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THE SHEAR RESPONSE OF METALLIC SQUARE HONEYCOMBS

FRANÇOIS COTE, VIKRAM S. DESHPANDE AND NORMAN A. FLECK

Stainless steel square honeycombs have been manufactured by slotting together steel sheets and then
brazing the assembly. Their out-of-plane shear response is measured as a function of the relative density
of the honeycomb and of the direction of shearing with respect to the material axes of the square honey-
comb. The response is nearly isotropic with the shear strength and reasonably insensitive to the loading
direction. In contrast to the out-of-plane compressive response, the shear response is monotonically
hardening and the shear strength scales linearly with relative density. A simple analytical model based
upon uniform deformation of the cell walls is in good agreement with the measured shear behavior at low
shear strains, and predicts the onset of wrinkling of the cell walls to reasonable accuracy. Finite element
(FE) calculations are accurate up to large values of shear strain, and reveal that the shear strength of
the square honeycombs is relatively insensitive to the ratio of honeycomb height to cell size. The shear
strength of square honeycombs compares favorably with other competing sandwich core topologies such
as pyramidal and corrugated truss cores.

1. Introduction

The development of metallic micro-architectured materials for application as the cores of sandwich struc-
tures is of current academic and industrial interest. Three classes of core architecture have been proposed:
prismatic cores, 3D trusses, and honeycombs. The most suitable choice of sandwich core architecture
depends upon the specific application. For example, trusses with their open celled architecture are ideal
for multifunctional applications involving heat transfer in addition to load carrying capacity [Evans et al.
2001]. On the other hand, these sandwich cores have a low in-plane stretching strength. Thus, for
load-bearing, honeycomb cores are superior to the truss cores. Traditionally, hexagonal honeycombs
have been extensively employed in sandwich construction [Gibson and Ashby 1997]. Similar to the
truss cores, these hexagonal honeycombs suffer from the drawback of low in-plane stretching strength.
Square honeycombs overcome this drawback, at least for loadings along the directions of the cell walls,
and thereby have promise for sandwich construction. The out-of-plane shear properties of stainless
steel square honeycombs are the focus of this study. The out-of-plane loading direction is of particular
importance in sandwich beams and plates since the core functions by carrying shear loads while the face
sheets carry bending loads.

The authors are grateful to ONR for their financial support through US-ONR IFO grant number N00014-03-1-0283 on The
Science and Design of Blast Resistant Sandwich Structures. FC acknowledges support from the Cambridge Commonwealth
Trust and the Fonds Québécois de la Recherche sur la Nature et les Technologies.
Keywords: honeycombs, wrinkling, shear strength, sandwich panels.
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Honeycombs usually comprise hexagonal cells and are manufactured by either an expansion or corru-
gation process. For example, see the Hexcel Composites1 honeycomb data sheet [Hexcel 1999]. Hexag-
onal honeycombs are routinely employed as the cores for lightweight sandwich panels and as energy
absorbers. They are typically manufactured from aluminum (Al) alloys and have a relative density ρ̄
(that is, the ratio of the density of the honeycomb treated as a homogeneous continuum to the density
of the solid) of less than 3%. Experiments and simple analyses have shown that their out-of-plane
elastic properties scale linearly with the relative density ρ̄ [Kelsey et al. 1958; Zhang and Ashby 1992].
In out-of-plane crushing, these honeycombs exhibit a stress peak followed by large stress oscillations
associated with the formation of a succession of plastic folds in each cell. Similarly the out-of-plane
peak shear strength is governed by cell wall buckling [Werren and Norris 1950; Zhang and Ashby 1992].
Once the wrinkles have formed, the shear stress drops and subsequently remains approximately constant
until failure occurs by the fracture of the cell walls. Experimental studies illustrating this behavior have
been presented by [Doyoyo and Mohr 2003; Mohr and Doyoyo 2004b] and the corresponding numerical
simulations of the shear response of Al hexagonal honeycombs by [Mohr and Doyoyo 2004a] . Most
experimental studies are restricted to relative densities ρ̄ < 0.08, since debonding of the honeycombs
from the plates of the single-lap shear fixture has been observed for both metallic [Hexcel 1999] and
nonmetallic honeycombs [Werren and Norris 1950; Zhang and Ashby 1992] at higher relative densities.

Recent studies [Fleck and Deshpande 2004; Xue and Hutchinson 2004] suggest that square honeycomb
cores having a high relative density (ρ̄ > 0.05) are preferable for high-severity loadings such as blasts and
shocks because of their high out-of-plane crushing resistance and high in-plane stretching strength. We
expect enhanced performance of square honeycombs constructed from solids of high strain hardening,
such as stainless steels. An experimental investigation into the out-of-plane compressive response of stain-
less square honeycombs by [Côté et al. 2004] over a relative density range 0.03< ρ̄ < 0.2 confirmed that
the honeycombs exploit the strain hardening behavior of the stainless steel. Peak compressive strength is
set by the axial torsional plastic buckling of the square honeycomb cells. In fact, no progressive folding
of the cell walls was observed by [Côté et al. 2004]. This difference in compressive response between
aluminum and stainless steel honeycombs is attributed to differences in the strain hardening response of
the parent materials.

The objectives of the present study are to investigate the effects of the relative density ρ̄, shear loading
direction, and cell aspect ratio (that is, the ratio of cell height-to-cell size) on the out-of-plane shear
response of stainless steel square honeycombs. First, we describe the procedure used to manufacture
stainless steel square honeycomb and our test protocol. Second, we report the observed the out-of-
plane shear behavior, including the effects of relative density and loading direction. We compare these
experimental measurements with a simple analytical model and 3D finite element simulations. Finally,
we compare the shear response of the square honeycombs with that for commercially available aluminum
hexagonal honeycombs, as well as three other alternative core topologies.

2. Experimental method

2.1. Specimen manufacture and test protocol. Since metallic square-honeycombs are not yet commer-
cially manufactured, we manufactured them by electro-discharge machining and brazing as described

1Hexcel Composites, Duxford, Cambridge, CB2 4QD, United Kingdom.



THE SHEAR RESPONSE OF METALLIC SQUARE HONEYCOMBS 1283

below. Square honeycombs were manufactured from AISI type 304 stainless steel sheets of thickness
t = 0.30 mm, using the slotting technique of [Côté et al. 2004; Côté et al. 2006]. The sheets were cropped
into long strips of height H . Cross-slots of width 0.305 mm and spacing l in the range 6 to 17.5 mm
were cut by electro-discharge machining (EDM). To first order in t/ l, the relative density ρ̄ of the square
honeycomb is ρ̄ = 2t/ l. Four relative densities of square honeycomb specimens were manufactured and
tested by varying the cell size l.

The square honeycombs were assembled by slotting together the sheets as shown in Figure 1a. A
clearance of 5µm between sheet and slot facilitated assembly while providing a sufficiently tight fit to

unit cell
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Figure 1. (a) Sketch of the square honeycomb manufacturing technique. (b) Schematic
of the unit cell employed in the finite element analysis, including the coordinate system
adopted and the loading direction n.
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Figure 2. Photograph of aρ̄ = 0.05 square honeycomb specimen slotted into one of the
faces of the single-lap shear test fixture. This specimen is loaded in the ω = tan−1(1/4)
direction.

assure stability. To ensure good bonding between the square honeycomb specimens and the shear test
fixture, slots of width 0.31 mm and depth 4 mm were electro-discharge machined into 25 mm thick steel
sheets. These steel sheets served as the test fixtures. The cross-slotted square honeycomb specimens
were then assembled onto the test fixtures as shown in Figure 2. Consequently, the net height of the
honeycomb was h = H − 8 mm.

After assembly of the honeycomb core into the single-lap shear test fixture, the braze alloy Ni-Cr
25-P10 (wt.%) was applied uniformly over the sheets of the square honeycombs and the inner surfaces
of the test fixture. The whole assembly was then brazed together in a vacuum furnace at 1075◦ C in
a dry argon atmosphere at 3–10 Pa. Capillarity forces were sufficient to draw the braze into the joints,
resulting in an excellent bond. After brazing, the wall thickness was measured to be t = 0.32 mm. In all
tests performed in this study the cell aspect ratio of the square honeycomb specimens was h/ l = 1.

The quality of the braze joints was assessed by optical microscopy and SEM/EDX dot mapping tech-
niques. The surface of a typical square-honeycomb joint was prepared by successive grinding steps and a
final polish with 1µm diamond paste. The polished surface was then etched using a solution comprising
74% hydrochloric acid and 1.3% hydrogen peroxide. An optical photograph of a polished and etched
brazed joint is shown in Figure 3 and confirms the good overall bonding at the joints. A closer inspection
however reveals the presence of two phases in the joint. The composition of those phases was obtained
by EDX dot mapping analysis. The first phase has approximately the composition of stainless steel, that
is, Fe, Ni, and Cr, while the second phase contains phosphides and are expected to decrease the ductility
of the joint [Zhuang and Eagar 1997].

We defined x3 as the out-of-plane direction, and n as the unit vector in the x1−x2 plane at an angle ω to
the x1-direction, as sketched in Figure 1b. Then, the out-of-plane shear response τ3n − γ3n was measured
using the single-lap shear set-up, with selected values of ω. All tests were performed in accordance
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Figure 3. Photograph of a polished braze joint showing the effect of diffusion bonding
on the microstructure of the joint. The zoom area reveals the presence of two phases in
the joint.

with [ASTM 2000] for shear tests on sandwich cores. The standard demands a specimen aspect ratio of
L/h ≥ 12, where L is the length of the specimen. The example shown in Figure 2 is for a ρ̄ = 0.05
square honeycomb specimen, loaded in the ω = tan−1(1/4) direction.

The shear tests were performed on a 150 kN screw driven test machine at an applied macroscopic
nominal shear strain-rate of 10−4 s−1. The load was measured by the load cell of the test machine and
was used to define the nominal shear stress. A clip gauge mounted on the single-lap shear test fixture
was employed to measure the relative displacement between the two faces of the square honeycomb
specimens, thereby giving the applied shear strain. A photograph of the overall single-lap shear test
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40 mm

x3

h

n

Figure 4. Photograph of the single-lap shear test fixture, with aρ̄ = 0.05 square honey-
comb specimen loaded in the ω = π/4 direction.
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fixture with a ρ̄ = 0.05 square honeycomb specimen loaded in the ω = 45◦ direction is shown in Figure
4. For sake of clarity, the clip gauge is not shown on the Figure 4 but was mounted during the experiments
using a standard arrangement for a single-lap shear test [Kelsey et al. 1958].

2.2. Properties of the parent material. Tensile specimens of dog-bone geometry were cut from the 304
stainless steel sheets and subjected to the same brazing cycle as that used to manufacture the square
honeycombs. The measured true tensile stress versus logarithmic strain response, shown in Figure 5,
can be approximated as elastic, linearly hardening with a Young’s modulus E = 210 GPa, yield strength
σy = 210 MPa and post-yield tangent modulus Ey = 2.1 GPa.

3. Shear response of square honeycombs

3.1. Measurements. The measured transverse shear stress τ31 versus shear strain γ31 (ω = 0◦) response
of four selected relative densities of the square honeycomb are plotted in Figure 6. In all cases, the shear
stress versus strain response displays a hardening character with no stress drop.

A montage of photographs of the ρ̄ = 0.04 specimen at selected levels of applied shear strain γ31

is given in Figure 7. The deformation of the cell walls is essentially uniform for shear strains γ31 <

0.02. Wrinkling of the cell walls is observed at larger strains, with typically two folds in each cell
wall. Visual observations on the four tests plotted in Figure 6 indicate that wrinkling commenced at
γ31 = 0.02, 0.04, 0.8 and 0.11 for ρ̄ = 0.04, 0.05, 0.08 and 0.11, respectively. The observed onset of
wrinkling is marked by solid circles in Figure 6.

The effect of the loading angle ω on the shear stress τ3n versus γ3n response of the square honeycombs
is shown in Figure 8. The shear strength increases with ω for 0≤ω≤ π/4. Note that half of the cell walls
carry nearly no load when ω = 0◦ while all cell walls are equally loaded when ω = π/4. The increase in
shear strength also occurs because wrinkling of the cell walls is delayed for loading with ω > 0◦. Visual
observations suggest that wrinkling of the cell wall parallel to the x1 commences at γ3n = 0.04, 0.05, 0.06
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Figure 5. The measured tensile stress versus strain curve of the as-brazed 304 stainless
steel. Tensile response was measured at an applied strain rate of 10−4 s−1.
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Figure 6. The measured response, and the FE and analytical predictions of the shear
stress τ31 versus shear strain γ31 response for square honeycomb specimens of differing
relative density ρ̄ with ω = 0◦ of (a) ρ̄ = 0.04, (b) ρ̄ = 0.05, (c) ρ̄ = 0.08 and (d)
ρ̄ = 0.11. The onset of wrinkling, as observed in the experiments, and as predicted by
the FE calculations, are marked as filled and open circles, respectively.

and 0.07 for loading along ω = 0◦, tan−1(1/4), tan−1(1/2) and π/4, respectively. Again, the observed
onset of wrinkling is marked by the solid circles in Figure 8.

Note that the shear test fixture applies a prescribed shear strain γ3n , and the measured shear traction
is the component along the n-direction. For ω 6= 0oor 45o the straining direction is not aligned with
symmetry axes of the honeycomb, and a finite shear traction perpendicular to the n-direction is also
generated. This component of shear traction has not been measured in the current study.

3.2. Analytical predictions. Assuming uniform straining of the cell walls of the square honeycombs,
the applied shear strain γ3n is related to the shear strains γw1 and γw2 in the cell walls parallel to the x1

and x2 axis, respectively via
γw1 = γ3n cosω, (1a)
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Figure 7. Photographs showing the deformation mode of the ρ̄ = 0.04 square honey-
comb specimen loaded in the ω = 0◦ direction.

γw2 = γ3n sinω. (1b)

The honeycomb responds with a shear traction τw1 in the cell wall parallel to the x1-direction and with
a shear traction τw2 parallel to the x2-direction. The measured shear stress τ3n , for 0≤ ω ≤ π/4, is

τ3n =
(
τw1 cosω+ τw2 sinω

) ρ̄
2
. (2)

In general, the traction (τw2 cosω− τw1 sinω)ρ̄/2 transverse to the shearing direction does not vanish.
Consider first the elastic response of the honeycomb. For an applied shear strain γ3n , the wall stresses

are
τw1 = Gγ3n cosω, (3a)

τw2 = Gγ3n sinω, (3b)

where G is shear modulus of the cell wall material. The out-of-plane shear modulus G3n of the square
honeycombs is isotropic, due to its 4-fold symmetry about the x3 axis. Combining Equation (2) and
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Figure 8. The measured response and the FE and analytical predictions of the shear
stress τ3n versus shear strain γ3n response of the ρ̄ = 0.05 square honeycombs specimens
loaded in the (a) ω = 0◦, (b) ω = tan−1(1/4), (c) ω = tan−1(1/2) and (d) ω = π/4
directions. The onset of wrinkling as observed in the experiments and predicted by the
FE calculations are marked as filled and open circles, respectively.

Equations (3a) and (3b), the shear modulus G3n of the square honeycombs becomes

G3n =
E

4(1+ ν)
ρ̄,

where E and ν are the Young’s modulus and Poisson ratio of the isotropic solid parent material, respec-
tively. Moreover, isotropy of elastic response dictates that the shear traction (τw2 cosω− τw1 sinω)ρ̄/2
transverse to the shearing direction vanishes.

We proceed to develop an analytical model for the shear strength τ p
3n of the square honeycombs made

from an elastic, ideally plastic material with a Young’s modulus E , Poisson’s ratio ν and yield strength
σy . With the cell walls modeled as thin clamped plates under shear loading, the maximum allowable
shear stress of the square honeycomb is set by either elastic buckling or plastic yielding of cell walls.
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The elastic shear buckling strength of a clamped plate is given by [Timoshenko and Gere 1963] as

τc =
kπ2 E

12(1− ν2)

( t
l

)2
, (4)

where k varies from 8.99 to 12.28 [Timoshenko and Gere 1963], depending on the aspect ratio h/ l. Note
that for a honeycomb with aspect ratio h/ l = 1 and clamped edges along x3 = 0 and x3 = h, k = 12.28.
For elastic behavior, Equation (3) dictates that the wall stresses are related by

τw2 = τ
w
1 tanω (5)

and consequently, with τw1 set equal to τc the elastic buckling stress of the square honeycomb is

τ
p

3n =


kπ2 E

96 cosω(1−ν2)
ρ̄3, if ω ≤ 45◦,

kπ2 E
96 sinω(1−ν2)

ρ̄3, 45◦ < ω ≤ 90◦.
.

In contrast, when the cell walls undergo plastic deformation, Equation (5) is no longer valid. With both
the cell walls assumed to be at a state of shear yield, the plastic shear strength of the square honeycomb
is obtained by substituting τw2 = τ

w
1 = σy/

√
3 into Equation (2). Here we assume that the tensile yield

strength of the solid is related to its shear yield strength via the usual von Mises relation.) Thus, the
maximum allowable shear stress of the square honeycomb made from an elastic, ideally plastic solid
follows as

τ
p

3n =


kπ2 E

96 cosω(1− ν2)
ρ̄3, if ρ̄ <

√
48(1− ν2)σy cosω
√

3kπ2 E(cosω+ sinω)
σy

2
√

3
ρ̄(cosω+ sinω), otherwise,

(6)

for 0 ≤ ω ≤ 45◦. The corresponding strength for loading in the 45◦ < ω ≤ 90◦ direction follows by
interchanging sinω and cosω in Equation (6).

Alternatively, consider parent material response for rigid strain hardening. Here we develop an an-
alytical expression for the shear stress versus strain response of the square honeycomb prior to the de-
velopment of wrinkles (that is, when the constituent sheets are in a uniform state). We assume uniform
deformation of the cell walls, and write the uniaxial tensile stress versus plastic strain response of the cell
wall material as σ(ε). With the macroscopic shear strain γ3n related to the shear strains in the cell walls
via Equations (1a) and (1b), the shear stress versus strain response (τ3n versus γ3n) of the honeycombs
follows as

τ3n =

[
σ
(
εref

1
)

cosω+ σ
(
εref

2
)

sinω
] ρ̄

2
√

3
, (7)

where εref
1 ≡ γ3n cosω/

√
3 and εref

2 ≡ γ3n sinω/
√

3.
Experimental measurements by [Gerard 1948] on the shear of clamped plates suggest that employing

the secant shear modulus Gs ≡ τ/γ in Equation (4) gives good agreement with measured results. Thus,
we estimate the plastic shear buckling stress of clamped plates as

τ p
c =

kπ2Gs

6(1− ν)

( t
l

)2
.
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Here, Gs ≡ τ/γ = σ/3ε is the shear secant modulus derived from the true tensile stress versus logarith-
mic strain curve of the parent material and evaluated at σ =

√
3τ p

c . Assuming collapse of the square
honeycomb when either the wall parallel to the x1 axis or x2 axis plastically buckles, the shear strength
of the square honeycomb is

τ
p

3n =


(√

3τ p
c cosω+ σ

(
εref tanω

)
sinω

) ρ̄

2
√

3
, if ω ≤ 45◦,(

σ
(
εref cotω

)
cosω+

√
3τ p

c sinω
) ρ̄

2
√

3
, 45◦ < ω ≤ 90◦,

(8)

where εref is the tensile strain of the solid material at a tensile stress
√

3τ p
c .

We emphasize that this analysis assumes uniform deformation of the cell walls of the square hon-
eycomb and only provides an upper bound to the shear stress versus strain response. The analytical
prediction for the shear stress versus strain response, Equation (7), is valid up to the onset of wrinkling
and has been added to the measurements plotted in Figures 6 and 8, with the curves truncated at the
plastic buckling stress (Equation (8)). The analytical model is in good agreement with the measurements
but predicts the onset of wrinkling slightly before that observed in the experiments.

4. Finite element predictions of the shear response

Finite element (FE) calculations of the shear response were performed using the general purpose finite
element package ABAQUS Standard (Hibbitt, Karlsson & Sorensen, Inc.). All simulations reported here
were performed on the unit cell shown in Figure 1b (as a cruciform section), including the nonlinear
effects of large displacements. Additional calculations on larger repeating units comprising two and four
unit cells gave nearly identical results to those presented here and are omitted for the sake of brevity.

The unit cell of the square honeycomb was modeled using linear 3D shell elements (S4R in the
ABAQUS notation). Periodic boundary conditions were specified on the boundaries x1 = ±l/2 and
x2 = ±l/2 by specifying that all degrees of freedom (both translational and rotational) on the edges
xi =−l/2 are equal to the corresponding ones on the edge xi =+l/2, where the subscript i ranges from
1 to 2. The nodes on the plane x3 = 0 were fully clamped. Loading was specified by prescribing the
displacements u1 = δ cosω and u2 = δ sinω, where δ is the applied displacement and ω is the loading
angle2, to all nodes on the plane x3 = h. The displacements u3 of all nodes on the plane x3 = h were
constrained to be equal. The rotational degrees of the nodes on the planes x3 = h and x3 = 0 were set to
zero to simulate the constraint imposed by the honeycomb joint at the loading platens. These boundary
conditions imply that the strain ε33 of the square honeycomb specimens is unconstrained with the average
traction T3 = 0 The single-lap shear tests discussed above provide negligible constraint to straining in
the 3-direction, so the assumed boundary conditions described here are representative. Typically, the
model comprised 30 shell elements in each of the x1, x2 and x3-directions, giving a total of 1800 linear
shell elements. Convergence studies revealed that increasing the number of elements above 1800 did not
change the results appreciably.

2 The applied displacements in the FE calculations are consistent with the experiments, where the shear test fixture prevents
displacements in the x1 and x2 plane orthogonal to the ω direction.
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Figure 9. FE predictions of the shear stress τ31 versus shear strain γ31 response of the
ρ̄ = 0.05 square honeycombs for three choices of the initial imperfection mode (shown
in the inset). The nondimensional imperfection magnitude was taken to be ζ = 0.05 in
all cases.

The uniaxial true stress versus logarithmic plastic strain was tabulated in ABAQUS using the exper-
imentally measured response (Figure 5). J2 flow-theory was adopted. Initial imperfections were intro-
duced into the unit cell in the form of selected elastic eigenmodes of the structure. The three imperfection
modes adopted are shown in the inset of Figure 9. Mode I is the lowest frequency mode, while mode
II is the next harmonic. Mode III contains the first 2 eigenmodes, with an equal maximum deflection
for each mode. The maximum transverse deflection of the webs of the honeycomb for each mode is set
to w = ζ t , where ζ is a prescribed nondimensional imperfection amplitude. The FE predictions of the
ω = 0◦ shear stress versus strain response of the ρ̄ = 0.05 square honeycombs are plotted in Figure 9
for the three selected modes of the initial imperfection with ζ = 0.05. These calculations show that the
response is relatively insensitive to the shape of initial imperfection. Scoping studies also revealed that
the response is reasonably insensitive to the magnitude of the imperfection for ζ ≤ 0.1. In all calculations
reported subsequently, we employed the mode I imperfection of Figure 9, with ζ = 0.05.

4.1. Comparison with measurements. The FE predictions of the shear stress versus strain response of
the square honeycombs are included in Figures 6 and 8, in which the predicted onset of wrinkling is
marked by open circles. In all cases, the FE predictions agree with the experimental measurements to
within about 10%. The onset of wrinkling is also accurately predicted by the FE calculations. The
discrepancy between the measurements and FE predictions is greatest for the ρ̄ = 0.11 honeycombs
(Figure 6d) and is attributed to tearing of the cell walls in the experiments. This was not accounted for
in the FE calculations.

A comparison between the measurements and the predictions of both the analytical model and FE
calculations is summarized in Figure 10. In Figure 10a, measurements and predictions are given for the
normalized shear strength τ y

31/(ρ̄σy) versus ρ̄, where τ y
31 is the shear stress at a shear strain γ31 = 0.05,
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Figure 10. Comparison of the measured and predicted shear strengths. (a) The shear
strength τ y

31 at a shear strain γ31 = 0.05 versus the honeycomb relative density ρ̄, for
ω = 0; (b) the shear strength τ y

3n at a shear strain γ3n = 0.05 versus the loading angle ω,
for ρ̄ = 0.05.

with ω = 0. The value of 0.05 was selected for comparison purposes since the initial yield is difficult
to define. Good agreement between the predictions and measurements is observed for the three lower
values of ρ̄, but as discussed above, tearing of the cell walls results in an over-prediction of the shear
strength for the ρ̄ = 0.11 honeycomb. The FE calculations predict a sharp drop in the shear strength for
ρ̄ < 0.03. At these low relative densities, elastic buckling of the cell walls is expected to control the shear
strength of the square honeycombs. Note that experiments at such low relative densities are impractical
for usual laboratory testing: for wall thickness of, for example, t = 0.30 mm, the cell size of a ρ̄ = 0.03
honeycomb is 20 mm. Figure 10b shows a comparison between the measurements and predictions of
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Figure 11. Finite element predictions of the deformation mode of the ρ̄ = 0.05 square
honeycomb at a shear strain γ3n = 0.4 for loading in the (a) ω = 0◦, (b) ω = tan−1(1/4),
(c) ω = tan−1(1/2), and (d) ω = π/4 directions.

the shear strength τ y
3n at a shear strain γ3n = 0.05 for the ρ̄ = 0.05 square honeycombs, as a function of

the loading angle ω. We observed excellent agreement between the measurements and both the FE and
analytical predictions.

Figure 11 shows the FE predictions of the deformation modes of the ρ̄ = 0.05 square honeycomb at
an applied shear strain γ3n = 0.4 for the four loading directions studied experimentally. Consistent with
the experimental observations, the degree of wrinkling of the cell walls parallel to the x2 axis increases
with increasing ω as the applied load is more evenly distributed between the cell walls of the square
honeycomb.

In the FE calculations we assumed that the traction T3 vanishes, with unconstrained straining of the
specimen in the x3-direction. Specimen end effects in the single-lap shear test configuration mean that this
boundary condition is not satisfied over the full length of the test specimens. To assess the significance of
the constraint to straining in the 3-direction imposed in the single-lap shear configuration, we compare
the measurements and FE predictions of the strain ε33 for the ρ̄ = 0.04 square honeycomb specimen
tested in the ω = 0◦ direction. The strain ε33 from experiments was evaluated from photographs taken
at selected levels of applied shear strain. Figure 12 shows a plot of ε33 versus the applied shear strain
γ31. Good agreement between the FE predictions and measurements suggests that the T3 = 0 boundary
condition employed in the FE calculations is adequate to model our single-lap shear experiments.

4.2. Parametric finite element study. The FE model captures the experimental measurements within
reasonable accuracy. Limitations on the specimen manufacturing and testing capabilities meant that we
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Figure 12. FE predictions and measurements of the through-thickness strain ε33 versus
shear strain γ31 for a ρ̄ = 0.04 honeycomb loaded in the ω = 0◦ direction.

did not investigate the effect of cell aspect ratio h/ l on the shear response. Also, the effect of loading
direction ω upon shear response was measured for a single value of relative density ρ̄.

Figure 13a shows the FE predictions of the shear strength τ y
3n at a shear strain γ3n = 0.05 as a function

of the cell aspect ratio h/ l for three choices of loading angle ω, with ρ̄ fixed at 0.05. The shear strength
is only weakly dependent on h/ l, with τ y

3n decreasing by about 10% when h/ l increases from 0.25
to 4. Note that the analytical model of Equation (7) predicts no dependence of τ y

3n on h/ l, which is
why Figure 13a does not include these predictions. The effect of loading angle on the normalized shear
strength τ y

3n/(ρ̄σy) is illustrated in Figure 13b for three choices of relative density ρ̄. The FE calculations
and analytical predictions of Equation (7) suggest that the shear strength is reasonably insensitive to the
loading direction sover the range of density ρ̄ considered.

5. Comparison of the square honeycomb with competing sandwich cores

It is instructive to compare the shear strength of the stainless steel square honeycombs with competing
cores. We were able to compare the measured shear strength of our stainless steel square honeycombs
with data for commercially available aluminum hexagonal honeycombs, and with data for competing
micro-architectured sandwich cores also made from stainless steel.

The normalized shear strength τ y/(ρ̄σy) of 5052 H39 aluminum alloy hexagonal honeycombs manu-
factured by Hexcel Composites is plotted against relative density ρ̄ in Figure 14a for loadings in two
orthogonal directions. We assumed that the tensile yield strength of the parent aluminum is σy = 255 MPa,
as reported by [Bhat and Wang 1990]. Our experimental measurements for the shear strength of the
stainless steel square honeycombs are included in Figure 14a as well. Recall that we tested four relative
densities for loading in the ω = 0◦ direction, while the ρ̄ = 0.05 square honeycomb was tested in
the ω = π/4 direction. The shear strength τ y is defined as the peak shear strength of the aluminum
honeycombs. However, the stainless steel square honeycombs display no peak shear strength, so the
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Figure 13. FE predictions of the shear strength of the stainless steel square honeycombs.
(a) Shear strength τ y

31 at a shear strain γ31 = 0.05 versus cell aspect ratio h/ l, for selected
values of the loading angle ω, and ρ̄ = 0.05. (b) Shear strength τ y

3n at a shear strain
γ3n = 0.05 versus loading angle ω, for selected values of ρ̄.

shear strength τ y is defined as the shear stress at a shear strain γ = 0.05. The normalized shear yield
strength τ y/(ρ̄σy) of the stainless steel honeycombs is approximately equal to the Voigt upper bound
value of 0.5 (assuming the Tresca yield criterion) over the full range of relative densities investigated
here. The aluminum hexagonal honeycombs are clearly weaker especially for ρ̄ < 0.06.

Figure 14b illustrates the effect of the core topology upon out-of-plane shear strength τ y . In the figure,
the dependence of τ y/(ρ̄σy) upon the relative density ρ̄ is given for the following cores:

• the stainless steel square honeycombs of the present study loaded in the ω = 0◦ direction;

• stainless steel corrugated cores [Côté et al. 2006];
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Figure 14. Comparison between the measured nondimensional shear strengths
τ y/(ρ̄σy) of competing sandwich cores as a function of the relative density ρ̄. (a) Com-
parison of aluminum hexagonal honeycombs with the stainless steel square honeycombs
of the present study, and (b) comparison of stainless steel micro-architectured sandwich
core topologies.

• AL6XN stainless steel pyramidal cores [Zok et al. 2004; Côté et al. 2007];

• aluminum hexagonal honeycomb data (ω = π/2) from Figure 14a; and

• aluminum alloy metal foams [Ashby et al. 2000].

The corrugated cores sheared in the longitudinal direction and the square honeycombs display no peak
shear strength. Therefore, the shear strength τ y in these cases is defined as the shear stress at a shear strain
γ = 0.05. All other cores display a peak shear strength. In these cases we define τ y as the peak strength.
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The longitudinal shear strength of the corrugated core is comparable to that of the square honeycomb
with τ y/(ρ̄σy) and is approximately equal to the upper bound value of 0.5 (assuming the Tresca yield
criterion). In transverse shear, the corrugated and diamond cores are weaker than the square honeycomb.

6. Concluding remarks

We manufactured square honeycombs with a cell aspect ratio h/ l = 1 by slotting together sheets of 304
stainless steel and then brazing the assembly. We then tested four relative densities of these honeycombs
in out-of-plane shear in four loading directions. The measurements reveal that shear strength of the square
honeycombs scales approximately linearly with the relative density ρ̄ of the honeycomb. Moreover, the
shear strength of these honeycombs is nearly isotropic.

A simple analytical model based upon uniform deformation of the cell walls is in good agreement
with the measurements prior to wrinkling of the cell walls. A plastic buckling analysis predicts the onset
of wrinkling with reasonable accuracy. FE calculations of the shear response of the square honeycombs
agree with the test measurements, and show that the shear strength of the square honeycombs is relatively
insensitive to the cell aspect ratio for aspect ratios in the range 0.5≤ h/ l ≤ 4.

The square honeycomb design exploits the strain hardening behavior of the parent material extremely
efficiently in both out-of-plane compression [Côté et al. 2004] and in out-of-plane shear. In fact, the
shear strength of these honeycombs is equal to that of the corrugated core sheared in the longitudinal
direction. Unlike the corrugated core, which has a low transverse shear strength [Côté et al. 2006],
the shear strength of the square honeycombs is nearly isotropic. Thus, square honeycombs have great
potential for application in sandwich construction.
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