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FOR THIN FILM/SUBSTRATE SUBJECTED TO NONUNIFORM AXISYMMETRIC

MISFIT STRAIN AND TEMPERATURE

XUE FENG, YONGGANG HUANG, HANQING JIANG, DUC NGO AND ARES J. ROSAKIS

Current methodologies used for the inference of thin film stress through curvature measurements are
strictly restricted to stress and curvature states which are assumed to remain uniform over the entire
film/substrate system. There are recent studies of film/substrate systems subjected to nonuniform but
axisymmetric misfit strain and temperature changes. The film stresses were found to depend nonlocally
on system curvatures (that is, depend on the full-field curvatures). A very simple stress-curvature relation
was established, but it is limited to thin film and substrate of same radius. We extend the analysis to thin
film and substrate of different radii. Remarkably the same simple stress-curvature relation still holds
regardless of the film/substrate radii mismatch.

1. Introduction

Stoney used a plate system composed of a stress bearing thin film of thickness h f , deposited on a
relatively thick substrate, of thickness hs , and derived a simple relation between the curvature κ of the
system and the stress σ ( f ) of the film as follows:

σ ( f )
=

Esh2
sκ

6h f (1 − νs)
. (1)

In the above the subscripts “ f ” and “s” denote the thin film and substrate, respectively, and E and ν

are the Young’s modulus and Poisson’s ratio. Equation (1) is called the Stoney formula, and it has been
extensively used in the literature to infer film stress changes from experimental measurement of system
curvature changes [Stoney 1909; Freund and Suresh 2004].

Stoney’s formula involves a number of assumptions given in the following:

(i) both the film thickness h f and the substrate thickness hs are uniform, the film and substrate have
the same radius R, and h f � hs � R;

(ii) the strains and rotations of the plate system are infinitesimal;

(iii) both the film and substrate are homogeneous, isotropic, and linearly elastic;

(iv) the film stress states are in-plane isotropic or equi-biaxial (two equal stress components in any two,
mutually orthogonal in-plane directions) while the out-of-plane direct stress and all shear stresses
vanish;

Keywords: thin film radius, nonuniform misfit strain, nonuniform wafer curvatures, stress-curvature relations, nonlocal effects,
interfacial shears.
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(v) the system’s curvature components are equi-biaxial (two equal direct curvatures) while the twist
curvature vanishes in all directions; and

(vi) all surviving stress and curvature components are spatially constant over the plate system’s surface,
a situation which is often violated in practice.

Despite the explicitly stated assumptions, the Stoney formula is often arbitrarily applied to cases of
practical interest where these assumptions are violated. This is typically done by applying Stoney’s
formula pointwise and thus extracting a local value of stress from a local measurement of the curvature
of the system. This approach of inferring film stress clearly violates the uniformity assumptions of the
analysis and, as such, its accuracy as an approximation is expected to deteriorate as the levels of curvature
nonuniformity become more severe.

Following the initial formulation by Stoney, a number of extensions have been derived to relax some
assumptions. Such extensions of the initial formulation include relaxation of the assumption of equi-
biaxiality as well as the assumption of small deformations/deflections. A biaxial form of Stoney formula
(with different direct stress values and nonzero in-plane shear stress) was derived by relaxing the assump-
tion (v) of curvature equi-biaxiality [Freund and Suresh 2004]. Related analyses treating discontinuous
films in the form of bare periodic lines [Wikstrom et al. 1999b] or composite films with periodic line
structures (for example, bare or encapsulated periodic lines) have also been derived [Shen et al. 1996;
Wikstrom et al. 1999a; Park and Suresh 2000]. These latter analyses have removed the assumptions
(iv) and (v) of equi-biaxiality and have allowed the existence of three independent curvature and stress
components in the form of two, nonequal, direct components and one shear or twist component. How-
ever, the uniformity assumption (vi) of all of these quantities over the entire plate system was retained. In
addition to the above, single, multiple and graded films and substrates have been treated in various “large”
deformation analyses [Masters and Salamon 1993; Salamon and Masters 1995; Finot et al. 1997; Freund
2000]. These analyses have removed both the restrictions of an equi-biaxial curvature state as well as
the assumption (ii) of infinitesimal deformations. They have allowed for the prediction of kinematically
nonlinear behavior and bifurcations in curvature states which have also been observed experimentally
[Lee et al. 2001; Park et al. 2003; Fahnline et al. 1991]. These bifurcations are transformations from
an initially equi-biaxial to a subsequently biaxial curvature state that may be induced by an increase in
film stress beyond a critical level. This critical level is intimately related to the systems aspect ratio, that
is, the ratio of in-plane to thickness dimension and the elastic stiffness. These analyses also retain the
assumption (vi) of spatial curvature and stress uniformity across the system. However, they allow for
deformations to evolve from an initially spherical shape to an energetically favored shape (for example,
ellipsoidal, cylindrical or saddle shapes) which features three different, still spatially constant, curvature
components [Lee et al. 2001; Park et al. 2003; Masters and Salamon 1993; Salamon and Masters 1995].

The above-discussed extensions of Stoney’s methodology have not relaxed the most restrictive of
Stoney’s original assumption (vi) of spatial uniformity which does not allow film stress and curvature
components to vary across the plate surface. This crucial assumption is often violated in practice since
film stresses and the associated system curvatures are nonuniformly distributed over the plate area [Mas-
ters and Salamon 1994]. Recently Huang et al. [2005] and Huang and Rosakis [2005] relaxed the
assumption (vi) (and also (iv) and (v)) to study the thin film/substrate system subject to nonuniform,
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Figure 1. A schematic diagram of the thin film/substrate system with different film and
substrate radii. The cylindrical coordinates (r, θ, z) are used.

axisymmetric misfit strain (in thin film) and temperature change (in both thin film and substrate), re-
spectively. The axisymmetric variation in particular is often present in film/substrate systems due to
the circular wafer geometry and the axisymmetric geometries of most processing equipment used to
manufacture such wafers. Their most important result is that the film stresses depend nonlocally on
the substrate curvatures, that is, they depend on curvatures of the entire substrate. Huang et al. [2005]
and Huang and Rosakis [2005] established very simple relations between film stresses and substrate
curvatures for arbitrarily nonuniform, axisymmetric misfit strain and temperature change, respectively,
and such relations degenerate to Stoney’s formula for uniform, equi-iaxial stresses and curvatures.

The main purpose of the present paper is to extend their work by relaxing the assumption (i) such that
the thin film and substrate may have different radii. To do so we consider the case of a thin film and
substrate with different radii subjected to arbitrary, radially symmetric misfit strain field εm(r) in the thin
film or temperature field T (r) in the thin film and substrate. Our goal is to relate film stresses and system
curvatures to the misfit strain (or temperature) distribution and to ultimately derive a relation between
the film stresses and the system curvatures that would allow for the accurate experimental inference of
film stress from full-field and real-time curvature measurements.

2. Nonuniform misfit strain

2.1. Governing equations. A circular thin film of radius R f is deposited on a substrate of a larger
radius Rs > R f (see Figure 1). The film thickness h f is much less than the substrate thickness hs , that is,
h f � hs . The Young’s modulus and Poisson’s ratio of the film and substrate are denoted by E f , ν f , Es

and νs , respectively. The thin film is subjected to axisymmetric misfit strain distribution εm(r), where r
is the radial coordinate. The cylindrical coordinates (r, θ, z) are used (Figure 1) for this axisymmetric
problem.
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Figure 2. A schematic diagram of the nonuniform shear traction distribution at the in-
terface between the film and the substrate.

The thin film and substrate are modeled as a membrane and a plate, respectively, since the film is very
thin and has the negligible bending stiffness. Let u f and us denote the radial displacements in the thin
film and substrate (at the neutral axis). The strains are εrr = du/dr and εθθ = u/r , where u is u f in
the thin film and us in the substrate. The axial forces in the film and substrate can be obtained from the
linear elastic constitutive model as

Nr =
Eh

1 − ν2

(du
dr

+ ν
u
r

− (1 + ν)εmisfit

)
, Nθ =

Eh
1 − ν2

(
ν

du
dr

+
u
r

− (1 + ν)εmisfit

)
, (2)

where E , ν, h and εmisfit are E f , ν f , h f and εm in the thin film and Es , νs , hs and 0 in the substrate.
The shear stress traction σr z at the film/substrate interface is denoted by τ(r) as shown in Figure 2. The

normal stress traction σzz vanishes because the thin film cannot be subjected to bending. The equilibrium
of forces requires

d Nr

dr
+

Nr − Nθ

r
∓ τ = 0, (3)

where −τ and +τ are for the thin film and substrate within the film portion (r ≤ R f ), respectively, and τ

vanishes for the substrate outside the film (R f < r ≤ Rs). The substitution of Equation (2) into Equation
(3) yields the following governing equations for u f , us and τ

d2u f

dr2 +
1
r

du f

dr
−

u f

r2 =
1 − ν2

f

E f h f
τ + (1 + ν f )

dεm

dr
, for r ≤ R f , (4)

d2us

dr2 +
1
r

dus

dr
−

us

r2 =

{
−

1−ν2
s

Es hs
τ, for r ≤ R f ,

0, for R f < r ≤ Rs .
(5)

Let w denote the lateral displacement of the substrate in the normal (z) direction. The bending mo-
ments in the substrate are given in terms of w by

Mr =
Esh3

s

12(1 − ν2
s )

(d2w

dr2 +
νs

r
dw

dr

)
, Mθ =

Esh3
s

12(1 − ν2
s )

(
νs

d2w

dr2 +
1
r

dw

dr

)
. (6)
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The out-of-plane force and moment equilibrium equations are

d Mr

dr
+

Mr − Mθ

r
+ Q −

hs

2
τ = 0,

d Q
dr

+
Q
r

= 0, (7)

where Q is the shear force normal to the neutral axis, hsτ/2 is the contribution from the shear stress τ

at the film/substrate interface within the film portion (r ≤ R f ), and it vanishes for the substrate outside
the film (R f < r ≤ Rs). The second equation in Equation (7) and the requirement of finite Q at the
center r = 0 give Q = 0 in the entire substrate. The substitution of Equation (6) into the first equation in
Equation (7) then gives the following governing equation for w and τ

d3w

dr3 +
1
r

d2w

dr2 −
1
r2

dw

dr
=

{ 6(1−ν2
s )

Es h2
s

τ, for r ≤ R f ,

0, for R f < r ≤ Rs .
(8)

The continuity of displacement across the thin film/substrate interface requires

u f = us −
1
2 hs

dw

dr
, for r ≤ R f . (9)

Equations (4), (5), (8) and (9) constitute four ordinary differential equations for u f , us , w and τ within
the film portion (r ≤ R f ). Outside the film (R f < r ≤ Rs) Equations (5) and (8) govern us and w.

The shear stress at the film/substrate interface can be obtained by eliminating u f , us and w from these
four equations as

τ = −
E f h f

1 − ν f

dεm

dr

(
1 + O

(h f

hs

))
, (10)

where the higher-order terms for h f /hs � 1 are neglected. That the interface shear stress is proportional
to the gradient of misfit strain is a remarkable result. Equations (5) and (8) can then be solved analytically
as

dw

dr
=

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

1
r

∫ r
0 ηεm(η)dη +

B1
2 r, for r ≤ R f ,

A1r +
C1
r , for R f < r ≤ Rs,

(11)

us =


E f h f
1−ν f

1−ν2
s

Es hs

1
r

∫ r
0 ηεm(η)dη +

B2
2 r, for r ≤ R f ,

A2r +
C2
r , for R f < r ≤ Rs,

(12)

where only the leading terms for h f /hs � 1 are shown, and B1, A1, C1, B2, A2 and C2 are constants to
be determined by the continuity conditions across the edge of thin film (r = R f ) and boundary conditions
at the edge of substrate (r = Rs) to be given in the next section. The displacement u f in the thin film
can be obtained from interface continuity condition in Equation (9).

2.2. Continuity conditions and boundary conditions. The displacement continuity conditions at the
edge of thin film require [

dw

dr

]
r=R f

= 0 and [us]r=R f = 0, (13)
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where [· · · ] stands for the jump. The jump of the axial force in substrate
[
N (s)

r
]

is related to the axial
force in thin film N ( f )

r by

N ( f )
r

∣∣
r=R f

−
(
N (s)

r
)

r=R f
= 0,

such that the net external force vanishes. Similarly, the jump of the bending moment in substrate [Mr ]

is related to the bending moment produced by the axial force in thin film with respect to the neutral axis
of substrate by

−[Mr ]r=R f −
1
2(hs + h f )N ( f )

r

∣∣
r=R f

= 0

such that the net external moment vanishes.
The traction-free boundary conditions at the edge of substrate are

N (s)
r

∣∣
r=Rs

= 0 and Mr
∣∣
r=Rs

= 0. (14)

Equations (13)–(14) are 6 linear algebraic equations to determine B1, A1, C1, B2, A2 and C2. The
displacements in Equations (11), (12) and (9) are then given by

dw

dr
=

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

( 1
r

∫ r
0 ηεm(η)dη +

1−vs
1+vs

εm
2 r

)
, for r ≤ R f ,

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

(
εm
2

R2
s

r +
1−vs
1+vs

εm
2 r

)
, for R f < r ≤ Rs,

us =


E f h f
1−ν f

1−ν2
s

Es hs

(1
r

∫ r
0 ηεm(η)dη +

1−vs
1+vs

εm
2 · r

)
, for r ≤ R f ,

E f h f
1−ν f

1−ν2
s

Es hs

(
εm
2

R2
s

r +
1−vs
1+vs

εm
2 r

)
, for R f < r ≤ Rs,

u f = 4us, for r ≤ R f ,

where

εm =
2
R2

s

∫ R f

0
ηεm(η)dη =

1
Asubstrate

∫
Afilm

εmd A

is the average misfit strain, that is, the misfit strain of the thin film averaged over the entire substrate.

2.3. Thin film stresses and substrate curvatures. The substrate curvatures can be obtained from the
displacement w as

κrr =
d2w

dr2 =

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

(
εm −

1
r2

∫ r
0 ηεm(η) dη +

1−νs
1+νs

εm
2

)
, for r ≤ R f ,

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

(
−

εm
2

R2
s

r2 +
1−νs
1+νs

εm
2

)
, for R f < r ≤ Rs,

(15)

κθθ =
1
r

dw

dr
=

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

( 1
r2

∫ r
0 ηεm(η) dη +

1−νs
1+νs

εm
2

)
, for r ≤ R f ,

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

(
εm
2

R2
s

r2 +
1−νs
1+νs

εm
2

)
, for R f < r ≤ Rs .

(16)
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The circumferential curvature κθθ is continuous across the edge of thin film (r = R f ), but the radial
curvature has a jump. The sum of these two curvatures is

κrr + κθθ =

−12 E f h f
1−ν f

1−νs
Es h2

s

(
εm −

1−νs
2 (εm − εm)

)
, for r ≤ R f ,

−6 E f h f
1−ν f

(1−νs)
2

Es h2
s

εm, for R f < r ≤ Rs,

where the first term on the right hand side of the first line corresponds to the local misfit strain εm , while
the second term gives the deviation from the local misfit strain and is proportional to the difference be-
tween the local misfit strain and the average misfit strain εm − εm . The difference between two curvatures
in Equations (15)–(16) is

κrr − κθθ =

−6 E f h f
1−ν f

1−ν2
s

Es h2
s

(
εm −

2
r2

∫ r
0 ηεm(η) dη

)
, for r ≤ R f ,

6 E f h f
1−ν f

1−ν2
s

Es h2
s

R2
s

r2 εm, for R f < r ≤ Rs .
(17)

The stresses in the thin film are obtained from Equation (2) as

σ ( f )
rr =

E f

1 − ν f

{
− εm + 4

E f h f

1 − ν2
f

1 − ν2
s

Eshs

(
εm − (1 − ν f )

1
r2

∫ r

0
ηεm(η) dη +

1 + ν f

2
1 − νs

1 + νs
εm

)}
,

σ
( f )
θθ =

E f

1 − ν f

{
− εm + 4

E f h f

1 − ν2
f

1 − ν2
s

Eshs

(
ν f εm + (1 − ν f )

1
r2

∫ r

0
ηεm(η) dη +

1 + ν f

2
1 − νs

1 + νs
εm

)}
.

The sum and difference of these stresses have the following simple expressions

σ ( f )
rr + σ

( f )
θθ =

E f

1 − ν f
(−2εm),

σ ( f )
rr − σ

( f )
θθ = 4E f

E f h f

1 − ν2
f

1 − ν2
s

Eshs

(
εm −

2
r2

∫ r

0
ηεm(η) dη

)
.

(18)

For uniform misfit strain εm = constant, the substrate curvatures from Equations (15)–(17) become

κ = κrr = κθθ = −6
E f h f

1 − ν f

1 − νs

Esh2
s

(
1 −

1 − vs

2

(
1 −

R2
f

R2
s

))
εm, for r ≤ R f ,

κrr = 3
E f h f

1 − ν f

1 − νs

Esh2
s

(
(1 + νs)

R2
f

r2 − (1 − vs)
R2

f

R2
s

)
εm, for R f < r ≤ Rs,

κθθ = −3
E f h f

1 − ν f

1 − νs

Esh2
s

(
(1 + νs)

R2
f

r2 + (1 − vs)
R2

f

R2
s

)
εm, for R f < r ≤ Rs .

The curvature state is constant and equi-biaxial only within film portion r ≤ R f . It can be easily verified
that the circumferential curvature is continuous across the edge of thin film, but the radial curvature has
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a jump. The thin film stresses from (18) become

σ = σ ( f )
rr = σ

( f )
θθ =

E f

1 − ν f
(−εm).

For this special case only, the stress state becomes equi-biaxial. Elimination of misfit strain εm from the
above two equations yields a simple relation

σ =
Esh2

s

6(1 − νs)h f

(
1 −

1−vs
2

(
1 −

R2
f

R2
s

)) κ,

where κ is the constant curvature within the film portion r ≤ R f . For the thin film and substrate of same
radii, the above relation degenerates Stoney’s formula in Equation (1) which has been used to estimate
the thin-film stress σ from the substrate curvature κ , if the misfit strain, stress and curvature are all
constants, and if the plate system shape is spherical. For the thin film and substrate of different radii, the
radius effect clearly comes into play. In the following, we establish a simple relation between film stress
and substrate curvature for nonuniform misfit strain distribution.

2.4. Extension of Stoney formula for nonuniform misfit strain distribution. We extend the Stoney
formula by establishing the direct relation between the thin-film stresses and substrate curvatures for
the thin film and substrate of different radii subjected nonuniform misfit distribution. Both κrr − κθθ in
Equation (17) and σ

( f )
rr − σ

( f )
θθ in Equation (18) are proportional to εm(r)−

2
r2

∫ r
0 ηεm(η) dη. Therefore,

elimination of misfit strain gives the difference σ
( f )
rr − σ

( f )
θθ in thin-film stresses directly proportional to

the difference κrr − κθθ in substrate curvatures,

σ ( f )
rr − σ

( f )
θθ = −

2E f hs

3(1 + ν f )
(κrr − κθθ ). (19)

This relation is independent of the thin film and substrate radii, and is identical to its counterpart for the
thin film and substrate with the same radii subjected to nonuniform misfit strain [Huang et al. 2005]. The
above relation clearly shows that the radial and circumferential stress components will be equal only if
the equivalent curvature components are also equal.

We now focus on the sum of thin-film stresses σ
( f )
rr + σ

( f )
θθ and sum of substrate curvatures κrr + κθθ .

We define the average substrate curvature κrr + κθθ as

κrr + κθθ =
1

Asubstrate

∫ ∫
Asubstrate

(
κrr + κθθ

)
η dηdθ =

2
R2

s

∫ Rs

0
η
(
κrr + κθθ

)
dη,

where the integration is over the entire area Asubstrate of the substrate. The average substrate curvature
can be related to the average misfit strain εm by averaging both sides of Equation (17), that is,

κrr + κθθ = 12
E f h f

1 − ν f

1 − νs

Esh2
s

(
−εm

)
.
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Elimination of misfit strain εm and average misfit strain εm gives the sum of thin-film stresses in terms
of curvatures as

σrr + σθθ =
Esh2

s

6(1 − νs)h f

(
κrr + κθθ +

1 − νs

1 + νs

(
κrr + κθθ − κrr + κθθ

))
. (20)

The above equation is once again independent of the thin film and substrate radii, and is identical to
its counterpart for the thin film and substrate with the same radii subjected to nonuniform misfit strain
[Huang et al. 2005]. Equations (19) and (20) provide direct relations between thin-film stresses and
substrate curvatures. It is important to note that stresses at a point in the thin film depend not only on
curvatures at the same point (local dependence), but also on the average curvature in the entire substrate
(nonlocal dependence).

The interface stress τ(r) given in Equation (10) can also be directly related to substrate curvatures via

τ =
Esh2

s

6(1 − ν2
s )

d
dr

(
κrr + κθθ

)
. (21)

This provides a remarkably simple way to estimate the interface shear stress from the radial gradient of
the sum of two substrate curvatures. Equation (21) is independent of the thin film and substrate radii, and
is identical to its counterpart for the thin film and substrate with the same radii subjected to nonuniform
misfit strain [Huang et al. 2005].

Since interfacial shear stresses are responsible for promoting system failures through delamination of
the thin film from the substrate, Equation (21) has particular significance. It shows that such stresses are
proportional to the radial gradient of κrr + κθθ and not to its magnitude as might have been expected
of a local, Stoney-like formulation. The implementation value of Equation (21) is that it provides an
easy way of inferring these special interfacial shear stresses once the full-field curvature information is
available. As a result, the methodology also provides a way to evaluate the risk of and to mitigate such
important forms of failure. It should be noted that for the special case of spatially constant curvatures,
this interfacial shear stress τ vanishes as is the case for all Stoney-like formulations described in the
introduction.

3. Nonuniform temperature

We now consider the thin film and substrate of radii R f and Rs > R f subjected to nonuniform temperature
change T (r). The problem is still axisymmetric.

The linear elastic constitutive model given in Equation (2) still holds except that the misfit strain εmisfit

is replaced by α f T for the thin film and αs T for the substrate, where α f and αs are the coefficients of
thermal expansion. The equilibrium equations (3) and (7), moment-curvature relation (6), displacement
continuity (9) across the thin film/substrate interface, and continuity and boundary conditions in Section
2.2 also hold.

The shear stress at the film/substrate interface is given by

τ =
E f h f

1 − ν2
f

(
(1 + νs)αs − (1 + ν f ) α f

)dT
dr

.
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This is a remarkable result that the interface shear stress is proportional to the gradient of temperature
change. The displacements are given by

dw

dr
=


6E f h f

1−v2
f

1−ν2
s

Es h2
s

(
(1 + vs) αs − (1 + v f ) α f

) 1
r

∫ r
0 ηT (η)dη +

B1
2 r, for r ≤ R f ,

3E f h f
2(1−v f )

1−ν2
s

Es h2
s
×

{(
(1 + νs) αs − 2α f

)
T f + (1 − νs) αs Ts

}(
1−νs
1+νs

R2
f

R2
s
r +

R2
f

r

)
, for R f < r ≤ Rs,

us = (1 + vs) αs
1
r

∫ r

0
ηT (η) dη +

1
2
(1 − vs) αs Ts, for r ≤ Rs,

uf = us, for r ≤ R f ,

where

T f =
1

Afilm

∫ ∫
Afilm

T η dη dθ =
2

R2
f

∫ R f

0
ηT dη and Ts =

1
Asubstrate

∫ ∫
Asubstrate

T η dη dθ =
2
R2

s

∫ Rs

0
ηT dη

are the average temperatures in the film and substrate, respectively, and

B1

2
=

3E f h f

1 − v2
f

1 − ν2
s

Esh2
s

×

{
1 + v f

2

(
1 − vs

1 + vs

R2
f

R2
s

+ 1
){(

(1 + vs)αs − 2α f
)
T f + (1 − vs)αs Ts

}
−

(
(1 + vs)αs − (1 + v f ) α f

)
T f

}
.

The sum of two substrate curvatures is

κrr + κθθ =


6E f h f

1−v2
f

1−ν2
s

Es h2
s

(
(1 + vs)αs − (1 + v f )α f

)
T + B1, for r ≤ R f ,

3E f h f
1−v f

(1−vs)
2

Es h2
s

R2
f

R2
s

{(
(1 + vs)αs − 2α f

)
T f + (1 − vs)αs Ts

}
, for R f < r ≤ Rs,

and the difference between two substrate curvatures is

κrr − κθθ =


6E f h f

1−v2
f

1−ν2
s

Es h2
s
×

(
(1 + vs) αs − (1 + v f )α f

)(
T −

1
r2

∫ r
0 ηT (η) dη

)
, for r ≤ R f ,

−
3E f h f
1−v f

1−ν2
s

Es h2
s
×

{(
(1 + vs)αs − 2α f

)
T f + (1 − vs)αs Ts

}
R2

f

r2 , for R f < r ≤ Rs .

Similarly, the sum and difference of thin-film stresses are given by

σ ( f )
rr + σ

( f )
θθ =

E f

1 − ν f

{(
(1 + vs)αs − 2α f

)
T + (1 − vs)αs Ts

}
,

σ ( f )
rr − σ

( f )
θθ =

E f

1 + ν f
(1 + vs)αs

(
T −

2
r2

∫ r

0
ηT (η)dη

)
.
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Elimination of temperature change gives the difference σ
( f )
rr − σ

( f )
θθ in thin-film stresses directly pro-

portional to the difference κrr − κθθ in substrate curvatures,

σ ( f )
rr − σ

( f )
θθ =

Esh2
s

6(1 − νs)h f

(1 − v f )αs

(1 + vs)αs − (1 + v f )α f
(κrr − κθθ ). (22)

This relation is independent of the thin film and substrate radii, and is identical to its counterpart for
the thin film and substrate with the same radii subjected to nonuniform temperature change [Huang and
Rosakis 2005]. The sum of thin-film stresses σ

( f )
rr + σ

( f )
θθ is related to the sum of substrate curvatures

κrr + κθθ by

σ ( f )
rr + σ

( f )
θθ =

Esh2
s

6(1 − vs)h f

×

{
κrr + κθθ +

(1 − vs

1 + vs
−

(1 − v f )αs

(1 + vs)αs − (1 + v f )α f

)
× (κrr + κθθ − κrr + κθθ ) −

1 + vs

2
(1 − v f )αs

(1 + vs)αs − (1 + v f )α f

(
1 −

R2
f

R2
s

)
κrr + κθθ

}
,

(23)

where

κrr + κθθ =
1

Asubstrate

∫ ∫
Asubstrate

(κrr + κθθ )η dη dθ

is the average substrate curvature. The above equation depends on the thin film and substrate radii, and is
different from its counterpart for the thin film and substrate with the same radii subjected to nonuniform
temperature change [Huang and Rosakis 2005].

The interface stress τ(r) can be directly related to substrate curvatures via

τ =
Esh2

s

6(1 − ν2
s )

d
dr

(
κrr + κθθ

)
.

This once again provides a remarkably simple way to estimate the interface shear stress from the
radial gradient of the sum of two substrate curvatures. Equation (23) is independent of the thin film
and substrate radii, and is identical to its counterpart for the thin film and substrate with the same radii
subjected to temperature change [Huang and Rosakis 2005].

4. Discussion and conclusions

The recent work of [Huang et al. 2005] and [Huang and Rosakis 2005] shows that, unlike Stoney’s
formula in Equation (1), the thin film stresses depend on the substrate curvatures nonlocally—that is, the
stress components at a point on the film depend on both the local value of the curvature components (at
the same point) and on the value of curvatures of all other points on the plate system (nonlocal depen-
dence). This demonstrates that analytical methods based on Stoney’s approach and its various extensions
cannot handle the nonlocality of the stress/curvature dependence and may result in substantial stress
prediction errors if such analyses are applied locally. The presence of nonlocal contributions, and the
stress dependence on all curvature components, necessitates the use of full-field curvature measurement
(over the entire surface of the plate system) in order to determine the film stresses. Furthermore, the
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shear stress along the film/substrate interface is proportional to the radial derivative of the first curvature
invariant κrr + κθθ . This provides a means to determine the interface shear stress that is responsible for
the delamination of thin film/substrate systems.

The results of [Huang et al. 2005] and [Huang and Rosakis 2005], however, are limited to thin film
and substrate of the same radius. They are extended to thin film and substrate of different radii in the
present paper. The most remarkable result is that, for thin film subjected to nonuniform, axisymmetric
misfit strain, the film and substrate radii have no effect on the relation between thin film stresses and
substrate curvatures, i.e., the stress-curvature relation is identical to that for thin film and substrate of
the same radius. This conclusion is particularly useful to the determination of thin film stresses from
substrate curvatures since one only needs to know the local and average curvatures of the substrate, and
not the thin film and substrate radii.

For thin film and substrate subjected to nonuniform, axisymmetric temperature change, the film and
substrate radii still do not affect the difference in film stresses σ

( f )
rr − σ

( f )
θθ , but they influence the sum

of film stresses σ
( f )
rr + σ

( f )
θθ . The reason for this difference between misfit strain and temperature change

is the former occurs only in the film, while the latter occurs in both the thin film and substrate, and the
nonuniform temperature change in the substrate leads to stresses and curvatures that depend on the radii.

For both axisymmetric misfit strain and temperature change, the interface shear stress is always pro-
portional to the radial gradient of curvature sum, and is independent of the thin film and substrate radii.
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