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MICROBEAM THAT IS BONDED TO AN ELASTIC FOUNDATION

DAVID ELATA AND SAMY ABU-SALIH

The electromechanical buckling of a prestressed microbeam bonded to a dielectric elastic foundation is
analyzed. It is shown that electrostatic forces can precipitately instigate buckling even when the prestress
in the microbeam is lower than the critical value that would cause mechanical buckling. We show that
electrostatic potential can be used to achieve on/off switching of surface flexures. An analytic solution
of the critical electromechanical state is derived. In addition, an analytic approximation of the initial
postbuckling state is also presented, and is validated numerically.

1. Introduction

Mechanical buckling is a well known phenomenon that occurs in thin elastic structures subjected to
compressive loads. Mechanical buckling develops only if the compressive loads are larger than a critical
value. In most buckled structures, reduction of the compressive load to a subcritical level will eliminate
the buckling deformation. In thin sheet-like elastic solids that are bonded to an elastic foundation, a
compressive stress can cause a dense occurrence of buckling flexures [Hetenyi 1946]. The buckling
phenomenon is a bifurcation transition because the postbuckling state may arbitrarily develop into one
of several modes [Gilmore 1981; Godoy 1999; Nguyen 2000].

A different instability that is prevalent in the field of microelectromechanical systems (MEMS) is
the pull-in phenomenon in electrostatic actuators [Elata et al. 2003; Pelesko and Bernstein 2003]. This
inherent instability is due to the nonlinear nature of electrostatic forces. This instability is known as a
limit point or a fold in the equilibrium state of the electrostatic actuator [Elata et al. 2003; Gilmore 1981;
Godoy 1999; Nguyen 2000], and is not a bifurcation.

However, a bifurcation transition is also possible in electrostatic actuators. A well known example is
the side pull-in in electrostatic comb-drives [Elata et al. 2003; Elata and Leus 2005; Legtenberg et al.
1996]. This instability response is an electromechanical bifurcation because the comb-drive may collapse
in more than one direction.

Recently, the bifurcation response of a clamped-clamped beam that is subjected to both compressive
stress and an electrostatic field was investigated. This bifurcation instability was termed electromechan-
ical buckling (EMB) [Elata and Abu-Salih 2005], because it is a true coupling between mechanical
buckling and electromechanical bifurcation.

In the present study, the EMB response of a prestressed infinite beam, bonded to an elastic foundation,
is analyzed. Specifically it is shown that buckling in this system can be reversibly switched on and off
by application and elimination of a driving voltage.
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In the next section the governing equation of the problem is presented. In Section 3 the parameters of
the critical electromechanical buckling state are analytically derived. The initial postbuckling analysis is
presented in Section 4 and includes an approximate analytic solution which is numerically validated.

2. Formulation

In this study we analyze the EMB of an infinite beam. To facilitate the analysis we use the following
strategy. First, we assume that the critical and postbuckling states are both periodic. This assumption will
be later confirmed by numerical simulations. Second, we derive the wavelength of the periodic solution.
For the critical state the wavelength is derived analytically. For the postbuckled state the wavelength is
computed in the following way: we first consider the postbuckled state of a finite beam with periodic
boundary conditions. The length of the finite beam which is associated with the minimal energy per unit
length of the postbuckled state is the correct postbuckling wavelength in the infinite beam. Finally, we
use numerical simulations to confirm that the critical and postbuckling solutions indeed converge to a
periodic waveform.

Consider an infinite beam which is bonded to an elastic foundation as illustrated in Figure 1a. The
beam is conductive, the elastic foundation is an isolating dielectric, and the bottom substrate is a fixed
rigid conductor. The beam is prestressed and is subjected to a potential V , and the substrate is grounded.

The field equation that governs the electromechanical response of the beam is given by

Db
d4 y
dx4 − σbh

d2 y
dx2 − Ebh

(
1
L

∫
L

1
2

(dy
dx

)2
dx
)

d2 y
dx2 + k f by =

ε b V 2

2(g− y)2
. (1)

The four terms on the left hand side of Equation (1) are the distributed load due to bending, residual
stress, membrane stiffening, and elastic foundation. The term on the right hand side is the electrostatic
distributed force.

Here y is the deflection as a function of location x along the beam, D = E∗h3/12 is the bending
rigidity of the beam, b is the beam width, h is the beam thickness, and E∗ = E/(1− ν2) is the effective
bending modulus assuming that the beam is wide, that is, b� h, where E is Young’s modulus and ν is
the Poisson ratio. The variable σ is the prestress (positive in tension), L is the length of the beam, k f

is the elastic modulus of the foundation measured in N/m3, ε is the permittivity of the dielectric elastic
foundation and g is its nominal thickness.

The third term in (1), which includes the beam length L , is correct for L →∞. The equilibrium
equation also holds for a beam of finite length L with periodic boundary conditions. In this case, if L is
equal to an integer number of wavelengths of the periodic solution of the infinite beam, then the solution
of the finite beam is identical to the solution of the infinite beam.

In the third term of (1), it is assumed that the elastic foundation does not constrain the transverse strain
εzz when the beam is in tension. This may be expected when the thickness of the elastic foundation is
greater than the beam width. If, however, the thickness of the elastic foundation is much smaller than
the beam width, then the elastic foundation may constrain the transverse strain εzz when the beam is
subjected to axial tension. In this case the effective elastic modulus in the third term should be replaced
with E∗.
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Figure 1. A prestressed beam bonded to an elastic foundation. (a) When the prestress
in the conductive beam is below the critical value, and no voltage is applied, the beam
remains flat; (b) when a subcritical voltage is applied, the beam deflection is uniform;
(c) when a supercritical voltage is applied, electromechanical buckling occurs.
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The effect of fringing fields is not considered in this work though simplified approximations of this
effect may be added to the analysis [Leus and Elata 2004]. Also, the equilibrium equation (1) is valid
for small rotations, that is, |dy/dx | � 1. If this condition does not hold, additional nonlinear terms must
be included in the governing equation [Brush and Almaroth 1975].

The electrostatic distributed force is approximated by the local parallel-plates model which is valid
for small rotations.

The governing equation may be written in the following normalized form

1
(2π)4

d4 ỹ
d x̃4 +

2β
(2π)2

d2 ỹ
d x̃2 −

g̃2

α
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(
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.

Here 3cr and σcr are the wavelength and the stress at the critical buckling state when no voltage is
applied [Abu-Salih and Elata 2005; Hetenyi 1946], β is the normalized prestress parameter and α is the
normalized wavelength [Abu-Salih and Elata 2005].

3. Critical state

When no electrostatic forces are applied, the prestressed beam will not buckle if the prestress is lower
than the critical stress σcr . In this section we investigate the effect of electrostatic forces on the critical
buckling state of the prestressed beam. Specifically, we show that electrostatic forces can induce buckling
in a beam in which the prestress is subcritical (in such a beam buckling will not occur if electrostatic
forces are not applied).

When a voltage is applied to the beam, the beam initially deflects uniformly, similar to a parallel-
plates actuator [Pelesko and Bernstein 2003] (Figure 1b). In this case the dielectric elastic foundation
constitutes both a dielectric substance between the electrodes and the elastic spring of the parallel-plates
actuator.

When the deflection is nearly uniform, the nonlinear term (in square brackets) may be omitted from
the governing equation (2), which reduces to

1
(2π)4

d4 ỹ
d x̃4 +

2β
(2π)2

d2 ỹ
d x̃2 + ỹ =

Ṽ 2

(1− ỹ)2
. (3)

The deflection of the infinite beam is assumed to be periodic and is postulated in the form

ỹ = ỹ0+ B sin
2π x̃
α
, (4)

where ỹ0 is an average value which is equal to the uniform displacement when no buckling occurs, and
B is the amplitude of the structural waves that develop due to the electromechanical buckling response.
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At the verge of buckling, B is small, and therefore the electrostatic force may be approximated by the
following Taylor expansion

Ṽ 2

(1− ỹ)2
≈ Ṽ 2

[
1

(1− ỹ0)2
+

2
(1− ỹ0)3

B sin
2π x̃
α
+ O(B2)

]
. (5)

Now, substituting the postulated deflection (4) and the approximated electrostatic force (5) into the
linear governing equation (3), yields

B
sin(2π x̃/α)

α4

(
α4(1− δ)− 2α2β + 1

)
=

Ṽ 2

(1− ỹ0)2
− ỹ0. (6)

Here δ is the normalized electrostatic stiffness that is given by

δ =
2Ṽ 2

(1− ỹ0)3
. (7)

On the verge of buckling, where B = 0, the solution of (6) is

Ṽ 2
= ỹ0(1− ỹ0)

2. (8)

The deflection of the beam in this case is uniform (ỹ = ỹ0), and the force applied to the beam by the
elastic foundation balances the electrostatic force. For incipient buckling, (8) holds and can be subtracted
from (6) to yield

B
sin(2π x̃/α)

α4

(
α4(1− δ)− 2α2β + 1

)
= 0. (9)

The last equation can be solved for the critical buckling parameters (β, α), and the amplitude B
remains arbitrary, as is usual in linear buckling analysis [Godoy 1999; Timoshenko 1936]. The stability
equation of the beam is given by

α4(1− δ)− 2α2β + 1= 0.

The solution of the this equation is

α =

√
β ±

√
β2− (1− δ)
1− δ

. (10)

The normalized wavelength α must be a real positive value (α > 0), therefore β is restricted by

β ≥
√

1− δ. (11)

Substituting the critical load βcr =
√

1− δ into (10), the critical value of the wavelength is found

αcr =
1
√
βcr
=

1
(1− δ)1/4

=

(
1−

2Ṽ 2

(1− ỹ0)3

)−1/4

.

From this it is clear that when no electrostatic forces are applied (that is, Ṽ = 0) buckling cannot
occur for β < 1 (that is, subcritical stress). The critical normalized wavelength in the case of Ṽ = 0 is
αcr(Ṽ=0) = 1, which proves that 3cr is indeed the wavelength of the critical buckling state [Abu-Salih
and Elata 2005].
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From (11) it is clear that due to the destabilizing effect of the electrostatic forces, buckling can occur
for β < 1 whenever δ > 0. The buckling deflection (4) is therefore due to the combined effect of subcritical
prestress and electrostatic forces. This justifies the term electromechanical buckling.

A schematic illustration of a prestressed beam that is bonded to an elastic foundation is presented
in Figure 1a. When the prestress in the conductive beam is below the critical value, and no voltage
is applied, the beam remains flat (Figure 1b). For the same level of prestress, a sufficient voltage will
precipitately instigate buckling (Figure 1c).

For a given normalized prestress β, the critical switching voltage Ṽcr that instigates buckling is ex-
tracted by solving (7), (8) and βcr =

√
1− δ, to yield

Ṽ 2
cr = 4

1−β2
cr(

3−β2
cr
)3 .

Figure 2 presents the normalized voltage square Ṽ 2
cr , wavelength αcr , and deflection ỹ0, at the critical

states, for various values of normalized prestress β. At the limit of zero prestress, the critical wavelength
becomes infinite and the voltage approaches an asymptotic value. This state is in essence the pull-in
state of an infinite parallel-plates actuator. At this limit the deflection at the critical state is ỹ0 = 1/3.
For such a large reduction of the elastic foundation thickness, the linear model of the foundation may be
unrealistic.

4. Initial postbuckling state

In the postbuckled state, considerable membrane stresses develop and the mechanical response is gov-
erned by the nonlinear equilibrium Equation (2), including the term in square brackets. The periodic
problem is solved for beams with various finite normalized lengths, α. In each of these lengths, it
is assumed that the solution includes one period. The average total potential density (energy per unit
length) associated with each length α is then computed. The solution of the infinite problem is identified
with the periodic solution of the finite-length problem, for which the average total potential density is
minimal.

The periodic boundary conditions of the finite beam are

ỹ(x̃ = 0)= ỹ(x̃ = α),
d ỹ
d x̃

∣∣∣∣
x̃=0
=

d ỹ
d x̃

∣∣∣∣
x̃=α

. (12)

4.1. Approximate analytic solution. As in the previous linear analysis, it is postulated that the postbuck-
ling deflection is of the form

ỹ = ỹ′0+ B ′ sin
2π x̃
α
, (13)

where B ′ is the normalized amplitude of the postbuckling deflection. In initial postbuckled states we
assume that B ′ is small. As in the preceding critical state analysis, for small values of B ′ the electrostatic
force may be approximated by the following Taylor expansion

Ṽ 2

(1− ỹ)2
≈ Ṽ 2

(
1

(1− ỹ′0)
2 +

2
(1− ỹ′0)

3 B ′ sin
2π x̃
α
+ O(B ′2)

)
. (14)
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Figure 2. The critical electromechanical buckling state for different values of prestress
β. (a) Normalized critical voltage squared Ṽ 2

cr . At zero prestress the critical voltage
is the same as for a parallel-plates actuator. (b) Normalized critical wavelength αcr .
At zero prestress the normalized wavelength is infinite and the beam remains flat. (c)
Normalized deflection ỹ0.

Substituting (13) and (14) into the nonlinear equation (2), and considering only small values of B ′,
we further assume that the equilibrium equation holds separately for the average and the periodic parts
of the postulated deflection.

With this assumption, the equilibrium equation (2) reduces to the following

Ṽ 2
= ỹ′0(1− ỹ′0)

2, (15)

B ′
sin(2π x̃/α)

α4

(
α4(1− δ)− 2βα2

+
1
4 g̃2 B ′2+ 1

)
= 0. (16)
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The two assumptions, namely that the postbuckling deflection is of the form (13), and that when B ′

is small the solution of (2) may be substituted by the simultaneous solution of (15) and (16), will be
validated numerically in the next subsection.

The nontrivial solution of (16) is given by

B ′ =
2
g̃

√
2βα2−α4(1− δ)− 1 .

In an infinite beam, the normalized wavelength associated with given values of β and δ is the one that
minimizes the total potential per unit length, of the system. The total potential ψ =UB+UA+Uk f −U∗E
is the sum of four energy components associated with bending UB , axial deformation UA, deformation
of the elastic foundation Uk f , and complementary electrostatic energy U∗E [Elata and Abu-Salih 2005].
Normalizing the strain energy components by the (axial) strain energy at the verge of buckling (Ucr =

σ 2
cr A/2E), yields

ŨB =
g̃2

4(2π)4α

∫ α

0

(
d2 ỹ
d x̃2

)2

dx̃,

ŨA =
g̃4

4α2

(
−

2(2π)2αβ
g̃2 +

1
2

∫ α

0

(
d ỹ
d x̃

)2

dx̃

)2

,

Ũk f =
g̃2

4α

∫ α

0
ỹ2dx̃,

Ũ∗E =
Ṽ 2g̃2

2α

∫ α

0

dx̃
(1− ỹ)

.

The normalized total potential is accordingly given by

ψ̃ = ŨB + ŨA+ Ũk f − Ũ∗E . (17)

Substituting the postulated deflection (13) into the normalized total potential, differentiating the to-
tal potential with respect to α, and setting this derivative to zero, yields a nonlinear equation for the
postbuckling wavelength α. This equation was numerically solved and the results are presented by the
dashed lines in Figure 3, showing α, B ′ and ỹ′0 as function of Ṽ 2/Ṽcr for the parameters ỹ0 = 0.1 (that
is, β = 0.88), g/h = 10 and v = 0.25.

To clarify the notion of minimal energy, the total potential of the system (17) is presented in Figure
4 as a function of voltage and wavelength (for ỹ0 = 0.1 (that is, β = 0.88), g/h = 10 and v = 0.25).
In this figure the flat slopes are the regions in which no buckling occurs (the total energy is only a
function of V ). The first valley describes buckling with a single wavelength in a beam of finite length
with periodic boundary conditions. The second and third valleys are repetitions of this first valley, and
describe buckling into a double and a triple flexure waves for a beam with double and triple length,
respectively (and periodic boundary conditions). The center lines running through the routes of the
valleys describe the same postbuckling wavelength as a function of applied voltage (that is, repetitions
of the same solution). The critical stability states are marked by the solid line on the rims of the valleys
[Abu-Salih and Elata 2005].
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Figure 3. Postbuckling state as a function of applied voltage for ỹ0 = 0.1 (that is, β =
0.88), g/h = 10 and v = 0.25. (a) The normalized wavelength; (b) normalized amplitude
of the sinusoidal component of the deflection; (c) the normalized deflection average.

4.2. Numerical validation. To validate the analytic solution presented in the previous subsection, a
finite-difference numerical code for solving Equation (2) with periodic boundary conditions (12) was
implemented in MATLAB®. For given supercritical voltages (that is, Ṽ 2 > Ṽ 2

cr ), the code numerically
computed the total potential of the system (17) and numerically found the normalized wavelength that
minimizes this potential per unit length.

Figure 5 presents the convergence of the postbuckling deflection parameters as a function of the
number of nodes n in the finite-difference mesh for the conditions β = 0.9, g/h = 10, v = 0.25, and
Ṽ 2/Ṽ 2

cr = 1.35. For these conditions the postbuckling deflection parameters are α = 1.092, ỹ′0 = 0.1288
and B ′ = 0.02771. To verify that the postbuckling deflection is of the functional form (13), the deflection
average was subtracted from the deflection which was then normalized such that its amplitude was in the
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Figure 4. The total potential energy of a finite beam with periodic boundary conditions
and ỹ0 = 0.1 (that is, β = 0.88), g/h = 10 and v = 0.25, as a function of the normal-
ized applied voltage and the postulated wavelength. The flat regions describe states in
which the applied voltage is insufficient to induce buckling for prescribed values of the
postulated wavelength.

range −1≤ ỹ− ỹ′0 ≤ 1. The root-mean-square of the error from a perfect sine wave was then computed
and found to be rms = 6.5 · 10−4.

Similar convergence properties and compliance with the postulated waveform (13) were found when
the response of a beam with lengths L/3cr = 2α and L/3cr = 3α was simulated. In this case the solution
was a double and triple repetition of the solution obtained for a beam of length α.

Last, it was assumed that the postbuckling deflection parameter B ′ is small and that the solution of
(2) may be substituted by the simultaneous solution of (15) and (16). Figure 3 presents the numerically
computed values of α, B ′ and ỹ′0 (‘+’ marks) as functions of Ṽ 2/Ṽcr for the parameters ỹ0 = 0.1 (that
is, β = 0.88), g/h = 10 and v = 0.25. These results are based on a finite-difference solution of (2) with
boundary conditions (12). In these numerical simulations, the functional waveform of the deflection
was not a priori constrained in any way (except for the periodic boundary conditions). The agreement
between the numerically computed values and the analytic approximation verify that for small values of
Ṽ 2/Ṽ 2

cr these assumptions are valid.
Figure 6 presents the value of Ṽ 2/Ṽ 2

cr for which B ′ is 1%, 3%, and 5%. It is clear that for small values
of β the voltage range for which the analysis is applicable is rather limited. However, for β ≥ 0.85, B ′

remains small for a considerable range of Ṽ 2/Ṽ 2
cr .

In a series of numerical simulations (not presented in this manuscript), for different values of prestress
β, the applied voltage was increased up to the pull-in point [Elata and Abu-Salih 2005]. At these simu-
lated pull-in states, not only was the average deflection ỹ′0 considerable (for example, ỹ′0 ≈ 1/3), but also
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Figure 5. Convergence of the postbuckling deflection parameters as a function of the
number of nodes n (for β = 0.9, α = 1.092, Ṽ 2/Ṽ 2

cr = 1.35).

the amplitude of the sinusoidal deflection component, B ′, became rather large such that the deflection
form (13) is no longer a valid approximation. Under these conditions the equilibrium equation becomes
invalid due to the large rotations, and in any case, the high reduction of the elastic foundation thickness
would suggest that a nonlinear foundation response should be considered.

5. Discussion

In this work the electromechanical buckling of a prestressed beam which is bonded to a dielectric elastic
foundation is analyzed. An analytic solution of the critical electromechanical state is derived, and it is
shown that electrostatic forces can precipitately instigate buckling even when the prestress in the beam
is lower than the critical value that would cause mechanical buckling. An analytic approximation of the
initial postbuckling state is also presented, and is validated numerically. The numerical simulations show
that a stable, initial postbuckling state exists.

The analysis presented in this study considers perfect elastic response with no residual strains, for
example, plastic deformation. The work done by the voltage source is invested in elastic strain energy
(of the beam and foundation) and electrostatic potential between the beam and substrate. When the
voltage source is turned off (effectively setting V = 0) the deformed system will return to the original
state with a flat prestressed beam and an unloaded elastic foundation. This suggests that electrostatic
potential can be used to achieve on/off switching of flexure waves in a prestressed beam. Such on/off
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Figure 6. Validity range of the assumption of small B ′.

switching of flexures may be useful in microsystems. For example, it may enable repeated reversible
modification of the optical reflectivity of a microstructure.

Finally, one may always pose the question of how long must an actual beam be to justify its consider-
ation as infinite. Electromechanical buckling may also occur in beams of finite length, and this response
will be affected by the boundary conditions at the edges. In finite but long beams, the postbuckled flexures
in regions that are sufficiently far from either edge (distance measured in number of wavelengths) will
resemble the postbuckled flexures in an infinite beam.
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