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AXIALLY SYMMETRIC CONTACT PROBLEM OF FINITE ELASTICITY AND
ITS APPLICATION TO ESTIMATING RESIDUAL STRESSES BY CONE

INDENTATION

HAO TIAN-HU

We discuss the axially symmetric contact problem of finite elasticity (theory of small deformation on
initial stress body) and its application to estimating residual stresses by cone indentation. In particular,
we determine the relation among the penetration depth, the contact radius and the residual stress.

1. Introduction

The residual stress problem is very important in engineering. Suresh and Giannakopoulos [1998] have
pointed out that in the classical theory of elasticity the penetration depth, contact radius, and contact
pressure are all independent of the residual stress and, thus, cannot be used to determine it. This inde-
pendence can be explained as follows. In the linear theory of elasticity two independent solutions can
be superposed to form a new solution according to the principle of superposition. Therefore, the cone
indentation stress solution without residual stress and the residual (homogeneous) stress solution can be
superposed to form a new solution. This new superposed solution is for the cone indentation stress field
with residual stress and is unique due to the uniqueness of the linear theory of elasticity. It is apparent
that the cone indentation stress field is independent of the residual stress in this solution. Therefore, the
residual stress cannot be determined from it. In order to avoid this independence one has to deviate from
the classical theory of elasticity. The theory of finite elasticity, that is, the theory of small deformations
with initial stress body, is nonlinear so that two independent stress fields cannot be superposed. On the
basis of it, one can deal with the residual stress. Naturally, the theory of plasticity is also nonlinear.
However, according to it one can deal with the problem of unloading, that is, tension residual stress and
indentation, which is difficult to discuss. Therefore, the results in this paper are only an initial effort in
studying the plasticity behavior. Further developments will be discussed in another paper.

Here we address the theory of small deformation with initial stress body, which has been studied for
a long time [Southwell 1913; Green and Shield 1951; Ericksen 1953; Bernstein and Toupin 1960; Payne
and Weinberger 1961; Truesdell 1961; Hayes and Rivlin 1961; Pearson 1950; Holden 1964; Beatty
1971; Savwers and Rivlin 1973; 1977; 1978; Lurie 1990, Chapter 8; 1986; Hwang 1989]. Lurie [1990]
and Hwang [1989] summarize the known results prior to 1989. On the basis of the theory of finite
elasticity, that is, the theory of small deformations with initial stress body, we discuss in this paper the
axially symmetric contact problem. Its application to estimating residual stresses by cone indentation
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is considered. Specifically, we have determined the relation among the penetration depth, the contact
radius, and the residual stress.

2. Axially symmetric deformation and strain energy function

For the axially symmetric case let (x1, x2) be the position of a point before the deformation, where x1 = z,
x2 = r , and (y1, y2) after the deformation. λ1, λ2, λθ denote the initial stretches due to residual stress
with y j = λ j x j + u j , for j = 1, 2. For comparison, in the classical theory, y j = x j + u j . Then,

Fi j =
∂yi

∂x j
= λiδ j i + ui, j , (uθ = 0),

where there is no sum over i , ui, j = ∂ui/∂x j and |ui, j | = O(ε) � 1.
Consider the components λθ and Fθθ . Since λθ is the length after the initial deformation (residual

stress) divided by the length before the deformation, and Fθθ is the same ratio after the deformation, one
has

λθ =
λ2x2θ

x2θ
= λ2, Fθθ =

(λ2x2 + u2)θ

x2θ
=

λ2x2 + u2

x2
= λ2 +

u2

x2
.

For the deformation tensor components Ci j we have

Ci j =
∂yk

∂xi

∂yk

∂x j
= λ j u j,i + λi ui, j + λiλ jδi j + O(ε2),

no sum over i or j implied.
Expanding Ci j = Ci j 0 + δCi j + O(ε2) one has

Ci j 0 = λiλ jδi j and δCi j = λ j u j,i + λi ui, j .

For the deformation tensor component Cθθ ,

Cθθ = Cθθ 0 + δCθθ = λ2
2 + 2λ2

u2

x2
,

Cθθ 0 = λ2
2,

δCθθ = 2λ2
u2

x2
,

δCθk = 0 (θ 6= k),

Ckk = λ2
r + λ2

1 + λ2
θ + δC11 + δC22 + δCθθ ,

Ckk 0 = λ2
r + λ2

1 + λ2
θ = 2λ2

r + λ2
1.

According to Lurie [1990], the strain energy function can utilize a variety of materials, for example,
the Money material, the Monahan material, the Blats–Ko material, semi-linear material, the neo-Hook
material, and others. It must be pointed out that Ranht et al. [1978] used the neo-Hook material for
the incompressible case. This result can only be considered as a preliminary attempt to deal with the
plasticity behavior, which we will discuss in another paper. Here, for convenience, we use the semi-linear



AXIALLY SYMMETRIC CONTACT PROBLEM OF FINITE ELASTICITY 1369

material as follows:

W =
1
8λ(Ckk − 3)2

+
1
4µ(Ci j − δi j )(Ci j − δi j ), W (λi = 1, u j = 0) = 0,

where λ and µ are material constants to be discussed later.
Setting λ1 = λ2 = λθ = 1, one has

δCi j = λi ui, j + λ j u j,i + O(ε2) = ui, j + u j,i + O(ε2) = 2εi j ,

δCθθ = 2λθ

ur

x2
= 2

ur

x2
= 2εθθ ,

Ci j 0 = δi j ,

Cθθ 0 = 1,

(Ckk − 3) = δkk + 2εkk − 3 = 2εkk = 2(ε11 + ε22 + εθθ ),

(Ci j − δi j ) = δi j + 2εi j − δi j = 2εi j ,

W =
1
8λ(Ckk − 3)2

+ µ1
4(Ci j − δi j )(Ci j − δi j )

=
1
2λ(ε11 + ε22 + εθθ )

2
+ µ(ε2

11 + ε2
22 + ε2

θθ + ε12ε12 + ε21ε21).

This coincides with the classical theory. In it µ is the shear modulus and λ = Eν/
(
(1 + ν)(1 − 2ν)

)
is

Lamé’s constant, where E is the Young’s modulus and ν is the Poisson ratio.

3. Stresses and equilibrium

The Piola stress is given by

σi j = 2
∂yi

∂xk

∂W
∂Ck j

, σθθ = 2
(

λθ +
ur

x2

)
∂W
∂Cθθ

.

It is not symmetric, but on the basis of moment equilibrium satisfies the identity

σk2
∂x1

∂yk
= σk1

∂x2

∂yk
(k = 1, 2).

Using the Taylor series expansion f (a + δ) = f (a) + f ′(a)δ + O(δ2), one has

∂W
∂Ck j

= Wk j + Wk jlmδClm + O(ε2),

where Wi j = (∂W/∂Ci j )0, Wi jkl = (∂2W/∂Ci j∂Ckl)0. Here the notation ( )0 means that W is a function
of the initial stretches λi due to residual stress, but not a function of δClm .

The expansion of σi j is given by

σi j = σi j 0 + δσi j , σi j 0 = 2λi Wi j , δσi j = 2Wk j ui,k + 2λi Wi jklδCkl,

σθθ = σθθ 0 + δσθθ , σθθ 0 = 2λθ Wθθ , δσθθ = 2Wθθu2,2 + 2λθ WθθklδCkl .
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In order to clarify the stress components, we now turn to the coefficients Wi j and Wi jkl . Since we are
interested in the axially symmetric case, λθ = λ2, uθ = 0, and u1, u2 are functions of x1, x2. Altogether,
the coefficients are

Wi j =

(
∂W
∂Ci j

)
0
, Wi jkl =

(
∂2W

∂Ci j∂Ckl

)
0
,

W11 =
1
4λ(λ2

2 + λ2
1 + λ2

θ − 3) +
1
2µ(λ2

1 − 1),

W22 = Wθθ =
1
4λ(λ2

2 + λ2
1 + λ2

θ − 3) +
1
2µ(λ2

2 − 1),

W12 = W21 = W1θ = Wθ1 = W2θ = Wθ2 = 0,

W1111 = W2222 = Wθθθθ =
1
4λ +

1
2µ, W2211 = Wθθ11 = W22θθ =

1
4λ,

W1212 = W2121 = W1θ1θ = Wθ1θ1 = W2θ2θ = Wθ2θ2 =
1
2µ.

Since the surface of the half plane is free of traction before the press of the cone, the stress component
σ11 0 must be zero. Therefore, one has

σ11 0 = 2λ1W11 =
1
2λ1

(
λ(2λ2

2 + λ2
1 − 3) + 2µ(λ2

1 − 1)
)
= 0.

Setting W11 = 0 and solving for λ1 we get

λ2
1 = 1 − 2λ

(
λ2

2 − 1
λ + 2µ

)
. (1)

Similarly, one can obtain the relation between λ2 and the residual stress σR = σ22 0:

σR = σ22 0 = λ2µ(λ2
2 − 1)

(
3λ + 2µ

λ + 2µ

)
or λ3

2 − λ2 = σ22 0

(
λ + 2µ

3λµ + 2µ2

)
. (2)

The homogeneous residual stress σR leads to residual stresses σx = σy = σR when the xy plane is parallel
to the surface.

Let us now look at the stress components σi j , σθθ . Using λ2 = λθ , uθ = 0 and the fact that u1, u2 are
functions of x1, x2, one obtains

σθθ = λ2µ(λ2
2 − 1)

(
3λ + 2µ

λ + 2µ

)
+ 2

u2

x2

(
λ

4
(λ2

2 + λ2
1 + λ2

θ − 3) +
µ

2
(λ2

θ − 1)

)
+ 2λθ

((λ

2
+ µ

)
λθ

u2

x2
+

λ

4
(2λ2u2,2 + 2λ1u1,1)

)
,

σθθ 0 = λ2µ(λ2
2 − 1)

(
3λ + 2µ

λ + 2µ

)
,
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δσθθ =

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

2 − 1) + λ2
2(λ + 2µ)

)
u2

x2
+ λ2λ(λ2u2,2 + λ1u1,1);

σ22 = λ2

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

2 − 1)

)
+ u2,2

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

2 − 1)

)
+ λ2

(
(λ + 2µ)λ2u2,2 + λ

(
λ1u1,1 + λ2

u2

x2

))
,

σ22 0 = λ2

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

2 − 1)

)
,

δσ22 =

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

2 − 1) + λ2
2(λ + 2µ)

)
u2,2 + λλ2

(
λ1u1,1 + λ2

u2

x2

)
,

σ11 =

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

1 − 1) + λ2
1(λ + 2µ)

)
u1,1 + λλ1

(
λ2u2,2 + λ2

u2

x2

)
,

σ11 0 = 0,

δσ11 =

(
λ

2
(2λ2

2 + λ2
1 − 3) + µ(λ2

1 − 1) + λ2
1(λ + 2µ)

)
u1,1 +λλ1λ2

(
u2,2 +

u2

x2

)
;

σ21 = 2λ2W21 + 2u2,1Wzz + 2λ2W2121δC21 = λ2µ(λ2u2,1 +λ1u1,2),

σ21 0 = 0, δσ21 = λ2µ(λ2u2,1 + λ1u1,2);

σ12 = 2u1,2W22 +

(
λ1

λ2

)
σ21, σ12 0 = 0, δσ12 = 2u1,2W22 +

(
λ1

λ2

)
δσ21. (3)

We also have the equilibrium equations

∂σ22

∂x2
+

∂σ21

∂x1
+

σ22 − σθθ

x2
= 0 and

∂σ12

∂x2
+

∂σ11

∂x1
+

σ12

x2
= 0 for σ12 6= σ21.

Using the equalities σ22 0 = σθθ 0 and σ12 0 = σ21 0 = 0, and the fact that the components σi j 0 are not
functions of x1 and x2, we have

∂δσ22

∂x2
+

∂δσ21

∂x1
+

δσ22 − δσθθ

x2
= 0 and

∂δσ12

∂x2
+

∂δσ11

∂x1
+

δσ12

x2
= 0 for δσ12 6= δσ21.

Substituting the expressions for σθθ0, σ220 and σ21 into the first equilibrium equation, we obtain

A∇
2u2 −

(
A − λ2

2µ
)
u2,11 +(λ + µ)λ2λ1u1,12 −A

(
u2

x2
2

)
= 0, (4)

where A = (2λ + 3µ)(λ2
2 − 1) +

λ

2
(λ2

1 − 1) + λ + 2µ and ∇
2 f = f,22 + f,2 /x2 + f,11. Introduce the

function 8 such that

u2 = −C821 and u1 = A∇
28 − B811, (5)

where B = A − λ2
2µ and C = (λ + µ)λ2λ1. Then (4) is satisfied automatically.
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Using the equalities

δσ12 = 2u1,2W22 + (λ1/λ2)δσ21,

δσ21 = λ2µ(λ2u2,1 + λ1u1,2),

δσ11 =
(
2W11 + λ2

1(λ + 2µ)
)
u1,1 + λzλ(λ2u2,2 + λ2u2/x2),

the second equilibrium equation becomes

D∇
2u1 + C

(
u2,12 +

u2,1

x2

)
+
(
2W11 − 2W22 + (λ + µ)λ2

1
)
u1,11 = 0, (6)

where D = (λ + 2µ)(λ2
1 − 1)/2 + (λ + µ)(λ2

2 − 1) + µ.
We can rewrite the above equation substituting (5) into (6) and considering Equations (4)–(6) with the

result
D A∇

48 − DB∇
2811 − C2

∇
2811 + C281111 + E A∇

2811 − E B81111 = 0, (7)

where E = 2W11 − 2W22 + (λ + µ)λ2
1.

Using the Hankel transform of zeroth order, one obtains

D Aξ 4G(ξ, x1)+ (DB − E A − 2D A + C2)ξ 2G(ξ, x1)11 + (−E B + D A − DB + E A)G(ξ, x1)1111 = 0,

where G(ξ, x1) =
∫

∞

0 x2 J0(ξ x2)8dx2 and J0(ξ x2) is the zeroth order Bessel function. The subscript
notation used here means G11 = d2G/dx2

1 .
Letting G(ξ, x1) = F(ξ)eH(ξ)x1 we can rewrite this as a quadratic equation in H 2/ξ 2:

p1 +
p2 H 2

ξ 2 +
p3 H 4

ξ 4 = 0, (8)

where p1 = D A, p2 = (DB − E A − 2D A + C2), and p3 = (−E B + D A − DB + E A).
For the classical case λ j = 1, the characteristic equation becomes

H 4

ξ 4 −
2H 2

ξ 2 + 1 = 0. (9)

When the determinant 1 = p2
2 − 4p1 p3 of (8) vanishes, the equation has two equal positive roots.

One can consider that λ j = 1 + δ j , 1 → 0 but 1 < 0 or 1 > 0 and the equation has two complex roots
(1 < 0) or two positive real roots (1 > 0). Now one only deals with the case with two different real
positive roots r2

1 and r2
2 , where r1 > 0 and r2 > 0. The other cases will be discussed in detail in Section

A1, page 1376. In the limit x1 → ∞, G → 0, we have

G(ξ, x1) = N1(ξ)e−r1ξ x1 + N2(ξ)e−r2ξ x1 . (10)

In what follows we write N1(ξ) and N2(ξ) simply as N1 and N2, respectively.
Now we turn our attention to the stress component δσ21. Using Equations (27) and (30) from the

Appendix as well as (10), one has

δσ21 = λ2µP
∫

∞

0
ξ 4(N1(r2

1 + w)e−r1ξ x1 + N2(r2
2 + w)e−r2ξ x1

)
J1(ξ x2) dξ, (11)
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where
P = λ2C + λ1 B − λ1 A and w = λ1 A/(λ2C + λ1 B − λ1 A).

With x1 = 0 and δσ21 = 0, the above equation simplifies to

δσ21 = λ2µP
∫

∞

0
ξ 4(N1(r2

1 + w) + N2(r2
2 + w)

)
J1(ξ x2) dξ = 0, (12)

which gives

N2 = −

(
r2

1 + w

r2
2 + w

)
N1. (13)

Substituting (13) into (10), we get

G(ξ, x1) = N1(e−r1ξ x1 − Qe−r2ξ x1), (14)
where

Q =
r2

1 + λ1
(

A/P
)

r2
2 + λ1

(
A/P

) .
Let us now discuss the stress component δσ11 and displacement component u1. Substituting (14) into

(10), one obtains
δσ11 = R(A∇

281 − B8111) − Cλλ2λ1(∇
281 − 8111), (15)

where
R =

1
2λ(2λ2

2 + λ2
1 − 3) + µ(λ2

1 − 1) + λ2
1(λ + 2µ) = 2W11 + λ2

1(λ + 2µ).

The zeroth order Hankel transform of (15) is∫
∞

0
x2 J0(ξ x2)δσ11dx2 = (R A − RB)G111 + (Cλλ2λ1 − R A)ξ 2G1. (16)

Similarly, the zeroth order Hankel transform of u1 in (9) is∫
∞

0
x2 J0(ξ x2)u1dx2 = (A − B)G11 − Aξ 2G. (17)

Setting x1 = 0 and using Equations (14), (16) and (17), one has

δσ11 =
(
−(R A − RB)(r3

1 − Qr3
2 ) − (Cλλ2λ1 − R A)(r1 − Qr2)

) ∫ ∞

0
ξ 4 J0(ξ x2)N1dξ,

u1 =
(
(A − B)(r2

1 − Qr2
2 ) − A(1 − Q)

) ∫ ∞

0
ξ 3 J0(ξ x2)N1dξ.

The boundary conditions are(
(A−B)(r2

1−Qr2
2 )−A(1−Q)

) ∫ ∞

0
ξ 3 J0(ξ x2)N1dξ = [u1(x2)]x1=0, x2 ≤ a,∫

∞

0
ξ 4 J0(ξ x2)N1dξ = 0, x2 > a,

where a is the radius of contact area, which will be discussed in detail later.
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Setting ξa = p, x2 = aρ, p3 N1 = f (p), and

a4
[u1(x2)]x1=0 =

(
(A − B)(r2

1 − Qr2
2 ) − A(1 − Q)

)
g(ρ),

one has ∫
∞

0
f (p)J0(pρ) dp = g(ρ), 0 ≤ ρ ≤ 1,∫

∞

0
f (p)pJ0(pρ) dp = 0, ρ > 1.

(18)

Let g(ρ) =
∑

∞

n=0 Anρ
n(0 ≤ ρ ≤ 1). Then from [Sneddon 1951] the solution of (18) is

f (p) =
1

√
π

∞∑
n=0

An

(
cos p + p

∫ 1

0
un+1 sin(pu) du

)
0(1 + n/2)

0(3/2 + n/2)
, (19)

where 0 is the gamma function (recall that 0(1) = 1 and 0(3/2) =
√

π/2).
We can write

[u1(ρ)]x1=0 = b + a cot α(1 − ρ)

for 0 ≤ ρ ≤ 1 and g(ρ) = A0 + A1ρ, where α is the angle of the circular cone (the angle between the
asymmetric axis Ox1(Oz) and the mother line of the surface of the circular cone). Then, one has

a4
[u1(x2)]x1=0 =

(
(A − B)(r2

1 − Qr2
2 ) − A(1 − Q)

)
(A0 + A1ρ),

where

A0 =
(b+a cot α)a4

(A−B)(r2
1−Qr2

2 )−A(1−Q)
, A1 =

−a5 cot α
(A−B)(r2

1−Qr2
2 )−A(1−Q)

.

Considering that An = 0 for n ≥ 2, from Equation (19), we get

f (p) = 2
(

A0

π
+

A1

2

)
sin p

p
+A1

(cos p−1)

p2 ,

δσ11 =
(
−(R A−R B)

(
r3

1−Qr3
2
)
−
(
Cλλ2λ1−R A

)(
r1−Qr2

))
×

(( 2A0

π
+A1

)
a−5

∫
∞

0
J0(pρ) sin pdp+A1a−5

∫
∞

0
J0(pρ)

(cos p−1)

p
dp
)

.

Since the integral
∫

∞

0 J0(p) sin p dp is divergent, to make sure the stress component δσ11 is finite at
the edge of the punch we require (2A0/π + A1) = 0, which means b = a cot α(π/2 − 1) and

[u(z, x2)]x1=0,x2=0 =
π

2
a cot α, f (p) = A1

cos p − 1
p2 . (20)

Noting that ∫
∞

0
J0(pρ)

cos p − 1
p

dp = −cosh−1(1/ρ),
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we get

δσ11 =
(
(R A − RB)(r3

1 − Qr3
2 ) + (Cλλ2λ1 − R A)(r1 − Qr2)

) A1

a5 cosh−1(1/ρ). (21)

We prove in the Appendix (see (59)) that the compressive force T is given by

T = a2 π(R A−RB)
(

p1 + w
(
−p2 +

√
p1 p3

))
− π(Cλλ2λ1−R A)

(√
p1 p3 − wp3

)(
(A − B)w + A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2 , (22)

where the p j are the coefficients in the characteristic equation (8).
The contact radius a is therefore

a =

(
T tan α

(
(A − B)w + A

)(
− p2 p3 + 2p1/2

1 p3/2
3

)1/2

π(R A−R B)p1 + π(R A−RB)w
(
−p2 +

√
p1 p3

)
− π(Cλλ2λ1−R A)

(√
p1 p3 − wp3

))1/2

. (23)

By (20), the penetration depth [u1(x1, x2)]x1=x2=0 equals (π/2)a cot α, that is,

u1(x1, x2)
∣∣
x1=x2=0

=
π

2

(
T cot α

(
(A − B)w + A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2

π(R A−R B)p1 + π(R A−RB)w
(
−p2 +

√
p1 p3

)
− π(Cλλ2λ1−R A)

(√
p1 p3 − wp3

))1/2

. (24)

Using Equations (1) and (2), we can solve for λ1 and λ2 given the constants µ, λ and the residual stress
σ22 0. We can then find the values of coefficients A, B, C, D, E, p1, p2, p3, P, w, Q, R using Equations
(4)–(8), (11), (14) and (15). We can find the contact radius a and penetration depth [u(x1, x2)]x1=0,x2=0

with the help of (23) and (24).
We have obtained the relation between the residual stress, the contact radius and the penetration depth.

As a result, we can determine the residual stress from the contact radius or the penetration depth.
We now look at a numerical example. The result for λ = 30–50 GPa, µ = 60–80 GPa, T = 0.23 kg

and α = π/12 according to (23), is plotted in Figure 1.

 Contact areaπ a
2 µ m

2    

         4.2                             m=30, n=60 

         3.7 

         3.2                               

         2.7                                   m=50, n=80 

         2.2                                    Residual stress Mpa 

          1E5    0.5E5     0     -0.42E5     -0.84E5 

Figure 1. Relation between the area and residual stress: λ = m GPa and µ = n GPa. The
Poisson ratio is ν = m/(2n + 2m) and Young’s modulus is E = (2n + 3m)µ/(n + m).
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Contact areaπ a
2 µ m

2    

         4.0                                     m=30, n=60          

         3.4 

         2.8                                     m=50, n=80 

         2.2 

         1.6                                    compressive force T  kg 

           0.15       0.18       0.21       0.23 

Figure 2. Relation between contact area and compressive force for zero residual stress:
λ = m GPa, µ = n GPa, ν = m/(2n + 2m), E = (2n + 3m)µ/(n + m).

We see that a body under tensile residual stress behaves like a string under tension. That leads to
a decrease of the contact area so that it is smaller than without the stress. However, for compressive
residual stress the opposite effect is obtained. These results coincide with those obtained in [Hao 1986].

To check the numerical results, consider the case of zero residual stress. For λ = 30–50 GPa, µ =

60–80 GPa, and α = π/12 the relation between the contact area and the compressive force T for zero
residual stress is given in Figure 2. We see that it agrees with the numerical results in Figure 1.

4. Concluding remarks

We have studied the axially symmetric contact problem in the framework of the theory of finite elasticity,
that is, the theory of small deformation on initial stress body. We have also considered its application
to estimating residual stresses by cone indentation. In particular, we have been able to determine the
relation among the penetration depth, the contact radius and the residual stress. Further study must focus
on the more general method to solve the residual stress problems and consider the plasticity behavior.

Appendix

A1. The complex root case. We consider the complex root case, where

H 2
= ξ 2(r ± is) = ξ 2ηe±

i ϑ , = ±ξη1/2(cos ϑ/2 ± i sin ϑ/2) − π ≤ ϑ ≤ π with cos ϑ/2 > 0,

G(ξ, x1) = K (ξ)eξη1/2(cos ϑ/2+i sin ϑ/2)x1 + L(ξ)eξη1/2(cos ϑ/2−i sin ϑ/2)x1

+M(ξ)e−ξη1/2(cos ϑ/2+i sin ϑ/2)x1 + N (ξ)e−ξη1/2(cos ϑ/2−i sin ϑ/2)x1 .

The case x1 ≥ 0 is considered, where x1 → ∞ and u, σi j → 0:

G(ξ, x1) = Me−ξη1/2(cos ϑ/2+i sin ϑ/2)x1 + Ne−ξη1/2(cos ϑ/2−i sin ϑ/2)x1 . (25)

For convenience, M(ξ) and N (ξ) are replaced by M and N but they are functions of ξ .



AXIALLY SYMMETRIC CONTACT PROBLEM OF FINITE ELASTICITY 1377

It is apparent that G(ξ, x1) is real; therefore,

G(ξ, x1) = Me−ξdx1 + Me−ξ d̄x1, (26)

where d = η1/2(cos ϑ/2 + i sin ϑ/2) and d̄ = η1/2(cos ϑ/2 − i sin ϑ/2).
Next we deal with the stress component δσ21:

σ21 = λ2µ(λ2ur ,1 +λ1u1,2 ) = λ2µ
(
− λ2C8211 + λ1(A∇

28 − B811)2
)

= λ2µ
(
− (λ2C + λ1 B)8211 + λ1(A∇

28)2
)

(27)

From Equation (54) in the Appendix, one knows that

− (λ2C + λz B)λ2µ

∫
∞

0
x2 J1(ξ x2) d811 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2) d∇

28

= (λ2C + λz B)λ2µξ

∫
∞

0
811x2 J0(ξ x2) dx2 − λ1 Aλ2µξ

∫
∞

0
∇

28x2 J0(ξ x2) dx2. (28)

Hence∫
∞

0
x2 J1(ξ x2)δσ21dx2 = λ2µ

∫
∞

0
x2 J1(ξ x2)

(
−(λ2C + λz B)8211 + λ1(A∇

28)2
)

dx2

= −(λ2C+λz B)λ2µ

∫
∞

0
x2 J1(ξ x2)8211dx2 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2)(∇

28)2 dx2

= −(λ2C+λz B)λ2µ

∫
∞

0
x2 J1(ξ x2) d811 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2) d∇

28

= (λ2C + λz B)λ2µξ

∫
∞

0
811x2 J0(ξ x2) dx2 − λ1 Aλ2µξ

∫
∞

0
∇

28x2 J0(ξ x2) dx2

= λ2µ(λ2C + λ1 B)ξ(d2/dx2
1)G(ξ, x1) − λ2µλ1 Aξ(d2/dx2

1 − ξ 2)G(ξ, x1)

=
(
λ2µ(λ2C + λ1 B) − λ2µλ1 A

)
ξG(ξ, x1)11 + λ2µλ1 Aξ 3G(ξ, x1), (29)

which leads to

δσ21 =

∫
∞

0
ξ 2(λ2µPG(ξ, x1)11 + λ2µλ1 Aξ 2G(ξ, x1)

)
J1(ξ x2) dξ,

G(ξ, x1) = G(ξ, x1) = Me−ξdx1 + Me−ξ d̄x1, G(ξ, x1)11 = ξ 2(Md2e−ξdx1 + Md̄2e−ξ d̄x1). (30)

When x1 = 0, one obtains, denoting by Mre the real part of M ,

G(ξ, 0) = M + M = 2Mre, [G(ξ, z)11]x1=0 = ξ 2(Md2
+ Md̄2),

δσ21 =

∫
∞

0
ξ 2(λ2µPξ 2(Md2

+ Md̄2) + 2λ2µλ1 Aξ 2 Mre
)
J1(ξ x2) dξ.
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When x1 = 0, δσ21 = 0 (x1 = z, x2 = r), one obtains (Md2
+ Md̄2) + 2wMre = 0, leading to

Mre(d2
+ 2w + d̄2) + i Mim(d2

− d̄2) = 0,

M = Mre

(
1 − (d2

+ 2w + d̄2)

(d2 − d̄2)

)
=

−2Mre(d̄2
+ w)

(d2 − d̄2)
,

M = Mre

(
1 + (d2

+ 2w + d̄2)

(d2 − d̄2)

)
=

2Mre(d2
+ w)

(d2 − d̄2)
; (31)

G(ξ, x1) =
2Mre

(
−(d̄2

+ w)e−ξdx1 + (d2
+ w)e−ξ d̄x1

)
(d2 − d̄2)

,

G1 =
−2Mreξ

(
−(d̄2

+ w) de−ξdx1 + (d2
+ w)d̄e−ξ d̄x1

)
(d2 − d̄2)

,

G11 =
2Mreξ

2
(
−(d̄2

+ w) d2e−ξdx1 + (d2
+ w)d̄2e−ξ d̄x1

)
(d2 − d̄2)

,

G111 =
−2Mreξ

3
(
−(d̄2

+ w) d3e−ξdx1 + (d2
+ w)d̄3e−ξ d̄x1

)
(d2 − d̄2)

. (32)

Now the stress component δσ11 and displacement component u1 are discussed. On the basis of equations
(16)–(17), one obtains

δσ11 =

∫
∞

0
ξ J0(ξ x2)

(
(R A − RB)G111 + (Cλλ2λ1 − R A)ξ 2G1

)
dξ, (33)

u1 =

∫
∞

0
ξ J0(ξ x2)

(
(A − B)G11 − Aξ 2G

)
dξ. (34)

For x1 = 0, one has

G(ξ, x1) = 2Mre,

G1 = −2Mreξ
−(d̄2

+ w)d + (d2
+ w)d̄

d2 − d̄2
= 2Mreξ

(d̄d − w)(d − d̄)

d2 − d̄2
= 2Mreξ

d̄d − w

d + d̄
,

G11 = 2Mreξ
2 −(d̄2

+ w)d2
+ (d2

+ w)d̄2

d2 − d̄2
= −2Mreξ

2w,

G111 = −2Mreξ
3 −(d̄2

+ w)d3
+ (d2

+ w)d̄3

d2 − d̄2
= −2Mreξ

3 d̄2d2(d − d̄) + w(d3
− d̄3)

d2 − d̄2

= −2Mreξ
3 d̄2d2

+ w(d2
+ d̄d + d̄2)

d + d̄
.

(35)
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Substituting these into Equations (33)–(34), one obtains

δσ11 =

∫
∞

0
ξ J0(ξ x2)

−(R A−RB)2Mreξ
3
(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
d + d̄

+
(Cλλ2λ1−R A)ξ 22Mreξ(d̄d−w)

d + d̄
dξ

= − 2(R A−R B)
d̄2d2

+ w(d2
+d̄d+d̄2)

d + d̄

∫
∞

0
ξ Mre J0(ξ x2)ξ

3dξ

+ 2(Cλλ2λ1−R A)
d̄d − w

d + d̄

∫
∞

0
ξ Mre J0(ξ x2)ξ

3dξ

=
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

d + d̄

∫
∞

0
ξ Mre J0(ξ x2)ξ

3dξ ; (36)

u1 =

∫
∞

0
ξ J0(ξ x2)

(
−(A − B)2Mreξ

2w −2Aξ 2 Mre
)

dξ =
(
−(A − B)2w −2A

) ∫ ∞

0
ξ J0(ξ x2)Mreξ

2dξ.

(37)
The boundary conditions are(

−(A − B)2w − 2A
) ∫ ∞

0
ξ J0(ξ x2)Mreξ

2dξ = [u1(x2)]x1=0, x1 = 0, 0 ≤ x2 ≤ a,∫
∞

0
ξ 4 J0(ξ x2)Mredξ = 0, x1 = 0, x2 > a,

(38)

where a is the radius of the contact area, which will be discussed later.
Let ξa = p, x2 = aρ, a4

[u1(x2)]x1=0 = −2
(
(A − B)w + A

)
g(ρ), p3 Mre = f (p). Then∫

∞

0
f (p)J0(pρ)dp = g(ρ), 0 ≤ ρ ≤ 1,∫

∞

0
f (p)pJ0(pρ)dp = 0, ρ > 1.

(39)

Let g(ρ) =
∑

∞

n=0 Anρ
n , with 0 ≤ ρ ≤ 1; by Sneddon 1951, the solution of the equations is

f (p) = π−1/2
∞∑

n=0

An

(
cos p + p

∫ 1

0
un+1 sin(pu) du

)
0(1 + n/2)

0(3/2 + n/2)
. (40)

Let [u1(ρ)]x1=0 = b + a cot α(1 − ρ) with 0 ≤ ρ ≤ 1; that is, g(ρ) = A0 + A1ρ, so

− 2
(
(A − B)w + A

)(
A0 + A1ρ

)
= a4

[u1(ρ)]x1=0 = a4(b + a cot α(1 − ρ)
)
,

A0 = −a4(b + a cot α)/2
(
(A − B)w + A

)
,

A1 = a4a cot α/2
(
(A − B)w + A

)
. (41)

On the basis of equation (40), one obtains

f (p) = 2(A0/π + A1/2)
sin p

p
+ A1

cos p − 1
p2 ; (42)
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hence

δσ11 =
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

d + d̄

∫
∞

0
ξ 4 Mre J0(ξ x2) dξ

=
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

a5(d + d̄)

∫
∞

0
p f (p)J0(pρ) dp

=
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

a5(d + d̄)

×

∫
∞

0
p
(

(2A0/π + A1)
sin p

p
+ A1

cos p − 1
p2

)
J0(pρ) dp

=
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d−w)

d + d̄

×

(
2A0/π + A1

a5

∫
∞

0
J0(pρ) sin p dp +

A1

a5

∫
∞

0
J0(pρ)

cos p−1
p

dp
)

. (43)

As the integral
∫

∞

0 J0(p) sin p dp is divergent, for the finiteness of stress component δσ11 at the edge
of the punch, we have (2A0/π + A1) = 0, that is, b = a cot α(π/2 − 1). Hence

u(x1, x2)x1=0,x2=0 = b + a cot α =
π

2
a cot α, f (p) = A1

cos p − 1
p2 , (44)

δσ11 =
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d − w)

a5(d + d̄)
A1

∫
∞

0
J0(pρ)

cos p − 1
p

dp

=
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d − w)

a5(d + d̄)
A1 cosh−1(1/ρ), (45)

T = − 2π

∫ a

0
[δσ11]x1=0x2dx2

= −2π
−2(R A−R B)

(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d − w)

a5(d + d̄)
A1∫ a

0

(
cosh−1(a/x2)x2

)
dx2. (46)

The integral on the right is equal to∫
∞

1/a

cosh−1(av)

v3 dv = a2
∫

∞

1

cosh−1 u
u3 du = a2

∫
∞

0

w sin hw

(cosh w)3 dw =
a2

2
;

therefore

T = −πa2 −2(R A−RB)
(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
+ 2(Cλλ2λ1−R A)(d̄d − w)

a5(d + d̄)
A1. (47)
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Substituting the value of A1 from (41), we obtain

T = πa2 (R A−R B)
(
d̄2d2

+ w(d2
+d̄d+d̄2)

)
− (Cλλ2λ1−R A)(d̄d − w)

d + d̄
cot α

(A − B)w + A
. (48)

The contact radius a is thus

a =

(
P tan α

(
(A − B)w + A

)
(d + d̄)

π(R A − RB)
(
d̄2d2 + w(d2 + d̄d + d̄2)

)
− π

(
Cλλ2λ1 − R A

)
(d̄d − w)

)1/2

. (49)

The penetration depth is

[u(x1, x2)]x1=0,x2=0 =
π

2
a cot α, (50)

where a is given by the previous equation.
Using the equalities d̄2d2

= p1/p3 and d̄2
+ d2

= p2/p3, we obtain successively

d̄d =
√

p1/p3, d̄ + d =

√
−p2/p3 + 2

√
p1/p3, d2

+ d̄d + d̄2
= −p2/p3 +

√
p1/p3. (51)

With this one can find the value of a in (49).

A2. About Q. It is known that Q = (r1
2
+w)/(r2

2
+w), where w =λ1 A/(λ2C +λ1 B−λ1 A). Therefore,

1 − Q = 1 −
r1

2
+ w

r2
2 + w

=
r2

2
− r1

2

r22 + w
,

r1 − Qr2 = r1 − r2
r1

2
+ w

r22 + w
=

(r2 − r1)(r1r2 − w)

r22 + w
,

r1
2
− Qr2

2
=

(r2
2r1

2
+ wr1

2) − (r1
2r2

2
+ wr2

2)

r22 + w
= w

r1
2
− r2

2

r22 + w
,

r1
3
− Qr2

3
=

r1
3(r2

2
+ w) − r2

3(r1
2
+ w)

r22 + w
=

(r1 − r2)r1
2r2

2
+ w(r1

3
− r2

3)

r22 + w

= (r1 − r2)
r1

2r2
2
+ w(r1

2
+ r1r2 + r2

2)

r22 + w
,

(52)

A3. Research on some integrals. When the integrals∫
∞

0
x2 J1(ξ x2)d811 and

∫
∞

0
x2 J1(ξ x2)d∇

28

are calculated, it is supposed that

x2 J1(ξ x2)811 → 0 and x2 J1(ξ x2)∇
28 → 0

by letting (x1
2
+ x2

2)1/2
= r → ∞.

It is known that

x � 1 Jn(r) → O(r−1/2) and x2 J1(ξ x2) → O(r1/2).



1382 HAO TIAN-HU

In our problem, u1 and u2 → 0 when r → ∞. In [Sneddon 1951], it is found that u1 and u2 → O(1/r)

when r → ∞.
On view of the relation between the displacements u j and the function 8,

u2 = − C821,

u1 = A∇
28 − B811,

one can deem that 8 → O(r); that is to say,

811 → O(1/r) and ∇
28 → O(1/r).

From this, one obtains

x2 J1(ξ x2)811 → O(1/r−1/2) and x2 J1(ξ x2)∇
28 → O(1/r−1/2). (53)

Therefore

−(λ2C + λz B)λ2µ

∫
∞

0
x2 J1(ξ x2)d811 + λ1 Aλ2µ

∫
∞

0
x2 J1(ξ x2)d∇

28

= −(λ2C + λz B)λ2µ

(∫
∞

0
dx2 J1(ξ x2)811 −

1
ξ

∫
∞

0
811 dξ x2 J1(ξ x2)

)
+ λ1 Aλ2µ

(∫
∞

0
dx2 J1(ξ x2)∇

28 −
1
ξ

∫
∞

0
∇

28dξ J1(ξ x2)x2

)
= (λ2C + λz B)λ2

µ

ξ

∫
∞

0
811 dξ x2 J1(ξ x2) − λ1 Aλ2

µ

ξ

∫
∞

0
∇

28dξ J1(ξ x2)x2

= (λ2C + λz B)λ2µξ

∫
∞

0
811x2 J0(ξ x2)dx2 − λ1 Aλ2µξ

∫
∞

0
∇

28x2 J0(ξ x2)dx2, (54)

because d
(
v J1(v)

)
= v J0(v)dv.

A4. Force on the cone, contact radius and penetration depth. For the compressive force T on the cone,
from (21), one obtains

T = −2π

∫ a

0
[δσ11]x1=0x2 dx2

= −2π
(
(R A − R B)(r1

3
− Qr2

3) +
(
Cλλ2λ1 − R A

)
(r1 − Qr2)

) A1

a5

∫ a

0
(cosh−1(a/x2)x2)dx2

= −πa2((R A − R B)(r1
3
− Qr2

3) +
(
Cλλ2λ1 − R A

)
(r1 − Qr2)

) A1

a5

= πa2 (R A − R B)
(
r1

3
− Qr2

3
)
+
(
Cλλ2λ1 − R A

)
(r1 − Qr2)

(A − B)(r12 − Qr22) − A(1 − Q)
cot α. (55)

The contact radius a is thus

a =

(
T tan α

(
(A − B)(r1

2
− Qr2

2) − A(1 − Q)
)

π(R A − RB)(r13 − Qr23) + π(Cλλ2λ1 − R A)(r1 − Qr2)

)1/2

, (56)
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and we know from (20) that the penetration depth is given by

[u1(x1, x2)]x1=0,x2=0 =
π

2
a cot α. (57)

For convenience, r1, r2 and Q will be replaced by the coefficients of the characteristic equation. First
the expressions in Q are replaced by by expressions in r1, r2, using (52). We obtain

T = a2 π(R A−RB)
(
r1

2r2
2
+ w(r1

2
+r1r2+r2

2)
)
− π(Cλλ2λ1−R A)(r1r2−w)(

(A − B)w + A
)
(r2 + r1)

cot α,

a =

(
T tan α

(
(A − B)w + A

)
(r2 + r1)

π(R A−RB)
(
r12r22 + w(r12+r1r2+r22)

)
− π(Cλλ2λ1−R A)(r1r2 − w)

)1/2

,

(58)

from which we also obtain the penetration depth via (57).
From (8), one knows that p j are the coefficients of characteristic equation; therefore, the relations

between p j and r1, r2 are exactly as in Equation (51), with r1, r2 replacing d, d̄ .
Substituting this into (58), one obtains

T = a2 π(R A−R B)
(

p1/p3 + w
(
−p2/p3 +

√
p1/p3

))
− π(Cλλ2λ1 − R A)

(√
p1/p3 − w

)
((A−B)w + A

)(
−p2/p3 + 2

√
p1/p3

)1/2 cot α

= a2 π(R A−R B)
(

p1 + w
(
−p2 +

√
p1 p3

))
− π(Cλλ2λ1−R A)

(√
p1 p3 − wp3

)(
(A − B)w + A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2 ,

a =

(
T tan α

(
(A − B)w + A

)(
−p2 p3 + 2p1/2

1 p3/2
3

)1/2

π(R A−R B)
(

p1 + w
(
−p2 +

√
p1 p3

))
− π(Cλλ2λ1−R A)

(√
p1 p3 − wp3

))1/2

(59)

and
[u(x1, x2)]x1=0,x2=0 =

π

2
a cot α.
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