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3D GREEN’S FUNCTIONS FOR A STEADY POINT HEAT SOURCE
INTERACTING WITH A HOMOGENEOUS IMPERFECT INTERFACE

X. WANG AND L. J. SUDAK

The image method is applied to derive the three-dimensional temperature field induced by a steady
point heat source interacting with a homogeneous imperfect interface. Our approach is a straightforward
extension of that of Sommerfeld who addressed the half-space Green’s function for a steady point heat
source at the beginning of the last century. Both weakly and highly conducting type imperfect interface
conditions are considered. It is found that the temperature field for both types of imperfect interface is
only dependent on the two-phase conductivity parameter and another parameter measuring the interface
“rigidity”. As an application, we discuss the Coulomb force on a static point electric charge due to its
interaction with the imperfect interface. It is possible to find an equilibrium position for the electric
charge interacting with an imperfect interface. In addition, the equilibrium position is stable provided
the interface is weakly conducting whereas the equilibrium position is unstable if the interface is highly
conducting.

1. Introduction

Recently, Ang et al. [2004] calculated the steady state two-dimensional temperature field in a thermally
isotropic bimaterial with a homogeneous imperfect interface. They derived a special Green’s function
for a steady line heat source in two bonded half-planes with an imperfect interface so as to devise a
boundary element method (BEM) which does not require the interface to be discretized. As discussed
in [Ang et al. 2004], the problem is two-dimensional, in that the temperature is independent of a certain
coordinate (say, the z-coordinate) and the imperfect interface is a weakly conducting one. The weakly
conducting interface is based on the assumption that the normal component of heat flux is continuous
but that the temperature across the interface is discontinuous. More precisely, the jump in temperature
is proportional to the normal component of heat flux. Discussions on weakly conducting interface can
also be found in the works of [Benveniste and Miloh 1986; Ru and Schiavone 1997; Chen 2001], among
others. For a highly conducting interface, the temperature is continuous across the interface, whereas
the normal component of the heat flux has a discontinuity across the interface which is proportional
to a certain differential expression of the temperature (see [Miloh and Benveniste 1999; Chen 2001;
Benveniste 2006] among others).

At the beginning of the last century, [Sommerfeld 1926; 1978] derived the half-space Green’s function
for a steady point heat source by using the image method. As stated by Ochmann [2004], “Sommerfeld
[1978] treated the half-space problem by writing the total thermal field as a superposition of an original
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Figure 1. A steady point heat source in two imperfectly bonded half-spaces.

heat source, a mirror source and a line integral combined of single thermal sources placed at the z-axis
below the mirror source”. We note that Sommerfeld’s technique has been recently extended to address
the sound field caused by a monopole source above an impedance plane by means of the complex image
method [Ochmann 2004; Taraldsen 2005b; Taraldsen 2005a]. Sommerfeld’s method can guide us on
the matter of how to conceive the Green’s functions for a steady heat source in two imperfectly bonded
half-spaces. Here we write the total temperature field in the upper half-space, in which the heat source
is located at (0, 0, h), (h > 0), as a superposition of the original heat source, a mirror source, and a
line integral combined of single thermal sources placed at the z-axis below the mirror source. On the
other hand, we write the temperature field in the lower half-space as a line integral combined of single
thermal sources placed at the z-axis above the location of the original heat source. We find that by using
this method, we can arrive at the Green’s function for both a weakly conducting interface and a highly
conducting one.

The objective of the present work is to seek the possibility of deriving the corresponding three-
dimensional Green’s functions for a steady point heat source in two bonded half-spaces with a weakly
or highly conducting interface. The expressions of the derived Green’s functions should be as simple as
possible in order to conveniently incorporate them in BEM.

2. Preliminaries

In a fixed Cartesian coordinate system (x, y, z), we consider the upper and the lower half-spaces, S1 : z≥ 0
and S2 : z ≤ 0, in which the conductivity of each phase is denoted by k1 and k2, as shown in Figure 1.
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The two half-spaces are separated by the imperfect interface z = 0. Let T be the temperature field and
the heat fluxes are given by qx =−kT,x , qy =−kT,y , qz =−kT,z . A steady point heat source of strength
H is located at the point (0, 0, h), (h > 0) in the upper half-space. Under steady state conditions, the
temperature obeys the three-dimensional inhomogeneous Laplace equation

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 =−

H
k1
δ(x)δ(y)δ(z− h), in S1 and S2, (1)

where δ(∗) is the Dirac delta function.
For a weakly conducting interface, the normal heat flux is continuous, whereas the temperature field

undergoes a discontinuity which is proportional to the normal heat flux as

k1
∂T1

∂z
= k2

∂T2

∂z
= α(T1− T2), (z = 0), (2)

where the nonnegative interface parameter α is defined by

α = lim
t→0

k0→0

k0

t
, (3)

and where k0 and t are respectively the interphase conductivity and its thickness. The case where α→∞
corresponds to a perfectly bonded interface whereas α = 0 stands for adiabatic contact. In this work we
assume that α is constant (that is, the imperfection is uniformly distributed over the interface).

For a highly conducting interface, the temperature field is continuous whereas the normal heat flux
undergoes a discontinuity of the type

T1 = T2, k2
∂T2

∂z
− k1

∂T1

∂z
= β1s T1 = β1s T2, (z = 0), (4)

where

1s T1 =
∂2T1

∂x2 +
∂2T1

∂y2

is the operator of the surface Laplacian and the nonnegative interface parameter β is defined by

β = lim
t→0

k0→∞

k0t. (5)

The case where β = 0 corresponds to a perfectly bonded interface, whereas β→∞ describes contact
with a medium of infinite conductivity. In writing Equation (4), it has been assumed that β is a constant.

Following the idea of [Sommerfeld 1978] who treated half-space problems of heat conduction, let us
write the total temperature field in the upper half-space as a superposition of the original heat source at
(0, 0, h), a mirror source at (0, 0,−h) and a line integral combined of single thermal sources placed at
the z-axis below the mirror source. By contrast, let us write the temperature field in the lower half-space
as a line integral combined of single thermal sources placed at the z-axis above the location of the original
heat source. Thus, the distribution of temperature in the upper and lower half-spaces can be expressed
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as

T1 =
H

4πk1

(
1√

x2+ y2+ (z− h)2
+

A√
x2+ y2+ (z+ h)2

− B
∫
+∞

0

exp(−γ η)√
x2+ y2+ (z+ h+ η)2

dη
)
, (z ≥ 0), (6)

T2 =
HC

4πk1

∫
+∞

0

exp(−γ η)√
x2+ y2+ (z− h− η)2

dη, (z ≤ 0), (7)

where A, B, C and γ are unknowns to be determined.

3. A point heat source interacting with weakly conducting interface

Let us first consider a point heat source interacting with a weakly conducting interface described by
Equation (2). Inserting Equations (6) and (7) into the interface condition (2) for a weakly conducting
interface and using the following relations∫

+∞

0

exp(−γ η)√
x2+ y2+ (z+ h+ η)2

dη = exp[γ (z+ h)]
∫
+∞

z+h

exp(−γ q)√
x2+ y2+ q2

dq,

∫
+∞

0

exp(−γ η)√
x2+ y2+ (z− h− η)2

dη =− exp[−γ (z− h)]
∫
−∞

z−h

exp(γ q)√
x2+ y2+ q2

dq,

(8)

we arrive at the following set of linear algebraic equations

A = 1,

k1 B = k2C,

k1 B = 2α,

k1 Bγ = α(B+C).

(9)

Consequently, the unknowns A, B, C and γ can be uniquely determined and given by

A = 1,

B = 2α
k1
,

C = 2α
k2
,

γ = α
k1+k2
k1k2

.

(10)
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Thus, the explicit expressions for the temperature field in the two half-spaces are

T1 =
H

4πk1

(
1√

x2+ y2+ (z− h)2
+

1√
x2+ y2+ (z+ h)2

−
2α
k1

∫
+∞

0

exp
(
−α k1+k2

k1k2
η
)√

x2+ y2+ (z+ h+ η)2
dη
)
, (z ≥ 0), (11)

T2 =
αH

2πk1k2

∫
+∞

0

exp
(
−α k1+k2

k1k2
η
)√

x2+ y2+ (z− h− η)2
dη, (z ≤ 0). (12)

Here it should be mentioned that the line integrals in Equations (11) and (12) are convergent due to the
fact that

γ = α
k1+ k2

k1k2
> 0.

The distribution of temperature along the z-axis can be concisely given as

T̃ =


1
|z̃−1|

+
1

z̃+1
−

2−0
z̃+1

f
(
λ1

z̃+1
2

)
, (z̃ ≥ 0),

0

1− z̃
f
(
λ1

1− z̃
2

)
, (z̃ ≤ 0),

(13)

where

T̃ =
4πhk1

H
T,

z̃ =
z
h
,

0 =
2k1

k1+ k2
,

λ1 = αh
k1+ k2

k1k2
,

(14)

and f (λ), which falls in the range between 0 and 1, is defined by [Fan and Wang 2003]

f (λ)= 2λ exp(2λ)E1(2λ), (15)

with E1(2λ) being the exponential integral function defined as follows [Abramovitz and Stegun 1972]:

E1(2λ)=
∫
∞

2λ

exp(−t)
t

dt . (16)

Expression (13) indicates that the distribution of temperature along the z-axis is totally reliant on the
two-phase conductivity parameter 0, (0≤ 0 ≤ 2) and λ1, which measures the interface “rigidity” [Fan
and Wang 2003]. Figure 2 demonstrates the distribution of temperature along the z-axis for a weakly
conducting interface under various values of λ1 with 0= 1.2. It is observed that temperature is continuous
across the interface z = 0 only when λ1 = ∞ for a perfect interface, otherwise the temperature will
be discontinuous across the weakly conducting interface. The influence of the interface imperfections
on the temperature distribution is especially apparent for those points very close to the interface. The
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Figure. 2 Figure 2. Distribution of the temperature along the z-axis for a weakly conducting in-
terface with 0 = 1.2.

temperature in the positive z-axis is always higher than the corresponding one for a perfect interface,
while the temperature in the negative z-axis is always lower than the corresponding one for a perfect
interface.

4. A point heat source interacting with highly conducting interface

In this section, let us consider a point heat source interacting with a highly conducting interface, as
described by Equation (4). Because the temperature field satisfies Laplace’s Equation (2), the interface
conditions for a highly conducting interface can be equivalently expressed as

T1 = T2, k1
∂T1

∂z
− k2

∂T2

∂z
= β

∂2T1

∂z2 = β
∂2T2

∂z2 , (z = 0). (17)
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Inserting Equations (6) and (7) into the above interface conditions and using Equation (8), we arrive
at the following set of linear algebraic equations

A = − 1,

B+C = 0,

2k1 = −βB,

k1+ k2 = βγ.

(18)

Consequently, the unknowns A, B, C and γ can be uniquely determined and given by

A =−1, B =−
2k1

β
, C =

2k1

β
, γ =

k1+ k2

β
. (19)

Thus, the explicit expressions for the temperature field in the two half-spaces are

T1 =
H

4πk1

(
1√

x2+ y2+ (z− h)2
−

1√
x2+ y2+ (z+ h)2

+
2k1

β

∫
+∞

0

exp
(
−

k1+k2
β
η
)√

x2+ y2+ (z+ h+ η)2
dη
)
, (z ≥ 0), (20)

T2 =
H

2πβ

∫
+∞

0

exp
(
−

k1+k2
β
η
)√

x2+ y2+ (z− h− η)2
dη, (z ≤ 0). (21)

Here it should mentioned that the line integrals in Equations (20) and (21) are convergent due to the fact
that

γ =
k1+ k2

β
> 0.

The distribution of temperature along the z-axis can also be concisely given by

T̃ =


1
|z̃−1|

−
1

z̃+1
+

0

z̃+1
f
(
λ2

z̃+1
2

)
, (z̃ ≥ 0),

0

1− z̃
f
(
λ2

1− z̃
2

)
, (z̃ ≤ 0),

(22)

where T̃ , z̃, 0 have been defined by Equation (14) and

λ2 =
h(k1+ k2)

β
. (23)

Expression (22) indicates that the distribution of temperature along the z-axis is totally reliant on 0 and
λ2 which also measures the interface “rigidity” as λ1. Figure 3 illustrates the distribution of temperature
along the z-axis for a highly conducting interface under various values of λ2 with 0 = 1.2. It is observed
that temperature is always continuous across the highly conducting interface z = 0. The temperature
along the total z-axis is always lower than the corresponding one for a perfect interface. By comparing
Figures 2 and 3 we observe that the distributions of the temperature in the negative z-axis (z ≤ 0) are the
same for the two kinds of imperfect interface conditions when λ1 = λ2. In fact, by comparing Equation
(12) with Equation (21), we find that the distribution of the temperature in the lower half-space is always
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Figure 3. Distribution of the temperature along the z-axis for a highly conducting inter-
face with 0 = 1.2.

exactly the same for the two types of imperfect interface conditions when λ1 = λ2, or equivalently when
αβ = k1k2.

5. An application

Besides the incorporation of the present solution in BEM which does not require the discretization of
the imperfect interface, another interesting application is that of a static point electric charge Q located
at (0, 0, h), (h > 0) in two imperfectly bonded half-spaces with dielectric constants ε1 and ε2. (Since
the differential equations for the electrostatic problem and for the heat conduction problem are identical,
the results for the heat conduction problem obtained in the previous two sections can be applied directly
to the electrostatic problem considered in this section). The Coulomb force F on the electric charge due
to its interaction with a weakly conducting interface is

F =
Q2
(

1− 2λ1(2−0)
(
1− f (λ1)

))
16πε1h2 , (24)

where

0 =
2ε1

ε1+ ε2
and λ1 = αh

ε1+ ε2

ε1ε2
.
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Here the boundary conditions on the weakly conducting interface are

ε1
∂φ1

∂z
= ε2

∂φ2

∂z
= α(φ1−φ2), (z = 0), (25)

where φ is the electric potential, α is a nonnegative constant interface parameter.
Similarly, the Coulomb force F on the electric charge due to its interaction with a highly conducting

interface is

F =
Q2
(

2λ20
(
1− f (λ2)

)
− 1

)
16πε1h2 , (26)

where

λ2 =
h(ε1+ ε2)

β
.

Here the boundary conditions on the highly conducting interface are

φ1 = φ2, ε2
∂φ2

∂z
− ε1

∂φ1

∂z
= β1sφ1 = β1sφ2, (z = 0), (27)

where β is a nonnegative constant interface parameter.
In Equations (24) and (26) the Coulomb force F is in the z-direction due to the fact that all the image

charges are distributed at the z-axis. A positive value of the force means that the electric charge is repelled
from the interface whereas a negative value means that the electric charge is attracted to the interface.
By applying the following asymptotic expansion

1− f (η)∼=
1

2η
−

1
2η2 + o

(
1
η3

)
, when η→∞, (28)

the Coulomb force F on the electric charge due to its interaction with a perfect interface (λ1, λ2→∞)

is

F =
(0− 1)Q2

16πε1h2 . (29)

The above indicates that the electric charge will be repelled from the perfect interface when 0 > 1 and
it will be attracted to the perfect interface when 0 < 1. The situation in which F = 0 occurs only when
0= 1 or ε1= ε2. In other words, there is no equilibrium position, F = 0, for an electric charge interacting
with a perfect interface separating two half-spaces with different dielectric properties.

On the other hand, it follows from Equation (24) that it is possible to find a situation in which the
Coulomb force F on the electric charge due to its interaction with a weakly conducting interface is zero,
if the following condition is satisfied

f (λ1)= 1−
1

2λ1(2−0)
. (30)

It can be easily observed from (24) that

F =
Q2

16πε1h2 > 0,
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0 λ1 0 λ2

0 0.7798 2 0.7798
0.1 0.8788 1.9 0.8788
0.2 1.004 1.8 1.004
0.3 1.1671 1.7 1.1671
0.4 1.3873 1.6 1.3873
0.5 1.6999 1.5 1.6999
0.6 2.1754 1.4 2.1754
0.7 2.9792 1.3 2.9792
0.8 4.6095 1.2 4.6095
0.9 9.563 1.1 9.563
0.95 19.534 1.05 19.534
1 ∞ 1 ∞

Table 1. The pairs of 0 and λ1 (left side) that satisfy Equation (30). The pairs of 0 and
λ2 (right side) that satisfy Equation (31).

if h→ 0 (or equivalently λ1→ 0) and

F =
Q2(0− 1)
16πε1h2 < 0,

if h→∞ (or equivalently λ1→∞) and 0 < 1. Consequently, the equilibrium position determined by
Equation (30) is a stable one. Table 1 (left side) presents the pairs of 0 and λ1 that satisfy (30). We find
that only when 0 < 1 (or equivalently ε1 < ε2, when the upper half-space is less conducting than the
lower half-space) does an equilibrium position for the electric charge exist.

Similarly, it follows from Equation (26) that it is possible to find a situation in which the Coulomb
force F on the electric charge due to its interaction with a highly conducting interface is zero if the
following condition is satisfied

f (λ2)= 1−
1

2λ20
. (31)

It can also be easily observed from Equation (26) that

F =−
Q2

16πε1h2 < 0,

if h→ 0 (or equivalently λ2→ 0) and

F =
Q2(0− 1)
16πε1h2 > 0,

if h→∞ (or equivalently λ2→∞) and 0 > 1. Consequently, the equilibrium position determined by
Equation (31) is an unstable one. Table 1 (right side) presents the pairs of 0 and λ2 that satisfy (31). We
find that only when 0 > 1 (or equivalently ε1 > ε2, the upper half-space is more conducting than the
lower half-space) does an equilibrium position for the electric charge exist.
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The physical implication of the phenomenon of the existence of an equilibrium position for the electric
charge interacting with the imperfect interface is that a properly chosen imperfect interface “shields” the
charge located in the upper half-space from the interference of the lower half-space which has a different
dielectric constant than the one in which it is embedded. The shielding is achieved by a compensation
effect that the imperfect interface introduces. This, in a sense, is similar to the so-called neutral inho-
mogeneities which may be rendered “invisible” through some properly chosen imperfect interface (see
[Benveniste and Miloh 1999], and [Milton 2003, Section 7.11]). In the present case, the lower half-space
is the neutral inhomogeneity. In other words, as far as the point charge is concerned, its effect has been
made neutral through the presence of a suitably chosen imperfect interface.

6. Conclusions

We have presented in Equations (11) and (12) the Green’s function for a steady heat source interacting
with a weakly conducting interface. Similarly, Equations (20) and (21) present the Green’s function for
a steady heat source interacting with a highly conducting interface. In particular, the temperature along
the z-axis for both kinds of imperfect interface conditions can be concisely expressed in terms of the
exponential integral function. We have also tried to derive the Green’s function for a steady point heat
source interacting with the following interface model of [Bövik 1994]

T1− T2 =
t
2

(
k1

k0
− 1

)
∂T1

∂z
+

t
2

(
k2

k0
− 1

)
∂T2

∂z
,

k2
∂T2

∂z
− k1

∂T1

∂z
=

t
2
(k0− k1)1s T1+

t
2
(k0− k2)1s T2,

(z = 0), (32)

which can reduce to a weakly conducting interface, Equation (2), by letting t → 0 and k0→ 0. Also
(32) can be reduced to a highly conducting one, (4), by letting t→ 0 and k0→∞. Unfortunately, the
image method adopted here is invalid in treating this more general kind of imperfect interface. More
specifically, the assumption of Equation (6) and (7) with four undetermined constants A, B, C and γ for
the temperature field in the two half-spaces is not sufficient to satisfy Equation (32).
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