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In this work, we extend the statistical strength model of Daniels for a parallel fiber bundle to a twisted
bundle with an ideal helical structure. The bundle is clamped at each end in such a way that it has
no slack fibers in the unloaded state. The fibers are linearly elastic and continuous, and have random
strengths following a Weibull distribution with Weibull shape parameter ρ. We calculate the stress
redistribution from failed to surviving fibers according to a twist-modified equal load sharing (TM-ELS)
rule, introduced here. The effect of the twist is modeled analytically by two approaches, one called
geometrical averaging, in which the fiber helix angles are averaged, and the other called statistical
averaging, in which the fiber failure probabilities are averaged. In both probability models, the bundle
strength distributions remain asymptotically Gaussian, as in Daniels’ original model; however, the asso-
ciated mean and standard deviation are additionally altered by the surface twist angle. To validate these
theories, a Monte Carlo model is developed to simulate fiber break initiation and progression within a
cross-sectional plane under tension. For all values of surface twist angle αs, ρ and bundle size studied,
the simulated strength distributions are shown to be strongly Gaussian. Transitions in failure mode from
diffuse, across the bundle cross-section, to localized near the center of the bundle occur when αs and ρ

increase and the bundle size decreases, in spite of application of a diffuse-type loading sharing rule, TM-
ELS. Both analytical models provide similar results which are in excellent agreement with the simulated
results. For the most part, we consider the bundle to be short enough that interfiber friction plays no
role in the stress redistribution. However, to demonstrate its importance in long bundles, we mimic the
effects of interfiber friction by considering a chain of such bundles where the bundle length is chosen to
approximate the characteristic length of unloading around breaks.

1. Introduction

Yarns, ropes, and cables, generically called twisted mechanical structures, have been used for centuries as
load-bearing structures. When fabricated from ultrastrong, high-performance polymer-based or carbon-
based fibers, such as Kevlar, PBO, graphite, and even carbon nanotubes (see, for example, [Vigolo
et al. 2000; Zhang et al. 2004]) such structures can be made with superior strengths and can possibly
be used in many technically advanced aerospace and defense applications. Like traditional fibers, such
as wool, cotton and polyester, these advanced fibers exhibit a substantial variation in strength as well

Keywords: twisted fiber bundle or yarn, Monte Carlo simulation, statistical strength, twist modified equal load sharing
(TM-ELS), ideal helical structure, interfiber friction, chain-of-bundles model.
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as size (length and number of fibers) effects. Consequently the strength of the twisted structure made
from such fibers will also exhibit similar characteristics, although it may be much weaker depending
on the extent of variability and the stiffness of the fibers. Thus, there is a need for structural strength
predictions, particularly in the high reliability regime, that is, only one failure out of thousands or millions
of specimens under a design load. In other words, an average strength determined from a few tests will
not be sufficient. Such predictive capability, however, is not in place for these twisted structures.

In these structures, the local material strengths vary from point to point and from fiber to fiber within
the bundle. As a consequence, the failure processes can be quite random and the strengths can statistically
vary among twisted bundles of otherwise identical descriptions. As the bundle volume increases (either in
diameter or length) the likelihood of finding a weak region or defect that can lead to failure will increase
as well, leading to a lower average strength among many specimens. Fiber strengths are commonly
described by the Weibull distribution, an empirical statistical model that was built upon weakest-link
concepts [Phoenix and Beyerlein 2000]. However, the strength distribution and size effect for a twisted
fiber bundle are generally more complicated and unknown.

These twisted structures are also heterogeneous in microstructure. To see this, envision fibers in layers
following concentric helical paths about the central axis of the fiber ‘bundle’ (for example, yarn, rope,
cable) with helical angles varying from zero, for the central fiber, to αs, for fibers at the surface. Under the
action of an applied load, the stresses or strains sustained by individual fibers differ depending on their
helical angle with respect to the loading direction and the angles of the surrounding fibers. In addition,
their stresses will depend on the actual distribution of neighboring fiber breaks.

Unlike the initial or elastic modulus, the strength of a heterogeneous material cannot be predicted by a
rule-of-mixtures type calculation. Strength is best predicted by considering failure mechanisms involving
various initiation phenomena and subsequent propagation behavior to catastrophic collapse. The two
primary mechanisms in a twisted fiber bundle are fiber failure and fiber slipping (for example, unraveling),
which may occur simultaneously. This interplay of failure mechanisms is a favorable situation, which
can theoretically lead to optimal strengths without compromising ductility.

In this work, we develop analytical models for bundle strength based only on the first mechanism,
fiber breaks and load redistribution. They allow for a stochastic progression of fiber breaks within a
cross-sectional plane of an ideal helical structure. Under the initial application of strain or stress, breaks
occur first in the weakest or most highly stressed fibers. As the stress level increases, breaks increase in
number until an unstable pattern of breaks and the maximum stress that can be sustained, is achieved.

To validate the simplifying assumptions made in the analytical models, a Monte Carlo computational
model is developed. This computational model simulates more accurately the ‘true’ failure progression
in many replications, sufficient for generating empirical statistical strength distributions. This useful tool
provides insight into the mathematical form of the bundle strength distributions, characteristics of the
failure modes, and dependencies on statistical fiber strength properties and surface twist angle, αs. In this
work, both the Monte Carlo and analytical models consider Weibull fiber strengths and a nonlocalized
load sharing rule among broken and intact fibers called the twist-modified equal load sharing (TM-ELS)
rule. In TM-ELS, failed fibers carry zero stress and surviving fibers share the applied bundle load but
carry individual stresses depending on their radial positions in the bundle. As a consequence, fiber breaks
will propagate based not only on their strengths and the total number of breaks, but on their helix angle
as well. Like the conventional ELS rule, no direct enhancements result from the relative proximity of
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one break to another. Pure ELS is well known to apply to dry bundles of parallel fibers when there
is negligible friction between the fibers, which causes load build-up from the fiber ends to be rather
inefficient. For a twisted bundle, however, we show that in spite of the TM-ELS assumption, the Monte
Carlo model forecasts transitions in failure mode from ductile-like to brittle-like due to the twist angles
and fiber strength variation.

While very important, incorporating the effects of friction and slipping is beyond the scope of the
current work and will be considered in a sequel. Nonetheless, as a preview of the expected behavior we
perform a simple chain-of-bundles calculation, using results of [Alexander 1952] for the stress recovery
length around a fiber discontinuity in terms of yarn tension and twist. However, in the actual yarn the
stress transfer length around a broken fiber depends on its radial position because the radial pressure
distribution is nonuniform.

2. Theoretical background

Most theories for yarns, ropes, and cables operate within a deterministic strength paradigm with the
goal of determining the optimal surface twist angle at which the highest bundle strength is achieved. In
fact, fiber manufacturers often apply twist to varying degrees (not necessarily the same from one lot
to the next) to determine fiber strength to meet some acceptance criteria or minimum standard. The
optimal twist angle is generally related to a single-valued fiber strength, fiber diameter and length, and
the magnitude of frictional forces in shear acting along fibers to resist sliding. For an excellent summary
of the earlier, classical theoretical and experimental works, we refer the reader to [Hearle et al. 1969].
Other more recent attempts in this category, including work on impregnated yarns, can be found in [Naik
et al. 2001], where the strength of impregnated yarn was estimated using an effective shear traction and
fiber obliquity factor.

On the other hand, most statistical strength models treat a parallel array of fibers rather than a twisted
bundle. These models generally focus on the influence of fiber strength, bundle length, bundle size, fiber
packing, and interface properties, in the case when matrix is present in the parallel fiber bundle. For
a recent review of these parallel bundle theories, we refer the reader to [Phoenix and Beyerlein 2000].
Among these we mention only the classical theory of Daniels [1945], which is relevant to this work.
Through a long and complicated proof, Daniels showed that when the load from fiber breaks is redis-
tributed equally among the remaining intact fibers (ELS), the strength of a large bundle asymptotically
approaches a Gaussian distribution. He derived expressions for the asymptotic mean µD and standard
deviation γD as a function of the underlying strength distribution of the fibers and bundle size in terms
of number of fibers.

There are, however, a few notable statistical strength theories for twisted fiber bundles [Phoenix 1979;
Pan 1993]. Although using different approaches, they both have extended Daniels’ parallel bundle theory.
Phoenix [1979] in particular studied the influence of slack as a result of incomplete migration, that is,
the deviation of fibers from an ideal helical path, that occurs after the twisting process. He proposed a
statistical model for random fiber slack, which has two characteristic parameters reflecting the extent and
uniformity of the migration process, and applied it to an ideal helical structure where the fiber strength
itself followed a Weibull distribution. An asymptotically Gaussian distribution for the strength of the
twisted yarn was argued to apply, as in Daniels’ case, and the associated mean and standard deviation
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were derived. We compare the results of [Phoenix 1979] to that of the present work. Pan [1993] derived
and directly applied an orientation efficiency factor to Daniels’ mean µD and standard deviation γD to
account for the effect of an average twist. Up to now, twisted bundle strength studies have not used Monte
Carlo simulation to investigate the nature of the yarn strength distribution or to validate the Gaussian form
of the distribution, which had been assumed upfront to apply to twisted structures and in fact many other
structures outside of the parallel ELS bundle.

3. Modeling approach

3.1. Parallel bundle. Our models for the strength of a twisted bundle will build upon Daniels’ well-
known theory for a parallel ELS bundle. His model is briefly reviewed here.

Daniels [1945] considered n parallel fibers that are evenly clamped at each end and have the same
cross-sectional area A and linear elastic constitutive law with Young’s modulus Ef. The fiber strengths
X1, X2, . . . , Xn (in units of stress) are independent and identically distributed (i.i.d.) random variables
following a cumulative distribution function (cdf) F(s), s ≥ 0, where s is the stress in the fiber along
the direction of loading. When the fibers are parallel to the direction of loading, s is also the axial stress
in the fibers. The corresponding strain to failure of fiber i , ξi , is simply ξi = X i/Ef.

A nominal stress σ is uniformly applied to this n-sized bundle, and as σ is increased, the fibers start
to break whenever and wherever the fiber stress exceeds the fiber strength. Due to the strength variation,
fiber breaks tend to initiate and spread in a random manner. According to the ELS rule of Daniels’ model,
when a fiber breaks, its lost load is instantaneously redistributed in equal portions to all surviving fibers.
Consequently, the individual axial stresses, denoted here as s, in the remaining intact fibers will be equal,
and will be higher than σ for the bundle. If Nb is the current number of breaks in the bundle, then
according to ELS, s is

s =

( n
n − Nb

)
σ.

The strength of the bundle S is the maximum stress borne by the bundle, and is given by

S = max
{

X1,n,
(n − 1

n

)
X2,n, ...,

(1
n

)
Xn,n

}
,

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n are the order statistics of the strengths of the n fibers. Daniels proved
that S asymptotically follows a Gaussian (that is, normal) distribution, with probability density function
(pdf) gn(s) given by

gn(s) =
1√

2πγD2
exp

{
−

(s − µD)2

2γD2

}
, (1)

where µD is the mean and γD is the standard deviation of the bundle strength.
In general the bundle can be loaded in a stress-controlled or strain-controlled manner. In the latter,

with increasing strain εy on the bundle, the resulting bundle stress fluctuates randomly. For a large bundle
(that is, n → ∞) σ(s), the nominal bundle stress as a function of s asymptotically approaches the function
µ(s) given by

µ(s) = s[1 − F(s)], s ≥ 0.
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The µD in Equation (1) is the maximum of µ(s), formally called the asymptotic mean strength, and is

µD = max
s

{µ(s) : s ≥ 0}. (2)

µ(s) = µD occurs when s = s∗, that is, s∗
= {s : µ(s) = µD}. The variance function for the bundle stress

is given by

6(s) = s2 F(s)[1 − F(s)], s ≥ 0,

and the asymptotic standard deviation γD of the bundle strength is

γD =
s∗

√
n

√
F(s∗)[1 − F(s∗)]. (3)

Note that the asymptotic value µD is independent of n. Smith [1982] derived a correction factor for
µD that depends on n to improve the accuracy of µD for relatively small bundles. The correction factor
is given by

1∗

n =
0.996
n2/3

{
F ′(s∗)2s∗4

2F ′(s∗) + s∗F ′′(s∗)

}1/3

, (4)

where prime means derivative. This factor is added to µD, to yield µ∗

D = µD + 1∗
n . Later, McCartney

and Smith [1983] derived an improved asymptotic standard deviation of bundle strength, which is

γ ∗

D = γD

√
1 − 0.320

(1∗
n

γD

)2
.

In the remainder of this work, F(T ) for fiber strength will follow a Weibull distribution

P(X ≤ T ) = F(T ) = 1 − exp
{
−

( T
σδ

)ρ
}
,

where T is fiber stress along its axis, and σδ and ρ are the Weibull scale and shape parameters, respectively.
The corresponding µD and γD in Equations (2) and (3) are

µD = σδ(ρe)−1/ρ, γD =

(
σδ
√

n

)
ρ−1/ρ

√
e−1/ρ(1 − e−1/ρ), (5)

and the correction factor in Equation (4) becomes

1∗

n =
0.996µD

n2/3

(e2/ρ

ρ

)1/3
. (6)

The improved µ∗

D and γ ∗

D, according to [Smith 1982; McCartney and Smith 1983], become

µ∗

D = µD

{
1 +

0.996
n2/3

(e2/ρ

ρ

)1/3
}
, γ ∗

D = γD

√
1 − 0.317

(µD

γD

)2(e2/ρ

n2ρ

)2/3
. (7)
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n Filaments

αs

(a) (b)
Figure 1. (a) Yarn segment and (b) Cross-sectional view of concentric packing.

4. Strength of twisted fiber bundles

4.1. Helical yarn geometry. The most commonly analyzed geometry of a twisted fiber bundle or yarn
is the one in which the fibers lie in concentric cylindrical layers. Within each layer, fibers follow ideal
helical paths with the same helix angle, as shown in Figure 1a, but the angle differs from layer to layer.
In this idealization, fibers in different layers necessarily must have different lengths to be strain-free yet
without slack. This implies that between two yarn cross-sections, fibers (other than the center fiber) will
have lengths (when straight) equal to their helical path lengths, and thus, will be longer than the distance
between these cross-sections.

Consider an ideal helical structure with l layers, numbered 1, . . . , k, . . . , l, of fibers with diameter df.
The l layers have respective helix angles α1, . . . , αk, . . . , αl , and are located at radii r1, . . . , rk, . . . , rl

from the center of the bundle axis. Note that rk is the distance from the center of the yarn to the center
of the fiber in layer k. Also the radius of the yarn, R is taken as rl .

(a) (b)

Figure 2. Square and hexagonal packing.
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Note also that in the cross-sectional view, the fibers are arranged in concentric layers, which we call
concentric packing. Concentric packing is different from other commonly used fiber packing models,
such as square packing Figure 2a or hexagonal packing Figure 2b. We also assume that the gap between
the layers is negligible compared to the diameter of the fiber. Under these assumptions rk , approximately
becomes rk ≈ (k − 1)df. If we also assume complete filling of the layers, that is, a fiber will occupy
any void in a concentric layer that is large enough to accommodate it, the number of fibers in the kth

concentric layer, nk , is approximately

nk ≈

⌊
2πrk

df

⌋
≈ 2π(k − 1), for k ≥ 2, (8)

where n1 = 1 and where bxc means the largest integer less than or equal to x . As expected, nk does not
depend on df. The total number of fibers in the bundle n with l layers is n = n1 + ... + nl , but can be
approximated as n ≈ 1 + π(l − 1)l.

As illustrated in Figure 1a, the helix angle of the outer layer αl is especially important and is denoted
as αs, the surface helix angle. From the yarn twisting process, the helix angle αk for concentric layer k
depends on its radius rk (being approximately proportional to it) and the surface helix angle, αs. From
the geometry of the helix illustrated in Figure 3 we have

αk = tan−1
(2πrk

h

)
, αs = tan−1

(2π R
h

)
,

where the second equation is for the surface layer, located at rl = R. Here h is the height, along the yarn
axis, of one turn of twist Figure 3.

2πrk 2π R

αk αs

h h

Figure 3. The variation of helix angle.
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We assume that all layers have the same axial height of one turn of twist, h, which applies when there
is no initial tensile strain or slack in any fiber. Thus,

αk = tan−1
(rk tan αs

R

)
(9)

in terms of αs. In later calculations we will need αf,i , the helix angle for an individual fiber i . Let ℵk be
the set of fibers in layer k, then αf,i can be defined as

αf,i = αk, i ∈ ℵk and k = 1, ..., l.

We note that this ideal twisted structure is not common in practice. In a long untwisted yarn all fibers
begin with equal lengths, and thus, accomplishing the varying path lengths in different layers during
twisting under tension must lead to varying slack or compression in some fibers and uneven strains in
others. The yarn attempts to equalize its fiber lengths by the phenomenon called migration. Over a
yarn length segment less than or equal to some modest multiple of the yarn diameter, fibers stay within
their layer, that is, they do not ‘migrate’. Beyond this length scale, fibers ‘migrate’ to different layers to
equalize fiber lengths. If migration is incomplete, there will exist some slack visible as buckling in the
fibers due to inefficient migration of fibers, which can lead to inefficiencies in the bundle load-carrying
capacity and reductions in strength [Phoenix 1979].

In this paper, we do not model specifically the process of migration. It is assumed that it is complete
so that an ideal helical structure is achieved over some bundle length suitable for analysis. Study of the
effects of incomplete migration beyond that considered already in [Phoenix 1979] will be left for future
work.

4.2. Transformation of strains. In this work, we frequently need to transform fiber strains between the
individual fiber axis and the bundle axis along which the load is applied. The relationship between the
applied bundle strain, εy, and the axial strain, εf, in a fiber of layer k is taken from basic yarn mechanics
[Hearle et al. 1969] and is given by

εf(αk) = εy(cos2 αk − ν sin2 αk). (10)

In the above, ν is the Poisson’s ratio of the yarn. For simplicity we assume ν = 0, and thus, neglect any
changes in the radial dimension of the yarn under axial loading.

4.3. Twist-modified equal load-sharing (TM-ELS) rule. In the case of a parallel fiber bundle, ELS is
straightforward and does not violate any of the equilibrium conditions. To modify ELS to apply to a
twisted bundle, we simplify the problem greatly by satisfying load equilibrium conditions only in the
yarn axis direction. Our general scheme is to model the failure process as progressing in discrete steps
t = 0, 1, 2, . . . in the following way:

(i) in any particular step, t , the axial stresses of the surviving fibers are calculated and then compared
with the assigned fiber strengths X i (as in the case of a parallel fiber bundle);

(ii) from this comparison, any fiber whose axial stress exceeds its assigned strength is considered break-
ing in this step. The pre-break stress components in these fibers are resolved along the bundle
axis;
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(iii) these resolved components are then redistributed equally to the stress components of the surviving
fibers also acting along the yarn axis, and the stresses of these survivors acting along their own
respective axes are recalculated;

(iv) the stresses in these newly broken fibers are then set to zero.

Formulating this approach mathematically, at step t we denote the stress in fiber i acting along its own
axis (not the yarn axis) as T (t)

f,i as in (i) in the above. T (t)
f,i is considered as composed of two components:

The first is the stress carried by the fiber T ε(t)
f,i due to the applied load as if all the fibers are intact and

the second component is the sum of the additional stress portions inherited from the broken fibers T r(t)
f,i .

Summing these, for fiber i we have

T (t)
f,i =

{
T ε(t)

f,i + T r(t)
f,i , for T (t)

f,i < X i ,

0, otherwise,

where X i is its tensile strength. From Equation (10) with ν = 0, we have

T ε(t)
f,i = Ef εf,i = Ef ε

(t)
y cos2 αf,i .

At each step we recalculate Tf,i according to

T (t+1)
f,i =

T ε(t+1)
f,i + T r(t)

f,i +

∑nb
j=1 cos αf,b( j) Xb( j)

(n−Nb) cos αf,i
, for T (t+1)

f,i < X i ,

0, otherwise,
(11)

where b( j) is the index number of the j th failed fiber (that is, the j th failed fiber is fiber b( j) in the yarn),
nb is the number of new broken fibers when going from step t to t + 1, and Nb is the total number of
broken fibers at t + 1. In this equation, we see a stress enhancement effect in the benefactor fiber (along
its axis) that results when it has a larger helix angle compared to the fiber that failed.

The TM-ELS rule is embodied in the RHS of Equation (11), which has three terms: the first term is
the stress carried by the fiber as if all the fibers are intact, the sum of the first and second terms is the
stress in (i) on page 1432, the numerator of the third term comes from (ii) and (iii), and the denominator
in the third term accounts for (iv). We note that t does not necessarily correspond to an increment in the
applied loading; the index t is increased either

(a) when we increase the external load level, or

(b) when at a given external load level, the redistribution of stresses leads to failure of more fibers.

4.4. Bundle stress. The cross-sectional area of the bundle (neglecting void space between fibers) is
given by

A =

l∑
k=1

nk A
cos αk

=

n∑
i=1

A
cos αf,i

, (12)

where A is the fiber cross-sectional area perpendicular to the fiber axis. The nominal bundle stress σ

is the sum of the fiber force components resolved along the bundle axis divided by the bundle area A
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(a) (b)

α1 = 0
α2 αl−1 αs ᾱ

Figure 4. Simplified yarn geometry. (a) Layer configuration with multiple
angles, (b) simplified geometry where all layers have the same helix angle,
ᾱ = cos−1(

∑l
k=1 nk cos(αk)/n), which is the mean helix angle in the general case. The

dashed lines indicate the yarn axis direction.

[Phoenix 1979]

σ =

∑n
i=1 Tf,i A cos αf,i

A
. (13)

Substituting Equation (12) into Equation (13), we have

σ =

∑n
i=1 Tf,i cos αf,i∑l

k=1
nk

cos αk

=

∑n
i=1 Tf,i cos αf,i∑n

i=1
1

cos αf,i

. (14)

Note that the stresses in individual surviving fibers will be larger than σ especially when some fibers
have failed.

4.5. Analytical model based on geometrical averaging. In this section, we develop a probabilistic bun-
dle strength model that averages the fiber helical paths across the bundle to obtain a uniform bundle
geometry. In doing so, we define a mean helix angle, ᾱ, for the ideal helical structure given as

ᾱ = cos−1
(∑l

k=1 nk cos αk

n

)
, (15)

so that ᾱ is weighted by the fraction of all the fibers in each layer nk/n, which increases when traveling
from center to the surface of the bundle. In essence, this model considers all the fibers to follow the same
helical path with ᾱ then the TM-ELS rule of Equation (11) reduces to

T (t+1)
f,i =

T ε(t+1)
f,i + T r(t)

f,i +

∑nb
j=1 Xb( j)

(n−Nb)
, for T (t+1)

f,i < X i ,

0, otherwise,
(16)

T (0)
f,i = T (0)

= Efε
(0)
y cos2 ᾱ, (17)
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where the second line gives the initial stress at t = 0 and where ε
(0)
y is the initially applied bundle strain.

Combining Equations (16) and (17) shows that all intact fibers will sustain the same stress along the
fiber axis, that is,

T (t+1)
f,i =

{
T for T (t+1)

f,i < X i ,

0 otherwise.
(18)

In Equation (14), replacing cos αf,i by cos ᾱ given in Equation (15), the nominal bundle stress along
the bundle axis becomes

σ =

∑n
i=1 Tf,i cos2 ᾱ

n
,

and by Equation (18), when there are Nb failed fibers, σ becomes

σ =

(n − Nb

n

)
T cos2 ᾱ. (19)

The instantaneous fiber stress component acting along the bundle axis is s = T cos2 ᾱ, whereby Equation
(19) simplifies to

s =

( n
n − Nb

)
σ,

which is the well-known ELS expression for s as a function of σ , n, and Nb.
The idea of a mean angle ᾱ and an equivalent stress T for all fibers may well represent the condition

of complete migration, which occurs over a short yarn length scale. In this case, a fiber resides in a
particular layer only over a very short distance along the yarn axis. Thus, its local tension at a particular
cross section is more reflective of the average helix angle than the helix angle of the layer in which it
currently resides.

For Weibull fibers under stress T along its axis, the corresponding fiber failure cumulative probability
distribution function (cdf) F(T ) is

F(T ) = 1 − exp
{
−

( T
σδ

)ρ
}
. (20)

As in Daniels’ bundle theory, we cast F(T ) in terms of s, the fiber stress acting along the bundle axis.
Substituting s = T cos2 ᾱ into Equation (20) yields

F(s) = 1 − exp
{
−

( s
cos2 ᾱσδ

)ρ
}

.

Following geometric averaging, the strength of a twisted bundle corresponds to that for a parallel
bundle of fibers whose strengths follow a Weibull distribution with the same shape parameter ρ but
a ‘modified’ scale parameter σδ,α = cos2 ᾱσδ. Hence, the asymptotic distribution function for bundle
strength will be Gaussian with mean µG and standard deviation γG given by

µG = σδ,α(ρe)−1/ρ
= µD cos2 ᾱ, γG =

(σδ,α
√

n

)
ρ−1/ρ

√
e−1/ρ(1 − e−1/ρ) = γD cos2 ᾱ,

where µD and γD are the mean strength and standard deviation of a Daniels parallel fiber bundle given
by Equation (5).
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Using the [Smith 1982; McCartney and Smith 1983] corrections we obtain improved estimates, µ∗

G
and γ ∗

G, for the mean and standard deviation:

µ∗

G = µD cos2 ᾱ

{
1 +

0.996
n2/3

(e2/ρ

ρ

)1/3
}
, γG

∗
= γD cos2 ᾱ

√
1 − 0.317

(µD

γD

)2(e2/ρ

n2ρ

)2/3
.

4.6. Analytical model based on statistical averaging. In this section, we develop a second probability
model for bundle strength, based on statistical averaging, where we average the failure probabilities of
the fibers across the layers in an ideal helical structure. In doing so, we find it convenient to change to a
continuous description of the bundle geometry. We let r̄ = r/R, that is, the radial distance normalized by
yarn radius, so that r̄ = 0 is the yarn axis and r̄ = 1 corresponds to the yarn radius. The fiber helix angle
α(r̄) is taken as a continuous function of r̄ . Accordingly, α(r̄ = 0) = 0 and α(r̄ = 1) = αs. Likewise we
let nr (r̄) be the number of fibers within a cylinder of radius r̄ , taking it to be a continuous function of
r̄ . Thus nr (r̄ = 0) = 0 and nr (r̄ = 1) = n. Therefore dnr (r̄)/n is the fraction of fibers between r̄ and
r̄ + dr̄ .

As mentioned earlier, the fiber stresses Tf,i are generally a sum of the stress generated from the applied
loading, assuming no fiber breaks, T ε

f,i , and the stress components transferred from broken fibers, T r
f,i .

The former stresses are distributed nonuniformly depending on the fiber helix angles, whereas the latter
additional stresses transferred from fiber breaks will resolve to have same components acting along
the yarn axis according to the TM-ELS rule described above. As fiber failures accumulate, these latter
contributions, T r

f,i , typically greatly exceed the nonuniform contributions T ε
f,i . In this case, the component

of Tf,i acting along the yarn axis can be reasonably considered equal for all fibers, and thus, taken as
s = Tf,i cos2 α(r̄), as defined earlier. Accordingly, the probability of failure F(Tf,i ) for fiber i , with helix
angle α(r̄), in terms of s is

F(s) = 1 − exp
{
−

(
s

σδ cos2 α(r̄)

)ρ}
.

The assumption that the component of stress along the yarn axis, s, is equal for all fibers greatly simplifies
the calculation of average failure probability across the yarn cross-section. Denoting this average as F̄(s),
we have

F̄(s) =

∫ αs

α=0

[
1 − exp

{
−

(
s

σδ cos2 α(r̄)

)ρ}]
dnr (r̄)

n
. (21)

The functions nr (r̄) and α(r̄) are calculated from the bundle packing density ν(r̄). As in [Phoenix
1979], for large bundles we take

ν(r̄) =
φ(∞)

π
cos α(r̄), φ(∞)

=
1
2(1 + sec αs), (22)

for 0 ≤ r̄ ≤ 1. Equation (22) assumes that the fiber packing density is uniform in the yarn cross-section,
that is, the void fraction is constant with respect to radial position. (Actually, the void fraction may be
expected to decrease slightly as r decreases, since the radial pressure in the yarn increases from yarn
surface to the yarn center. Nevertheless, such effects are difficult to model, and little is believed to be
lost with the uniform packing assumption.) Since ν(r̄) satisfies∫ 1

0
ν(r̄)2π r̄dr̄ = 1,
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the fraction of all fibers within a cylinder of radius r̄ can be written as

nr (r̄)

n
=

∫ r̄

0
ν(r̄)2π r̄ dr̄ .

Upon differentiating this equation with respect to r̄ , we get

dnr (r̄)

n
=

φ(∞)

π
cos α(r̄) 2π r̄dr̄ . (23)

Substituting Equation (23) into Equation (21), the ‘average’ probability distribution for fiber failure can
be rewritten in terms of α(r̄) only as

F̄(s) =

∫ αs

α=0

[
1 − exp

{
−

(s sec2 α(r̄)

σδ

)ρ
}]

φ(∞)

π
cos α(r̄) 2π r̄dr̄ . (24)

For an ideal yarn geometry we have

tan α(r̄) =
2π r̄

h̄
, (25)

where h̄ = h/R and at the surface of the yarn

tan αs =
2π

h̄
. (26)

From Equation (25) we get

sec2 α dα =
2π

h̄
dr̄ . (27)

Substituting Equations (24)–(27) into Equation (21) yields

F̄(s) =
2φ(∞)

tan2 αs

∫ αs

α=0

[
1 − exp

{
−

(s sec2 α

σδ

)ρ
}]

tan α sec α dα

= 1 −
2φ(∞)

tan2 αs

∫ αs

α=0
exp

{
−

(s sec2 α

σδ

)ρ
}

tan α sec α dα

= 1 −
2φ(∞)

tan2 αs

∫ sec αs

1
exp

{
−

( s
σδ

)ρ

x2ρ

}
dx

= 1 −
φ(∞)

ρ tan2 αs

( s
σδ

)−1/2
∫ (s/σδ)

ρ sec2ρ αs

(s/σδ)
ρ

e−y y1/2ρ−1dy, (28)

where in the third line we made the change of variables sec α = x , and again in the fourth line as
y = (s/σδ)

ρ x2ρ . The integral in Equation (28) can be written in terms of upper incomplete Gamma
functions [Abramowitz and Stegun 1964] as shown below

F̄(s) = 1 −
φ(∞)

ρ tan2 αs

( s
σδ

)−1/2
[
0

( 1
2ρ

,

{
s
σδ

}ρ )
− 0

( 1
2ρ

,

{
s
σδ

}ρ

sec2 αs

)]
.

In statistical averaging, the problem for a twisted bundle reduces to that for a parallel fiber bundle with
fiber strength probability distribution given by F̄(s). As a result, the bundle strength is asymptotically
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normal where the asymptotic bundle mean strength and standard deviation are given by

µS = s∗
[1 − F̄(s∗)], γS =

s∗

√
n

√
F̄(s∗)[1 − F̄(s∗)],

where s∗ is the point where the maximum of µ(s) occurs. The final result according to statistical aver-
aging is calculated by applying corrections due to [Smith 1982; McCartney and Smith 1983]. Thus, the
improved estimates for the mean and standard deviation, µ∗

S and γ̄S
∗ are

µ∗

S = µS + 1̄∗

n, γS
∗
= γS

√
1 − 0.320

(1̄∗
n

γS

)2
,

where

1̄∗

n =
0.996
n2/3

{
F̄ ′(s∗)2s∗4

2F̄ ′(s∗) + s∗ F̄ ′′(s∗)

}1/3

.

5. Simulation algorithms

We now discuss the Monte Carlo simulation algorithm for the failure of a twisted bundle of Weibull fibers
having shape parameter ρ, and scale parameter σδ. These fibers are assumed to have identical diameter,
cross-sectional area, and Young’s modulus, and are arranged in l layers having ideal helical structure.
For a given twisted bundle surface helix angle, αs, the helix angle of each layer can be determined using
Equation (9). The number of fibers in each layer, nk , can be determined using Equation (8) and the total
number of fibers n is the sum.

For a given set of values of the above parameters, we first assign a Weibull strength to each of the n
fibers. We assume that these fibers are twisted without tension so the fibers do not have any pre-stress
or pre-strain. For a given set of parameter values, the number of replications performed by the Monte
Carlo simulation is ns .

Starting from zero, we can either apply a monotonically increasing uniform stress or strain. Both algo-
rithms are described briefly below. These two algorithms yield the same empirical probability distribution
and mean strength results except that the stress-strain curves obtained by these two algorithms exhibit
different characteristics. In a stress-controlled experiment failure is sudden and the external load drops
from the maximum to zero. In a strain-controlled experiment, the bundle stress starts from zero, attains
a maximum defined as the strength, and then decreases to zero while the bundle strain is monotonically
increased indefinitely.

5.1. Stress-controlled experiment. In a stress-controlled experiment the stress is increased incremen-
tally in predetermined small steps. Whenever a step encounters a fiber for which its axial stress exceed
its strength, the fiber is broken and then its stress is distributed equally among the intact fibers according
to TM-ELS. The algorithm then checks to see if the additional loads on the survivors would result in
any of their assigned strengths being exceeded, and if so, these fibers are then broken and their updated
loads are redistributed. If not, equilibrium has been achieved at that step in which case new incremental
steps in external load are applied until some survivors have their strengths exceeded. These fibers are
then broken and the stress redistribution process is repeated.
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Eventually we reach bundle collapse whereby all remaining fibers fail with no further increase in the
applied stress. The threshold external stress beyond which all the fibers fail is recorded as the bundle
strength.

5.2. Strain-controlled experiment. In a strain-controlled experiment we do not have to explicitly redis-
tribute the load from broken fibers to intact ones. At each increment in applied bundle strain we calculate
fiber strains for each layer. If the strain of a fiber in some layer exceeds its failure strain then that fiber
becomes broken and the external bundle load and stress for that bundle strain is recalculated. The bundle
stress at increment number t is then given by

σ (t)
=

∑n
i=1 Efε

(t)
f,i cos αf,i∑n

i=1
1

cos αf,i

, ε
(t)
f,i =

{
εf,i for εf,i < ξi ,

0 otherwise,

where ξi is the failure strain of fiber i . The bundle strength is given by strength = maxt {σ
(t)

}.

6. Results and discussion

In this section, we discuss and compare the theoretical and Monte Carlo simulation results for the strength
of a twisted fiber bundle.

6.1. Validation of simulation algorithm. As a form of validation we performed Monte Carlo simulation
for the case of a parallel fiber bundle, that is, αs = 0. In Figure 5 the simulated bundle mean strength
and asymptotic standard deviation normalized by σδ are compared with corrected Daniels’ values, µ∗

D
and γ ∗

D, normalized by σδ, given by Equation (7), as ρ varies from 2 to 10. Note that all estimates for
the mean and standard deviation in Figure 5 are normalized by σδ . We achieve good agreement between
the parallel bundle theory and simulation for the entire range of ρ and both bundle sizes considered,
n = 130 and n = 1185. If corrections by [Smith 1982; McCartney and Smith 1983] are not applied,
then µD slightly underestimates and γD overestimates the corresponding simulated values. The means
for different bundle sizes differ only slightly because of the correction to the Daniels’ value. Likewise
the standard deviation values will collapse almost onto one curve when scaled by

√
n (not shown in the

figure).

6.2. Failure behavior. From the simulation results we have noticed that both αs and ρ clearly affect the
nature of failure. In the case of low αs and low ρ the fiber breaks are spread randomly across the cross-
section of the bundle. Also the fraction of failed fibers when the maximum bundle stress is achieved
is relatively high, indicative of a ductile-type failure process. In the case of high αs and high ρ there
are relatively fewer failed fibers when the peak bundle stress is reached, and these are more likely to
concentrate near the center of the bundle, indicative of a brittle-type failure.

The observed transitions in failure mode are a consequence of the interaction of ρ and the strain
distribution among the layers, which depends on αs. As the variation in fiber strength increases (ρ
decreases) failure progression becomes dominated by the widely dispersed fiber strengths. It is more
dispersed for lower αs, as the variation in fiber strains across the bundle is mild. As the variation in fiber
strength decreases (ρ increases) failure progression becomes dominated by the fiber strain distribution.
In this case, as we increase αs the gradient in strain between the highly strained center and less strained
surface layers steepens, promoting failure to be localized towards the center.
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Figure 5. Normalized mean and asymptotic standard deviation for bundle strength ob-
tained from Monte Carlo simulation (ns = 10000) as compared with the corresponding
corrected Daniels’ values given by Equation (7).

6.3. Stress-strain curves. Figure 6 shows average stress-strain curves (average of 500 runs) for bundles
with 62 and 1185 fibers, respectively, but otherwise the same parameter values αs = 12o, ρ = 2 and
8. Also shown are sample stress-strain curves for three successive realizations. For the smaller bundle
with only 62 fibers the sample stress-strain curves show significant deviation from the average behavior
reaching 5-10% near the peak stress. This implies that for a long chain of such bundles one might expect
the chain to be much weaker than the average bundle strength as the strength would be governed by the
weakest bundle. On the other hand, for the 1185 fiber bundle the deviations are much smaller being 1–2%,
so a long chain of such bundles would be much closer to the average bundle strength. The fluctuations
in the bundle strength grow as the variation in fiber strength increases, such as when ρ = 8 decreases to
ρ = 2.

Figure 6 shows that the initial bundle modulus is independent of ρ. This high initial modulus occurs
because of the initiation of a relatively few randomly dispersed breaks. After further straining, the slope
of the stress-strain curve decreases at a rate which depends on ρ, since this controls the variability and
thus, the rate at which weak fibers are encountered as strain increases. Eventually the peak stress is
reached when loss of fibers through breakage outweighs the increased stresses occurring in the survivors
with increasing strain, these being different from fiber to fiber. (In the stress-controlled experiment
this corresponds to the stress (and strain) at which instability is reached and sudden collapse occurs.)
Concomitantly the stress drops with further straining at a rate which also depends on ρ, becoming more
abrupt and brittle-like as ρ increases.

6.4. Cumulative probability density functions. Figure 7 shows the simulated cumulative probability
distribution function for the strength of a twisted fiber bundle on normal probability paper, namely,
erf−1(2Gn − 1) vs. S/σδ, where we recall that Gn is the bundle strength cumulative distribution func-
tion. The linearity of the distributions suggests that in all cases the strength distribution is virtually
normal. Figure 7a displays its dependence on the surface helix angle αs, (αs = 0o, 6o, 12o, 18o, 24o)
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for the case of ρ = 6 and n = 1185. Figure 7b shows its dependence on bundle size n, (n = 130, 653,
1185) for ρ = 4 and αs = 12o. From Figure 7a we find that the strengths decrease substantially as αs

increases, while the standard deviation (inversely related to the slope of the curves) stays more or less
independent of αs and Figure 7b shows that the bundle size n has its most significant impact on the
bundle standard deviation, which is approximately inversely proportional to n. Also shown in Figure 7
are the corresponding predictions from the model based on statistical averaging. In general, we find that
when αs < 18o the model achieves very good agreement with the simulation result. For larger values of
αs, the model provides a conservative estimate.
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Figure 6. Thin lines are sample stress strain curves and thick lines are average (of 500
runs) stress strain curves for given values of ρ, αs, and n.
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Figure 7. Distribution functions on normal probability paper (erf−1(2Gn − 1) versus
S/σδ) for 10000 replications. The parameters used for these plots are (a) n = 1185,
ρ = 6 and αs = 0◦, 6◦, 12◦, 18◦, 24◦; (b) ρ = 4, αs = 12◦ and n = 130, 653, and 1185.
Here S is the strength of the bundle obtained either from the simulation or size corrected
statistical averaging theory.
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6.5. Strength and standard deviation efficiency, and coefficient of variation. To study the dependence
of the mean bundle strength on αs and ρ, we calculate the strength efficiency of the fiber bundle, Eµ,
which is the ratio of mean bundle strength to mean fiber strength,

Eµ =
µ∗

E(X)
,

where µ∗ is the mean bundle strength for given n obtained either using one of the theories (corrected for
n) or a simulation and E(X) is the mean strength of the fiber. For Weibull fibers, E(X) = σδ0(1 + 1/ρ),
where 0( ) is the Gamma function. For instance, in the case of geometrical averaging, the strength
efficiency for a very large bundle (not requiring a size correction) is the closed form expression

E(∞)
µ =

cos2 ᾱ σδ(ρe)−1/ρ

σδ0(1 + 1/ρ)
=

cos2 ᾱ (ρe)−1/ρ

0(1 + 1/ρ)
,

which depends only on the mean helix angle, ᾱ, and Weibull shape parameter, ρ.
Another useful quantity for reflecting variability in the bundle strength is the coefficient of variation,

(CV), which is the ratio of the standard deviation to the mean, expressed as

CV =
γ ∗

µ∗
. (29)

For a measure of the statistical variation in bundle strength compared to that of a single fiber, we define
the transfer efficiency of the variability as the ratio of the bundle standard deviation to the fiber standard
deviation, that is

Eγ =
γ ∗

√
Var(X)

, (30)

where Var(X) is the variance of fiber strength X . Again the bundle γ ∗ and µ∗ are calculated for a given n
either from one of the three theories (corrected for n) or simulation. In the case of geometrical averaging,
Equations (29) and (30) for a large bundle (not requiring a size correction) become

CV(∞)
=

√
1 − e−1/ρ

n e−1/ρ
, E(∞)

γ =
cos2 ᾱ ρ−1/ρ

√
e−1/ρ(1 − e−1/ρ)√

n
[
0(1 + 2/ρ) − 02(1 + 1/ρ)

] .

In all theories CV, Eµ, and Eγ are independent of σδ.
Figure 8 compares simulation and theoretical predictions for Eµ vs. αs for different values of ρ.

Generally Eµ decreases as ρ decreases (that is, the variability in the fiber strength increases) and αs

increases. As αs increases, more fibers in the bundle become misaligned with the direction of loading.
As ρ decreases, a higher proportion of weaker fibers exists in the bundle. Figure 8 shows that all theories
capture the effects of ρ and αs on the strength efficiency of the twisted fiber bundle very well. For
both n = 130 and 1185 and smaller αs (up to 18o) there is almost no difference between theory and
simulation. However, for higher values of αs there are slight differences, which diminish as ρ decreases,
that is, the variability increases and a rather diffuse-type of failure mode occurs. TM-ELS translates to a
diffuse failure pattern when αs and ρ are low, but not when they are both high. Therefore the discrepancy
between theory and simulation at high ρ and high αs is attributed to the fact that under these conditions
the failure is more or less localized near the center of the yarn, up to the point of collapse.
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Figure 8. Strength efficiency, Eµ, versus surface helix angle, αs. Dashed and solid
lines correspond to theories based on geometrical averaging and statistical averaging,
respectively. Dotted lines are obtained using the theory of [Phoenix 1979]. The marker
points are simulation results.

Figure 9 depicts the behavior of the CV for n = 1185. The simulation results show that it is independent
of αs with the exception of a slight drop in CV at a high value of αs (≈ 25o). The latter drop can
again be attributed to less variability in the failure patterns from one bundle to another, as αs increases.
The agreement between the theories and simulation is very good. In cases of smaller ρ, the statistical
averaging model performs better than the other theories discussed earlier. For smaller bundles, n = 130
and lower ρ < 4 the discrepancies between the asymptotic theories and simulation increase as shown in
Figure 10. The thick lines in Figure 10 are the CV predictions with corrections applied to both the mean
and standard deviation, that is, CV = µ∗/γ ∗, as in Figure 9. Again in these cases, the statistical averaging
model outperforms the others. The thinner lines in Figure 10 correspond to the CV calculations when
correcting the mean only, CV = µ∗/γ , which is shown to provide a conservative estimate.

Figure 11 shows the dependence of Eγ on ρ and αs. While γ and the CV increase as the variability
in fiber strength increases (ρ decreases), the Eγ decreases (improves). As shown, the theories provide
equally good agreement for n = 1185, but for n = 130, the statistical averaging model consistently
provides values closer to the simulation results. Also, given in Table 1 are dimensional values of bundle
strength mean and standard deviation to show how they compare.

7. Effect of friction and chain-of-bundles calculation

Beginning with the model for the failure of a single bundle as introduced earlier in the paper, we outline a
basic framework for predicting the strength of a twisted yarn of length L . For this, we apply the chain-of-
bundles (COB) model, where the strength of weakest bundle in the chain is the strength of the chain. The
COB model requires defining the length of each bundle or link in the chain, that is, a “characteristic stress
transfer length”, which is appropriately defined by the fiber length needed for the fiber to recover the
stress away from a break. This length depends on the interfiber friction as well as the contact pressures
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Figure 9. Coefficient of variation scaled with bundle size,
√

nCV, vs surface helix angle,
αs for n = 1185, and ρ = 2, 4, 6, 8, and 10. Dashed and solid lines correspond to theories
based on geometrical averaging and statistical averaging, respectively. Dotted lines are
obtained using the theory of [Phoenix 1979]. The marker points are simulation results.
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Figure 10. Coefficient of variation scaled with bundle size,
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nCV, vs surface helix
angle, αs. Thick lines correspond to values where correction to both strength mean and
standard deviation are applied, and in the case of thin lines, correction is applied to
strength mean only. Dashed and solid lines correspond to theories based on geometrical
averaging and statistical averaging, respectively. Dotted lines are obtained using the
theory of [Phoenix 1979]. The marker points are simulation results.
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respectively. Dotted lines are obtained using the theory of [Phoenix 1979]. The marker
points are simulation results.
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between the fibers caused by twisting. A rigorous analysis of friction effects and their impact on this
characteristic link length are beyond the scope of this work and are treated in a sequel.

For a simple demonstration of the COB model, we employ a friction length given by [Alexander 1952]

lf =
βAdf

(1 − φA) f sin2 αA
,

where f is the friction coefficient, φA and βA are two adjustable parameters, taken by Alexander to be
1/2, and αA is the corresponding helix angle satisfying tan αA = βA tan αs. We define the characteristic
length of a bundle in terms of the friction length, with φA = βA = 1/2, as

δc = 2lf cos αA =
2 df cos αA

f sin2 αA
= δc(αs) =

4df
√

4 + tan2 αs

f tan2 αs
, (31)

where we have rewritten it in terms of αs. According to Equation (31), the characteristic length decreases
as αs increases. The number of bundles in the yarn of length L is m(αs) = L/δc(αs), and this number
increases with αs.

Figure 12 clearly shows that the strength rises, as αs increases, up to a maximum around 30◦. However,
the αs corresponding to optimal strength is much higher than what is typically observed, though not very
different from what [Alexander 1952] obtained for a staple yarn. In an actual yarn with continuous
filaments twisting introduces fiber slack in inner fibers that must be relieved by periodic fiber migration
along the yarn. Such migration becomes increasingly difficult as the twist angle increases and thus contact
forces increase. For this reason the yarn strength peaks prematurely as slack effects cause uneven fiber
load distribution, thus reducing the strength beyond the effect of twist discussed earlier in the paper. On
the other hand, in a staple yarn that has discontinuous fibers, these slack effects are easily eliminated by
fiber sliding and thus strength peaks at a twist angle much closer to our values. Based on the weakest
link concept, it is expected that the strength of the longer yarn with L = 0.1 meters would be smaller
than that of the shorter yarn with L = 0.01 meters. Results in Figure 12, which plots normalized mean
strength versus surface helix angle, show the reverse because of the much smaller normalization strength
µ0 for the longer yarn with L = 0.1 meters.

8. Conclusions

Monte Carlo simulation and analytical models are developed for the statistical strength of twisted fiber
bundles having Weibull fibers. We see important effects like the approximate normality of the bundle

Strength mean (GPa) Strength standard deviation (GPa)

Fiber 2.78 0.540
Bundle (αs = 0◦) 1.88 0.023

Bundle (αs = 30◦) 1.61 0.020

Table 1. Typical bundle strength mean and standard deviation values for a fiber with
σδ = 3 GPa, ρ = 6, and n = 1185.
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strength distribution, decrease in strength with number of fibers in bundle, transition from a ductile, for
small αs and ρ, to brittle failure mode for large αs and ρ. We further use a simple chain-of-bundles
model showing the presence of an optimal twist angle that gives maximum strength. However, a more
detailed study, which considers pressure development in the bundle and stress build up in fibers from
broken ends, is required to fully understand the effects of friction on bundle strength and optimal αs.
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