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DAMAGE IN DOMAINS AND INTERFACES: A COUPLED PREDICTIVE THEORY

FRANCESCO FREDDI AND MICHEL FRÉMOND

In this study, we propose a model coupling damage of domains and damage of interfaces. A predictive
theory of continuum damage mechanics is developed within the framework of the principle of virtual
power. Because damage results from microscopic motions, the power of these microscopic motions is
included in the power of the internal forces. The power of the internal forces we choose depends on
the damage velocity and on its gradient to take into account local interactions. An interaction between
the domain damage and the damage along the interface is introduced. To overcome the insensitivity of
the local interface model to elongation, nonlocal elongation has been considered as a source of damage.
Representative numerical examples confirm that our proposed model can be used to describe various
damage phenomena in agreement with experiments.

1. Introduction

Mechanical degradation of quasibrittle materials is usually traced back to development of micro-cracking
and microvoids. Continuum damage mechanics based upon general principles which govern the evolution
of the variables representative of the material state is an effective tool for analysis of these behaviors,
[Lemaitre 1992; Stumpf and Hackl 2003; Mosconi 2006]. In particular, isotropic damage formulations
are extensively employed in the literature because of their simplicity, efficiency and adequacy for many
practical applications [Voyaiadjis et al. 1998; Lemaitre and Desmorat 2005]. Damage theory has been
used successfully to describe adhesion of solids [Borino and Failla 2005; Alfano and Crisfield 2001;
Zou et al. 2003]. In fact, the interface regions between materials fundamentally governs the strength
and stability of structural elements [Truong Dinh Tien 1990]. Moreover, structural collapse in composite
structures is often caused by the appearance and evolution of different damage phenomena in a narrow
region near the interface [Yao et al. 2005; Aimi et al. 2007; Freddi and Savoia 2006; Gonzalez et al.
2005].

The practical problem is to determine whether the design of a future structure forbids any failure
by surface or volume damage under service loads. Predictive theories must account for these physical
results, including short-term behaviour.

The present work deals with the structural response of quasibrittle domains, for instance pieces of
concrete glued on one another. We take into account both volume and interface damaging behaviors
and their interactions. As a starting point, we used two damage models proposed in [Frémond and
Nedjar 1996; Frémond 2001] for the description of domain and interface behaviour. These models are
based on adaptation of the principle of virtual power. In particular, we assume that damage results from
microscopic motions, and include the power of these motions in the principle of virtual power. This power
contribution is assumed to depend on the strain rate (displacement discontinuity for the interface), the
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rate of damage and the damage gradient (damage discontinuity for the interface). The damage gradient
is introduced to account for the local interaction of the damage at a material point on the damage of
its neighborhood. Correspondingly, we also introduce two new quantities: the internal work of damage
and the flux vector of internal work of damage (adhesion energy and energy flux vector of the contact
surface).

On the contact surface there are local damage interactions between damage at a point and damage in
its neighborhood. Thus there is interaction within the glue as well as interaction between the glue and
the two concrete pieces. These interactions are defined usch that their virtual power involves appropriate
kinematic quantities. For instance, experiments show that elongation may have damaging effects. In this
setting, an elongation is a variation of the distance between two distinct points belonging to the contact
surface. This is a nonlocal quantity which introduces nonlocal contributions in the theory.

The principle of virtual power leads to three sets of equations of motion; the first is the classical
equation of motion and the other two are nonstandard fields representative of the domains and evolution
of interface damage.

The constitutive laws we adopt permit us to control the energy dissipated during degradation and
separation of solids so as to avoid stiffness recovery and cohesive state restoration. Suitable free energies
let us express nonstandard internal forces conjugated to the damage rate and the gradient damage rate.
We then introduce pseudo-potentials of dissipation to characterize the damage evolution. The internal
constraints on the values of damage quantities and on their velocities are taken into account explicitly in
the expressions of the free energy and of the pseudo-potential.

The domain model derived from this formulation is not affected by mesh sensitivity. In fact, the
damage model for the domains overcomes the well-known problem of mesh dependence: a boundary
value problem that governs the evolution of the damage variable instead of the usual local constitutive
law. Moreover, impenetrability between domains is included in the constitutive laws, thus avoiding
the introduction of interface parameters for penalty stiffness, parameters which can create numerical
problems, such as spurious traction oscillations [Alfano and Crisfield 2001]. Numerical simulations are
proposed which correctly determine whether the zone affected by damage is the interface or a narrow
region inside the domains. Specific cases of two concrete elements glued together are considered and
a FRP-concrete delamination test is performed. In some cases, we compare the experimental results
quantitatively and qualitatively to computations.

Several studies have considered the two models separately. For the domain model the behaviour of
concrete structures is correctly predicted in [Frémond and Nedjar 1996] and [Frémond 2001]. Recently,
an extension to elastoplatic-damage model was proposed in [Nedjar 2001] and numerical aspects were
investigated in [Nedjar 2002] and [Ireman 2005].

Moreover, some mathematical results are reported in [Frémond et al. 1998]. Dynamic processes
of adhesive contact with a deformable foundation are considered in [Truong Dinh Tien 1990; Chau
et al. 2004], where the rate of bonding field is assumed to be reversible and irreversible. [Bonetti et al.
2005] obtained the global existence and uniqueness results for two solids glued together and results for
local existence for a damage model in elastic materials were reported in [Bonetti and Schimperna 2004;
Bonetti et al. 2006]. In addition, a model coupling adhesion, friction and unilateral contact is considered
in [Raous et al. 1999] and [Raous and Monerie 2002].
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2. Physical capacities, potentialities and limits of the model

Gluing of structural elements, an attractive assembly method in civil engineering, must always be evalu-
ated with respect to both short- and long-term behavior. In the short term, we must answer the question:
Is the structure designed so that the glued connections and the mechanical elements are strong enough
to support the service loads? Over the long term the question becomes: is the operating structure still
solid, or must it be strengthened?

The predictive theory we present answers the first question by determining the service load. Once the
service load is known, it is possible to predict if the design is such that the future structure will be free of
volume or surface damage which would lead to immediate collapse. The examples of Section 7 clearly
show that the computer program resulting from our model is efficient and versatile enough to deal with
very different structures made of glued parts. Beyond the damage of glued connections, the theory also
predicts coupling with the volume damage which can also endanger structures.

The theory is sparing of parameters (three for each material): a cohesion parameter, an extension
parameter and a viscosity parameter. We think this is the minimum number of parameters to correctly
describe damaging phenomena and answer questions about the damage, such as:

(a) Does damage appear (cohesion parameter)?

(b) Does the damage extend or remain concentrated in thin zones (extension parameter)?

(c) Does the damage evolve slowly or rapidly (viscosity parameter)?

For the glue, we have used the three parameters above and three more extension parameters to describe
nonlocal interactions within the glue and the interaction of the glue with its neighboring materials

For short-term behavior, we have established the capabilities of the predictive theory. Its limitations
are mainly mechanical and are due to the elastic-damaging constitutive law. Let us also note that for
the surface, the constitutive laws which involve nonlocal actions are much richer than needed for some
practical applications.

For long-term behavior, aging theory must be added together with rules to determine the related
parameters. The predictive theory seems a good starting point, and some results are already available
[Bruneaux 2004].

3. State quantities and quantities describing the evolution

In this section we introduce the state quantities E , and the quantities δE describing the evolution or
development of damage. Let us consider a system made of two domains �i , i = 1, 2, in the undistorted
natural reference configuration subjected to mixed boundary conditions and connected by an adhesive
interface 0s = ∂�1 ∩ ∂�2. An example is a system of two pieces of concrete glued on one another.

For the sake of simplicity, we neglect the thermal effects, do not take the temperature into account,
and limit our analysis to small perturbation theory. Note that the equations of motion reported in Section
4 are valid without this restriction.

For each domain �i , the state quantities are the macroscopic damage quantity βi (Ex, t), its gradient
gradβi (Ex, t) and deformation εi (Ex, t). The values of βi (Ex, t) are between 0 and 1, where 1 represents
the undamaged state and 0 the completely damaged one. Damage quantity βi may be understood as the
volume fraction of active links or of undamaged material. The gradient of βi (Ex, t) accounts for local



1208 FRANCESCO FREDDI AND MICHEL FRÉMOND

interactions of the damage at a point on damage of its neigbourhood. Recall that the deformation εi (Ex, t)
accounts for the local interaction of the displacement at a point on displacement of its neighborhood.

The quantities which describe the evolution in each domain �i are the velocities of the state quantities.
The velocities dβ/dt account for the microscopic velocities at the macroscopic level.

The state quantities on the contact surface ∂�1 ∩ ∂�2 involve quantities which describe the evolution
of the surface, and quantities which describe the macroscopic and microscopic interactions between
domains and surface. The quantities which describe the surface evolution, for instance the glue evolution,
are the surface or glue damage quantity, and its surface gradient, βs(Ex, t), and grads βs(Ex, t) taking into
account the local damage interaction in the surface or in the glue. The macroscopic interactions are
described by the gap as is usual in contact mechanics, and also by the elongation, a new nonlocal state
quantity which describes the variation of the distance of two different points of the surface. Microscopic
interactions are also described by the traces of the domain damage quantities.

The gap Eu2(Ex)− Eu1(Ex) is the difference between two small displacements Eui at the same point Ex of
the surface. Note that even if the gap is 0, the displacements which are not equal at two different points
of the surface would produce a notable damaging action. To account for this property, we introduce the
elongation

g(Ex, Ey)= 2(Ey− Ex) · (Eu2(Ey)− Eu1(Ex)) .

It describes the evolution of the distance between two different points, Ex and Ey, and it may be different
from 0 if the gap is 0.

The quantities describing the evolution of the contact surface are the velocities of the state quantities.
The velocity of the elongation is

D1,2( EU1, EU2)(Ex, Ey)= 2(Ey− Ex) · ( EU2(Ey)− EU1(Ex)).

where EUi = d Eui/dt are the macroscopic velocities.
Let us note that this velocity is 0 in any rigid system velocity, that is, a set of velocities which do not

change the form of the system. It is easy to check that rigid system velocities satisfy

EU1(Ex)= EA+ EB× x,

EU2(Ex)= EA+ EB× Ex,

dβ1

dt
=

dβ2

dt
=

dβs

dt
= 0.

These rigid velocities do not change the form of the system because the gap does not change on the contact
surface. Moreover, since the damage velocities are 0, the microscopic velocities which are responsible
for their evolutions are 0.

Remark 1. The velocity of the elongation is the time derivative of the square of the distance of two
points

D1,2( EU1, EU2)(Ex, Ey)= 2(Ey− Ex) · ( EU2(Ey)− EU1(Ex))=
d
dt
(Ey− Ex)2.

We find that within the small deformation assumption, the elongation g(Ey, Ex) is the variation of the
square of the distance of the two points. The physical properties of the internal force associated with the
elongation may be understood with this property.
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To sum up, the state quantities E and the quantities describing the evolution are, in �1 and in �2,

E1 = {ε1, β1, grad β1} , δE1 =

{
dε1

dt
,

dβ1

dt
, grad

dβ1

dt

}
,

E2 = {ε2, β2, grad β2} , δE2 =

{
dε2

dt
,

dβ2

dt
, grad

dβ2

dt

}
,

where dεi/dt are the classical strain rates.
On the contact surface ∂�1 ∩ ∂�2

Es =
{
Eu2− Eu1, βs, grads βs, β1−βs, β2−βs

}
,

Es,1,2 = {g(Ex, Ey)= 2(Ey− Ex) · (Eu2(Ey)− Eu1(Ex)) , βs(Ex), βs(Ey)} ,

δEs =

{
EU2− EU1,

dβs

dt
, grads

dβs

dt
,

dβ1

dt
−

dβs

dt
,

dβ2

dt
−

dβs

dt

}
,

δEs,1,2(Ex, Ey)=
{

D1,2( EU1, EU2)(Ex, Ey),
dβs

dt
(Ex),

dβs

dt
(Ey)
}
,

where βi −βs is the discrete analog of the gradient.

4. Equations of motion

The equations of motion result from the principle of virtual power which involves the powers of the
internal forces, the exterior forces, and the acceleration forces and which yield the introduction of new
internal forces which describe the evolution and interaction of damage variables.

4.1. Virtual power of the internal forces. Both volume damage and surface damage result from mi-
croscopic motions whose power is taken into account in the power of the internal forces. We have
chosen the velocities dβ/dt to account for the microscopic velocities at the macroscopic level. Assuming
EV = ( EV1, EV2) and γ = (γ1, γ2, γs) to be macroscopic and microscopic virtual velocities, the virtual power
of the internal forces, which is a linear function of the virtual velocities, is chosen to be

Pint =−

∫
�1

σ1 : D( EV1)d�−
∫
�1

B1γ1+ EH1 · grad γ1d�

−

∫
�2

σ2 : D( EV2)d�−
∫
�2

B2γ2+ EH2 · grad γ2d�

−

∫
∂�1∩∂�2

ER( EV2− EV1)d0−
∫
∂�1∩∂�2

Bsγs + EHs · grads γs + B1,s(γ1− γs)+ B2,s(γ2− γs)d0

+

∫
∂�1∩∂�2

∫
∂�1∩∂�2

M(Ex, Ey)D1,2( EV1, EV2)(Ex, Ey)d0(Ex)d0(Ey)

+

∫
∂�1∩∂�2

∫
∂�1∩∂�2

Bs,1(Ex, Ey)γs(Ex)+ Bs,2(Ex, Ey)γs(Ey)d0(Ex)d0(Ey),



1210 FRANCESCO FREDDI AND MICHEL FRÉMOND

where

(D( EV ))i, j =
1
2
(
∂Vi

∂x j
+
∂V j

∂xi
)=

1
2
(Vi, j + V j,i )

are the classical strain rates. The different quantities which contribute to the power of the internal forces
are products of kinematic quantities by internal forces. Kinematic quantities are those which intervene in
the motion we intend to describe. Their choice is of paramount importance to the predictive capability of
the theory. They are chosen following the experimental phenomena of volume and surface deformations
together with volume and surface damage, that is, microvoiding and microcracking. Thus the model
includes quantities with surface and volume densities which depend on the quantities we have chosen to
describe the evolutions or the deformations of the system. Some are classical and others are new. Also,
most are local but a few are nonlocal because there is a nonlocal kinematic quantity. Let us comment on
the different power densities:

• The usual strain rate D introduces the stress σ .

• The damage velocity, dβ/dt is a scalar, thus the associated internal force is also a scalar, B. It is a
mechanical work, specifically, the internal damage work which is responsible for the evolution of
the damage in the volume and in the surface.

• The gradient of the damage velocity, grad(dβ/dt) is a vector, thus the internal force is a vector,
EH . It is a work flux vector which is responsible for the interaction of the damage at a point on the

damage of its neighborhood. Its physical meaning is to be given by the boundary condition of the
equation of motion just as the physical meaning of the stress is given by the boundary condition of
the equation of motion.

• The gap velocity EU2− EU1 on the contact surface introduces the classical macroscopic interaction
force ER.

• The difference between the damage velocities dβi/dt − dβs/dt introduces a damage work flux on
the surface Bi,s , which describes the influence of the volume damage on the surface damage.

• The nonlocal elongation velocity, D1,2( EU1, EU2)(Ex, Ey) introduces a nonlocal scalar M(Ex, Ey) internal
force. It describes the effects of the elongation, and results in the equations of motion as a classical
force. The interaction macroscopic mechanical force has a nonlocal part and a classical local part,
the force ER (see Equation (5)). Since we are going to assume the internal force M(Ex, Ey) depending
on the surface damage βs , it is wise to add an extra nonlocal power depending on damage velocity
dβs/dt . It describes the effect of damage at point Ex on damage at point Ey. The internal forces
Bs,i (Ex, Ey) have the same effect than M : they introduce a nonlocal internal source of damage work.
The microscopic mechanical force has a nonlocal part and three local parts, Bs due to the glue and
the two Bi,s due to the interactions which the volumes (see Equation (7) below).

Note that even if the internal forces are numerous and some are unusual, they are all simple and
precisely chosen to take into account a particular aspect of the coupling of volume and surface, and of
the microscopic and macroscopic evolution of the system.

4.2. Virtual power of the exterior forces. We assume no exterior microscopic surfacic or volumic source
of damage, such as radiative, electrical or chemical damaging actions. Thus the power does not depend



DAMAGE IN DOMAINS AND INTERFACES 1211

on γ , and we have

Pext =

∫
�1

Ef1 EV1d�+
∫
∂�1\(∂�1∩∂�2)

Eg1 EV1d0+
∫
�2

Ef2 EV2d�+
∫
∂�2\(∂�1∩∂�2)

Eg2 EV2d0,

where the Ef and Eg are the body and surface exterior forces.

4.3. Virtual power of the acceleration forces. For the sake of simplicity, we assume a quasistatic prob-
lem. Thus

Pacc = 0.

4.4. The principle of virtual power and the equations of motion. The principle of virtual power

Pacc = Pint +Pext , for all EV1, EV2, γ1, γ2, γs,

gives three sets of equations of motion. By choosing convenient virtual velocities, we obtain

div σi + Efi = 0, in �i , (1)

−Bi + div EHi = 0, in �i , (2)

σi ENi = Egi , in ∂�i\(∂�1 ∩ ∂�2), (3)

EHi ENi = 0, in ∂�i\(∂�1 ∩ ∂�2), (4)

where the ENi are the outward normal to the �i . Equations (1)–(4) are the volume equations of motion
accounting for macroscopic and microscopic effects. The equation of motion (3) gives the physical
meaning of the stress tensor. In the same way, the equation of motion (4) gives the physical meaning of
vector EH : its scalar product with vector EN is the amount of work which is provided to the domain with
exterior normal EN by microscopic motions. These microscopic motions may be due either to macroscopic
deformations (as in the examples given below), or to radiative, electrical, chemical, and optical actions.

On surface ∂�1 ∩�2, the boundary conditions for the volume equations of motion (1) and (2), as well
as the surface equation of motion, involve nonlocal forces. For the volume equations of motion (1), the
boundary conditions are

σ1 EN1(Ex)= ER(Ex)+
∫
∂�1∩∂�2

2(Ex − Ey)M(Ex, Ey)d0(Ey), Ex ∈ ∂�1 ∩ ∂�2,

σ2 EN2(Ey)=− ER(Ey)+
∫
∂�1∩∂�2

2(Ey− Ex)M(Ex, Ey)d0(Ex), Ey ∈ ∂�1 ∩ ∂�2. (5)

As already mentioned, the stress σi ENi on the contact surface has a local part ER and a nonlocal part∫
∂�1∩∂�2

(−1)i 2 (Ey− Ex)M(Ex, Ey)d0(Ex).

The boundary conditions for the equation of motions (2) in ∂�1 ∩ ∂�2 are

EH1 EN1 =−B1,s, EH2 EN2 =−B2,s, (6)
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and a surface equation of motion with a boundary condition on the boundary of the contact surface
∂(∂�1 ∩ ∂�2),

−Bs(Ex)+divs EHs(Ex)+B1,s(Ex)+B2,s(Ex)−
∫
∂�1∩∂�2

Bs,1(Ex, Ey)+Bs,2(Ey, Ex)d0(Ey)=0, in ∂�1∩∂�2,

EHs Ens = 0, in ∂(∂�1 ∩ ∂�2), (7)

where divs is the surface divergence and Ens is normal vector to the boundary ∂(∂�1 ∩�2). As already
mentioned, the internal source of damage on the contact surface has three local parts −Bs(Ex) due to the
glue and B1,s(Ex), B2,s(Ex) due to the two neighboring volumes, and a nonlocal part∫

∂�1∩∂�2

Bs,1(Ex, Ey)+ Bs,2(Ey, Ex)d0(Ey).

Of course, the opposite of the damage work B1,s(Ex) and B2,s(Ex) which are provided to the glue by the
two neighboring volumes, are provided by the glue to the volumes by Equations (6) and (7).

Constitutive laws are needed for the numerous interior forces. As usual, we choose to define them
with free energies 9 depending on state quantities E and pseudo-potential of dissipation 8 depending
on velocities δE .

5. The constitutive laws

Since the thermal phenomena are not taken into account, the second law of thermodynamics for the
domains and the interface are [Frémond 2001]

d9i

dt
(Ei )≤ σi D

(
EU1

)
+ Bi

dβi

dt
+ EHi grad

dβi

dt
, in �i , (8)

d9s

dt
(Es)≤ ER

(
EU2− EU1

)
+ Bs

dβs

dt
+ EHs grads

dβs

dt

+ B1,s

(
dβ1

dt
−

dβs

dt

)
+ B2,s

(
dβ2

dt
−

dβs

dt

)
, in ∂�1 ∩ ∂�2 , (9)

d9s,1,2

dt

(
Es,1,2

)
(Ex, Ey)≤−M(Ex, Ey)D1,2

(
EU1, EU2

)
(Ex, Ey),

− B1,s(Ex, Ey)
dβs

dt
(Ex)− B2,s(Ex, Ey)

dβs

dt
(Ey) , in (∂�1 ∩ ∂�2)× (∂�1 ∩ ∂�2) . (10)

We use Equations (8)–(10) to define the constitutive laws with pseudo-potential of dissipation. The + or
− sign appearing in the constitutive laws results from the + or − sign in the right sides of the inequalities,
and right sides are the opposite of the densities of the virtual powers.
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The free energy and pseudo-potential of dissipation of the domains are, respectively,

9i (Ei )=9i (εi , βi , grad βi ) ∈ wi (1−βi )+
ki

2
(grad βi )

2
+ I (βi )+

βi

2

{
λi (tr εi )

2
+ 2µiεi : εi

}
,

8i (δEi )=8i

(
dβi

dt

)
=

ci

2

(
dβi

dt

)2

+ I−

(
dβi

dt

)
,

where λi and µi are the Lamé parameters. The quantities wi are initial damage thresholds expressed in
terms of volumetric energies. They are equivalent to the initial thresholds expressed in terms of damage
forces or stresses [Lemaitre 1992; Voyaiadjis et al. 1998; Lemaitre and Desmorat 2005]. The quantities
ci are the viscosity parameters of damage and ki measure the local influences of a material point on
its neighborhood. The ci quantities control the velocity of the phenomena. If they are large, damage
evolution is slow and if they are small, damage evolution is very fast. The values of ci can be measured
with experiments performed at different velocities. The extension parameters ki control the size of the
transition zone between sound material and damaged material. If the ki are large, damage is diffuse and
spread in the whole domain. If the ki are small, the damage is concentrated in thin zones which may
represent fractures. The values of ki can be measured with structure experiments, but not with sample
experiments where the state quantities are homogeneous.

The functions I and I− are the indicator functions of the intervals [0, 1], (I (γ )= 0, if 0≤ γ ≤ 1,
and I (γ )=+∞, if γ /∈ [0, 1]), and of [−∞, 0] = R−, (I−(γ )= 0, if γ ≤ 0 and I−(γ )=+∞, if γ > 0)
(see [Moreau 1966]).

The free energies and pseudo-potentials are the most simple energies coupling elasticity and damage.
They give the constitutive laws

σi =
∂9i

∂εi
= βi {λi tr εi 1+ 2µiεi } ,

Bi =
∂9i

∂βi
+

∂8i

∂(dβi/dt)

∈ −wi +
1
2

{
λi (tr εi )

2
+ 2µiεi : εi

}
+ ∂ I (βi )+ ci

(
dβi

dt

)
+ ∂ I−

(
dβi

dt

)
,

EHi =
∂9i

∂ (gradβi )
= ki gradβi .

where 1 is the identity matrix.
In the previous formula, ∂ I and ∂ I− are the subdifferential sets or the sets of the generalized derivatives

of the indicator functions I , (∂ I (β)={0}, if 0<β < 1; ∂ I (0)=R−; ∂ I (1)=R+= [0,+∞[; ∂ I (β)=∅,
if β /∈ [0, 1]) and I−, (∂ I−(x)= {0}, if x < 0 and ∂ I−(0)= [0,+∞[). These generalized derivatives are
the reactions to the internal constraints 0≤ βi ≤ 1 and dβi/dt ≤ 0. The latter internal constraint accounts
for the irreversibility of damage. The reactions are different from 0 only for the extreme values of the
inequalities.
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The free energy and pseudo-potential of the glued contact surface are

9s(Es)=9s
(
Eu2− Eu1, βs, grads βs, β1−βs, β2−βs

)
= ws(1−βs)+

ks

2

(
grads βs

)2
+ I (βs)+ I−

(
(Eu2− Eu1) · EN2

)
+
βs k̂s

2
(Eu2− Eu1)

2
+

ks,1

2
(β1−βs)

2
+

ks,2

2
(β2−βs)

2 ,

8s(δEs)=8s(
dβs

dt
)=

cs

2

(
dβs

dt

)2

+ I−

(
dβs

dt

)
,

where ks is the local surface extension or interaction coefficient, ws the Dupré’s energy accounting
for the glue cohesion, cs the viscosity of the adhesive evolution, ks,1 and ks,2 are the surface-volume
interaction parameters, and k̂s represents the rigidity of the bonds between the two solids. The function
I−((Eu1− Eu1) · EN2) takes into account the impenetrability of the two domains on their contact surface and
function I−(dβs/dt) implies irreversibility of damage.

The expressions of the free energy and pseudo-potential of dissipation are the simplest to give a model
where damage is coupled with elasticity. They account for elastic, viscous and damage properties. The
resulting constitutive laws are

ER =
∂9s

∂(Eu2− Eu1)
∈ βs k̂s (Eu2− Eu1)+ ∂ I−

(
(Eu2− Eu1) · EN2

)
EN2,

Bs =
∂9s

∂βs
+

∂8s

∂(dβs/dt)
∈ −ws +

k̂s

2
(Eu2− Eu1)

2
+ ∂ I (βs)+ cs

dβs

dt
+ ∂ I−

(
dβs

dt

)
,

EHs =
∂9s

∂
(
grads βs

) = ks grads βs,

B1,s =
∂9s

∂(β1−βs)
= ks,1 (β1−βs) ,

B2,s =
∂9s

∂(β2−βs)
= ks,2 (β2−βs) .

The force ∂ I−((Eu2− Eu1) · EN2) EN2 is the impenetrability reaction. Note that it is active only when there is
actually contact, that is, when (Eu2− Eu1) · EN2 = 0.

The nonlocal free energy on the glued contact surface is

9s,1,2(Es,1,2(Ex, Ey))=
ks,1,2

2
g2(Ex, Ey) (βs(Ex)βs(Ey)) exp(−

|Ex − Ey|2

d2 ),

with

g(Ex, Ey)= 2(Ey− Ex) · (Eu2(Ey)− Eu1(Ex)).

The exponential function with distance d, describes the attenuation of nonlocal actions with distance
|Ex − Ey| between points Ex and Ey. Assuming no dissipation with respect to δEs,1,2(Ex, Ey), we have the
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constitutive law

−Bs,1(Ex, Ey)=
∂9s,1,2(Es,1,2(Ex, Ey))

∂βs(Ex)
=

ks,1,2

2
g2(Ex, Ey)βs(Ey) exp

(
−
|Ex − Ey|2

d2

)
,

−Bs,2(Ex, Ey)=
∂9s,1,2(Es,1,2(Ex, Ey))

∂βs(Ey)
=

ks,1,2

2
g2(Ex, Ey)βs(Ex) exp

(
−
|Ex − Ey|2

d2

)
,

−M(Ex, Ey)=
∂9s,1,2(Es,1,2(Ex, Ey))

∂g(Ex, Ey)
= ks,1,2g(Ex, Ey)(βs(Ex)βs(Ey)) exp

(
−
|Ex − Ey|2

d2

)
.

The state quantities we use have dimension. The time and length scales related to the classical quanti-
ties are those of solids mechanics, in particular, of civil engineering. The new length scales are related to
the gradient of damage, which corresponds to the size of the influence zone of damage (a few centimeters
in our examples), and to the effect of damage elongation (on the order of millimeters in our examples).
The first length scale is already known. To measure it, structure experiments have to be performed; in our
case we used four point bending experiments. The second length scale has also been estimated with the
four point bending experiments. Systematic research is under way at the Laboratoire Central des Ponts et
Chaussées to estimate the amplitude of the variations of these parameters related to the durability of glued
structures. Moreover, the parameters ci may be seen as the characteristic times of the processes. They
can be identified by performing experiments at different loading velocities, specifically, small velocities
to remain in a quasistatic situation.

Let us note that all the constitutive laws involve the reactions to the internal constraints when needed,
which are clearly non linear relationships, and linear relationships between the forces and the state
quantities and velocities. Thus they are simple and we think that they have to account for the main
phenomena: non linear constitutive laws are to be chosen only to make the results more adapted but
the linear relationships have to be sufficient in a first step to capture the basic physical features. More
complicated constitutive law has been considered in [Nedjar 2001; 2002]. For the sake of simplicity, we
assume the simplest case of dissipation that is, only the dissipation with respect to the dβ

/
dt’s and not

the dissipation with respect to the gradient of the dβ
/

dt’s. This assumption minimizes the number of
the parameters of the predictive theory, and it is sufficient to ensure both mechanical and mathematical
coherency [Bonetti et al. 2006; Bonetti and Schimperna 2004; Bonetti et al. 2005; Frémond and Nedjar
1996].

6. The equations

The principle of virtual power and a proper use of the constitutive laws leads to three sets of equations of
motion; the first one is the classical equation of motion and the others are nonstandard partial differential
equations describing domains and interface damage evolution.

6.1. In the domains. The equations of the evolution of damage for the domains obtained by using the
constitutive laws and equilibrium equations are

div(βi {λi trεi (Eui )1+ 2µiεi (Eui )})+ Efi = 0, (11)
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ci
dβi

dt
− ki1βi + ∂ I (βi )+ ∂ I−

(dβi

dt

)
3 wi −

1
2

{
λi (trεi )

2
+ 2µiεi : εi

}
, (12)

with initial conditions

βi (x, 0)= β0
i (x), in �i ,

βs(x, 0)= β0
s (x), in ∂�1 ∩ ∂�2,

and boundary conditions

σi ENi = Egi , in ∂�i\(∂�1 ∩ ∂�2),

ki
∂βi

∂Ni
= 0, in ∂�i\(∂�1 ∩ ∂�2),

where the Efi and Egi are the exterior body forces and surface traction.
The elements ∂ I (βi ) and ∂ I−(∂βi

/
∂t) contain reactions which forces βi to remain between 0 and 1

and ∂βi
/
∂t to be negative, to account for the irreversibility of damage. The source of damage in the

right-hand side of (12) is a deformation energy that well agrees with experimental results. This model is
sufficient to describe the damage phenomena during multi-axial loading and unloading without changing
the sign of exterior actions. In case the exterior actions change sign, a slightly more sophisticated theory
is to be used following [Frémond and Nedjar 1996; Frémond 2001]. It involves the positive and negative
parts of the deformations. The positive and negative part of a tensor are obtained after diagonalization
(see [Frémond and Nedjar 1996] for details), implying the evaluation of the principal deformations. This
is a linear algebra result which holds for symmetric matrices. In particular, considering the positive (or
negative) part of the strain tensor leads to an elastic-damage model that exhibits dissymmetric behaviors
between tension and compression. The threshold of damage in compression is greater than the one in
tension due to a different source term in Equation (12) (see [Frémond and Nedjar 1996]).

6.2. On the contact surface. With the previous constitutive laws, the damage evolution law for the
cohesive interface reads, [Freddi and Frémond 2005]

cs
dβs

dt
− ks1sβs + ∂ I (βs)+ ∂ I−

(dβs

dt

)
3 ws −

k̂s

2
(Eu2− Eu1)

2
− ks,1 (βs −β1)− ks,2 (βs −β2)

−

∫
∂�1∩∂�2

ks,1,2

2
(g2(Ex, Ey)+ g2(Ey, Ex))βs(Ey) exp

(
−
|Ex − Ey|2

d2

)
d0(Ey), (13)

where 1s is the surface Laplace operator. The last term is not 0 when Eu2 = Eu1, and is responsible for the
damage resulting from elongation. The glue damage source in the right hand side results from the gap
between the two solids, from the elongation (the nonlocal effect) and from the flux of damaging work
coming from the concrete. This flux is proportional to the difference of damage between the concrete and
the glue (see Figure 1). Thus it is more difficult to damage the glue when the concrete is not damaged.
In this case, Equation (13) may be interpreted with a glue threshold equal to ws + ks,1+ ks,2, whereas it
is ws when the concrete is completely damaged. Indeed, in some experiments intended to separate two
adhering pieces, damage of the pieces is produced to facilitate surface damage. The contact boundary
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Figure 1. Local interaction between the damage at a material point on the damage on
its neighborhood (arrows in the domain), and the damage interaction between domain
and interface (arrows in the interphase).

conditions on the glued contact surface ∂�1 ∩ ∂�2 are

σ1 EN1(Ex) ∈ βs k̂s(Eu2− Eu1)+ ∂ I−((Eu2− Eu1) · EN2) EN2

−

∫
∂�1∩∂�2

2(Ex − Ey)ks,1,2g(Ex, Ey)
(
βs(Ex)βs(Ey)

)
exp

(
−
|Ex − Ey|2

d2

)
d0(Ey) (14)

for Ex ∈ ∂�1 ∩ ∂�2,

σ2 EN2(Ey) ∈ −βs k̂s(Eu2− Eu1)− ∂ I−
(
(Eu2− Eu1) · EN2

)
EN2

−

∫
∂�1∩∂�2

2(Ey− Ex)ks,1,2g(Ex, Ey)(βs(Ex)βs(Ey)) exp
(
−
|Ex − Ey|2

d2

)
d0(Ex) (15)

for Ey ∈ ∂�1 ∩ ∂�2,

k1
∂β1

∂N1
= ks,1(βs −β1), k2

∂β2

∂N2
= ks,2(βs −β2), ks

∂βs

∂Ns
= 0 ∈ ∂

(
∂�1 ∩ ∂�2

)
. (16)

For the sake of simplicity, we neglect in the numerical simulations the nonlocal mechanical effect
in surface stresses (14) and (15) because it is negligible compared to the local effect. The values of
parameters k̂s � ks,1,2 of the constitutive laws we choose in the sequel agree with this assumption (see
Table 1). Thus the stress on the interface 0s becomes the sum of the reaction to the noninterpenetration
condition (Eu2− Eu1) · EN2 ≤ 0 and of the elastic interaction βs k̂s (Eu2− Eu1), with rigidity proportional to βs ,
the fraction of undamaged bonds between the two solids.

Boundary condition (16) means that the damaging energy flux in the concrete is proportional to the
difference of damage between the glue and the concrete. Parameter ks,i quantifies the importance of
the interaction of the volume and surface damages. When ks,1 = 0 there is no influence of the volume
damage on the surface damage. The damage equations are uncoupled and the interface acts as a damage
barrier (see the four point bending test in Section 7).
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L (mm) 400
l (mm) 300
h (mm) 50
d (mm) 100
t (mm) 100
E (MPa) 38000
ν 0.2
c (MPa· s) 2× 10−3

k (mm) 0.3
w (MPa) 2× 10−5

Pone
max (kN) 14.3

P two
max (kN) 18.2

k̂‖s (MPa · mm−1) 1.9× 103

k̂⊥s (MPa · mm−1) 1.9× 103

cs (MPa · mm· s) 7.2× 10−2

ks (MPa · mm2) 0.1
ws (MPa · mm) 1.1× 10−2

ks,1 (MPa · mm) 0.1
ks,2 (MPa · mm) 0.1
d (mm) 10
ks,1,2 (MPa/mm) 20

Table 1. Left: Geometrical, mechanical parameters of the two concrete pieces and max-
imum loads for four-point bending tests of Figure 2. Right: Glue parameters for the
same tests.

In the classical interface problem (that is, one without damaging materials) it is possible to obtain a
bilateral connection simply by imposing k̂s ∼=∞. However, in the case we consider — the damaging
phenomena of the two materials — a perfect interface is obtained by imposing not only k̂s ∼=∞ but also
ks,1 ∼= ∞ and cs = ws = ks ∼= 0, in order to have the continuity of damage and of its flux across the
interface.

As a test to underline the physical meaning of the damage interaction parameters, we consider two
square pieces of concrete [0, 0.05 m]2 connected by a cohesive interface in a pure traction test, that is,
where opposite vertical tractions are applied along the horizontal sides of the two bodies. We suppose
that the interface is very strong such that no damage appears along the contact surface. Normally, with
the two bodies subjected to nearly uniform traction, a diffused damage should involve the whole domains.

Figure 2. Four point bending test for sample of thickness t . See Table 1 for parameter
values for numerical and experimental results.
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Figure 3. Damage evolution in pure-traction test: ks,1 = ks,2 = 0.05. Note the (green)
less damaged zone due to the strong glue connecting the two specimen. The left figure
represents an initial damaged state while the right figure shows the complete damaged
state. The glue acts as a reinforcement for the material.

    

  

Figure 4. Damage evolution in pure-traction test: ks,1 = ks,2 = 0.2. The left figure
represents an initial damaged state while the right figure shows the complete damaged
state. The (green) less damaged zone is more important when the interaction parameters
ks,i are large. The glue acts like a reinforcement for the material, but is stronger than the
case shown in Figure 3.
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Instead, as shown in the Figures 3 and 4, the interaction between the glue and the materials determines the
presence of more resistant zones next to the interface. Particularly, the zone is larger and the phenomenon
more pronounced for higher ks,1 and ks,2 values.

In view of the examples and experiments investigated in the sequel, we define three models which
differ by their surface properties:

• Model a: uncoupled without elongation effects where ks,1 = 0, ks,2 = 0, ks,1,2 = 0;

• Model b: coupled without elongation effects where ks,1,2 = 0;

• Model c: coupled with elongation effects, that is, the complete model with every physical action.

All other quantities are not zero in any of the models.

7. Numerical simulations and some experimental results

The proposed model has been implemented in the finite element code CESAR-LCPC, [Humbert et al.
2005]. The coupled damage-mechanics model is solved in a semicoupled fashion. Given a time incre-
ment, the motion equation (11) is solved first assuming that the damage variables are constants. This
equation is solved with a quasi-Newton method. Moreover, in order to deal with the unilateral boundary
conditions an ad hoc Uzawa algorithm has been implemented. Afterwards, the damage equations (12)
and (13) are solved via a Cranck-Nicholson scheme, and boundary conditions (16) are included explicitly.

Actually, mathematical results concerning the existence of the solution, the proof that the problem is
well posed, and numerical verification will appear in a forthcoming paper [Bonetti et al. 2006].

In the following simulations the loads applied are always monotonic and do not change in sign. In
particular, all the analysis have been carried out under displacement control. An explicit linear relation-
ship between the time and the imposed displacement is introduced. Moreover, plain strain hypothesis is
assumed. Finally, the interface stiffness matrix k̂s is composed by normal k̂⊥s and tangential component
k̂‖s with respect to the surface orientation. It should be mentioned that the damage scale in each iso-value
picture is always represented by green-to-red variation, but it is representative of different damage values
and the deformation scale for horizontal and vertical displacement is adapted to numerical results.

7.1. Four-point bending test. The goal of this analysis is to validate the model and to evaluate the
influence of the enhancements to it that we introduced: the coupling between the damage in the domains
and the damage in the interface and the nonlocal elongation contribution to interface damage evolution.
In particular, this test shows the importance of the interaction parameters ks,1 and ks,2 which couple the
damages of solids 1 and 2. When solid 1 becomes damaged in the neighborhood of solid 2, solid 2 also
becomes damaged. Also the test shows that it is more difficult to damage the glue when the concrete is
not damaged than when the concrete is damaged. As already noted, the glue cohesion or threshold is
ws + ks,1+ ks,2 when the concrete is not damaged whereas it is ws when concrete is completely damaged
in the two solids.

7.1.1. Test setup and experimental results. Figure 2 on page 1218 shows a classical four-point bending
test. Experimental tests performed by Thaveau [2005] have been considered. We used two different test
configurations: one concrete specimen, and two concrete specimens connected with via epoxy glue. The
maximum loads obtained, the geometrical and mechanical properties of the specimens are reported in
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Figure 5. Experimental tests: one specimen on the left; two glued specimens on the
right [Thaveau 2005].

Table 1. It should be noted that the maximum load is greater for the glued concrete specimen. Figure 5
show clearly the failure mechanism for the two configurations. In both cases, a vertical fracture in the
middle of the specimens appears which propagates from the bottom to the upper face of the beam.

7.1.2. Numerical results. The load versus displacement curves obtained from the numerical simulations
for single and double specimens are shown in Figure 6. In particular, the case of the uncoupled model
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�

�

� �
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� �
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N
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��
��

���
���

���
���
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���

Experimental max Load

One specimen

Two specimen glued

Figure 6. Load versus displacement curves for single and double glued specimens in
four point bending tests. The short dashed line is the curve for one specimen, while
the red line, the long dashed line, and the straight line are the load versus displacement
curves for two glued pieces of concrete obtained with models a, b and c, respectively.
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Figure 7. Four point bending test. Damage field at displacement u = 0.03 mm for model
a (uncoupled damage without elongation effect), model b (coupled damage model for
concrete and glue without elongation effect), and model c (coupled damage model for
concrete and glue with elongation effect). At the beginning, the contact surface acts as a
damage barrier.

presents a very strange hill in the softening branch. This unrealistic behavior completely vanishes when
we consider model c with both enhancements, and it is less pronounced in the coupled model b where the
nonlocal elongation effect is neglected. The horizontal paths in load versus displacement curves represent
structural effects and interplay between surface and volume damage. A similar effect is exhibited in
experiments [Gonzalez et al. 2005]. Moreover, for large displacement values the hypothesis of small
deformation is no longer sufficient fully to completely describe the failure phenomena [Nedjar 2002].

The damage fields of the two concrete domains for the damage models uncoupled (model a), coupled
(model b) and coupled with the nonlocal elongation contribution (model c) are shown in Figures 7–8
for different displacement values: 0.03, 0.045, 0.06 mm. These figures clearly show the inability of the
uncoupled model to describe correctly the physical failure phenomenon. In fact, the interface acts as a
barrier to the damage propagation, causing the entire damaging of the inferior specimen. On the contrary,
the coupling between damages allows correct description of the damage evolution inside the domains.
Additional comments are reported in captions. The interface damage evolutions for models b and c are
reported in Figure 9.

For model b, the damage of the interface is almost incomplete (that is, βs 6= 0) even if the fracture has
already crossed the glue thickness. To capture the correct behavior, in the coupled model it is necessary
to introduce also the nonlocal elongation contribution. In this test, model a presents no glue damage at



DAMAGE IN DOMAINS AND INTERFACES 1223

Figure 8. Four point bending test. Damage field at displacement u = 0.045 mm (top)
and u = 0.06 mm (bottom) for model a (uncoupled damage without elongation effect),
model b (coupled damage model for concrete and glue without elongation effect), and
model c (coupled damage model for concrete and glue with elongation effect).
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Figure 9. Four point bending test. Left: Surface damage field βs along the interface
for model b (coupled damage model for concrete and glue without elongation). Right:
Surface damage field βs along the interface for model c (coupled damage model for
concrete and glue with elongation). The effect of the elongation is to enlarge the damage
zone of the glue, which is completely broken in the middle of the specimen.

Figure 10. Four point bending test. Horizontal displacement field evaluated at different
equilibrium points (ū = 0.03, 0.045, 0.06 mm) for model c. The displacement disconti-
nuity of the horizontal displacement accounts for the fracture in the middle of the sample
(see experimental results of Figure 5).
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Figure 11. Pull test. The load P is applied on the right and produces displacement u.

L (mm) 400
h (mm) 50
Eup (MPa) 40000
Edw (MPa) 35000
ν 0.2
c (MPa· s) 2× 10−3

k (mm) 0.3
wup (MPa) 2× 10−3

wdw (MPa) 2× 10−5

k̂‖s (MPa· mm−1) 2.× 102

k̂⊥s (MPa· mm−1) 5.× 102

cs (MPa· mm· s) 7.2× 10−3

ks (MPa · mm2) 0.1
w

strong
s (MPa · mm) 10.3× 10−3

wweak
s (MPa · mm) 5.15× 10−3

ks,1 (MPa · mm) 0.1
ks,2 (MPa · mm) 0.1
d(mm) 5
ks,1,2 (MPa/mm) 10

Table 2. Left: Geometrical, mechanical parameters of the two concrete pieces in Figure
11. Right: Glue parameters for the two pull tests in the same.

all because Eu1− Eu2 ∼= 0. Horizontal displacement fields are shown in Figure 10 for different values of
applied vertical displacement ū = 0.03, 0.045, 0.06 mm. The discontinuity of the displacement clearly
shows the fracture propagation in the middle of the specimen.

7.2. Pull test. A vertical force is applied to the free right corner of the upper piece of concrete, Figure
11. The relative stiffness of the concrete and of the glue governs the behavior of the structure. The
geometrical and mechanical properties of the specimens of two tests are reported in Table 2. If the glue
is strong and the concrete is weak, damage occurs in concrete just under the contact surface (Figure
12), in full agreement with experimental results [Theillout 1983]. On the other hand, if the glue is weak
and the concrete is solid, separation of the two pieces occurs on the contact surface and the concrete is
not damaged (Figure 13). Interface damage evolution is reported in Figure 14. Observe that even if the
global structural response for the two simulations is very similar (see Figure 15) the failure mechanisms
are completely different.
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Figure 12. Delamination with strong glue. Top: Damage field at displacement (a)
u = 0.0625 mm, and (b) u = 0.3 mm. A thin damaged zone appears under the inter-
face. Bottom: Deformed configurations at displacement (a) u = 0.0625 mm and (b)
u = 0.3 mm. The concrete breaks just under the contact surface while the glue remains
intact. In this simulation no damage appears in the interface, so βs = 1.

7.3. FRP-concrete delamination test. External bonding of fiber-reinforced polymer (FRP) plates or
sheets has recently emerged as a popular method for strengthening reinforced concrete (RC structures).
The behavior of such FRP-strengthened RC structures is often controlled by the behavior of the interface
between FRP and concrete, which is commonly studied through a pull test in which an FRP sheet or plate
is bonded to a concrete prism and is subjected to tension. Figure 16 shows a typical configuration for a
pull-pull delamination test, [Point and Sacco 1996]. Left and bottom sides of the specimen have been
fixed in order to have no displacements in the direction normal to the surface and free displacements
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Figure 13. Delamination with weak glue. Top: Deformed configurations at displace-
ment (a) u = 0.0625 mm and (b) u = 0.3 mm. The glue breaks progressively and there
is almost no damage within the concrete. The straight lines connecting the two pieces of
concrete represent the gap. Eu2− Eu1.

tangent to it. Existing studies reported in [Yao et al. 2005] suggest that the main failure mode of FRP-
to-concrete bonded joints in pull tests is concrete failure under shear which occurs generally at a few
millimeters from the adhesive layer as shown in Figure 17 (see [Ferracuti et al. 2006]).
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Figure 14. Delamination with weak glue. Damage interface evolution of the glue. The
damage field βs(x/ l, t) is plotted at different times t .
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Figure 15. Pull test. Load versus displacement curves obtained for different stiffness
values. It is important to observe that even if the global structural response for the two
simulations is very similar, the failure mechanisms are completely different, as outlined
from the previous Figures 12, 13, and 14.

The geometrical and mechanical properties of the specimens are reported in Table 3. The numerical
simulation (Figures 18 and 19) clearly shows a thin damaged zone in the concrete as well as large
displacements. The damaged zone corresponds to a small layer of concrete which remains glued on the
FRP in the experiments.

L (mm) 100
d(mm) 100
h (mm) 50
E (MPa) 33640
ν 0.2
c (MPa· s) 2× 10−3

k (mm) 0.2
w (MPa) 4× 10−5

t (mm) 1.016
E (MPa) 230000
ν 0.3
c (MPa· s) 2× 10−3

k (mm) 0.1
w (MPa) 2× 10−2

k̂‖s (MPa· mm−1) 5.× 102

k̂⊥s (MPa· mm−1) 1.× 103

cs (MPa· mm· s) 7.2× 10−2

ks (MPa · mm2) 0.1
ws (MPa · mm) 10.3× 10−4

ks,1 (MPa · mm) 0.1
ks,2(MPa · mm) 0.2
d (mm) 5
ks,1,2 (MPa/mm) 20

Table 3. Geometrical, mechanical parameters of the concrete for the pull-pull test (left),
the FRP (middle), and the FRP-concrete pull-pull test (right).
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Figure 16. FRP-concrete pull-pull delamination test [Freddi and Savoia 2006].

Figure 17. FRP-concrete pull-pull delamination test: experimental failure mode [Yao
et al. 2005].

8. Conclusions

The predictive model which has been derived with the continuum mechanics theory involves only macro-
scopic quantities. The few parameters of the model can be measured with sample and structure ex-
periments. The numerous results concerning different structures and experiments show the ability of
the model to deal with engineering problems and predict failure modes. As outlined in the examples,
once the damage is diffused and very low load bearing capacity remains, large displacement values may
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Figure 18. FRP-concrete pull-pull delamination test. Damage evolution. A thin zone is
damaged under the reinforcement.

appear such that the hypothesis of small deformations may no longer be sufficient to describe the failure
phenomena completely [Nedjar 2002]. In this case, large deformation theory should be considered.

Finally, this model is applicable to the design of concrete structures as well as other composite struc-
tures.
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Figure 19. FRP-concrete pull-pull delamination test. Deformed configurations. The
thin damaged zone under the reinforcement results in large deformation. The displace-
ment scale is different in each deformed mesh.
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