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M. KARAMA, K. S. AFAQ AND S. MISTOU

One of the current problems connected with multilayer composite structures concerns the analysis of the
distribution of the stresses around peculiarities (free edge and loaded edge) and at the interfaces of each
layer. This work presents a new shear stress function in the form of the exponential function to predict
the mechanical behavior of multilayered laminated composite structures. As a case study, the mechanical
behavior of a laminated composite beam (90◦/0◦/0◦/90◦) is examined. The results are compared with
the Touratier model sine and the two-dimensional finite element method studied. Results show that
this new model is more precise than older ones when compared with results obtained by finite element
analysis. To introduce continuity on the interfaces of each layer, the new exponential model is used with
Ossadzow kinematics. The equilibrium equations and natural boundary conditions are derived from the
principle of virtual power.

Notations

h beam thickness or height

h1 transverse shear function

H Heaviside step function

L beam length

m layer number

P∗ virtual power

uα membrane displacement

Ü differentiation with respect to time = ∂2U/∂t2

U1,1 differentiation with respect to x1 = ∂U1/∂x1

U∗ virtual displacements

U∗
T

the vector of virtual displacements transposed

w transverse displacement

¯̄D∗ virtual tensor of the deformations

Ef vector forces of volume

EF vector forces of surface

Keywords: boron fiber, laminate theory, interface, stress transfer, finite element analysis.
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Greek letters

γ, φ transverse shear rotation

ε strain

σ stress

¯̄σ stress tensor

1. Introduction

One of the major challenges in computational structural mechanics is the development of the advanced
models and numerical techniques in order to provide efficient tools exhibiting good interior and edge
solutions.

In this paper we are introducing an exponential function as a shear stress function; the exponential
functions are found to be much richer than trigonometric sine and cosine functions in their development
series. According to the definition of the transverse shear stress function, the existing laminated compos-
ite beam is divided into two broad categories: the global approximation models and the discrete layer
approximation models. The equivalent single-layer laminate theories are those in which a heterogeneous
laminated plate is treated as a statically equivalent single layer having a complex constitutive behavior,
enabling the three-dimensional continuum problem to be considered as a two-dimensional one.

The equivalent single layer models are:

• The [Kirchhoff 1850; Love 1934] theory (or classical theory) in which deformation due to transverse
shear is neglected, implies that the normal to the mid-plane remains straight and normal at mid-
surface after deformation. This theory can be used for thin beams.

• The [Reissner 1945; Mindlin 1951] theory (or first-order theory). The first-order deformation theory
increases the kinematics of the classical laminated plate theory by including a gross transverse shear
deformation in its kinematical assumption. That the transverse shear strain remains constant with
respect to the thickness coordinate implies that the normal to the mid plane remains straight but
not normal at mid-surface after deformation due to the shear effect. The first-order theory requires
shear correction factors, which are difficult to determine for arbitrary laminated composite plates.

• The higher-order models are based on the hypothesis of nonlinear stress variation through thick-
ness [Reddy 1984; Touratier 1991]. These models are able to represent the section warping in the
deformed configuration.

However, these theories do not satisfy the continuity conditions of transverse shear stress at layer
interfaces. Although the discrete layer approximation theories are accurate, they are rather complex for
problem solving because the order of their governing equations depends on the number of layers.

DiSciuva [1987; 1993] and Turatier [1991; 1992] proposed simplified discrete layer models with only
five variational unknowns (two membrane displacements, a transverse displacement and two rotations),
making it possible for the section in the deformed configuration to be represented by warping in the
[Touratier 1992] model. Nevertheless, in these two cases compatibility conditions, both for layer in-
terfaces and boundaries, cannot be satisfied. From Touratier’s work, [Beakou 1991] and [Idlbi 1995]
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proposed, respectively, shell and plate models which satisfy both the stress continuity at the interfaces
and the zero stress conditions at the free boundaries.

Finally, He [1994] introduced the Heaviside step function which enables automatic satisfaction of the
displacement continuity at interfaces between different layers. The new discrete layer model presented
comes from the work of [Di Sciuva 1993; He 1994; Ossadzow et al. 1995]. The displacement field is
assumed to be of the form:

U1(x1, x3, t) = u0
1(x1, t) − x3w,1(x1, t) + h1(x3)φ1(x1, t),

U2 = 0,

U3(x1, t) = w(x1, t), (1)

with the transverse shear function

h1(x3) = g(x3) +

N−1∑
m=1

λ
(m)
1

(
−

1
2 x3 +

1
2 f (x3) + (x3 − x (m)

3 )H(x3 − x (m)
3 )

)
,

where H(x3 − x (m)
3 ) is the Heaviside Step function defined as

H(x3 − x (m)
3 ) =

{
1 for x3 ≥ x (m)

3 ,

0 for x3 < x (m)
3 ,

(2)

f (x3) is the shear refinement function, g(x3) is the membrane refinement function, and λ
(m)
I are continuity

coefficients.

1.1. New multilayered laminated composite structures model (“KAM”). In this work a new multilay-
ered laminated composite structure model representing the shear and membrane functions using expo-
nential functions as follows:

f (z) = ze−2(z/h)2
, g(z) = − ze−2(z/h)2

, (3)

for a multilayered beam of uniform thickness h defined on the domain �, which refers to the coordinate
system R = (0/x1, x2, x3 = z), with z being normal at plate mid-surface 6, and 0 as the boundary of �.
Then, the domain � is such that

� =

{
6 ×

(
−

h
2
,

h
2

)∣∣∣ − h
2

≤ z ≤
h

2M(x1, x2, z)
∈ �, Mo(x1, x2, 0) ∈ 6, φ � Max(z)

}
⊂ R3,

where φ is the diameter of the � and the closed domain �̄ is set by

�̄ =
{
� ∪ 0/0 = 0edge ∪ 0z=±h/2

}
.

From the beginning our objective was clear, namely, to find the transverse shear stress function f (z) that
gives the mechanical behavior of the composite laminated structures as close as possible to that of the
exact three-dimensional solution [Pagano 1970] or the finite element analysis in two dimensions (stress,
strain plane), and with better representation of the transverse shear stress in the thickness of the laminated
structure. Several different higher-order polynomial and trigonometric functions already had been tried:
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• [Ambartsumian 1958]: f (z) =
z
2

( h2

4 −
z2

3

)
,

• [Kaczkowski 1968; Panc 1975; Reissner 1975]: f (z) =
5
4 z

(
1 −

4z2

3h2

)
,

• [Levinson 1980; Murthy 1981; Reddy 1984]: f (z) = z
(
1 −

4z2

3h2

)
,

• [Touratier 1991]: f (z) =
h
π

sin
(

π z
h

)
.

We began with an exponential function, since that function has all even and odd powers in its expansion
(see the present model) unlike sine functions (see the Touratier model), which have only odd powers.
Then an exponential function is much richer than a sine function. If we take a look at the expansions of
different transverse shear stress functions,

• [Reddy 1984]: f (z) = z
(
1 −

4z2

3h2

)
= z − 1.33 z3

h2 ,

• [Touratier 1991]: f (z) =
h
π

sin
(

π z
h

)
= z − 1.645 z3

h2 + 0.812 z5

h4 − 0.191 z7

h6 + 0.0261 z9

h8 ,

• Present Model: f (z) = ze−2(z/h)2
= z − 2 z3

h2 + 2 z5

h4 − 1.333 z7

h6 + 0.666 z9

h8 ,

it is clear from expansions of the transverse shear stress functions that the coefficient of successive terms
in sine functions decreases more rapidly than the present exponential function. These expansions are the
main influences for the different mechanical behaviors of laminated structures.

For the transverse shear stress behavior, it is very important that the first derivative of the transverse
shear stress function provide a parabolic response in the thickness direction of the laminate and that it
satisfy the boundary conditions.

2. Governing equations

From the virtual power principle, the equations of motion and the natural boundary conditions can be
obtained. The calculations are made in small perturbations. According to the principle of virtual power,

P∗

(a) = P∗

(i) + P∗

(e), (4)

where P∗

(a), P∗

(i), P∗

(e) correspond to virtual power of the acceleration quantities, virtual power of internal
work and the virtual power of external loading.

The virtual power of the acceleration quantities is:

P∗

(a) =

∫
�

ρU∗T Üd�, (5)

where U∗ and U∗T are virtual displacements and the vector of virtual displacements transposed.
Assuming

Iw =

∫ h/2

−h/2
ρdx3, Iuw′ = −

∫ h/2

−h/2
ρx3dx3,

Iw′ =

∫ h/2

−h/2
ρx2

3dx3, Iuω =

∫ h/2

−h/2
ρh1(x3)dx3,

Iω =

∫ h/2

−h/2
ρh2

1(x3)dx3, Iωw′ = −

∫ h/2

−h/2
ρx3h1(x3)dx3,

(6)
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Equation (5) becomes

P∗

(a) =

∫ L

0

(
0(u)u0∗

1 + 0(w)w∗
+ 0(φ)φ∗

1
)
dx1 + 0̄(w)w∗, (7)

where,

0(u)
= Iwüo

1 + Iuw′ẅ,1 + Iuωφ̈1, 0(w)
= − Iuw′ üo

1,1 + Iwẅ − Iw′ẅ,11 − Iωw′ φ̈1,1,

0(φ)
= Iuωüo

1 + Iωw′ẅ,1 + Iωφ̈1, 0̄(w)
= Iuw′ üo

1 + Iw′ẅ,1 + Iωw′ φ̈1.

See Section A for details.
Now the virtual power of internal work is

P∗

(i) =

∫
�

D
∗T

: σd�, (8)

where D
∗

is the virtual tensor of deformation and σ is the tensor of the constraints.
Since

D
∗

=

∣∣∣∣∣∣∣
D∗

11 D∗
12 D∗

13

D∗
21 D∗

22 D∗
23

D∗
31 D∗

32 D∗
33

∣∣∣∣∣∣∣ , σ =

∣∣∣∣∣∣∣
σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

∣∣∣∣∣∣∣ ,
in two dimensions

D
∗

: σ = D∗

11σ11 + 2D∗

13σ13. (9)

Resultant stresses Nαβ, Mαβ and Pαβ are defined as

N11 =

∫ h/2

−h/2
σ11dx3, M11 =

∫ h/2

−h/2
x3σ11dx3,

P11 =

∫ h/2

−h/2
h1(x3)σ11dx3, P13 =

∫ h/2

−h/2
h1,3(x3)σ13dx3, (10)

so Equation (8) becomes

P∗

(i) =

∫ L

0

(
N11,1u0∗

1 + M11,11w
∗
+ (P11,1 − P13)φ

∗

1

)
dx1 − N11u0∗

1 − M11,1w
∗
+ M11w

∗

,1 − P11φ
∗

1 . (11)

See Section B for details.
Now the virtual power of external loading is

P∗

(e) =

∫
�

U∗T . Ef d�+

∫
0

U∗T EF d0. (12)

Here

U∗T
=

[
U∗

1 0 U∗

3

]
, Ef =

 f1

f2

f3

 , EF =

F1

F2

F3

 ,
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where Ef and EF are the vector forces of volume and surface, respectively, with

U∗

1 = u0∗

1 − x3w
∗

,1 + h1(x3)φ
∗

1 ,

U∗

2 = 0,

U∗

3 = w∗.

We define

ni =

∫ h/2

−h/2
fi dx3, N i =

∫ h/2

−h/2
Fi dx3,

mi =

∫ h/2

−h/2
x3 fi dx3, M i =

∫ h/2

−h/2
x3 Fi dx3,

pi =

∫ h/2

−h/2
h1(x3) fi dx3, P i =

∫ h/2

−h/2
h1(x3)Fi dx3,

(13)

so Equation (12) becomes

P∗

(e) =

∫ L

0

(
n1u0∗

1 + (n3 + m1,1)w
∗
+ p1φ

∗

1
)
dx1 + N 1u0∗

1 (N 3 − m1)w
∗
− M1w

∗

,1 + P1φ
∗

1 . (14)

See Section C for details.
Now, by Equations (4), (7), (11) and (14), governing equations and natural boundary conditions for

all u0∗

1 , w∗, φ∗

1 we have

0(u)
= N11,1 + n1,

0(w)
= M11,11 + (n3 + m1,1),

0(φ)
= P11,1 − P13 + p1.

(15)

And natural boundary conditions for all u0∗

1 , w∗, φ∗

1 , w∗

,1 are

0
(w)

= − M11,1 +
(
N 3 − m1

)
, 0 = − N11 + N 1 = −P11 + P1 = M11 − M1. (16)

The three-dimensional orthotropic constitutive law is

σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


. (17)

The dimension according to x2 is supposed to be equal to the unit and the effects of the σ33 are
neglected, so orthotropic law (17) becomes{

σ11

σ13

}
=

[
C ′

11 0
0 C55

] {
ε11

2ε13

}
, (18)
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with ε11 = U1,1 = u0∗

1,1 − x3w,11 + h1φ1,1, 2ε31 = h1,3φ1, and

C ′

11 =
C11C33 − C2

13

C33
.

Now, the generalized constitutive law is
N11

M11

P11

P13

 =


A11 B11 K̃ 0
B11 D11 T̃ 0
K̃ T̃ S̃ 0
0 0 0 Ỹ




u0∗

1,1
−w,11

φ1,1

φ1

 .

So, the governing equations (15) become

0(u)
= A11u0∗

1,11 − B11w,111 + K̃φ1,11 + n1,

0(w)
= B11u0∗

1,111 − D11w,1111 + T̃ φ1,111 + n3 + m1,1,

0(φ)
= K̃ u0∗

1,11 − T̃ w,111 + S̃φ1,11 − Ỹφ1 + p1.

(19)

Then the natural boundary conditions (16) become

0 = A11u0∗

1,1 − B11w,11 − K̃φ1,1 + N̄1,

0̄(w)
= − B11u0∗

1,11 + D11w,111 − T̃ φ1,11 + N̄3 − m̄1,

0 = − K̃ u0∗

1,1 + T̃ w,11 − S̃φ1,1 + P1,

0 = − B11u0∗

1,1 − D11w,11 + T̃ φ1,1 − M̄1.

(20)

2.1. Continuity coefficients (λ). To find out the value of the continuity coefficients, the conditions of
the continuity of the transverse shear stress between each layer interface were used (see Figure 1):

σ
(m)
13 (x3 = x (m)

3 ) = σ
(m+1)
13 (x3 = x (m)

3 ).

Interface of layer 1 and layer 2 also gives

σ
(1)
13 (x3 = x (1)

3 ) = σ
(2)
13 (x3 = x (1)

3 ),

and

Q1
55φ(x1)

[
g′(x (1)

3 ) +
1
2

(
λ

(1)
1 + λ

(2)
1 + λ

(3)
1

)(
− 1 + f ′(x (1)

3 )
)]

= Q2
55φ(x1)

[
g′(x (1)

3 ) +
1
2

(
λ

(1)
1 + λ

(2)
1 + λ

(3)
1

)(
− 1 + f ′(x (1)

3 )
)
+ λ

(1)
1

]
. (21)

Interface of layer 2 and layer 3 gives

σ
(2)
13 (x3 = x (2)

3 ) = σ
(3)
13 (x3 = x (2)

3 ).
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Figure 1. Side view of a laminated composite beam (90◦/0◦/0◦/90◦).

Since Q55 of the second and third layer are equal (Figure 1), we get

Q2
55φ(x1)

[
g′(x (2)

3 )+ 1
2

(
λ

(1)
1 +λ

(2)
1 +λ

(3)
1

)(
−1+ f ′(x (2)

3 )
)
+λ

(1)
1

]
= Q3

55φ(x1)
[
g′(x (2)

3 )+ 1
2

(
λ

(1)
1 +λ

(2)
1 +λ

(3)
1

)(
−1+ f ′(x (2)

3 )
)
+λ

(1)
1 +λ

(2)
1

]
. (22)

Now, by Equations (21) and (22),

λ
(1)
1 = λ

(1)
1 + λ

(2)
1 ,

λ
(2)
1 = 0. (23)

This shows that if the mechanical characteristics of the two consecutive layers are the same (Figure
1), the coefficient of the continuity will be zero (λ(2)

= 0).
Interface of layer 3 and layer 4 gives

σ
(3)
13 (x3 = x (3)

3 ) = σ
(4)
13 (x3 = x (3)

3 )

and

Q3
55φ(x1)

[
g′(x (3)

3 )+1
2

(
λ

(1)
1 +λ

(2)
1 +λ

(3)
1

)(
−1+ f ′(x (3)

3 )
)
+λ

(1)
1 +λ

(2)
1

]
=

Q4
55φ(x1)

[
g′(x (3)

3 )+ 1
2

(
λ

(1)
1 +λ

(2)
1 +λ

(3)
1

)(
−1+ f ′(x (3)

3 )
)
+λ

(1)
1 +λ

(2)
1 +λ

(3)
1

]
, (24)

where

f ′
(
x (1)

3 = − h/4
)
= f ′

(
x (3)

3 = h/4
)
,

g′
(
x (1)

3 = − h/4
)
= g′

(
x (3)

3 = h/4
)
.
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So, using Equations (22)–(24), we obtain

Q1
55φ(x1)

[
g′(x (3)

3 )+1
2

(
λ

(1)
1 +λ

(2)
1 +λ

(3)
1

)(
−1+ f ′(x (3)

3 )
)]

= Q4
55φ(x1)

[
g′(x (3)

3 )+ 1
2

(
λ

(1)
1 +λ

(2)
1 +λ

(3)
1

)(
−1+ f ′(x (3)

3 )
)
+λ

(1)
1 +λ

(3)
1

]
(25)

and

0 = λ
(1)
1 + λ

(3)
1 −→ λ

(1)
1 = − λ

(3)
1 . (26)

So, by Equations (23) and (25), Equation (21) becomes

Q1
55(g

′(x (1)
3 )) = Q2

55(g
′(x (1)

3 ) + λ
(1)
1 ), λ

(1)
1 =

(Q1
55 − Q2

55)g
′(x (1)

3 )

Q2
55

,

λ
(3)
1 =

(Q2
55 − Q1

55)g
′(x (1)

3 )

Q2
55

.

(27)

2.2. Finite element analysis. Since no exact three-dimensional solution exists for the considered case
study, ABAQUS (finite element analysis software) is used to show the efficiency of the present model.
In this paper, finite element results are taken as a reference for the comparison of different models of
laminated composite structures, done by Karama et al. [1998]. The three-dimensional approximation
of the behavior is carried out by element type “CPS8” (quadrilateral element of eight nodes, 16 dof
per element). To validate the finite element results, it is first necessary to find out the convergence of
laminate meshing. So, for the given problem, in static and dynamic, the convergence is obtained with
1680 elements, including 24 elements of thickness.

3. Some evaluations of the present model

3.1. Bending analysis. The static bending analysis is studied, so the virtual power of acceleration quan-
tities is canceled. Three different bending analyses have been developed for three different specific
boundary conditions. For the simply supported conditions, the unknown variables are deduced directly
by the equation of motions. For clamped conditions, kinematical boundary conditions are used and,
finally, in a free edge case, natural boundary conditions are employed.

The beam studied has a length of L = 6.35 m, a unitary width, and a thickness h = 2.794 m in the
thick case and h = 0.2794 m in the thin case. The beam possesses four layers of the same thickness at
90◦/0◦/0◦/90◦. The material used for the four layers is boron epoxy. The mechanical properties of the
0◦ layer are as follows [Widera and Logan 1980]:

E11 = 241.5 GPa, E22 = E33 = 18.89 GPa, G12 = G13 = 5.18 GPa, ρ = 2015 kg/m3,

G23 = 3.45 GPa, ν23 = 0.25, ν12 = ν13 = 0.24,

The continuity coefficients from Equations (23), (26)–(27) are evaluated as

λ
(1)
1 = − λ

(3)
1 = 0.2210501411, λ

(2)
1 = 0.
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3.2. Bending of a simply supported beam under distributed sinusoidal load. The surface and volume
force components are canceled except for

n̄3 =

∫ h

0
f3dx3 = q = qo sin

(πx1

L

)
.

For the simply supported boundary conditions, the Levy solution is used, which is defined as

uo
1 = uo cos

(πx1

L

)
, w = wo sin

(πx1

L

)
, φ1 = φo cos

(πx1

L

)
.

Now, the governing equations (19) with P∗

(a) = 0 become

0 = A11u0∗

1,11 − B11w,111 + K̃φ1,11,

0 = B11u0∗

1,111 − D11w,1111 + T̃ φ1,111 + qo sin
(πx1

L

)
,

0 = K̃ u0∗

1,11 − T̃ w,111 + S̃φ1,11 − Ỹφ1.

For the Levy solution, the governing equations become

0 = − A11α
2uo cos αx1 + B11α

3wo cos αx1 − K̃α2φo cos αx1,

0 = B11α
3uo sin αx1 − D11α

4wo sin αx1 + T̃ α3φo sin αx1 + qo sin αx1,

0 = − K̃α2uo cos αx1 + T̃ α3wo cos αx1 − S̃α2φo cos αx1 − Ỹφo cos αx1,

with α = π/L . In matrix form,−α2 A11 α3 B11 −α2 K̃
α3 B11 −α4 D11 α3T̃

−α2 K̃ α3T̃ −α2 S̃ − Ỹ

 uo

wo

φo

 =

 0
−qo

0

 .

Also, the displacement (1), becomes

U1(x1, x3) = (uo − x3woα + h1(x3)φo) cos (αx1),

U2 = 0,

U3 = wo sin (αx1),

and by relation (18), the stresses are

σ11
(
x1, x3

)
= − αC ′

11
(
uo − αx3wo + h1φo

)
sin (αx1),

σ13
(
x1, x3

)
= C55h1,3φo cos (αx1).

Integration of the equilibrium equation σ13,1 + σ33,3 = 0 enables us to calculate the analytical value
of σ33, giving

σ33 = αC55h1(x3)φo sin (αx1).

The numerical results obtained (q0 = − 106 Pa) using the present model are compared with those
obtained by the finite element analysis [Karama et al. 1998] and the sine model [Touratier 1991] in
Table 1. For this problem, the present model predicts mechanical behavior more accurately than the sine
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Model U3(L/2) U1(h/2) σ13(L/4, 0) σ11(L/2, −h/4) σ33(L/2, h/2)

(Interface) (Interface)
[m] [m] [Pa] [Pa] [Pa]

Present 6.3701 × 10−4 2.1196 × 10−4
− 940098.0 8112840.0 −1039990.0

(error) (4.4%) (8.3%) (6.6%) (3.5%) (3.9%)

Sine −6.2794 × 10−4 2.0180 × 10−4
− 896865.0 8158932.0 −1047274.0

(error) (2.9%) (12.7%) (10.8%) (4.1%) (4.6%)

Abaqus −6.1006 × 10−4 2.3125 × 10−4
−1006000.0 7835200.0 −1000900.0

Table 1. Bending of the simply supported thick beam under distributed sinusoidal load.

model when compared to the finite element analysis results, except for the transverse deflection (U3).
Percentage error reduction is more significant in the case of transverse shear stress (σ13) at the interfaces
between layers.

The efficiency of this model is shown in Figures 2–5; different stresses and displacements plotted
according to the length and thickness of the beam show that, at every point on the beam, the present
model is closer to the finite element results then are those of the sine model. Here we can also see the
continuity of displacement and transverse shear stress between layer interfaces of the present model.

3.3. Bending of a clamped free beam under distributed uniform load. In this case the value of n̄3 is:

n̄3 =

∫ h/2

−h/2
f3dx3 = q.

Now, the governing equations from the system of Equations (19) takes the form

0 = A11u0∗

1,11 − B11w,111 + K̃φ1,11,

0 = B11u0∗

1,111 − D11w,1111 + T̃ φ1,111 + q,

0 = K̃ u0∗

1,11 − T̃ w,111 + S̃φ1,11 − Ỹφ1.

Integrating and simultaneously solving the above equations, gives

φ1(x1) = C1e−Px1+C2ePx1−(qx1+C3)
T̃

Ỹ D11
,

uo
1(x1) = −

K̃
A11

φ1(x1)+C7x1+C8,

w(x1) =
T̃

P D11

[
C1e−Px1+C2ePx1−

(
1
2qx2

1+C3x1

) P

Ỹ

]
+

1
D11

(
1
24qx4

1+
1
6C3x3

1

)
+

1
2C4x2

1+C5x+C6,

where

P =

√
−Ỹ A11 D11

K̃ 2 D11 + T̃ 2 A11 − S̃ A11 D11
,
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and B11 = 0 due to the symmetry at mid-surface. The eight constants Ci are determined by the four
natural boundary conditions at the free edge deduced from (20) with P∗

(a) = 0:

0 = A11u0∗

1,1(L) − K̃φ1,1(L), 0 = D11w,111(L) − T̃ φ1,11(L),

0 = − K̃ u0∗

1,1(L) + T̃ w,11(L) − S̃φ1,1(L), 0 = − D11w,11(L) + T̃ φ1,1(L).

Figure 2. Variation of the stress σ11 along the direction x1 for x3 = −
h
2 for Section 3.2.

Abaqus (dashed line plot), Sine (solid line), and Present (dashes and crosses).

Figure 3. Variation of the transverse shear σ13 through the thickness for x3 = 0 (Inter-
face) for Section 3.2. Abaqus (dashed line plot), Sine (solid line), and Present (dashes
and crosses).
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Figure 4. Variation of the displacement U1 through the thickness for x1 = L/4 for
Section 3.2. Abaqus (dashed line plot), Sine (solid line), and Present (dashes and
crosses).

The four kinematic boundary conditions at the clamped edge are:

u0
1(0) = 0, w(0) = 0,

w,1(0) = 0, φ1(0) = 0.

Model U3(L) U1(L/2, h/2) σ13(L/4, 0) σ11(L/2, −h/4) σ33(L/2, h/2)

(Interface) (Interface)
[m] [m] [Pa] [Pa] [Pa]

Present −4.40057 × 10−6 7.36497 × 10−7
−3181.03 − 9986.18 −1067.10

(error) (2.6%) (9.8%) (−2.3%) (7.9%) (−4.3%)

Sine −4.37885 × 10−6 7.19163 × 10−7
−3031.42 − 9939.30 −1066.64

(error) (3.1%) (11.9%) (2.5%) (8.3%) (−4.3%)

Abaqus −4.51810 × 10−6 8.16300 × 10−7
−3110.00 −10842.00 −1023.00

Table 2. Bending of a clamped/free thick beam under uniformly distributed load.
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Figure 5. Variation of the stress σ33 along the direction x1 for x3 = h/4 (Interface), for
Section 3.2. Abaqus (dashed line plot), Sine (solid line), and Present (dashes and
crosses).

The numerical results for Table 2 are obtained for a load q = − 1000 N/m for the same beam as in
Section 3.2, except for the load now being uniformly distributed instead of sinusoidal, show that the
present model still has less percentage of error compared to the sine model. In Figures 6–9, different
stresses and displacements are plotted according to the length and thickness of the beam, showing the
difference between the present model and sine model as regards the finite element. The present model
is in close agreement with the results of Karama et al. [1998].

3.4. Bending of a clamped free beam under concentrated load. The load is applied at the free end; in
this case the value of N̄3 is:

N̄3 =

∫ h/2

−h/2
F3dx3 = q.

Now, the governing equation from the system of Equations (19),

0 = A11u0∗

1,11 − B11w,111 + K̃φ1,11,

0 = B11u0∗

1,111 − D11w,1111 + T̃ φ1,111,

0 = K̃ u0∗

1,11 − T̃ w,111 + S̃φ1,11 − Ỹφ1,
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Figure 6. Variation of the stress σ13 along the direction x1 for x3 = 0 (Interface) for
Section 3.3. Abaqus (dashed line plot), Sine (solid line), and Present (dashes and
crosses).

by integration and simultaneous solving of the above equations, gives

φ1(x1) = C1e−Px1 + C2ePx1 − C3
T̃

Ỹ D11
,

uo
1(x1) = −

K̃
A11

φ1(x1) + C7x1 + C8,

w(x1) =
T̃

P D11

[
C1e−Px1 + C2ePx1 − C3x1

P

Ỹ

]
+

C3

6D11
x3

1 +
1
2C4x2

1 + C5x + C6,

where

P =

√
−Ỹ A11 D11

K̃ 2 D11 + T̃ 2 A11 − S̃ A11 D11
,

and B11 = 0 due to the symmetry at mid-surface. The eight constants Ci are determined by the four
natural boundary conditions at the free edge deduced from Equation (20) with P∗

(a) = 0, namely,

0 = A11u0∗

1,1(L) − K̃φ1,1(L), 0 = − D11w,111(L) + T̃ φ1,11(L) − q,

0 = − D11w,11(L) + T̃ φ1,1(L), 0 = − K̃ u0∗

1,1(L) + T̃ w,11(L) − S̃φ1,1(L),
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Figure 7. Variation of the stress σ13 through the thickness for x1 = L/2 at x3 = 0 for
Section 3.3. Abaqus (dashed line plot), Sine (solid line), and Present (dashes and
crosses).

Figure 8. Variation of the stress σ11 through the thickness for x1 = 3L/4 for Section 3.3.
Abaqus (dashed line plot), Sine (solid line), and Present (dashes and crosses).
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Figure 9. Variation of the displacement U1 through the thickness for x1 = L/4 for
Section 3.3. Abaqus (dashed line plot), Sine (solid line), and Present (dashes and
crosses).

Figure 10. Variation of the stress σ13 through the thickness for x1 = L/4 for Section 3.4.
Abaqus (dashed line plot), Sine (solid line), and Present (dashes and crosses).
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Model U3(L) U1(L/2, h/2) σ13(L/4, 0) σ11(L/2, −h/4)

(Interface) (Interface)
[m] [m] [Pa] [Pa]

Present −1.67021 × 10−5 2.87160 × 10−6
−6699.43 −62969.5

(error) (0.1%) (8.8%) (4.7%) (−1.4%)

Sine −1.65722 × 10−5 2.81698 × 10−6
−6372.07 −62969.5

(error) (0.8%) (10.5%) (9.3%) (−1.4%)

Abaqus −1.67110 × 10−5 3.14800 × 10−6
−7027.00 −62091.0

Table 3. Bending of a clamped/free thick beam under concentrated load.

along with the four kinematic boundary conditions at the clamped edge:

u0
1(0) = 0,

w(0) = 0,

w,1(0) = 0,

φ1(0) = 0.

The numerical results presented in Table 3 obtained q = − 10000 N using the present model for the
same beam as in Section 3.3 except that loading is now concentrated at the free end of the beam, our
reference still being the Karama et al. [1998] results, show that the present model still has very good
results compared to the sine model except with regard to membrane stress (σ11) where no difference was
found.

4. Conclusion

Continuity of displacement and transverse shear stresses at layer interfaces and the boundary conditions
for a laminated composite are fully satisfied by this present new multilayered structure exponential with
the help of the Heaviside step function (Figures 2–10). For the new proposed model the results are
compared to the existing model (like the sine model by Touratier [1991]) and by the finite element method
by Abaqus [Karama et al. 1998]. Results show that the new proposed exponential model presents a better
approximation than the sine [Karama et al. 1998] model when compared to results obtained using finite
element analyses, with certain exceptions (Tables 1–3). Specifically results are very favorable at layer
interfaces.

The new model is also simple in so far as no correction factor is used, contrary to the other higher
order models.

In the case of static analysis the numerical results for the bending deformation under different types
of loading and boundary conditions on a thick beam (Figures 2–10) showed that the present model is
always closer to the finite element analysis by Abaqus [Karama et al. 1998].

On the whole, we can conclude that the present exponential model is more accurate than other existing
analytical models for multilayered structures when compared to finite element analysis.
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Appendix A. Virtual power of the acceleration quantities

We have

Ü1 = üo
1 − x3ẅ,1 + h1φ̈1, Ü3 = ẅ,

U∗

1 = u0∗

1 − x3w
∗

,1 + h1φ
∗

1 , U∗

3 = w∗.

So Equation (5) becomes

P∗

(a) =

∫
�

ρ(U∗

1 Ü1 + U∗

3 Ü3)d�

=

∫
�

ρ
[
u0∗

1 ü1 + (ü3 + x3ü1,1)w
∗
+ h1(x3)φ

∗

1 ü1
]
d� −

∫
0

ρx3w
∗ü1d0

=

∫
�

ρ
[(

üo
1 − x3ẅ,1 + h1(x3)φ̈1

)
u0∗

1 +
(
ẅ + x3(üo

1,1 − x3ẅ,11 + h1(x3)φ̈1,1)
)
w∗

+ h1(x3)
(
üo

1 − x3ẅ,1 + h1(x3)φ̈1
)
φ∗

1

]
d�

−

∫
0

ρx3
(
üo

1 − x3ẅ,1 + h1(x3)φ̈1
)
w∗d0,

where in the second line we integrated by parts.
Then,

P∗

(a) =

∫ L

0

[
u0∗

1

∫ h/2

−h/2

(
ρüo

1 − ρx3ẅ,1 + ρh1(x3)φ̈1

)
dx3

+ w∗

∫ h/2

−h/2

(
ρẅ + ρx3ü0

1,1 + ρx2
3ẅ,11 + ρx3h1(x3)φ̈1,1

)
dx3

+ φ∗

1

∫ h/2

−h/2

(
ρh1(x3)ü0

1 − ρx3h1(x3)ẅ,1 + ρh2
1(x3)φ̈1

)
dx3

]
dx1

+ w∗

∫ h/2

−h/2

(
− ρx3üo

1 + ρx2
3ẅ,1 − ρx3h1(x3)φ̈1L

)
dx3

=

∫ L

0

(
0(u)u0∗

1 + 0(w)w∗
+ 0(φ)φ∗

1
)
dx1 + 0̄(w)w∗,

where the last line comes from using the relations (6).
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Appendix B. Virtual power of the internal work

By relation (9), virtual power of the internal work (8) becomes

P∗

(i) = −

∫
�

[(
u0∗

1,1 − x3w
∗

,11 + h1(x3)φ
∗

1,1
)
σ11 + 2

( 1
2 h1,3(x3)φ

∗

1
)
σ13

]
d�

= −

∫
�

[
−σ11,1u0∗

1 − x3σ11,11w
∗
− h1(x3)σ11,1φ

∗

1 + h1,3(x3)σ13φ
∗

1

]
d�

−

∫
0

[
σ11u0∗

1 − x3σ11w
∗

,1 + x3σ11,1w
∗
+ h1(x3)σ11φ

∗

1

]
d0

=

∫ L

0

[
u0∗

1

∫ h/2

−h/2
σ11,1dx3 + w∗

∫ h/2

−h/2
x3σ11,11dx3 + φ∗

1

∫ h/2

−h/2

(
h1(x3)σ11,1 − h1,3(x3)σ13

)
dx3

]
dx1

−u0∗

1

∫ h/2

−h/2
σ11dx3 + w∗

,1

∫ h/2

−h/2
x3σ11dx3 − w∗

∫ h/2

−h/2
x3σ11,1dx3 − φ∗

1

∫ h/2

−h/2
h1(x3)σ11dx3,

where in the second line we integrated by parts.
Using relations (10), we obtain

P∗

(i) =

∫ L

0

(
N11,1u0∗

1 + M11,11w
∗
+ (P11,1 − P13)φ

∗

1
)
dx1 − N11u0∗

1 − M11,1w
∗
+ M11w

∗

,1 − P11φ
∗

1 .

Appendix C. Virtual power of the external loading

By relations (13), virtual power of external loading (12) becomes

P∗

(e)=

∫
�

[
U∗

1 0 U∗

3

]
·

 f1

f2

f3

 d�+

∫
0

[
U∗

1 0 U∗

3

]
·

F1

F2

F3

 d0

=

∫
�

(
f1U∗

1 + f3U∗

3
)
d�+

∫
0

(
F1U∗

1 +F3U∗

3
)
d0

=

∫
�

(
f1u0∗

1 − f1x3w
∗

,1+h1(x3) f1φ
∗

1+ f3w
∗
)
d�+

∫
0

(
F1u0∗

1 −F1x3w
∗

,1+h1(x3)F1φ
∗

1+F3w
∗
)
d0

=

∫ L

0

[
u0∗

1

∫ h/2

−h/2
f1dx3+w∗

∫ h/2

−h/2

(
f3+x3 f1,1

)
dx3+φ∗

1

∫ h/2

−h/2
h1(x3) f1dx3

]
dx1

+u0∗

1

∫ h/2

−h/2
F1dx3+w∗

∫ h/2

−h/2

(
F3−x3 f1

)
dx3+φ∗

1

∫ h/2

−h/2
h1(x3)F1dx3−w∗

,1

∫ h/2

−h/2
x3 F1dx3

=

∫ L

0

(
n1u0∗

1 +(n3+m1,1)w
∗
+p1φ

∗

1
)
dx1+N 1u0∗

1 (N 3−m1)w
∗
−M1w

∗

,1+P1φ
∗

1 ,

where the last line utilizes relation (13).
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