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A CLOSED-FORM SOLUTION FOR A CRACK APPROACHING AN INTERFACE

BORIS NULLER, MICHAEL RYVKIN AND ALEXANDER CHUDNOVSKY

A closed-form solution is presented for the stress distribution in two perfectly bonded isotropic elastic
half-planes, one of which includes a fully imbedded semi-infinite crack perpendicular to the interface.
The solution is obtained in quadratures by means of the Wiener–Hopf–Jones method. It is based on the
residue expansion of the contour integrals using the roots of the Zak–Williams characteristic equation.
The closed-form solution offers a way to derive the Green’s function expressions for the stresses and the
SIF (stress intensity factor) in a form convenient for computation. A quantitative characterization of the
SIF for various combinations of elastic properties is presented in the form of function the c(α, β), where
α and β represent the Dundurs parameters. Together with tabulated c(α, β) the Green’s function provides
a practical tool for the solution of crack-interface interaction problems with arbitrarily distributed Mode I
loading. Furthermore, in order to characterize the stability of a crack approaching the interface, a new
interface parameter χ , is introduced, which is a simple combination of the shear moduli µs and Poisson’s
ratios νs (s = 1, 2) of materials on both sides of the interface. It is shown that χ uniquely determines
the asymptotic behavior of the SIF and, consequently, the crack stability. An estimation of the interface
parameter prior to detailed computations is proposed for a qualitative evaluation of the crack-interface
interaction. The propagation of a stable crack towards the interface with a vanishing SIF is considered
separately. Because in this case the fracture toughness approach to the material failure is unsuitable an
analysis of the complete stress distribution is required.

1. Introduction

Determining the stress field in the vicinity of a crack tip approaching a bimaterial interface has important
applications for layered elastic materials. Zak and Williams [1963] proposed the first formulation and
solution of the problem for a semi-infinite crack perpendicular to a bimaterial interface with the crack
tip at the interface. Khrapkov [1968] offered a closed-form solution for the problem of a finite crack
with its tip at the interface. Cook and Erdogan [1972] and Erdogan and Biricikoglu [1973] derived the
integral equations and provided the numerical solutions for fully imbedded semi-infinite and finite cracks,
and for cracks either terminating at or crossing the material interface. A similar dislocation approach
was employed by [Wang and Stahle 1998] for the study of stress fields in the vicinity of a finite crack
approaching the interface. Using the exact solution obtained for Mode III as a prototype, Atkinson [1975]
introduced an asymptotic solution for the SIF with respect to a small distance ε between the crack tip and
the interface. Here the SIF is presented as K I = ε p1−1/2 f (α, β), with p1, α, and β representing the first
root of the Zak–Williams characteristic equation and the Dundurs parameters respectively. Later, He and
Hutchinson [1989] considered a set of more general problems related to crack arrest and to penetration
through or deflected by the interface.
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Employing the amplitude factor k1 for the boundary value problem with a crack terminating at the
interface, He and Hutchinson were able to improve the representation of K I to

K I = k1ε
p1−1/2c(α, β),

where the function c(α, β) is a solution of a system of singular integral equations. Romeo and Ballarini
[1995] evaluated the function c(α, β) and applied the results to finite and semi-infinite cracks. For certain
values of α and β, however, the evaluation of the function c(α, β) results in an uncertainty of 0 · ∞ type
that cannot be resolved numerically. Leguillon et al. [2000] investigated of the competition between three
fracture scenarios – primary crack growth, interface debonding, and a new crack nucleation beyond the
interface – by means of asymptotic analysis.

In this paper we construct a closed-form solution for the problem of a semi-infinite crack perpendicular
to an interface between two isotropic elastic half-planes under Mode I loading by the Winner–Hopf–Jones
method [Noble 1958]. While Nuller et al. [2001] summarized some of the results earlier, here we present
the complete solution along with an analysis of the closed-form representation of the function c(α, β).
For convenience of application, the values of the function c(α, β) are computed and reported in Table 2.
Romeo and Ballarini’s results coincide with the closed-form solution only in the case when α = β = 0
and diverge significantly when α approaches ±1.

In Section 2 we present the general formulation and closed-form solution of an auxiliary problem on
a crack fully imbedded in the left half-plane and perpendicular to the interface, which is conjugate (the
same Wiener–Hopf equation) to the problem considered by [Khrapkov 1968]. Using this solution in
Section 3, we evaluate the Green’s function for the SIF. Section 4 is dedicated to an assessment of crack
stability through an analysis of the asymptotic expression of the SIF. We introduce a new parameter of
the interface, χ , to characterize the stability of a crack approaching the interface. The parameter χ is
a simple combination of shear moduli and Poisson’s ratios on both sides of the interface. Addressed
separately is the case of stable crack propagation when the SIF concept of fracture mechanics does not
apply.

The first root of the Zak–Williams characteristic equation p1 is a cornerstone of crack stability analysis
and, as such, of the asymptotic representations of the solution. A proof of the existence and uniqueness
of the p1 value in the strip 0 < Re p < 1 of the complex plane of the Mellin transform parameter p
for all possible values of elastic constants is presented in Appendix A. The dependence of the first root
location on the real axis upon the interface parameter χ is also analyzed there.

2. General formulation

Consider a semi-infinite crack perpendicular to the interface between two perfectly bonded dissimilar
elastic half-planes Figure 1. The distance of the crack tip from the interface is ε. The elastic properties
of the materials are defined by the shear moduli µs and Poisson’s ratio’s νs . The values of the index
s = 1, 2 correspond to the uncracked and the cracked half-planes respectively. We introduce the system
of polar coordinates R, θ in which the origin lies at the intersection of the crack axis and the interface
such that the crack is located along the line θ = π . Formulating the problem with the non-dimensional
radial coordinate r = R/ε, the crack tip is associated with the point r = 1, θ = π .
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Figure 1. Perpendicular to the interface crack, fully imbedded in the left half-plane.

We assume that the loading corresponds to the Mode I, the stress field vanishes at r → ∞, and the
the local strain energy is bounded in the crack tip vicinity. Using the apparent symmetry, we formulate
the boundary value problem for the upper half-plane 0 < θ < π, 0 < r < ∞ as follows. The radial and
angular displacements u(r, θ), v(r, θ) and the stresses σθ (r, θ) satisfy the continuity conditions at the
interface

[v(r, π/2)] = [u(r, π/2)] = 0; [σθ (r, π/2)] = [τrθ (r, π/2)] = 0, 0 < r < ∞, (1)

where [ f (r, θ)] denotes the jump of f (r, θ) in the θ direction. At the boundary of the half-plane

v(r, 0) =0 , τrθ (r, 0) = τrθ (r, π) = 0 , 0 < r < ∞ , (2)

v(r, π) =v(r) , 0 < r ≤ 1 , (3)

σθ (r, π) =σ(r) , 1 < r < ∞ . (4)

Here the function σ(r) represents the applied load and v(r) ≡ 0 for the problem under consideration.
However, we write condition in Equation (3) in a more general form for future consideration. We seek
the solution as Papkovich–Neuber functions presented in the form of the Mellin integrals

2µsv(r, θ) =
1

2π i

∫
L0

[As(p)(p − κs) sin(p + 1)θ + Bs(p)(p − 1) sin(p − 1)θ+

+ Cs(p)(p − κs) cos(p + 1)θ + Ds(p)(p − 1) cos(p − 1)θ ]r−pdp , (5)

2µsu(r, θ) =
1

2π i

∫
L0

[As(p)(p + κs) cos(p + 1)θ + Bs(p)(p − 1) cos(p − 1)θ−

− Cs(p)(p + κs) sin(p + 1)θ − Ds(p)(p − 1) sin(p − 1)θ ]r−pdp , (6)
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where the integration path L0 is a contour parallel to the imaginary axis of the plane of the complex
Mellin transform parameter p, and κs = 3 − 4νs . The subscript s = 1, 2 denotes the quantities related
to the right (0 < θ < π/2) and left (π/2 < θ < π) quadrants respectively. The unknown functions
As, Bs, Cs, Ds are to be defined from the boundary conditions.

Using Jones method [Noble 1958] we introduce “−” and “+” transforms

v−(p) =

∫
∞

1
v(r, π)r p−1dr , σ+(p) =

∫ 1

0
σθ (r, π)r pdr ,

which are analytical in the respective left and right half-planes separated by the contour L0. Other
functions analytical in these half-planes will be also denoted by the superscripts “+” and “−”. The
boundary conditions given by Equations (3) and (4) may now be presented as

v(r, π) =
1

2π i

∫
L0

[v−(p) + v+(p)]r−pdp , 0 < r < ∞ (7)

σθ (r, π) =
1

2π i

∫
L0

[σ−(p) + σ+(p)]r−p−1dp , 0 < r < ∞ (8)

σ−(p) =

∫
∞

1
σ(r)r pdr , v+(p) =

∫ 1

0
v(r)r p−1dr . (9)

Substitution of Equations (5) and (6) into the boundary conditions in Equations (1), (2), (7) and in Equa-
tions (1), (2), (8) yields two systems of eight linear algebraic equations, each with coefficients aik(p) with
respect to the unknowns A1(p), B1(p), ..., D2(p). In both systems the first seven equations are identical
and homogeneous. The only nonhomogeneous equations are the last ones obtained from conditions in
Equations (7) and (8). Denoting the determinants of the first and second systems as Nv(p) and Nσ (p)

respectively, the expression for the function A1(p) may be presented in the following alternative forms

A1(p) =
[v−(p) + v+(p)]M(p)

Nv(p)
, A1(p) =

[σ−(p) + σ+(p)]M(p)

Nσ (p)
, (10)

where M(p) is the cofactor of the element a81(p), which is the same in both systems, and where

Nv(p) = µ−1
2 b0b1b2(1 − p)2 sin2 πp , Nσ (p) = 2p(1 − p)2 sin πpN (p) , (11)

N (p) = 2b1(b2 cos πp + b3 p2) + b4 , (12)

where

b0 = 1 + κ2, b1 = 1 + κ1µ, b2 = µ + κ2, b3 = 2(µ − 1),

b4 = −2κ1µ
2
− (κ1 − 1)(κ2 − 1)µ + κ2

2 + 1, µ =
µ2

µ1
.

Equating the right hand sides of Equations (10) we obtain the Wiener–Hopf equation

σ−
+ σ+

= K (p)[v−(p) + v+(p)] , K (p) =
Nσ (p)

Nv(p)
, p ∈ L0, (13)

for the two unknown functions σ+(p) and v−(p). The solution is constructed using the technique devel-
oped by [Nuller 1976]. The function K (p) can be presented in the form of a product K (p)= K1(p)K2(p),
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where

K1(p) = 4µ2b−1
0 p cot πp , K2(p) =

2b1(b2 cos πp + b3 p2) + b4

2b1b2 cos πp
.

Factorization with respect to the contour L0, which is taken to be the imaginary axis, yields

Km(p) =
K +

m (p)

K −
m (p)

, m = 1, 2.

For the function K1(p), the factorization is trivial. For the function K2(p) the factorization is carried out
by the use of the Cauchy-type integrals, see [Gakhov 1966] and can be performed due to the following
properties of this function on L0: (1) it is Hölder continuous; (2) it has no zeros, see Appendix A; (3) it
has zero index; and (4) ln K2(p) decays exponentially as |p| → ∞, which follows from the asymptotic
relation K2(i t) ∼ 1+ O[t2 exp(−π |t |)], as |t | → ∞. Hence, the factorization K (p) = K +(p)[K −(p)]−1

is given by

K +(p) =
4µ20(p + 1)

b00(p + 1/2)
K +

2 (p),

K −(p) =
0(1/2 − p)

0(1 − p)
K −

2 (p) ,

K ±

2 (p) = exp
[
−

1
2π i

∫ i∞

−i∞

ln K2(t)dt
t − p

]
, p∈̄L0

K ±

2 (p) = K ±1/2
2 (p) exp

[
−

1
2π i

∫ i∞

−i∞

ln K2(t)dt
t − p

]
, p ∈ L0,

(14)

where 0(p) is the Gamma function.
Now the Wiener–Hopf Equation (13) can be rewritten in the following form

σ−(p) + σ+(p)

K +(p)
=

v−(p) + v+(p)

K −(p)
, p ∈ L0. (15)

Let the external conditions be given by the power form expressions

σ(r) = ar−γ−1 , v(r) = br δ, (16)

with γ > 0, δ > 0, and a < 0, which corresponds to Mode I loading. For this case Equations (9) yield

σ−(p) =
−a

p − γ
, v+(p) =

b
p + δ

, (17)

and the nonhomogeneous Wiener–Hopf Equation (15) can be factorized as follows

σ+(p)

K +(p)
+

a
p − γ

[ 1
K +(γ )

−
1

K +(p)

]
−

b
(p + δ)K −(−δ)

=

v−(p)

K −(p)
+

b
p + δ

[ 1
K −(p)

−
1

K −(−δ)

]
+

a
(p − γ )K +(γ )

. (18)

Both parts of the last equality are analytical in their respective half-planes separated by the contour L0

and decrease at least as p−1 or faster when |p| → ∞. Employing now Liouville’s theorem, we conclude
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that each side of Equation (18) is equal to zero. Consequently, we find the stress transform to be

σ+(p) = K +(p)
[ b
(p + δ)K −(−δ)

−
a

(p − γ )K +(γ )

]
+

a
p − γ

. (19)

The asymptotic stress distribution at the crack tip is defined by the stress transform behavior for large
|p|. From Equations (14) and (19) it is evident that for |p| → ∞

σ+(p) ∼ −
4µ2

1 + κ2

[ a
K +(γ )

−
b

K −(−δ)

]
p−1/2 . (20)

As a result,

σθ (r, π) ∼ −
4µ2

1 + κ2

[ a
K +(γ )

−
b

K −(−δ)

] 1
√

π(1 − r)
, r → 1 − 0 .

In view of the accepted length scale normalization, the actual displacements v(R) are obtained from
the scaled displacements derived in the solution by multiplying by ε, that is, v(R) = εv(r). Consequently,
the relation between the scaled and the non-scaled stresses is

σ(R, θ) =
σ(r, θ)

ε
. (21)

3. Green’s function for SIF

The study of crack stability near the interface requires solutions for arbitrarily distributed loads, which
can be obtained using the Green’s function of the particular problem, namely the solution for the two
unit forces P = 1 applied to the crack faces symmetrically at some point R = H ; see Figure 1. This
solution is defined by the boundary conditions in Equations (1), (2) and (4) with

σθ (r) = −δ(r − h) ,

where δ(r) is the delta function and h = H/ε.
Through the superposition principle this problem may be considered as the sum of the following two

problems. The first is the problem seen in Equations (1), (2) and (4) with σθ (r)=−δ(r −h) for 0 < r <∞.
The second is a mixed problem defined by the conditions given in Equations (1)–(4) with σ(r) = 0 and
v(r) = −vδ(r), where vδ(r) represents the displacements obtained in the first problem. The solution of
the first problem clearly has no singularity at the point of interest r = 1, θ = π as the stresses σ(r, θ) are
equal to zero for 0 < r < 1. Therefore the singularity at this point for the Green’s function of the initial
problem is completely defined by the stress field of the second problem.

In the first problem the transforms of the applied loading are given by σ+(p) = 0 , and σ−(p) = −h p.
Consequently, from Equations (10) and (11) we obtain

vδ(r) = −
1

2π i

∫
L0

Q(p)h p

N (p)r p dp, Q(p) =
b0b1b2 sin πp

2pµ2
.

Employing the residue theorem and closing the integration path to the left of the contour L0 we find that
for r < 1

vδ(r) =

∞∑
k=1

Q(−pk)r pk

N ′(−pk)h pk
. (22)
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Here p = −pk are the roots of the Zak–Williams characteristic equation, see Equation (12):

N (p) = 0 (23)

which are located in the left half-plane Re p < 0. The numbering is in accord with the increasing distance
from the imaginary axis.

It follows from Equations (9), (16), (17), and (22) that for the second problem

v+

δ (p) = −

∞∑
k=1

Q(−pk)

N (−pk)(p + pk)h pk
.

Taking into account that σ−(p) = 0 and reapplying the procedure (17)–(20), we obtain

σ+(p) ∼ 2b1b2

[
∞∑

k=1

sin πpk

pk N ′(−pk)K −(−pk)h pk

]
p−1/2 , |p| → ∞ . (24)

Consequently, the asymptote of the singular stresses in the initial problem that also defines the Green’s
function for the SIF K I is given by

σθ (r, π) ∼ 2b1b2

[
∞∑

k=1

sin πpk

pk N ′(−pk)K −(−pk)h pk

]
1

√
π(1 − r)

, r → 1 − 0 . (25)

The Cauchy-type integral representing the function K −(−pk) converges exponentially. The series in the
brackets of Equation (25) has the same type of convergence due to the multiplier h−pk and because the
remaining terms have the order O(

√
pk). The values pk can be found from the characteristic equation

(23) by the Newton’s method using the asymptotics

pk = k ± i
2
π

ln k + O(1)

for large k. In order to obtain the non-scaled form of the above result we have to replace r and h by R/ε

and H/ε respectively and use the relation in Equation (21).
An asymptotic expression for the SIF Green’s function for the problem at hand proceeds from the

asymptotic representation given by Equation (25) of the hoop stress component:

K I = c(α, β)H−p1ε p1−1/2 . (26)

Here c(α, β) is a smooth and finite function of the Dundurs parameters α and β:

c(α, β) =
2
√

2b1b2 sin πp1

p1 N ′(−p1)K −(−p1)
, (27)

α =
µ(κ1 + 1) − κ2 − 1
µ(κ1 + 1) + κ2 + 1

, β =
µ(κ1 − 1) − κ2 + 1
µ(κ1 + 1) + κ2 + 1

.

When ε → 0, the SIF K I apparently behaves as ε p1−1/2 and, depending on the value of p1, tends to 0
or ∞. The values of the first root p1(α, β) and the function c(α, β) for various combinations of α and
β are presented in Tables 1 and 2. From these values the asymptote of the SIF for arbitrary material
parameters combination can be obtained by interpolation. The values of p1 agree with the graphical
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α \ β −0.45 −0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.45

−0.95 0.872 0.803 0.717 0.661 0.622 0.592
−0.9 0.868 0.799 0.713 0.657 0.618 0.589
−0.8 0.789 0.704 0.650 0.611 0.583
−0.7 0.777 0.694 0.641 0.604 0.576
−0.6 0.764 0.683 0.631 0.5951 0.568 0.548
−0.5 0.670 0.621 0.586 0.560 0.540
−0.4 0.656 0.609 0.575 0.550 0.532
−0.3 0.641 0.595 0.563 0.540 0.522
−0.2 0.624 0.580 0.550 0.528 0.512 0.5
−0.1 0.564 0.535 0.515 0.5 0.489

0.0 0.545 0.519 0.5 0.486 0.477
0.1 0.524 0.5 0.483 0.471 0.463
0.2 0.5 0.479 0.464 0.453 0.447 0.443
0.3 0.454 0.441 0.433 0.428 0.426
0.4 0.427 0.416 0.409 0.405 0.405
0.5 0.395 0.386 0.381 0.379 0.380
0.6 0.357 0.351 0.347 0.347 0.349 0.355
0.7 0.308 0.306 0.307 0.311 0.318
0.8 0.255 0.254 0.256 0.261 0.268
0.9 0.183 0.183 0.185 0.189 0.195 0.200

0.95 0.130 0.130 0.132 0.135 0.140 0.144

Table 1. Values of the first root p1 of the Zak–Williams characteristic equation; see
Equations (23) and (12).

results of [Romeo and Ballarini 1995] and with the results for several specific material pairs reported by
[Cook and Erdogan 1972].

4. Stability analysis

Based on the analysis presented in Appendix A, we see that the Zak–Williams Equation (23) always
possesses a single first root p1 in the strip 0 ≤ Re p ≤ 1 which is simple and real. Furthermore,
0 < p1 < 1/2 when

χ =
µ1κ2

µ2κ1

the combination of elastic coefficients of both materials is less than unity.
Consequently, if χ < 1 then, in view of Equation (26), limε→0 K I = ∞, and the crack is unstable in

the vicinity of the interface. Similarly, when χ > 1 then 1/2 < p1 ≤ 1, limε→0 K I = 0, and the crack is
stable. In this paper we consider only linear crack propagation. The stability of a crack with curvilinear
path was investigated by [Gunnars et al. 1997]. We refer to the above combination of elastic coefficients
“χ” as the crack stability factor (CSF). From the structure of the CSF we can see that the stability of the
crack in the vicinity of an interface depends on the combination of Poisson ratios ν1 and ν2 as well as
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α \ β −0.45 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.45

−0.95 0.330 0.406 0.466 0.487 0.492 0.487
−0.9 0.352 0.425 0.481 0.5004 0.504 0.498
−0.8 0.467 0.514 0.5285 0.529 0.521
−0.7 0.513 0.549 0.5592 0.556 0.546
−0.6 0.564 0.588 0.5926 0.587 0.574 0.555
−0.5 0.630 0.6288 0.619 0.604 0.583
−0.4 0.675 0.6678 0.655 0.636 0.613
−0.3 0.724 0.7098 0.693 0.672 0.646
−0.2 0.774 0.7546 0.734 0.711 0.683 0.651
−0.1 0.8021 0.778 0.753 0.723 0.689

0 0.8519 0.826 0.798 0.767 0.731
0.1 0.9035 0.876 0.846 0.814 0.777
0.2 0.9565 0.928 0.898 0.865 0.828 0.784
0.3 0.982 0.953 0.921 0.884 0.840
0.4 1.038 1.010 0.980 0.944 0.902
0.5 1.095 1.070 1.042 1.009 0.970
0.6 1.152 1.131 1.108 1.079 1.044 1.000
0.7 1.194 1.176 1.153 1.125 1.088
0.8 1.260 1.248 1.232 1.211 1.185
0.9 1.333 1.326 1.318 1.307 1.292 1.283

0.95 1.376 1.373 1.369 1.363 1.354 1.349

Table 2. Values of c(α, β); see Equation (27).

the ratio of shear moduli µ1/µ2. Since the stress state in the problem under consideration is completely
defined by the Dundurs parameters it is useful to exhibit the stability/instability zones in the plane (α, β);
see Figure 2. It is clear that the stability condition α > 0 employed by [Leguillon et al. 2000] holds true
only for the specific case when β = 0.

The effect of the Poisson ratios ν1 and ν2 on crack stability at the interface is often overlooked. Typ-
ically the crack stability is determined on the basis of the shear moduli ratio only. If the crack exists in
a more rigid material and approaches an interface with the softer material (µ2 > µ1 in Figure 1), it is
regarded as unstable, see [Romeo and Ballarini 1995]. Consider, however, the case when the crack is in
the more rigid material, µ1/µ2 = 2/3, ν1 = 0.4, and ν2 = 0.2. Calculation of the CSF for the plane strain
case (κs = 3 − 4νs, s = 1, 2) yields χ > 1. Hence, in contrast to the conclusion based on µ1/µ2 < 1,
the crack is stable. In the (α, β) plane the points corresponding to the material combinations possessing
the above property are located within the lower sector generated by the lines α = β and α = −β; see
Figure 2. Examples of the corresponding engineering materials combinations can be identified using the
data presented by [Suga et al. 1988].

As we noted at the beginning of the previous section, the stresses between the crack tip and the interface
are non-zero only in the second problem taking part in the superposition. Their transform σ(r, π) can



1414 BORIS NULLER, MICHAEL RYVKIN AND ALEXANDER CHUDNOVSKY

G  ,!2 2 G  ,!1 1

"

1#1

#0.5

0.5

$=#"

     $="
  (G  =G  )

instability

stability $

% > 1

% < 1

211     

µ  , !    
2    2    µ  , !    

1 1

(µ  =µ  )1     2

Figure 2. Crack stability and instability regions in the α, β plane. The dashed line
corresponds to the equal shear moduli of the materials on both sides of the interface.

be determined in the same way we derived the asymptote in Equation (24). Hence,

σθ (r, π) =
1

2π i

∫
L0

K +(p)

∞∑
k=1

Q(−pk)

(p + pk)K −(−pk)N ′(−pk)h pk
r−p−1dp .

After closing the integration path to the left of the contour L0 we employ the residue theorem which leads
to the formula for the stresses in front of the crack. In view of Equation (21) and using the nonscaled
variables, we obtain

σθ (R, π) = −
1

πε

∞∑
n=1

∞∑
k=1

(−1)nn sin πpk N (−n) K −(−n)(R/ε)n−1

pk(pk − n) N ′(−pk) K −(−pk)(H/ε)pk
, 0 < R < ε . (28)

The stress distribution between the crack tip and the interface is depicted in Figure 3. As an illustration,
consider the aluminum-epoxy composite. The material parameters needed for the computations are
provided in Table 3. The dashed curves represent the inverse square root asymptotes obtained from

Table 3. Material properties.

Young modulus E (GPa) Poisson ratio ν

Epoxy 3 0.345
Aluminum 70 0.333

Boron 380 0.2
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Figure 3. Hoop stress distribution between the crack tip and the interface in the
aluminum-epoxy composite for the crack located in the epoxy (left) and in the aluminum
(right). The dashed lines denote the inverse square root asymptotes.

Equation (25) and correspond to the case of a homogeneous plane. In the first case (Figure 3, left)
the crack is imbedded in the soft (epoxy) constituent and is stable (χ = 22.7 > 1). As expected, the
stresses the near tip are less than for a crack in a homogeneous plane. Somewhat surprisingly, however,
the stresses near the interface increase and are nonmonotonic. The quantitative analysis of the results
reveals that: (1) the inverse square root asymptote agrees well with the exact solution only within about
0.1ε from the crack tip; (2) within roughly 0.7ε the asymptote has the same trend as the exact solution; (3)
the asymptote underestimates by approximately 30% the value of stress at the interface (R = 0), where
the hoop stress reaches the local maximum. When the materials are reversed (Figure 3, right) the crack
is located within the aluminum and is unstable (χ = 1/22.7). In this case: (1) the inverse square root
asymptote also agrees well with the exact solution within about 0.15ε from the crack tip; (2) however, the
asymptote increasingly overestimates stresses as the distance from the crack tip grows, reaching about
30% at R = 0.7ε; and (3) it grossly overestimates the values of stresses near the interface (R = 0). The
observed stress distributions agree with the data reported by [Wang and Stahle 1998] who investigated
the crack approaching the interface by means of the semi-analytical dislocation approach.

The actual size of the K-dominance zone, which is proportional to ε, decreases for the crack approach-
ing the interface. Thus at some point it becomes comparable to the fracture process zone of the cracked
material. As a result, the standard fracture toughness criterion of crack propagation becomes invalid even
for brittle materials and a nonasymptotic analysis of the stress field in the crack tip vicinity is required.
This point is discussed in detail in [Ryvkin et al. 1995] and is illustrated in [Ryvkin 2000] in the problem
of a crack close to a bimaterial interface. In the case of an unstable crack, which has no reason to stop
after it begins to move for some finite value of ε, the above remark probably does not apply. The stable
crack, on the other hand, may be arrested for vanishingly small ε. Consequently, the analysis of the
complete stress distribution in front of a stable crack is of primary interest.

The influence of the elastic mismatch (the aluminum-epoxy and the boron-epoxy composites) on the
stress distribution in front of a stable crack is illustrated in Figure 4.
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Figure 4. Stresses in front of the crack in the aluminum-epoxy and boron-epoxy com-
posites. The dashed line is associated with the stresses in front of a crack in a homoge-
neous material.

For reference, the stress distribution for the crack in a homogeneous material is also shown by a
dashed line. As expected, a greater mismatch of the materials leads to decrease in the stress. In spite of
the fact that the stiffness of boron is greater than aluminum, the difference in stresses is nominal. This
is attributable to the large mismatch between the epoxy and both of the above materials. Therefore the
difference between them is of secondary importance and the bimaterial systems approach the limiting
case of the epoxy half-plane bonded to a rigid substrate.

In order to examine the stress distribution on both sides of the interface, we need to derive the expres-
sion for the stress σ(r, 0) in the uncracked material. In contrast to the stress σ(r, π) here we have to
superpose the stresses in both problems formulated in the beginning of the previous section. After some
manipulation and employing the residue theorem, we obtain for 0 < r < 1

σθ (r, 0) =
1
π

∞∑
n=1

∞∑
k=1

(−1)nn sin πpk U (−n) K −(−n)rn−1

pk(pk − n) N ′(−pk) K −(−pk)h pk
,

where
U (p) = (1 + κ2)[κ2(2p − 1) − 1 − 2p − µ(1 + κ1 − 2p + 2κ1 p)].

The nonscaled expression is determined in a manner similar to Equation (28). The stresses in the ε

vicinity of the interface in the aluminum-epoxy composite are depicted in Figure 5. As before, the
dashed line corresponds to the crack in a homogeneous material.

In accord with the continuity of the hoop strain component, the stresses beyond the interface in the
relatively stiff aluminum jump to a value higher than that in the epoxy. For some material combinations
this phenomenon may lead to a new crack nucleation within the stiff constituent, see [Leguillon et al.
2000].

As noted above, the SIF vanishes in the case of a stable crack approaching the interface. However, this
does not suggest that the stable crack can not reach the interface. In order to examine this opportunity, a
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Figure 5. Stresses in the ε-vicinity of the interface.

critical stress-based criterion such as the Neuber–Novozhilov criterion [Neuber 1937; Novozhilov 1969]
or the criterion indicated in [Cook and Erdogan 1972] needs to be employed rather than the fracture
toughness criterion. After a crack has reached the interface, further crack propagation is defined by the
competition between two possibilities: the penetration of the interface or deflection into it, see [He and
Hutchinson 1989]. The need for a stress-based criterion is supported by the fact that the leading term
in the expression given by Equation (28) for the stresses in front of a crack is proportional to ε p1−1 and
becomes unbounded when ε → 0. Consequently, when the crack approaches the interface the stresses
in the interface vicinity increase. Two opposite trends in the dependence of the stresses upon ε near the
crack tip and near the interface are illustrated in Figure 6. Unlike the previous graphs, the coordinate
system located at the crack tip is employed as shown in the insert.

Therefore the crack tip is associated with the left side of the graph and the crack propagation cor-
responds to the different positions of the interface denoted in the figure by the dashed lines. Since the
results for several crack locations are depicted, the parameter employed for the length scale normalization
here is H and not ε as it was previously. The stress distributions for three different distances between
the crack tip and the interface (ε/H = 0.1, 0.05 and 0.02) are presented. The limiting values of stress
at the interface are derived in an accurate manner from a simple formula given by the first term of the
infinite sum in Equation (28). Thus,

σθ (0, π) =
1

πε

sin πp1 N (−1) K −(−1)

p1(p1 − n) N ′(−p1) K −(−p1)(H/ε)p1
.

These values are denoted in the figure by the circles. As the distance between the crack tip and the
interface decreases, so does the stress singularity in the crack tip vicinity. On the other hand, the non-
monotonic stress behavior becomes more pronounced and the stresses near the interface increase, which
at some point may lead to nucleation of a new microcrack located on the crack line and terminating at
the interface.
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Figure 6. Stress distribution for the different distances between the tip of a stable crack
and the interface.

The above approach is numerically very efficient. In order to reach less than one percent accuracy,
100 terms of the series in n and 3 terms of the series in k need to be taken into account. This is not
surprising since, as it was noted, the series in k converges exponentially.

5. Conclusion

In this paper, we obtained a closed-form solution for the stress distribution in two perfectly bonded
isotropic elastic half-planes with a fully imbedded semi-infinite crack orthogonal to the interface under
Mode I loading by means of the Winner–Hopf–Jones method. The Green’s functions for the stresses and
the SIF are constructed using auxiliary problems solved in quadratures. The closed-form solution of the
problem offers a way to express the result in a form convenient for computation. A quantitative char-
acterization of the SIF for various combinations of elastic parameters via the function c(α, β) provides
a practical tool for the solution of crack-interface interaction problems for arbitrarily distributed Mode
I loading. The values of the function c(α, β) computed from the closed-form solution reported herein,
when compared with those obtained previously by the numerical solution of singular integral equations
[Romeo and Ballarini 1995], suggest an error in the later procedure.

In order to characterize the stability of a crack approaching the interface, we introduced a new interface
parameter, χ , which is a simple combination of the shear moduli µs and the Poisson ratios νs (s = 1, 2) of
the materials on both sides of the interface. The crack stability or instability in the vicinity of the interface
is associated with a decrease or increase of the energy release rate, that is, SIF with ε → 0. Since K I

behaves as ε p1−1/2, the crack stability or instability depends on p1 being greater or less than 1/2. This
result agrees with the former asymptotic investigations of the problem, but we established here for the
first time the exact condition of crack stability in terms of material parameters. The interface parameter χ

uniquely determines the sign of inequality for the first root p1 of the Zak–Williams characteristic equation
and thus indicates the asymptotic behavior of the SIF. An estimation of the interface parameter prior to
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detailed computations may serve as a qualitative evaluation of the strength of the stress singularity in the
vicinity of the interface.

It appears that the propagation of a stable crack cannot be predicted in the framework of the SIF
approach. In this case the critical stress criterion can be employed in conjunction with the solution
obtained.

Appendix A: Study of the first root of Zak–Williams characteristic equation

The dependence of the stress distribution and the SIF on the material properties in two perfectly bounded
isotropic elastic half-planes with a crack approaching the interface is conventionally expressed in terms
of the Dundurs parameters α and β.

α =
µ(κ1 + 1) − κ2 − 1
µ(κ1 + 1) + κ2 + 1

, β =
µ(κ1 − 1) − κ2 + 1
µ(κ1 + 1) + κ2 + 1

.

The crack stability in the vicinity of the interface is determined by the value of the first root p = p1 of
the Zak–Williams characteristic equation [1963]. Specifically, the crack is stable when 1/2 < p1 < 1 or
unstable when 0 < p1 < 1/2. In what follows we analyze the value of p1 and the dependence of the
crack stability on the material properties of both sides of the interface. The Zak–Williams equation can
be presented in terms of the function N(p) in Equation (23). According to Equation (12) N (p) can be
explicitly written as

N (p) = 2(1 + κ1)[(µ + κ2) cos πp + 2(µ − 1)p2
] − 2κ1µ

2
− (κ1 − 1)(κ2 − 1)µ + κ2

2 + 1 . (29)

Therefore it may be considered as a function of one complex variable p and three real variables κ1, κ2,
and µ : N (p) ≡ N (ω, p), ω = (κ1, κ2, µ). Let us denote

p = η+iξ, η = Re p, ξ = Im p; N (p)=U (p)+iV (p), U (p)= Re N (p), V (p)= Im N (p). (30)

The expressions of the material parameters through the Poisson ratios and shear moduli κs = 3−4νs, s =

1, 2 , and µ = µ2/µ1 indicate the limits 1 < κs < 3 , 0 < µ < ∞. Consequently, we assume that ω ∈ �,

where � = {ω : 1 < κs < 3, 0 < µ < M} is a 3–dimensional parallelepiped and M is an arbitrary large
number. Furthermore, we define a rectangle domain D = Re p ∈ (0, 1), Im p ∈ (−q, q) in the complex
plane with the boundary 0. The barred symbols �̄ and D̄ denote the closed sets and �× D represents
the Cartesian product.

Lemma 1. The function N (ω, p) does not vanish on the imaginary axis Re p = 0 for any ω ∈ �̄.

Proof. In view of Equations (29) and (30) we obtain

U (0) =µ(1 + κ1 + κ2 + κ1κ2) + (κ2 + 1)2 > 0 ,

∂U (iξ)

∂ξ
=2(1 + κ1µ)[π(µ + κ2) sinh πξ − 4(µ − 1)ξ ] ≥ 2(1 + κ1µ)[π2(µ + κ2)ξ − 4(µ − 1)ξ ]

=2(1 + κ1µ)[(π2
− 4)µ + κ2π

2
+ 4]ξ ≥ 0 , ξ ≥ 0.

Since U (0) > 0 and ∂U (iξ)/∂ξ ≥ 0 for ξ ≥ 0, the function U (iξ) increases monotonically for positive
ξ and U (iξ) > 0 for ξ ≥ 0. From the evenness of function U (iξ) it follows that N (iξ) > 0 for any ξ . �
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Lemma 2. The function N (ω, p), ω ∈ �̄, does not vanish on the line p = 1 + iξ for any ω ∈ �̄.

Proof. For µ 6= 1 and |ξ | > 0 we have V (1 + iξ) = 8(1 + κ1µ)(µ − 1)ξ 6= 0. Taking into account that
κ1, κ2 ∈ [1, 3], for µ = 1 and |ξ | 6= 0 we the have

U (1+ iξ) = −2(1+κ1)(1+κ2) cosh πξ −2κ1 −(κ1 −1)(κ2 −1)+κ2
2 +1 < −8 cosh πξ −2+κ2

2 +1 < 0 .

For the case when ξ = 0, ω ∈ �̄ we find U (1)=µ(1+κ1)(1−3κ1)+(κ2−1)2
−4 ≤µ(1+κ2)(1−3κ1)< 0.

Consequently, N (1 + iξ) 6= 0 for all ξ ∈ (−∞, ∞). �

Lemma 3. It is possible to find a positive number c defined by the following condition: the function
N (ω, p), ω ∈ �̂, is not vanishing on the segments Re p ∈ [0, 1], Im p = ±q for any q > c.

Proof. The lower bound for c may be easily found by estimating the function cos πp by the first three
terms of the Maclaurin series expansion in the rectangular domain 0 ≤ η ≤ 1, −c ≤ ξ ≤ c. �

Lemma 4. For the case when κ1 = κ2 and µ = 1, function N (ω, p) has the only zero p1 = 1/2 in the
strip Re p ∈ [0, 1].

Proof. For this case N (ω, p) = (1 + κ1)
2 cos πp. �

Theorem 1. The function N (ω, p), ω ∈ �̄ has a single, simple and real zero in the strip 0 ≤ Re p ≤ 1.

Proof. For any ω ∈ �̂ the function N (ω, p) of the complex variable p is analytic for p ∈ D, is continuous
with its derivative on 0, and, following Lemmas 1–3, does not vanish on this contour. Therefore, in accord
with the principle of the argument, an integral along the closed contour 0

I (ω) =
1

2π i

∫
0

N ′
p(ω, p)

N (ω, p)
dp (31)

is equal to the total number (with regard to multiplicity) of zeros of the function N (ω, p) in D.
Changing the elastic parameters along some path in �, let us assume that for some point ω∗ an r-

order zero of the function N (ω, p) appears (or disappears) in D. Then the function I (ω) will have a
finite r -units discontinuity at this point. However, the integrand in Equation (31) is continuous in �̄×0

since the absolute values of its partial derivatives with respect to p and ω are bounded in this domain.
Therefore the integral I (ω), ω ∈ �̄ also represents a continuous function of ω.

The above contradiction leads to the conclusion that for any ω ∈ � the function N (ω, p) has the same
number of zeros in D, that is, I (ω) = const = n. Since Lemma 4 implies that for ω = ω0 = (κ1, κ2, 1)

there is the only simple zero is p1 = 1/2, we then find that n = 1. Clearly this single zero can not become
complex valued for some ω because in that case the conjugate number p̄1 also satisfies Equation (29).

Finally, since q > 0 is unbounded, the above result obtained for p ∈ D holds for the entire strip
0 ≤ Rep ≤ 1.

Since for every ω ∈ � corresponds some value of the first zero p1 of the function N (ω, p), (ω, p) ∈

�̄× D̄, we can consider an implicit function p = f (ω), ω ∈ �̄. This function must fulfill the equation
N (ω, p) = 0, (ω, p) ∈ �̂ × D̂ and, in accord with Lemma 4, meet the condition f (ω0) = 1/2. �

Remark 1. Theorem 1 can be now formulated as follows: The function p = f (ω), ω ∈ �̄ exists, it is
real valued, and it varies in a domain P ⊂ (0, 1).
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Remark 2. The function N (ω, p) and its derivative ∂/∂p[N (ω, p)] do not vanish simultaneously in any
point of the domain �̄ × D̄.

Proof. The existence of such a point implies that function N (ω, p) has a multiple zero at this point,
which violates Theorem 1. �

Theorem 2. The implicit function p = f (ω), ω ∈ �̄ defined by the equation N (ω, p) = 0, (ω, p) ∈

�̄ × D̄ and condition f (ω0) = 1/2 exists. It is unique, continuous, and has continuous bounded partial
derivatives.

Proof. In accord with Theorem 1 there exists a unique implicit function p = f (ω), ω ∈ �̄ which is defined
by a zero of the function N (ω, p) for a given ω. Since the partial derivatives of the function N (ω, p)

of the first and second order in any bounded domain are bounded, function N (ω, p) and its derivative
are continuous in the 4-dimensional parallelepiped �̄ × [0, 1]. Furthermore, following Remark 2, the
functions N (ω, p) and ∂/∂p[N (ω, p)] do not vanish simultaneously. The theorem of implicit functions
then establishes that function p = f (ω) is continuous and its first derivatives

∂p
∂µ

= −
∂ N (ω, p)

∂µ

[
∂ N (ω, p)

∂p

]−1

,
∂p
∂κs

= −
∂ N (ω, p)

∂κs

[
∂ N (ω, p)

∂p

]−1

, s = 1, 2 (32)

exist and are continuous and bounded. �

Lemma 5. Consider a surface S in � defined by the equation κ1µ−κ2 =0. Then every point (ω, 1/2), ω∈

S from �̄ × [0, 1] is zero of the function N (ω, p) and for the points with ω⊂̄S, N (ω, 1/2) 6= 0.

Proof. The proof is obvious from the relation N (ω, 1/2) = (κ2 − κ1µ)(µ + κ2). �

Lemma 6. For arbitrary fixed κ1, κ2 ∈ [1, 3] the function p = f (κ1, κ2, µ) represents a decreasing
function of µ in the vicinity of the point µ1 = κ2/κ1.

Proof. In accord with Theorem 2, the partial derivatives of the function N (ω, p) in �̄ × D̄ exist and are
bounded. At the point (ω1, 1/2), ω1 = (κ1, κ2, κ2κ

−1
1 ), the partial derivatives are negative:

∂ N (ω1, 1/2)

∂µ
= −κ2(1 + κ1) < 0 ,

∂ N (ω1, 1/2)

∂p
= 2(1 + κ2)κ

−1
1 [π(1 + κ1)κ2 − 2(κ2 − κ1)] < 2(1 + κ2)κ

−1
1 (4 − 2π) < 0 .

Recalling Equation (32) we conclude that ∂ f (ω1)/∂µ < 0 and the function f (ω) decreases with respect
to µ at the point ω1. The surface S separates the parallelepiped �̄ into two parts: �̄− for µ < κ2κ

−1
1 and

�̄+ for µ > κ2κ
−1
1 . �

Theorem 3. If ω ∈ �̄+, then f (ω) < 1/2. If ω ∈ �̄−, then f (ω) > 1/2.

Proof. Let us assume the opposite, that is, for some point ω2 = (κ1, κ2, µ) from �̄+ p2 = f (ω2) ≥ 1/2.
Lemma 5 states that the case of equality is impossible since ω2 /∈ S, so we consider the case when
p2 > 1/2. We connect the points ω1 = (κ1, κ2, κ2κ

−1
1 ) and ω2 by a line segment γ and consider the

function p = f (ω) = ϕ(µ) on γ . By Lemma 6 this function is deceasing in the vicinity of the point ω1.
By Lemma 5 ϕ(µ1) = 1/2. Consequently, there is a point µ3 where p3 = ϕ(µ3) < 1/2. Continuous
in accord with Theorem 2, the function ϕ(µ) takes on the segment (µ3, µ2) all the intermediate values
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between p3 and p2. Therefore the point µ4 ∈ (µ3, µ2) exists where ϕ(µ4) = 1/2. But this results in
a contradiction with Lemma 5 since the point (κ1, κ2, µ4) ∈ �̄+ is not located on S and cannot be a
zero of the function N (ω, 1/2). The proof of the second part of the theorem is carried out in a similar
manner. �

Summary. Initially we sought zeros of the function N (ω, p) in the 5-dimensional domain �× D charac-
terized by five real valued parameters two of which (µ and ξ ) are unbounded. Answering the question on
the existence of zeros and their number, Theorem 1 reduced substantially the range of possible locations
for p1. Theorem 2 and Lemma 5 provided the foundation for developing a simple iterative procedure
with respect to µ based on the continuous dependence of p1 upon all the parameters ω(κ1, κ2, µ) and
the known initial value p1 = 1/2 for µ = κ2κ

−1
1 . Finally, Theorem 3 allows us to answer the question of

whether the crack will be stable (µ < κ2κ
−1
1 , χ > 1, p1 > 1/2) or unstable (µ > κ2κ

−1
1 , χ < 1, p1 < 1/2)

for ε → 0 a priori, without any calculations. We only need to know the elastic parameters of the composite
body, namely, the ratio µ = µ2/µ1 and κs = 3 − 4νs .
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On September 5, 2002, after a long fight with cancer, Professor Boris M. Nuller passed away.

Born in 1934, Boris Nuller survived the winter of 1941 in Leningrad under the siege. He received his
Ph.D. and D.Sci. degrees from Leningrad Polytechnic Institute, and during the last few years served as
head of the Mathematics Department of the Leningrad Forestry Academy. Publishing over 200 scientific
papers in his lifetime, many of which found industrial application, Professor Nuller dedicated his ex-
ceptional mathematical talent to applied mechanics. He developed a method of piecewise homogeneous
solutions for problems with mixed boundary conditions, improved the methods of solution of Gilbert–
Riemann and Wiener–Hopf functional equations, and advanced the technique of discrete Fourier trans-
forms for domains possessing cyclic or translational symmetry. Among his numerous contributions are
solutions of various contact problems related mainly to fracture mechanics, the development of nonlinear
poro-elasticity and a mathematical model of cutting.

Professor Nuller’s friendship, his commitment to research, his creativity, and his insight into the
problems of mathematical physics will be missed.
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