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EFFECT OF THE ORDER OF PLATES ON THE BALLISTIC RESISTANCE OF
DUCTILE LAYERED SHIELDS PERFORATED BY NONCONICAL IMPACTORS

G. BEN-DOR, A. DUBINSKY AND T. ELPERIN

In our previous studies using the two-term impactor-shield localized interaction model, we derived the
rule determining the order of the plates with different mechanical properties in a multilayer shield that
yields a maximum ballistic limit velocity against conical impactors. In the present study we show that
this rule is valid also for ogive-shaped, nonconical impactors.

1. Introduction

Several topics associated with the investigation of layering and spacing of the shields are extensively
covered in the literature on high-speed penetration mechanics. Many studies have compared ballistic
characteristics of monolithic shields with those of the shields composed of several plates with the same
total thickness and manufactured from the same material. The plates may be in contact or there may be
air gaps between them. Therefore, as alternatives to the monolithic shield, many types of shields with dif-
ferent numbers of plates and different thicknesses of the plates and of the air gaps are feasible. Analyses
of the effect of the order of plates manufactured from different materials on the ballistic characteristics of
the shield have attracted particular interest. The simplest case of this problem is interchanging the plates
in a two-layered shield. In the general case, the number of plates may vary and they may be manufactured
from different materials. The combined effects of changing the order of plates and of using air gaps on
the ballistic performance of the shield and various problems of optimization of the structure of the shield
have also been studied in a number of investigations.

A brief survey of the state of the art presented below (mainly on penetration in metal shields) supports
the assessment of [Radin and Goldsmith 1988] that “only limited results for multiple target materials exist
in the literature. . . , and the results obtained cannot easily be correlated since different target and projectile
materials, nose shapes, impact geometries and striker speeds were used”. Clearly, the latter assessment is
not related to the problem of selecting the best shield among the given set of shields against the impactor
with a given shape. This problem can be often solved experimentally, and the obtained results can be
explained using relatively simple physical reasoning. The problem is to determine a more or less general
law that will enable predicting the change of the ballistic characteristics of the shield by varying the
structure of the shield. This problem has not been solved as yet, although a number of experimental and
theoretical studies have been performed in this direction.

Honda et al. [1930] investigated experimentally the impact of steel plates by conical-nosed projectiles.
It was found that a shield composed of thin plates had a lower ballistic resistance than a monolithic shield
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with the same thickness. However, a spaced shield with the thicknesses of the plates equal to the half-
thickness of a monolithic shield performed better than a monolithic shield. Marom and Bodner [1979]
conducted a combined analytical and experimental comparative study of monolithic, layered and spaced
thin aluminum shields. They found that the ballistic resistance of a monolithic shield is higher than that
of a multilayered shield with the plates in contact and lower than the ballistic resistance of a spaced shield.
The study by [Radin and Goldsmith 1988] was also based on semiempirical models and experimental
investigations. They found a monolithic aluminum shield to be superior to a layered shield with the
same total thickness for conical-nose and blunt projectiles, while the spaced shields were less effective.
Corran et al. [1983b; 1983a], using experimental results on penetration of mild steel plates by impactors
having “increasingly rounded nose shape”, plotted the curve of perforation energy versus plate thickness
for all considered variants of the shield and found a “kink” in the curve “at about 3.5 mm total thickness”.
The occurrence of the kink was explained by the change of character of energy absorption. The authors
arrived at the conclusions that the order of unequal plate thickness is important. No advantage was found
in using multilayered targets below the kink. Above this point the best combinations may approach the
best-fit line to the single layer tests below the kink. It was found that there is an advantage to placing the
layers in contact.

Nixdorff [1984a; 1984b; 1987] compared the ballistic performance of a monolithic metal shield with
a shield manufactured from the same material, having the same total thickness, and consisting of several
plates in contact. Using the theory developed by Awerbuch and Bodner [1974], Nixdorff showed that
separation of a homogeneous shield into several layers implies a reduction of the ballistic limit velocity
(BLV) of the shield.

Zukas [1996] and Zukas and Scheffler [2001] found, on the basis of numerical simulations with
metallic shields, that layering dramatically weakens thin [b/(2R) < 1] and intermediate thickness [3<
b/(2R) < 10] shields, while thick shields [b/(2R) > 10] show small changes in projectile residual
properties [residual mass and residual velocity] when compared to their monolithic equivalent. Here b
and R are the thickness of the shield and the shank radius of the impactor, respectively.

Madhu et al. [2003] conducted experiments with aluminum plates impacted normally and concluded
that there is no significant change in the ballistic performance due to layering of such intermediate
thickness of plates. They compared a monolithic shield with two- and three-layered shields of the same
thickness. Gupta and Madhu [1997], using experimental results obtained for aluminum and steel plates,
arrived at the same conclusion with respect to relatively thick plates. For thin shields, the layered com-
binations in contact yielded higher residual velocity as compared with a monolithic shield manufactured
from either aluminum or steel. It was also found that for a spaced shield the residual velocity was higher
than in the case of plates in contact, for the same impact velocity.

Weidemaier et al. [1993] conducted experiments and numerical simulations on the perforation of steel
barriers by spherical impactors with a diameter of 17 mm. They studied a monolithic shield with a thick-
ness of 43 mm and shields composed of plates in contact having the same total thickness. It was found
that the ballistic characteristics of layered shields depended strongly on the order of the plates having
different thicknesses and that layering could improve or impair the ballistic performance of the shield.

Almohandes et al. [1996] conducted a comprehensive experimental study on the perforation of mild
steel by standard 7.62 mm bullets. They investigated shields with total thickness in the range of 8–14 mm
that were layered in contact, spaced and monolithic. It was found that single shields were more effective
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than laminated shields of the same total thickness, regardless of the configuration or striking velocity,
and that the difference in performance diminished as the striking velocity increased. Moreover, the
effectiveness of laminated targets—whether in contact or spaced—increased as the number of plates
comprising each target decreased. Ballistic performance of laminated shields is further enhanced by
using the thickest lamina as the rear lamina. The authors also studied shields with different structures
in which fiberglass-reinforced polyester was used as the filler material, and showed that these shields
performed better than weight-equivalent steel targets. The experimental results of Almohandes et al.
[1996] were used by Liang et al. [2005] for validating their approximate penetration model. This model
was used for comparative analysis of shields with different structures. It was concluded that the ballistic
performance was the best for the double shield when the ratio of the thickness of the first layer to the
total thickness was about 0.75, and the worst performance was obtained when this ratio was equal to 0.5.
An air gap slightly influenced the resistance to perforation in multilayered targets.

Elek et al. [2005] developed a simple model to describe the perforation of monolithic and multilayered
thin metallic plates by a flat-ended cylindrical impactor, and used their model for the analysis of the
ballistic properties of multilayered spaced shields. The main results of this study may be summarized
as follows. The suggested model predicted that the monolithic shield will have greater resistance than
any other multilayered shield with standoff distance between the layers and equivalent total mass. The
analysis of penetration in a two-layered shield showed that the maximum resistance could be obtained
for very low (< 20% of total thickness) or very high (> 80% of total thickness) front-layer thickness.
The increase of the number of the spaced layers in a multilayered shield, at constant total mass, caused a
further decrease of the ballistic resistance. Deterioration of the ballistic performance of thin steel shields
against flat-ended cylindrical impactors caused by layering had been noticed earlier by Zaid et al. [1973].

Shirai et al. [1997] investigated experimentally and numerically the impact resistance of reinforced
concrete plates against projectile impact. They found that double-layered plates could be expected to
have higher impact resistance than standard plates.

Park et al. [2005] suggested a multistage procedure for optimization of a two-layered shield. In the first
stage, using numerical simulations to describe penetration into shields with different layer thicknesses
b(1) and b(2), they determined the average temperature of a shield, Tave, the average equivalent plastic
strain εave and the maximum equivalent plastic strain in a critical element of the shield εmax. In the second
stage, the approximate functions describing the dependencies, Tave, εave and εmax vs. b(1) and b(2), were
determined. In the third stage, using a reduction to a single-criterion problem by a linear combination of
criteria, they solved a two-objective optimization problem. The authors considered two variants of the
optimization criterion, Tave or εave and the weight of a shield. The constraints included the upper bounds
or εmax, and constraints on the thicknesses of the plates and the total thickness of a shield.

Aptukov [1985] and Aptukov et al. [1985], using Pontrjagin’s maximum principle, determined the
optimum distribution of the mechanical characteristics of a nonhomogeneous plate. The areal density of
the shield along the trajectory of the impactor until it stopped was used as an optimization criterion, and
cylindrical and cone-nosed impactors were considered. The two-term impactor-shield interaction model
was employed, wherein the assumption about a linear dependence between the coefficients of the model
was used. Using a cylindrical cavity expansion model, Aptukov et al. [1986] solved the discrete problem
of optimization of a layered plate when the shield consisted of several layers of material and the material
itself could be chosen from a given set of materials.
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Figure 1. Notations.

Ben-Dor et al. [1998b; 1998a; 1999b; 1999a; 2000; 2006a] studied analytically the influence of air
gaps between the plates and the order of plates on the BLV of a multilayered shield against conical-
shaped impactors, and the results are summarized in [Ben-Dor. et al. 2006a]. They found that, for the
wide class of impactor-shield interaction models, the ballistic performance of the shield is independent of
the widths of the air gaps and of the sequence of plates in the shield and that it is determined only by the
total thickness of the plates if the plates are manufactured from the same material. Using the two-term
impactor-shield interaction model, they found the criterion (depending on mechanical properties of the
materials of the plates) determining the order of plates in a multilayer shield that provides the maximum
BLV. In the present study we showed that this criterion remains valid for the impactors with a shape
different from conical.

2. Mathematical model and statement of problem

Consider a high speed normal penetration of a rigid sharp striker (a body of revolution) into a ductile
layered shield with a finite thickness. We assume that the conditions of penetration are determined mainly
by the “ductile hole enlargement” model [Backman and Goldsmith 1978]. The basic notations are shown
in Figure 1; and we assume that only the nose part of the cylinder-shaped impactor interacts with the
shield. The coordinate h, the current depth of penetration, is defined as the distance between the leading
edge of the nose of the impactor and the rear surface of the shield. The coordinate ξ is associated with
the shield. In cylindrical coordinates, x, ρ, ϑ , associated with the impactor the surface of the nose is
described by the following equation:

r =8(x, θ), 0≤ x ≤ L , 0≤ θ ≤ 2π, (1)
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Figure 2. Model of the layered shield.

where L is the length of the impactor’s nose, 8(x) is an increasing, convex function. Assume that the
shield consists of N layers (plates in-contact with different mechanical properties) with the thicknesses
b(1), b(2), . . . , b(N ). The plate with a number i is located between the cross-sections ξ = ξ (i−1) and
ξ = ξ (i), where i = 1, 2, . . . , N and ξ (0) = 0. Let b be the total thickness of the shield that equals the
sum of the thicknesses of all plates. It is assumed that the above parameters remain constant when the
impactor penetrates into the shield. Then the part of the lateral surface of the impactor between the
cross-sections x = θ(h) and x =2(h) (see Figure 1) interacts with some layers of the shield (see Figure
2) where

θ(h)=

{
0 if 0≤ h ≤ b

h− b if b ≤ h ≤ b+ L
, 2(h)=

{
h if 0≤ h ≤ L

L if h ≥ L
. (2)

The equation of motion of the impactor, m(d2h/dt2)=−D, can be rewritten as follows:

mv(dv/dh)=−D, (3)

where the velocity of the impactor v is considered to be a function of h, m is the mass of the impactor, and
D is the resistance force. We consider the range of impact velocities vimp when the projectile perforates
the shield. Perforation occurs when the position of the striker is h = b+ L and its residual velocity is
vres. The BLV, vbl , is defined as the impact velocity of the impactor required to emerge from the shield
with zero residual velocity.
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We assume that the impactor-shield interaction at a given location at the surface of the impactor that
is in contact with i-th plate can be represented as follows:

d EF =
[
a(i)2

(
−Ev0
· En0)2

v2
+ a(i)0

]
En0d S, (4)

where d EF is the force acting at the surface element d S of the impactor, En0 is the inner normal unit
vector at a given location on the impactor’s surface, Ev0 the unit vector of the impactor’s velocity, the
parameters a(i)0 and a(i)2 depend on the properties of the material of the shield, and hereafter the superscript
in round brackets indicates the number of the layer. Equation (4) comprises most of the widely used
phenomenological models for homogeneous shields (for details see [Ben-Dor. et al. 2005; 2006a] and
[Recht 1990]. In particular, in the model proposed and validated in the comprehensive experimental
study by [Vitman and Stepanov 1959], a(i)2 and a(i)0 are material density of the shield and “dynamical
hardness”, respectively. The values a(i)0 for some materials may be found in [Vitman and Ioffe 1948]
(see also [Ben-Dor. et al. 2006b]).

In order to adapt Equation (4) for a layered shield let us define a step-functions (ν = 0, 2):

aν(ξ)=



a(1)ν if ξ (0) ≤ ξ < ξ (1)

...

a(i)ν if ξ (i−1)
≤ ξ < ξ (i)

...

a(N )ν if ξ (N−1)
≤ ξ ≤ ξ (N )

. (5)

Then Equation (4) can be rewritten as follows:

d EF =
(

a2(ξ)
(
−Ev0
· En0)2

v2
+ a0(ξ)

)
En0d S. (6)

The total force EF acting on the impactor at some location inside the shield is found by integrating
the local force over the impactor-shield contact surface area, that is, over the portion of the impactor’s
surface S that is determined by the inequalities 0≤ υ ≤ 2π and θ(h)≤ x ≤2(h). Taking into account
the identity:

ξ = h− x, (7)

and using the following formulas of differential geometry:

−Ev0
· En0
=8′/

√
8′2+ 1, d S =

√
8′2+ 1dxdυ, 8′ = d8/dx, (8)

we obtain the following expression for the drag force D:

D = EF · (−Ev0)=

∫∫
S

(
a2(ξ)

(
−Ev0
· En0)2

v2
+ a0(ξ)

)(
−Ev0
· En0)d S

=
m
2
[ f2(h)v2

+ f0(h)],
(9)

where

fν(h)=
4π
m

∫ 2(h)

θ(h)
aν(h− x)8ψν(8′)dx, ψν(z)= z

(
z

√
z2+ 1

)ν
, ν = 0, 2. (10)
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Substituting D from Equation (9) into Equation (3), after some algebra we obtain an ordinary linear
differential equation with respect to v2:

dv2/dh+ f2(h)v2
+ f0(h)= 0. (11)

The solution of Equation (11) with the initial condition v(0)= vimp, which corresponds to the beginning
of the motion of the impactor with the impact velocity vimp, reads [Kamke 1959]:

v2(h)=
1

q(h)
(v2

imp− g(h)), (12)

where

q(h)= exp
(∫ h

0
f2(η)dη

)
, g(h)=

∫ h

0
f0(H)q(H)d H . (13)

Equation (12) yields the following formulas for the residual velocity, vres = v(b+ L), and the BLV, vbl :

v2
res =

1
q(b+ L)

(
v2

imp− g(b+ L)
)
, v2

bl = g(b+ L). (14)

For further analysis it is convenient to rewrite the expression for vbl using the dimensionless variables:

v2
bl = k

∫ b̄+1

0
Q(h̄)dh̄

∫ 2̄(h̄)

θ̄(h̄)
ã0(h̄− x̄)8̄ψ0(8̄′)dx̄, (15)

where L is chosen as a characteristic length, and

k =
4πL3

m
, x̄ =

x
L
, 8̄=

8

L
, 8̄′ =

d8̄
dx̄
, h̄ =

h
L
, b̄ =

b
L
, (16)

Q(h̄)= exp
(

k
∫ h̄

0
d H̄

∫ 2̄(H̄)

θ̄(H̄)
ã2(H̄ − x̄)8̄ψ2(8̄′)dx̄

)
, (17)

ãν(ξ̄ )= aν(L ξ̄ ), ν = 0, 2, (18)

θ̄ (h̄)=

{
0 if 0≤ h̄ ≤ b̄

h̄− b̄ if b̄ ≤ h̄ ≤ b̄+ 1
, 2̄(h̄)=

{
h̄ if 0≤ h̄ ≤ 1

1 if h̄ ≥ 1
. (19)

It is shown by [Ben-Dor. et al. 1999b; Ben-Dor. et al. 1999a; Ben-Dor. et al. 2006a] that the max-
imum BLV of a layered shield against a conical impactor is attained if the plates are arranged in the
increasing order of the parameter χ = a0/a2. This means that if the plates are numbered, the shield must
be constructed by successively adding the plates with the order numbers i1, i2, . . . , iN , that satisfy the
condition χ (i1) ≤ χ (i2) ≤ · · · ≤ χ (iN ), where χ (i) = a(i)0 /a

(i)
2 . The main goal of this study is to validate

the latter result for nonconical impactors.
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3. Ogive-shaped generatrix

Since the main goal of this study is to investigate the effect of deviation from a conical shape on the
ballistic properties of a multilayer shield, the most convenient impactors for this purpose are ogive-shaped
impactors having a generatrix with a constant curvature. Therefore it is natural to employ curvature as
a parameter that characterizes a deviation from a conical shape. Curvature, a reciprocal of the radius of
the largest circle that is tangent to a curve (on its concave side) at a point, is equal zero for a straight line,
that is, a generatrix of a conical impactor.

The equation of the circle having the radius ρ̄∗ (in dimensionless coordinates) with a center in the
point (x̄∗, 8̄∗) reads (see Figure 3):

(x̄ − x̄∗)2+ (8̄− 8̄∗)2 = ρ̄2
∗
, (20)

where the arc of the generatrix must pass through the points (0, 0) and (1, τ ), and the following require-
ments must be satisfied:

0≤ x̄ ≤ 1, 0≤ 8̄≤ τ, 8̄∗ ≤ 0, x̄∗ ≥ 1, τ = R/L . (21)

Omitting algebraic manipulations, let us write the equation of the generatrix in the form:

8̄=
τ

2
−

2β(x̄ − 0.5)2− 2τ(x̄ − 0.5)η− 0.5β(τ 2
+ 1)

η+
√
η2+β2(τ 2+ 1)− 4β2(x̄ − 0.5)2+ 4βτη(x̄ − 0.5)

, (22)

where

η =

√
4

τ 2+ 1
−β2, β =

1
ρ̄∗
, 0≤ β ≤

2 min(1, τ )
τ 2+ 1

. (23)

Equation (22) describes not only a circular arc but also a straight line, 8̄≤ τ x̄ , for a conical impactor.
This formula for generatrix allows us to avoid computational problems arising for small β.

8̄

τ

0

8̄∗

ρ̄∗

1

x̄∗
x̄

Figure 3. Ogive-shaped generatrix.
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Equation (15) is quite involved and, consequently, it is not convenient for calculations and can in-
troduce uncontrollable numerical error. All these problems can be avoided by using piecewise-linear
approximation of the generatrix of a striker.

4. Piecewise-linear approximation of the generatrix

The equation of a piecewise linear generatrix can be written as follows (see Figure 4):

8̄(x̄)=



α1 x̄ +β1 if 0= x̄0 ≤ x̄ ≤ x̄1

· · ·

α j x̄ +β j if x̄ j−1 ≤ x̄ ≤ x̄ j

· · ·

αM x̄ +βM if x̄M−1 ≤ x̄ ≤ x̄M = 1

, (24)

where

α j =
8̄ j − 8̄ j−1

x̄ j − x̄ j−1
, β j =

x̄ j8̄ j−1− x̄ j−18̄ j

x̄ j − x̄ j−1
, j = 1, 2, . . . ,M. (25)

The domain determined by Equation (19) can be represented as a union of N ×M sub-domains S(i)j

(see Figure 5). The parallelogram A(i)j B(i)j C (i)
j E (i)j with the vertices at the points A(i)j (ξ̄

(i−1)
+ x̄ j−1, x̄ j−1),

B(i)j (ξ̄
(i−1)
+ x̄ j , x̄ j ), C (i)

j (ξ̄
(i)
+ x̄ j , x̄ j ) and E (i)j (ξ̄

(i)
+ x̄ j−1, x̄ j−1), bounds the sub-domain S(i)j . The

8̄

8̄M

8̄ j

8̄ j−1 j

x̄0 = 0 x̄ j−1 x̄ j x̄M = 1 x̄

Figure 4. Piecewise linear generatrix.
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Figure 5. Domain of impactor/shield interaction for layered shield and impactor with
linear generatrix.

sub-domains S(i)j are determined as follows:

{
ξ̄ (i−1)

+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i)+ x̄ j

θ̄
(i)
j (h) ≤ x̄ ≤ 2̄(i)j (h)

, (26)

where

θ̄
(i)
j (h)=


0 if h̄ ≤ ξ̄ (i−1)

+ x̄ j−1

x̄ j−1 if ξ̄ (i−1)
+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i)+ x̄ j−1

x̄ − ξ (i) if ξ̄ (i)+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i)+ x̄ j

0 if h̄ ≥ ξ̄ (i)+ x̄ j

, (27)

2̄
(i)
j (h)=


0 if h̄ ≤ ξ̄ (i−1)

+ x̄ j−1

x̄ j−1− ξ̄
(i−1) if ξ̄ (i−1)

+ x̄ j−1 ≤ h̄ ≤ ξ̄ (i−1)
+ x̄ j

x̄ j if ξ̄ (i−1)
+ x̄ j ≤ h̄ ≤ ξ̄ (i)+ x̄ j

0 if h̄ ≥ ξ̄ (i)+ x̄ j

. (28)
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Then the integral in Equation (17) can be represented as sum of integrals over sub-domains S(i)j :

1
k

ln[Q(h̄)] =
∑

1≤i≤N
1≤ j≤M

∫ h̄

0
d H̄

∫ 2̄
(i)
j (H̄)

θ̄
(i)
j (H̄)

ã2(H̄ − x̄)8̄ψ2(8̄′)dx̄

=

∑
1≤i≤N
1≤ j≤M

ã(i)2 ψ2(α j )

∫ h̄

0
d H̄

∫ 2̄
(i)
j (H̄)

θ̄
(i)
j (H̄)

(α j x̄ +β j )dx̄

=

∑
1≤i≤N
1≤ j≤M

ã(i)2 ψ2(α j )
[
�
(i)
j (h̄)−ω

(i)
j (h̄)

]
,

(29)

where

ω
(i)
j (h̄)=

∫ h̄

ξ̄ (i−1)+x̄ j−1

{
0.5α j

[
θ̄
(i)
j (H̄)

]2
+β j θ̄

(i)
j (H̄)

}
d H̄ ,

�
(i)
j (h̄)=

∫ h̄

ξ̄ (i−1)+x̄ j−1

{
0.5α j

[
2̄
(i)
j (H̄)

]2
+β j2̄

(i)
j (H̄)

}
d H̄ .

(30)

The integrals in Equation (30) can be calculated taking into account the definition of functions θ̄ (i)j (h)

and 2̄(i)j (h):

ω
(i)
j (h̄)=



0 if h ≤ ξ̄ (i−1)
+ x̄ j−1,

(0.5α j x̄2
j−1+β j x̄ j−1)(h̄− ξ̄ (i−1)

− x̄ j−1) if ξ̄ (i−1)
+ x̄ j−1 ≤ h ≤ ξ̄ (i)+ x̄ j−1,

(α j/6)
(
(h̄− ξ̄ (i))3− x̄3

j−1

)
+ 0.5β j

(
(h̄− ξ̄ (i))2− x̄2

j−1

)
if ξ̄ (i)+ x̄ j−1 ≤ h ≤ ξ̄ (i)+ x̄ j ,

ω
(i)
j (ξ̄

(i)
+ x̄ j ) if h > ξ̄ (i)+ x̄ j ,

(31)

�
(i)
j (h̄)=



0 if h ≤ ξ̄ (i−1)
+ x̄ j−1,

(α j/6)
(
(h̄− ξ̄ (i−1))3− x̄3

j−1

)
+ 0.5β j

(
(h̄− ξ̄ (i−1))2− x̄2

j−1

)
if ξ̄ (i−1)

+ x̄ j−1 ≤ h ≤ ξ̄ (i−1)
+ x̄ j ,

(α j/6)(x̄3
j − x̄3

j−1)+ 0.5β j (x̄2
j − x̄2

j−1)+ x̄ j (0.5α j x̄ j +β j )(h̄− ξ̄ (i−1) x̄ j )

if ξ̄ (i−1)
+ x̄ j ≤ h ≤ ξ̄ (i)+ x̄ j ,

�
(i)
j (ξ̄

(i)
+ x̄ j ) if h > ξ̄ (i)+ x̄ j .

(32)
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The expression for the BLV, Equation (15), can be rewritten similarly to Equation (29):

v2
bl

k
=

∑
1≤i≤N
1≤ j≤M

∫ ξ̄ (i)+x̄ j

ξ̄ (i−1)+x̄ j−1

Q(H̄)d H̄
∫ 2̄

(i)
j (H̄)

θ̄
(i)
j (H̄)

ã0(H̄ − x̄)8̄ψ0(8̄′)dx̄

=

∑
1≤i≤N
1≤ j≤M

ã(i)0 ψ0(α j )

∫ ξ̄ (i)+x̄ j

ξ̄ (i−1)+x̄ j−1

Q(h̄)
[
�
(i)
j (h̄)−ω

(i)
j (h̄)

]
dh̄.

(33)

Thus, determining the BLV is reduced to calculating one-dimensional integrals.

5. Result of numerical calculations and discussion

In numerical calculations we considered a two-layer shield where “the first” plate and “the second” plate
are manufactured from the soft steel and aluminum, respectively. We used the model given by Equation
(4) with a(1)0 = 1850 MPa, a(1)2 = 7830 kg /m3, a(2)0 = 350 MPa and a(2)2 = 2765 kg/m3, where the values of
the “dynamical hardness” a(i)0 are adopted from [Vitman and Ioffe 1948]. All calculations were performed
for BLVs less than 1000 m/s. The latter constraint approximately determines the range of validity of this
model.

The following numbers are assigned to the materials of the plates. The superscript [1− 2] means that
the order of the plates in the shield is such that the plate manufactured from material #1 (soft steel) is
perforated before the plate manufactured from material #2 (aluminum), the superscript [2− 1] indicates
the reverse order of the plates. Since parameter χ = a0/a2 decreases with the increase of the number of
the material (χ (2) = 0.127 · 106 m2/s2, χ (1) = 0.236 · 106 m2/s2), then v[2−1]

bl ≥ v
[1−2]
bl for conical-nosed

impactors. The goal of our calculations was to estimate the effect of the parameter β, that characterizes
the deviation from the conical shape on the index δ = v[2−1]

bl /v
[1−2]
bl , that quantifies the efficiency of

changing the order of plates on the BLV. Typical results of these calculations are showed in Figures 6-7.
It must be noted that β = 0 for a conical impactor.

In all these figures we showed the dependence δ versus β, and different curves correspond to different
ratios of the thicknesses of the plates in a shield. The curves in Figure 6 are plotted for τ = 0.5, for
τ = 1 in Figure 7. Clearly, in the second case and for relatively large values of β when the shape of
the bluntness is close to spherical, the penetrator is not a sharp-shaped body, and the plots have only a
formal meaning.

Figure 6a corresponds to the dimensionless total thickness of the shield b̄ = 8.0 and k = 0.0004 m3/kg.
The curves of the dependencies δ vs. β are concave, i.e., at the beginning the increase of the curvature
of the generatrix of a striker causes reduction of the index δ, while further increase of β is accompanied
by the increase of the index δ. Notably, for relatively large β, the magnitude of the index δ may become
larger than that for a cone-shaped impactor. When the shape of the impactor is specified (β is given) the
effect of the change of the order of the plates (the magnitude of the index δ) depends essentially upon
the ratio of the thicknesses of the plates. In the considered case for all ogive-shaped impactors this effect
is maximal when b(1)/b ≈ 0.3.

In Figure 6b we showed two sets of plots, the first for k = 0.0007 m3/kg and b̄ = 8.0, and the second
for k = 0.0004 m3/kg and b̄ = 12.0. The first set differs from that in Figure 6a by the increased value
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Figure 6. Influence of the curvature of the impactor’s generatrix on the effect of rear-
ranging the plates in the shield; v[1−2]

bl and v[2−1]
bl are the BLVs for the “direct” and the

“reverse” order of the plates in the shield, respectively; β is the dimensionless curvature
of the impactor’s nose; τ = 0.5.
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Figure 7. Influence of the curvature of the impactor’s generatrix on the effect of rear-
ranging the plates in the shield; v[1−2]

bl and v[2−1]
bl are the BLVs for the “direct” and the

“reverse” order of the plates in the shield, respectively; β is the dimensionless curvature
of the impactor’s nose; τ = 1.0

of k, while in the second set of curves we increased b̄. Comparing the results showed in Figures 6a-6b
demonstrates that increase of the magnitude of each of these two parameters, k and b̄, results in the
increase of the ratio of BLVs, δ, for every β. The effect of k on β is shown explicitly in Figure 6c.

Figure 7a for τ = 1 demonstrates the same dependencies as Figure 6a. In Figure 7b we showed the
effect of the total thickness of the shield for two values of the ratio b(1)/b (0.1 and 0.4) on the dependence
δ = δ(β). Inspection of these plots shows that the increase of the total width b̄ causes the increase of the
ratio δ.

Our calculations demonstrated that replacement of the conical head of the impactor by a convex ogive-
shaped head can be accompanied either by the increase or decrease of the efficiency of changing the order
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of the plates in a shield. However we did not encounter situations in which the optimal order of the plates
in the shield is different for these two different impactor shapes.

6. Energy absorption

Using the relationships for the impact energy and residual energy of the impactor Eimp and Eres, respec-
tively:

Eimp = 0.5 mv2
imp, Eres = 0.5 mv2

res (34)

and Equation (14) rewritten as

v2
res =

1
q∗
[v2

imp− v
2
bl], q∗ = q(b+ L)= Q(b̄+ 1), (35)

yields the following formula for the relative energy absorbed by a shield:

eabs =
Eimp− Eres

Eimp
=

q∗− 1
q∗
+

1
q∗

(
vbl

vimp

)2

. (36)

Assume that Equation (36) is written for the initial shield with a certain plate order. Consider also a
modified shield with an altered plate order where the corresponding parameters in the modified shield
are denoted by a tilde. Since q∗ is independent of the order of the plates in the shield [Ben-Dor. et al.
1999b], we may write equation similar to Equation (36) for the modified shield:

ẽabs =
Eimp− Ẽres

Eimp
=

q∗− 1
q∗
+

1
q∗

(
ṽbl

vimp

)2

. (37)

Then

eabs− ẽ=abs
1
q∗

(
ṽbl

vimp

)2

(µ2
− 1), µ=

vbl

ṽbl
. (38)

Taking into account that
µ2
− 1≡ (µ− 1)2+ 2(µ− 1)≈ 2(µ− 1), (39)

for |µ− 1| � 1, Equation (38) can be rewritten as follows:

eabs− ẽ≈absζ(1−µ), ζ =
2
q∗

(
ṽbl

vimp

)2

. (40)

Since v0
bl ≤ vimp and q∗ > 1, then ζ < 2. Therefore, the model employed in this study predicts that

rearranging the plates in the shield causes a change in the relative magnitude of the absorbed energy that
does not exceed the doubled ratio of the corresponding BLVs.

7. Concluding remarks

Using approximate model for ductile layered shields, we analyzed the effect of re-arranging plates in the
shield against nonconical rigid impactors. We found that the criterion for the optimal arrangement of the
plates in a shield, determined previously for conical impactors, is valid also for nonconical impactors.
The theoretical results we obtained can be employed in further experimental studies on the optimization
of impactors and shields.
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