 1.234+ 1.256ν

E = Young’s modulus of the sphere

ET = tangent modulus of the sphere

Lc = critical load in stick

p = contact pressure

pav = average contact pressure, P/A

pavc = critical average pressure in slip, (2/3)pmc

pmc = critical maximum pressure in slip

P = load

Pc = critical load in slip

P∗ = P/Pc in slip, P/Lc in stick

R = radius of the sphere

Y0 = virgin yield strength of the sphere

z0 = location of yielding inception

Keywords: spherical contact, contact conditions, elastic-plastic contact.
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δc = critical interference in stick

ν = Poisson’s ratio of the sphere

ω = interference

ωc = critical interference in slip

ω∗ = ω/ωc in slip, ω/δc in stick

ωt = transition interference, at which the plastic region first reaches the sphere surface

ω∗t = ωt/ωc in slip, ωt/δc in stick

ζ0 = dimensionless yielding inception depth, z0/a

ζ ∗0 = yielding inception depth ratio (stick over slip).

1. Introduction

The elastic-plastic contact of a deformable sphere and a rigid flat is a primary problem in contact me-
chanics with important scientific and technological aspects. The subject stems from the classical work of
Hertz in 1881, who derived an analytical solution for the frictionless (that is, perfect slip) elastic contact
of two spheres [Johnson 1985]. The stress field associated with elastic spherical contact was calculated in
detail by Huber in 1904 [Fischer-Cripps 2000]. These pioneering works were extended in the following
years to expand the frictionless contact into the elastic plastic regime, and to include frictional contact.

Chang et al. [1987] developed a model (CEB model) for the elastic-plastic contact between rough
surfaces, which was based on analyzing the contact between a single sphere and a rigid flat under perfect
slip condition. According to this model the sphere remains elastic, and hence the theory of Hertz holds
until a certain critical interference at which yielding inception in the sphere is reached. Above the critical
interference volume conservation of the sphere summit is imposed while the contact pressure distribution
is assumed uniform and equal to the maximum pressure at the yielding inception. This simplified model
resulted in a discontinuity in the contact load and in the derivative of the contact area with respect to the
interference at the transition from elastic to elastic-plastic regime. Several modifications of the original
CEB model were suggested [Evseev et al. 1991; Chang 1997; Zhao et al. 2000] in order to smooth the
transition from the elastic to plastic regime, However, all these modifications are purely mathematical
manipulations without any physical basis. Mesarovic and Fleck [2000] analyzed the problem of a normal
frictionless contact between two dissimilar spheres. They studied the effect of material strain-hardening
and the geometrical and mechanical dissimilarity of the spheres on the contact parameters and on the
regime of deformation. Kogut and Etsion [2002] used a finite element method to study numerically the
evolution of the plastic zone in elastic-plastic contact between a sphere and a rigid flat under perfect
slip condition. They provided convenient dimensionless expressions for the contact load, contact area
and mean contact pressure, covering a wide range of interferences for a single value of the Poisson’s
ratio (ν = 0.3). Similar results were then obtained by Quicksall et al. [2004] and Jackson and Green
[2005]. Etsion et al. [2005] studied the process of loading-unloading of an elastic-plastic loaded sphere
in contact with a rigid flat under perfect slip condition. They calculated the contact load, stresses and
deformations in the sphere during both loading and unloading, for a wide range of interferences and
several combinations of material properties.
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The first analytical solution of the elastic spherical contact problem under full stick condition is by
Goodman [1962]. Goodman found a simplified solution for the tangential stress distribution over the
contact area of two dissimilar elastic spheres. The effect of these tangential stresses on the normal
displacements was neglected, so that the pressure distribution over the contact area was assumed to be
Hertzian. A more exact analysis of the elastic spherical contact under full stick contact condition was
performed by Spence [1968] who solved simultaneously the dual integral equations for shear stresses
and pressure distribution over the contact area and calculated the total compressive load. It follows
from Spence’s results that for small values of Poisson’s ratio, the influence of the shear stresses on the
contact load is appreciable. Spence [1975] extended his previous analysis to the case of partial stick
using a certain value of friction coefficient. Hills and Sackfield [1987] presented a complete picture of
the stress distribution in the elastic spherical contact under full and partial stick contact conditions, using
the assumptions of [Goodman 1962]. Kosior et al. [1999] analyzed an elastic spherical contact under
partial slip condition (with a finite Coulomb friction) using a domain decomposition method coupled
with a boundary element method. They calculated stress distribution, contact radius and displacement as
functions of the sphere mechanical properties. Their results were in good agreement with the analytical
solution of Spence [1975]. Mesarovic and Fleck [1999] studied numerically the problem of spherical
indentation of a rigid sphere into an elastic-plastic half-space under perfect slip and full stick conditions.
They investigated the effect of contact conditions and material strain-hardening on the contact parameters
and on the regime of deformation. Brizmer et al. [2006] studied the influence of the two different contact
conditions (full stick vs. perfect slip) and material properties on the elasticity terminus of a contact
between a smooth elastic sphere and rigid flat. The plastic yield inception of ductile materials and the
failure inception of brittle materials were studied separately.

From the above introduction it can be seen that most of the existing literature on elastic-plastic spher-
ical contact concerns perfect slip condition while full stick condition is mostly limited to elastic contact.
Moreover, an accurate study of the effect of the sphere mechanical properties on the contact parameters,
such as contact load and contact area, and on the evolution of the plastic zone with increasing interference,
is still missing. Since a realistic elastic-plastic contact of a sphere and flat may be far from the ideal
assumption of perfect slip, it seems appropriate to analyze the problem of spherical contact under stick
condition for different material properties, and to compare the results with the corresponding solutions
of perfect slip.

2. Theoretical background

Figure 1 presents a deformable sphere in contact with a rigid flat. The solid and dashed lines show
the contours of the contacting bodies after and before the loading. The inner solid contour of the
deformed sphere shown in Figure 1 corresponds to relatively low values of Poisson’s ratio (that is, a
compressible material), when the volume of the sphere diminishes under compressive loading. For high
values of Poisson’s ratio (that is, a nearly incompressible material) the volume of the sphere remains
almost constant during the deformation. For conservation of volume, the points of the sphere will tend
to move outwards rather than inwards in the radial direction (the outer solid contour in Figure 1). Two
different types of the contact conditions are analyzed in the present work: perfect slip and full stick. The
former case assumes no tangential stresses in the contact area. The latter case implies that corresponding
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Figure 1. Model of a deformable sphere in contact with a rigid flat.

points of the sphere and the flat (which initially laid outside the contact area and were free to acquire
a relative displacement) that are overtaken by the expanding contact zone, are prevented from further
relative displacement [Johnson et al. 1973]. The perfect slip assumption, although not describing a
general realistic contact condition, allows a relatively simple analytical solution in the elastic regime
and can be considered as a limiting case. The full stick assumption, on the other hand, is more realistic
when considering the junction formed in the interface of contacting bodies [Tabor 1959]. In this case the
stress field and yielding criterion at the junction interface obey material constitutive laws. This approach
is different from previous frictional contact solutions (for example, [Spence 1975]) where partial slip is
obtained when a certain local Coulomb friction law is assumed.

The contact area, its radius a, and interference ω (see Equation (1)) correspond to a contact load P .
The material of the sphere is assumed to be elastic-isotropic linear hardening [Etsion et al. 2005].

Since the problem is axisymmetric, it is sufficient to consider only half of the axisymmetric hemisphere
section, as shown in Figure 1. The boundary conditions consist of constraints in the vertical and radial
directions at the bottom of the hemisphere and in the radial direction at the axis of symmetry (see
Equation (1)). The surface of the sphere is free elsewhere except for tractions imposed by the contacting
rigid flat.

The critical interference ωc or δc at yielding inception in perfect slip or in full stick, respectively, and
their corresponding values of the critical loads, Pc and Lc, were given by Brizmer et al. [2006] in the
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form:

ωc =

(
Cν
π(1− ν2)

2

(
Y0

E

))2

R (1)

δc/ωc = 6.82ν− 7.83(ν2
+ 0.0586) (2)

Pc =
π3Y0

6
C3
ν

(
R(1− ν2)

(
Y0

E

))2

(3)

Lc/Pc = 8.88ν− 10.13(ν2
+ 0.089). (4)

In Equations (1) and (3), Cν = 1.234+1.256 ν is the maximum dimensionless contact pressure at yielding
inception in slip, pmc/Y0. The parameters Y0, E , and ν are the virgin yield stress, the Young modulus,
and the Poisson’s ratio of the sphere material, respectively. Equations (1) and (3) for the perfect slip
were obtained analytically, using the Hertz solution [Johnson 1985] and applying the von Mises yield
criterion. Equations (2) and (4), corresponding to the full stick condition, were derived numerically.

The critical value of the contact area, corresponding to yield inception for slip contact condition
follows from Hertz solution [Johnson 1985]:

Ac = πωc R (5)

and for stick, as was found in [Brizmer et al. 2006]:

Ac = πδc R. (6)

The dimensionless yielding inception depth in perfect slip, ζ0, and the ratio of yielding inception depth
in stick over that in slip, ζ ∗0 , are [Brizmer et al. 2006]:

ζ0 = z0/a = 0.381+ ν/3 (7)

ζ ∗0 = 0, ν ≤ 0.26;

ζ ∗0 = 1.54(ν− 0.26)0.294, 0.26< ν ≤ 0.5;
(8)

where z0 is the yielding inception depth in perfect slip.

3. Finite elements model

The loading of an elastic-plastic contact is a complicated problem. To avoid oversimplifications, this
contact problem was solved numerically, by a finite element method using the commercial package AN-
SYS 8.0. The mesh consisted of 8,800 six-node triangular axisymmetric elements (Plane2) comprising
a total of 29,277 nodes. The sphere was divided into three different mesh density zones (see Figure 2),
where zones I and II were within 0.015R and 0.1R, respectively, from the sphere summit, and zone III
outside the 0.1R distance. Zone I had the finest mesh and the other zones had a gradually coarser mesh at
increasing distance from the sphere summit. The sphere surface consisted of contact elements (Conta172)
that matched the size of the elements in each zone. The rigid flat was modeled by a single nonflexible
element (Targe169). The material of the sphere was assumed elastic linear isotropic hardening with a
tangent modulus, ET , that was selected as 2% of the Young modulus E , which is an upper limit of many
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Figure 2. The finite elements model.

practical materials, see, for example, [Carmichael 1955]. This linear isotropic hardening significantly
improves convergence compared to an elastic perfectly plastic material without causing much change
(less than 2.5%) in the results. Hence, this hardening enables comparison with existing results for per-
fect slip condition, such as those in [Kogut and Etsion 2002], yet provides a better convergence of the
numerical solution. The von Mises yielding criterion was used to detect local transition from elastic
to plastic deformation, and Hooke’s and the Prandtl–Reuss’ constitutive laws governed the stress-strain
relations in the elastic and plastic zones, respectively. A nonlinear finite deformation definition was used
to allow large interferences (up to ω∗ = 110).

To verify the accuracy of the finite element model, results for purely elastic contact under perfect slip
condition were tested against the Hertz solution. The correlations of the contact load and contact area
were within 1% and 3%, respectively. Another check was done at high interferences in full stick and
in perfect slip by increasing the mesh density and ensuring convergence of the results within a small
pre-defined tolerance. Typical computation times on a 1.6 GHz PC were about 2–3 minutes for small,
and 10–15 minutes for large interferences.
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4. Results and discussion

The effects of the contact conditions (full stick vs. perfect slip), and of the material properties on the
contact load and contact area were investigated in the present work over a wide range of dimensionless
interferences from elastic to full plastic contact 0.25 ≤ ω∗ ≤ 110 (here ω∗ is ω/ωc in slip and ω/δc

in stick). Three different values of Poisson’s ratio typical for ductile metals, 0.25, 0.35 and 0.45, were
selected in the present analysis along with three values of the ratio E/Y0: 500, 1000 and 2000. Each
combination of the material properties was examined over the full range of interferences.

The results for the dimensionless contact load and contact area in slip as functions of ω∗ in the elastic
regime, ω∗ < 1, were found identical to the Hertz solution, as would be expected. The results of the
contact area in stick were found to be identical to those in slip. From the Hertz solution A = πRω ,
hence, from the definition of the critical areas in slip and stick in Equations (5) and (6), respectively,
it is clear that A∗ = A/Ac = ω

∗ in both stick and slip regardless of the Poisson’s ratio. The results of
the contact load, P∗, in stick (P/Lc) were found very similar to these in slip (P/Pc) particularly at an
increasing Poisson’s ratio. The diminishing difference between the contact load P∗ in stick and slip with
an increasing Poisson’s ratio is attributed to the increasing material incompressibility. This can be seen,
at least for the elastic regime, from the Hertz solution for the radial displacement, ur , of the sphere points
at the contact area:

ur (r, ν)= f (r) · (1− 2ν)(1+ ν), (9)

where f (r) is a certain function of the radial coordinate, the radius of the contact area and the Young’s
modulus of the sphere. From Equation (9) it is clear that a higher Poisson’s ratio results in lower relative
displacements between the sphere and the flat in slip, making the slip condition closer to the zero relative
displacements in stick condition.

In the elastic-plastic regime, ω∗ > 1, the numerical results for the dimensionless contact area A∗ and
contact load P∗ as functions of ω∗ were again very similar in stick and in slip. These results were best
fitted and have the following forms:

A∗ = ω∗
(

1+ exp
( 1

1− (ω∗)α

))
, (10)

P∗ = (ω∗)3/2
(

1− exp
( 1

1− (ω∗)β

))
, (11)

where α and β are linear functions of the Poisson’s ratio:

α = 0.25+ 0.125ν; β = 0.174+ 0.08ν.

The approximate expressions in Equations (10) and (11) for A∗ and P∗ describe the numerical FEM
results with an average difference of 4% in A∗ and 2% in P∗.

From Equation (10) it can be seen that for ω∗ slightly larger than one (that is, just after the yielding
inception), A∗ approaches ω∗, in agreement with the elastic solution of Hertz. On the other hand, for large
values of ω∗, A∗ approaches 2ω∗, i.e. the approximate fully plastic solution of [Abbott and Firestone
1933]. Equation (11) gives P∗ ≈ (ω∗)3/2 for ω∗ slightly larger than 1, which is in agreement with
Hertz solution. These results compare favorably with the relevant dimensionless expressions presented
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Figure 3. The effect of dimensionless interference on the dimensionless contact pres-
sure distribution, p/Y0, in slip and in stick, for a typical case of ν = 0.3.

in [Kogut and Etsion 2002] (the KE model) and in [Etsion et al. 2005] for ν = 0.3, and slip condition for
elastic perfectly plastic and for elastic linear hardening materials, respectively.

Equations (10) and (11) suggest that normalizing the results for the contact area and contact load by
their appropriate critical values at yielding inception for either slip or stick (see Equations (1) to (6))
as given by [Brizmer et al. 2006], provides, for ductile materials, a powerful universal solution for the
elastic-plastic contact problem in both stick and slip where an analytical solution is impossible. It extends
the classical Hertz solution into the elastic-plastic regime while providing a physical insight of the main
dimensionless parameters affecting this contact problem in both slip and stick.

It can be seen from Equations (10) and (11) that the ratio E/Y0 has no effect on the results for a
given dimensionless interference ω∗ in both stick and slip, while the Poisson’s ratio has little effect on
the dimensionless contact area and contact load. It is also evident that isotropic linear hardening has
negligible effect on the results compared to elastic perfectly plastic behavior.

The effect of the contact conditions on the contact pressure distribution, p/Y0, at the contact area for
a typical case ν = 0.3 is shown in Figure 3. The solid and dashed lines correspond to full stick and
perfect slip, respectively. It can be seen that the two contact conditions yield very similar results for the
full range of interferences with pressures in slip slightly higher than in stick, at least for ω∗ ≤ 25. This
seemingly counterintuitive result is due to the fact that the critical interference in stick δc is significantly
less than ωc in slip (e.g. δc/ωc ≈ 0.88 for ν = 0.3, see Equation (2)). Hence, the pressure distributions in
slip correspond to dimensional interference, ω, that is 12% higher than the dimensional interference in
stick for a given value of ω∗. In other words, the pressure in slip would be somewhat lower than that in
stick for the same dimensional interference. Recalling that the contact area depends on the interference
(same contact area for same ω in both slip and stick), the results in Figure 3 are in agreement with the
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Figure 4. The effect of the Poisson’s ratio on the dimensionless contact pressure distri-
bution in slip and in stick for the case of ω∗ = 6.

observation (see, for example, [Johnson 1985, p. 123]) that “friction can increase the total load required
to produce a contact of given size by at most 5% compared with Hertz”.

The effect of the Poisson’s ratio on contact pressure distribution in slip and in stick is shown in Figure 4
for the case of ω∗= 6. It can be seen that a higher Poisson’s ratio results in higher contact pressure for this
dimensionless interference in both slip and stick. This is attributed to the fact that at a higher Poisson’s
ratio, the material is less compressible and so higher pressure is required to deform it. For the case of
ν = 0.45 where the critical interferences in stick and slip are almost identical, as in Equation (2) (ω values
in stick and in slip are equal), the solid and dashed lines coincide, that is, the pressure distributions in
slip and in stick are almost identical. On the other hand, for ν = 0.25 where δc/ωc ≈ 0.76 (see Equation
(2)) the dimensional interference, ω, in slip for a given value of ω∗ is larger than that in stick causing the
pressure distribution in slip to be slightly higher than that in stick.

The dimensionless average contact pressure, pav/Y0, vs. the dimensionless interference, ω∗, in slip
has the form (see Equations (1), (3), and (5) and the definition of Cν):(

pav

Y0

)
slip
=

P
AY0
=

P∗

A∗
·

Pc

πωc RY0
=

P∗

A∗
·

pavc

Y0
, (12)

while in stick: (
pav

Y0

)
stick
=

P∗

A∗
·

Lc

πδc RY0
=

P∗

A∗
·

pavc

Y0
·
(Lc/Pc)

(δc/ωc)
, (12a)
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where the dimensionless parameters: pavc/Y0, Lc/Pc and δc/ωc are known functions of ν (see Nomen-
clature and Equations (2) and (4)). From Equations (12) and (12a) we have:

(pav)slip

(pav)stick
=
δc/ωc

Lc/Pc
. (13)

By using Equations (2) and (4) it can easily be shown that for ν = 0.25, the ratio of the average contact
pressures, slip over stick, in Equation (13) is 1.1, while for ν ≥ 0.3 it is very close to a unity. Hence, like
the dimensionless contact area and contact load (Equations (10) and (11)), the average contact pressures
in stick and in slip are very similar and can also be properly normalized by their critical values.

Substituting A∗ and P∗ from Equations (10) and (11), respectively, into Equation (12) or (12a) yields
the dimensionless average pressure in stick or in slip as a function of ω∗ and ν. The results are presented
in Figure 5 along with the numerical FEM results showing a very good agreement with an average
difference of 4%. It was found that Equations (12) or (12a) can also be well approximated by the simpler
form:

pav

Y0
= (ω∗)1/2 · tanh

(
1

2
(
(ω∗)γ − 1

)) · pavc

Y0
, (14)

where
γ = 0.2+ 0.06ν,

without any loss of accuracy. It can be easily seen that for ω∗ slightly larger than 1, pav/pavc = (ω
∗)1/2,

which is in agreement with the Hertz solution.
From Figure 5 it can be seen that the average contact pressure increases sharply up to an interference

that is about 10ω∗. From there on the rate of increase of the average pressure diminishes, and at about
110ω∗ the average pressure reaches a value that varies from 2.73Y0 for ν = 0.25 to 3.28Y0 for ν = 0.45.
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Figure 6. The early evolution of the plastic region for small values of the dimensionless
interference in stick at different values of the Poisson’s ratio (a)–(c) in comparison with
that in slip for 0.25≤ ν ≤ 0.45 (d).

The higher average contact pressure at larger Poisson’s ratios is due to the reduced compressibility as
shown in Figure 4. The results in Figure 5 are in good agreement (within 5%) with [Kogut and Etsion
2002] where a value of 2.8Y0 was found for ν = 0.3. A similar effect of the Poisson’s ratio on the
hardness was found by Kogut and Komvopoulos [2004] for indentation and Jackson and Green [2005].
In these two references a reduction in pav/Y0 was observed for very large interferences corresponding
to a/R values in access of 0.1. Our analysis is limited to a/R < 0.05.

The early evolution of the plastic region for small dimensionless interferences (ω∗ ≤ 8) within the
sphere tip is presented in Figure 6. As we see, the Poisson’s ratio has a large effect on the early evolution
of the plastic region under full stick condition (see Figure 6a–c). On the other hand it was found that
under slip condition the Poisson’s ratio effect is negligible. Hence, for slip condition just one typical
case for the range 0.25≤ ν ≤ 0.45 is presented in Figure 6d. The differences in the early evolution of the
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plastic region between stick and slip are in good agreement with the results of [Brizmer et al. 2006] for
the yielding inception depth that was found highly dependent on the Poisson’s ratio in stick, but almost
unaffected by it in slip (see Equations (7) and (8). Another interesting difference between stick and slip
concerns the existence of an elastic core close to the contact interface. This core is completely missing
in Figure 6a, it has an annular shape in Figure 6b, and is continuous over a central portion of the contact
area in Figures 6c and 6d. Further numerical simulations in the range 0.3 ≤ ν ≤ 0.4 revealed that this
elastic core (that is, the elastic zone at the very top of the sphere surrounded by the expending plastic
region), which persists up to relatively high values of ω∗ in slip [Kogut and Etsion 2002], is completely
missing in stick when ν < 0.35. As can further be seen from Figure 6c, d the early evolution of the
plastic region in stick for a Poisson’s ratio of 0.45 is similar to that in slip.

The transition interference, ω∗t , at which the evolving plastic zone first reaches the surface of the
sphere is also very different in stick and in slip. This can be seen from Figures 6a–d, and more clearly
from Figure 7. From this figure we see that in slip, ω∗t varies linearly from 6 to 8 over the entire range
of the Poisson’s ratio. In stick, on the other hand, when ν ≤ 0.26 the plastic zone starts at the contact
interface (see Equation (8) hence, ω∗t = 1. As the Poisson’s ratio increases the transition interference,
ω∗t , in stick increases too, first moderately until ν = 0.35, then very rapidly until ν = 0.39, and finally
as ν approaches 0.45 the transition interference in stick approaches that in slip. The higher values of
ω∗t in slip compared to stick, as shown in Figure 7, are due to the deeper location of yielding inception
under the former contact condition (see Equations (7) and (8)), which requires more deformation for the
plastic zone to reach the sphere surface. Also, at Poisson’s ratios below 0.35 in stick, the plastic region
first reaches the sphere surface at the center of the contact area even when incepting slightly below it
(see Figures 6a and b). In slip this event starts close to the circumference of the contact area (see also
[Kogut and Etsion 2002]) at a much longer distance from the point of yield inception and thus requires
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Figure 8. Typical evolution of the plastic zone for high values of the dimensionless
interference for 0.25≤ ν ≤ 0.45, showing identical behavior in stick and slip.

larger interferences. The sharp increase of ω∗t in stick observed above ν = 0.35 can be explained by the
appearance of the annular elastic core (see Figure 6b) that extends towards the center of the contact area
with further increases of the Poisson’s ratio (Figure 6c), blocking the upward advancement of the plastic
zone front and forcing it radially out, similarly to the behavior in slip.

The evolution of the plastic zone for dimensionless interferences higher than 15 is shown in Figure
8. As can be seen the differences between stick and slip conditions disappear and the plastic zone
becomes identical regardless of the Poisson’s ratio. The reason for this identical behavior is that at higher
interferences with increasing size of the plastic zone, the different historical location of the yielding
inception and the development of the elastic core in stick and slip become insignificant.

5. Conclusion

The effects of contact condition (perfect slip or full stick) and material properties on elastic-plastic nor-
mally loaded spherical contact were investigated for a large range of interferences. The results for the
dimensionless contact area, contact load and average contact pressure were found to be almost insensi-
tive to the contact condition, independent of the ratios E/Y0 and ET /E and of the sphere radius, and
slightly affected by the Poisson’s ratio. The numerical results were approximated by simple empirical
expressions based on realistic physical behavior. It was shown that normalizing the various parameters
by their corresponding critical values at yielding inception provides a powerful general solution for the
contact problem that is valid under both perfect slip and full stick conditions. Unlike the global contact
parameters, the early evolution of the plastic zone in the contact region is very much affected by Poisson’s
ratio mainly under stick contact condition. Up to about ν = 0.4 this evolution in stick is also very different
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from the evolution in slip. At higher values of the Poisson’s ratio the behavior in stick becomes very
similar to that in slip. As the dimensionless interference increases and the plastic zone continues to
expand, the differences between stick and slip diminish for the full range of Poisson’s ratio.

References

[Abbott and Firestone 1933] E. J. Abbott and F. A. Firestone, “Specifying surface quantity – a method based on accurate
measurement and comparison”, Mech. Eng. 55 (1933), 569–572.

[Brizmer et al. 2006] V. Brizmer, Y. Kligerman, and I. Etsion, “The effect of contact conditions and material properties on the
elasticity terminus of a spherical contact”, Int. J. Solids Struct. 43:18-19 (2006), 5736–5749.

[Carmichael 1955] C. Carmichael, Kent’s mechanical engineers’ handbook: Design and production volume, 12th ed., edited
by C. Carmichael, Wiley, New York, 1955.

[Chang 1997] W. R. Chang, “An elastic-plastic contact model for a rough surface with an ion-plated soft metallic coating”,
Wear 212:2 (1997), 229–237.

[Chang et al. 1987] W. R. Chang, I. Etsion, and D. B. Bogy, “An elastic-plastic model for the contact of rough surfaces”, J.
Tribology (Trans. ASME) 109 (1987), 257–263.

[Etsion et al. 2005] I. Etsion, Y. Kligerman, and Y. Kadin, “Unloading of an elastic-plastic loaded spherical contact”, Int. J.
Solids Struct. 42:13 (2005), 3716–3729.

[Evseev et al. 1991] D. G. Evseev, B. M. Medvedev, and G. G. Grigoriyan, “Modification of the elastic-plastic model for the
contact of rough surfaces”, Wear 150:1-2 (1991), 79–88.

[Fischer-Cripps 2000] A. C. Fischer-Cripps, Introduction to contact mechanics, Springer, New York, 2000.

[Goodman 1962] L. E. Goodman, “Contact stress analysis of normally loaded rough spheres”, J. Appl. Mech. (Trans. ASME)
29 (1962), 515–522.

[Hills and Sackfield 1987] D. A. Hills and A. Sackfield, “The stress field induced by normal contact between dissimilar
spheres”, J. Appl. Mech. (Trans. ASME) 54 (1987), 8–14.

[Jackson and Green 2005] R. L. Jackson and I. Green, “A finite element study of elasto-plastic hemispherical contact against a
rigid flat”, J. Tribology (Trans. ASME) 127:2 (2005), 343–354.

[Johnson 1985] K. L. Johnson, Contact mechanics, Cambridge University Press, Cambridge, MA, 1985.

[Johnson et al. 1973] K. L. Johnson, J. J. O’Connor, and A. C. Woodward, “The effect of the indenter elasticity on the hertzian
fracture of brittle materials”, P. Roy. Soc. Lond. A Mat. A334 (1973), 95–117.

[Kogut and Etsion 2002] L. Kogut and I. Etsion, “Elastic-plastic contact analysis of a sphere and a rigid flat”, J. Appl. Mech.
(Trans. ASME) 69:5 (2002), 657–662.

[Kogut and Komvopoulos 2004] L. Kogut and K. Komvopoulos, “Analysis of the spherical indentation cycle for elastic-
perfectly plastic solids”, J. Mater. Res. 19:12 (2004), 3641–3653.

[Kosior et al. 1999] F. Kosior, N. Guyot, and G. Maurice, “Analysis of frictional contact problem using boundary element
method and domain decomposition method”, Int. J. Numer. Methods. Eng. 46:1 (1999), 65–82.

[Mesarovic and Fleck 1999] S. D. Mesarovic and N. A. Fleck, “Spherical indentation of elastic-plastic solids”, P. Roy. Soc.
Lond. A Mat. A455:1987 (1999), 2707–2728.

[Mesarovic and Fleck 2000] S. D. Mesarovic and N. A. Fleck, “Frictionless indentation of dissimilar elastic-plastic spheres”,
Int. J. Solids Struct. 37:46-47 (2000), 7071–7091.

[Quicksall et al. 2004] J. J. Quicksall, R. L. Jackson, and I. Green, “Elasto-plastic hemispherical contact models for various
mechanical properties”, Proc. Inst. Mech. Eng. 218:4 (2004), 313–322. Part J: J. Eng. Tribol.

[Spence 1968] D. A. Spence, “Self-similar solutions to adhesive contact problems with incremental loading”, P. Roy. Soc. Lond.
A Mat. A305:1480 (1968), 55–80.

[Spence 1975] D. A. Spence, “The Hertz contact problem with finite friction”, J. Elasticity 5:3-4 (1975), 297–319.

http://dx.doi.org/10.1016/j.ijsolstr.2005.07.034
http://dx.doi.org/10.1016/j.ijsolstr.2005.07.034
http://dx.doi.org/10.1016/S0043-1648(97)00148-8
http://dx.doi.org/10.1016/j.ijsolstr.2004.12.006
http://dx.doi.org/10.1016/0043-1648(91)90307-G
http://dx.doi.org/10.1016/0043-1648(91)90307-G
http://dx.doi.org/10.1115/1.1866166
http://dx.doi.org/10.1115/1.1866166
http://dx.doi.org/10.1098/rspa.1973.0082
http://dx.doi.org/10.1098/rspa.1973.0082
http://dx.doi.org/10.1115/1.1490373
http://dx.doi.org/10.1557/JMR.2004.0468
http://dx.doi.org/10.1557/JMR.2004.0468
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<65::AID-NME663>3.0.CO;2-F
http://dx.doi.org/10.1002/(SICI)1097-0207(19990910)46:1<65::AID-NME663>3.0.CO;2-F
http://dx.doi.org/10.1098/rspa.1999.0423
http://dx.doi.org/10.1016/S0020-7683(99)00328-5
http://dx.doi.org/10.1243/1350650041762604
http://dx.doi.org/10.1243/1350650041762604
http://dx.doi.org/10.1098/rspa.1968.0105
http://dx.doi.org/10.1007/BF00126993


EFFECT OF CONTACT CONDITIONS AND MATERIAL PROPERTIES ON SPHERICAL CONTACT 879

[Tabor 1959] D. Tabor, “Junction growth in metallic friction: the role of combined stresses and surface contamination”, P. Roy.
Soc. Lond. A Mat. A251:1266 (1959), 378–393.

[Zhao et al. 2000] Y. Zhao, D. M. Maietta, and L. Chang, “An asperity microcontact model incorporating the transition from
elastic deformation to fully plastic flow”, J. Tribology (Trans. ASME) 122:1 (2000), 86–93.

Received 31 Dec 2005. Revised 17 Mar 2006. Accepted 5 May 2006.

VICTOR BRIZMER: brizmer@technion.ac.il
Dept. of Mechanical Engineering, Technion, Haifa 32000, Israel

YUVAL ZAIT: syuvalza@t2.technion.ac.il
Dept. of Mechanical Engineering, Technion, Haifa 32000, Israel

YURI KLIGERMAN: mermdyk@technion.ac.il
Dept. of Mechanical Engineering, Technion, Haifa 32000, Israel

IZHAK ETSION: etsion@technion.ac.il
Dept. of Mechanical Engineering, Technion, Haifa 32000, Israel

http://dx.doi.org/10.1098/rspa.1959.0114
http://dx.doi.org/10.1115/1.555332
http://dx.doi.org/10.1115/1.555332
mailto:brizmer@technion.ac.il
mailto:syuvalza@t2.technion.ac.il
mailto:mermdyk@technion.ac.il
mailto:etsion@technion.ac.il


JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
http://www.jomms.org

EDITOR-IN-CHIEF Charles R. Steele

ASSOCIATE EDITOR Marie-Louise Steele
Division of Mechanics and Computation
Stanford University
Stanford, CA 94305
USA

SENIOR CONSULTING EDITOR Georg Herrmann
Ortstrasse 7
CH–7270 Davos Platz
Switzerland

BOARD OF EDITORS

D. BIGONI University of Trento, Italy
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