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CONTACT STRESS ON A ROTATING ELASTIC BAND SAW BLADE USING THE
THEORY OF A COSSERAT SURFACE

M. B. RUBIN AND E. TUFEKCI

The value of the contact stress between a band saw blade and the driving wheel is modeled using the
theory of an elastic Cosserat surface. Specifically, we use nonlinear Cosserat theory to model the bend-
ing of an elastic plate into a rotating right circular cylindrical tube with associated end moments. The
resulting equations are then linearized, the end moments are relieved and the reference length of the plate
is adjusted to cause contact of the blade with the wheel. The results indicate that the nonuniformity in
the deformed shape of the saw blade significantly influences the predictions of the value and distribution
of the contact stress between the blade and the wheel even though the blade is thin. This is in addition
to the influence of a crowned wheel, and the deformed shape due to the tensioning process, which are
typically used to help control tracking of the blade on the wheel. Also, we showed that the value of
this contact stress predicted by a simple Lamé type solution remains about 50% of that predicted by the
Cosserat solution and that the effect of the rotational speed of the wheel is negligible for typical operating
conditions of thin wood-cutting saws.

1. Introduction

A typical band saw blade is a thin steel strip that has been bent into a cylindrical shell with gullets cut out
on one of the edges to create teeth. The blade is positioned over two rotating wheels that are separated
by a controlled distance. To prevent catastrophic damage to the teeth and the wheel, the blade is only in
partial contact with each wheel so that the teeth can hang freely over the edge of the wheel (Figure 1).
Tension in the blade can be controlled by adjusting the positions of the wheels. Although in practice the
force between the band wheels is controlled, the model used here treats the distance between the wheels
as displacement controlled instead of load controlled.

A recent review of mechanical problems relating to aluminum-cutting high-speed band saws in [Gen-
draud et al. 2003] describes problems which reduce the quality of the surface of the material being cut,
reduce the precision of the dimensions of the cut, and shorten the life of the saw blade. In other studies,
attention has been focused on saw vibrations [Mote Jr. 1965; Mote and Naguleswaran 1966; Le-Ngoc
and McCallion 1999; Damaren and Le-Ngoc 2000; Gendraud et al. 2003; Kong and Parker 2005] and
tracking of the blade on the wheels [Wong and Schajer 1997; Wong and Schajer 2002; Barcik 2003].
Tracking of the blade can be significantly influenced by the contact stress distribution between the blade
and the wheel. In practice, contact stress is modified by using a crowned wheel and by a roll tensioning
process which changes the unloaded shape of the blade. Two narrow crowned rollers are used to squeeze
the blade, causing plastic deformations and residual stresses. These residual stresses cause the unloaded
blade to attain a deformed shape that can be optimized to help control tracking on the wheel. [Lister and
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Figure 1. Sketch of the geometry of the saw blade and wheel.

Schajer 1993] analyzed this effect using plate theory. Complete elastic-plastic analysis of a saw blade
remains a difficult problem because the blade experiences finite rotations and is only in partial contact
with the wheels. The objective of this study is to analyze the contact stress and deformations of the
rotating band saw blade. Here, a formulation is proposed which can be used to model the effects of a
crowned wheel and the tensioning process. Although these effects are significant, we first concentrate
on the contact stress distribution caused by nonuniform shape of the blade when a plate is deformed
elastically and joined at its edges to form the blade.

In the analysis of contact stress, the straight portions of the blade are ignored and the blade is modeled
as a circular cylindrical shell that is stretched and placed in partial axial contact with a circular wheel
(Figure 1). The blade is considered to be a plate in its stress-free reference configuration. This plate is
then deformed into an axisymmetric shell which is joined perfectly at its seam. The deformation causes
circumferential tension near the blade’s outer surface and circumferential compression near its inner
surface. If the deformed plate (blade) were to remain a right-circular cylinder then the Poisson effect
would require nonzero moments to be applied to the axial edges of the blade. However, when these edge
moments are relieved and the surfaces and edges of the blade are stress-free, the blade deforms so that
its mean radius is not uniform along its axes of symmetry. Consequently, the contact stress between
the blade and the wheel is influenced by this prestressed state. These nonuniform deformations are in
addition to those that are caused by the tensioning process described earlier. Also, the effect of the
angular velocity of the wheel is shown to be negligible for typical operating conditions of wood-cutting
saws.
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To model the finite deformation of the plate into the axisymmetric shell and the finite rotations of the
deformed blade it is necessary to use a nonlinear shell theory. Moreover, it is well known that contact
problems of thin structures need to use enhanced theories which model normal extension, that is, changes
in thickness, and shear deformation of the structure (for example, [Naghdi and Rubin 1989]). Here, the
blade is modeled using the theory of a Cosserat surface of [Naghdi 1972; Rubin 2000]. However, to
determine the deformed shape of the blade and the distribution of contact stress the nonlinear equations
are linearized about a finitely deformed state.

An outline of this paper is as follows. Section 2 is a brief summary of the nonlinear Cosserat equations,
and Section 3 describes a simple finite deformation solution. Section 4 develops approximate equations
linearized about the solution in Section 3, and Section 5 describes the procedure used to obtain an
analytical solution of these linear equations. Section 6 is a discussion of the results, Appendix A includes
further details of the solution and Appendix B shows a Lamé type solution.

Throughout the text, bold-faced symbols are used to denote vector and tensor quantities. Also, I
denotes the unity tensor; tr(A) denotes the trace of the second order tensor A and AT denotes the
transpose of A. The scalar a · b denotes the dot product between two vectors a, b; the scalar A · B =

tr(ABT ) denotes the dot product between two second order tensors A, B; the vector a × b denotes the
cross product between a and b; and the second order tensor a ⊗ b denotes the tensor product between
a and b. The usual summation convention over repeated lower cased indices is implied. The range of
Latin indices is (1, 2, 3) and Greek indices is (1, 2). A glossary of notation is included at the end of this
paper.

2. A brief summary of the nonlinear Cosserat equations

The theory of a Cosserat surface, which is a model for a shell-like body, has been described in detail
in [Naghdi 1972]. This theory is sufficiently general to model normal extension and shear deforma-
tion. Here, we make use of the formulation and notation presented in [Rubin 2000]. Specifically, the
kinematics of the shell’s stress-free reference configuration are characterized by{

X(θα), D3(θ
α)
}
,

where X locates a material point relative to a fixed origin, the director vector D3 models a material fiber
through the shell’s thickness, and θα, (α = 1, 2), are convected Lagrangian coordinates. Similarly, the
kinematics of the shell’s present deformed configuration are characterized by{

x(θα, t), d3(θ
α, t)

}
,

where t denotes time. Also, the tangent vectors Dα, dα, and the directors D3, d3 are defined such that

Dα = X,α , D1/2
= D1 × D2 · D3 > 0,

dα = x,α , d1/2
= d1 × d2 · d3 > 0,

where a comma denotes partial differentiation with respect to θα . Moreover, it is convenient to introduce
the reciprocal vectors Di and di by the expressions

Di
· D j = δi

j , di
· d j = δi

j ,
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where δi
j is the Kronecker delta symbol. For elastic shells it is convenient to define the additional kine-

matic variables

F = di ⊗ Di , C = FT F, E =
1
2(C − I), βα = F−1d3,α − D3,α,

where F is similar to a deformation gradient, E is similar to a Lagrangian strain tensor and βα are
measures of inhomogeneous deformation.

Using the direct approach to the Cosserat theory [Rubin 2000, p. 91], the equations of motion of the
shell can be written in the forms

m(v̇ + y3ẇ3) = mb + tα,α, (2–1a)

m(y3v̇ + y33ẇ3) = mb3
− t3

+ mα
,α, (2–1b)

where a superposed dot denotes material time differentiation holding θα fixed. Here, (2–1a) represents
the balance of linear momentum and (2–1b) represents the balance of director momentum which can be
related to a weighted average over the thickness of the shell of the three-dimensional balance of linear
momentum. The balance of angular momentum is satisfied by the constitutive equations which require a
second order tensor T to be symmetric. Also, m is related to the mass of the shell, {y3, y33

} are constant
director inertia coefficients, the velocity v and director velocity w3 are defined by

v = ẋ, w3 = ḋ3,

the quantities {b, b3
} are assigned fields due to body force and contact stresses on the shell’s major

surfaces, and constitutive equations need to be supplied for the quantities {t i , mα
}.

For the problem under consideration in this paper the stress-free reference configuration of the shell
is taken to be a flat plate of uniform thickness H , with length L and width W defined by

X = θ1e2 + θ2ez, D3 = D3
= e1, ez = e3,

θ2
= Z , 0 ≤ θ1

≤ L , −
W
2 ≤ Z ≤

W
2 ,

D1 = D1
= e2, D2 = D2

= ez, A1/2
= D1/2

= 1,

where ei are rectangular Cartesian base vectors and the directions are specified for later convenience in
describing the deformed axisymmetric shell.

Now, for a plate made from a uniform homogeneous elastic material the inertia quantities are specified
by [Rubin 2000, p. 167], as

m = ρ∗

0 H, y3
= 0, y33

=
H2

π2 ,
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where ρ∗

0 is the reference mass density of the material, and the strain energy function, from [Rubin 2000,
pp. 168-169] is

m6 =
µ∗H

1 − 2ν∗
(ν∗(E · I)2

+ (1 − 2ν∗)E · E) +
1
2 H Kαβ

· (βα ⊗ ββ),

K 11
=

H 2µ∗

12

(( 2
1 − ν∗

)
e2 ⊗ e2 + ez ⊗ ez

)
,

K 12
=

H 2µ∗

12

(( 2ν∗

1 − ν∗

)
e2 ⊗ ez + ez ⊗ e2

)
,

K 21
=

H 2µ∗

12

(
e2 ⊗ ez +

( 2ν∗

1 − ν∗

)
ez ⊗ e2

)
,

K 22
=

H 2µ∗

12

(
e2 ⊗ e2 +

( 2
1 − ν∗

)
ez ⊗ ez

)
,

where the constants {µ∗, ν∗
} are the shear modulus and the Poisson’s ratio of the elastic material in the

small deformation limit, respectively. The constitutive equations become

mα
= H Kαβββ,

t i
=

µ∗H
1 − 2ν∗

F
(
ν∗(E · I)I + (1 − 2ν∗)E

)
Di

− mα(d3,α · di ).

For the problem under consideration the body force is neglected, the outer surface of the deformed shell
remains traction free, and its inner surface is free to slip over the wheel but is subjected to a normal
contact stress q, which is positive in compression, in regions that make contact with the wheel. Under
these conditions the assigned fields {b, b3

} are specified by [Rubin 2000, p. 167], now modified to include
the function fr (Z) associated with a localized moment, to model effects of the tensioning process as

mb = q
(
x −

H
2 d3

)
,1 ×

(
x −

H
2 d3

)
,2 ,

mb3
=

q H
2

(
x −

H
2 d3

)
,1 ×

(
x −

H
2 d3

)
,2 + fr (Z)er ,

Next, the plate is deformed into an axisymmetric shell such that the deformed kinematics are

x = r(Z)er (θ) + z(Z)ez, θ =
θ1

R
+ ωt,

R =
L

2π
,

d3 = φr (Z)er (θ) + φz(Z)ez,

v̇ = −rω2er ,

ẇ3 = −φrω
2er ,

(2–2)
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where θ is the angular coordinate defining the cylindrical polar base vectors

er (θ) = cos θe1 + sin θe2,

eθ (θ) = − sin θe1 + cos θe2,

ez = e3,

ω characterizes the angular velocity of the blade, and the functions {r, z, φr , φz} of Z need to be deter-
mined.

Using these expressions it can be shown that

F = di ⊗ Di
=

( r
R

eθ

)
⊗ e2 +

( dr
d Z

er +
dz
d Z

ez

)
⊗ ez + (φr er + φzez) ⊗ e1,

E · I =
1
2

(
φ2

r + φ2
z +

( r
R

)2
+
( dr

d Z

)2
+
( dz

d Z

)2
− 3

)
,

β1 =

(φr

r

)
e2, β2 =

( dφr
d Z

dz
d Z −

dφz
d Z

dr
d Z

)
e1 +

(
−

dφr
d Z φz +

dφz
d Z φr

)
ez( dz

d Z φr −
dr
d Z φz

) ,

m1
=

H 3µ∗

12

(( 2
1 − v∗

)(φr

r

)
+
( 2v∗

1 − v∗

)(− dφr
d Z φz +

dφz
d Z φr

)( dz
d Z φr −

dr
d Z φz

) )
R
r

eθ ,

m2
=

H 3µ∗

12

(( 2ν∗

1 − ν∗

)(φr

r

)
+

( 2
1 − ν∗

)(−dφr
d Z φz +

dφz
d Z φr

)( dz
d Z φr −

dr
d Z φz

) )
(−φzer + φr ez)

( dz
d Z φr −

dr
d Z φz)

,

t1
= µ∗H

(( 2v∗

1 − 2v∗

)
(E · I) +

( r
R

)2
− 1

)
r
R

eθ −
φr

r
m1,

t2
= µ∗H

(( 2ν∗

1 − 2ν∗

)
(E · I)

)( dr
d Z

er +
dz
d Z

ez

)
+ µ∗H

(( dr
d Z

φr +
dz
d Z

φz

)(
φr er + φzez

)
+

(( dr
d Z

)2
+

( dz
d Z

)2
− 1

)( dr
d Z

er +
dz
d Z

ez

))
−

(−φz
dφr
d Z + φr

dφz
d Z )

( dz
d Z φr −

dr
d Z φz)

m2,

t3
= µ∗H

(( 2ν∗

1 − 2ν∗

)
(E · I)

)(
φr er + φzez

)
+ µ∗H

((
φ2

r + φ2
z − 1

)(
φr er + φzez

)
+

(
φr

dr
d Z

+ φz
dz
d Z

)( dr
d Z

er +
dz
d Z

ez

))
−

( dz
d Z

dφr
d Z −

dr
d Z

dφz
d Z )

( dz
d Z φr −

dr
d Z φz)

− m2,

mb = q
(

r
R

−
H
2

φr

R

)(( dz
d Z

−
H
2

dφz

d Z

)
er −

( dr
d Z

−
H
2

dφr

d Z

)
ez

)
,

mb3
= −

q H
2

(
r
R

−
H
2

φr

R

)(
dz
d Z

−
H
2

dφz

d Z

)
er

+
q H
2

(
r
R

−
H
2

φr

R

)(
dr
d Z

−
H
2

dφr

d Z

)
ez + fr (Z)er ,

(2–3)
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where tα are forces and mα are couples, both measured per unit of deformed length of the blade’s edges.

3. A simple finite deformation solution

In this section a simple solution is obtained where the plate is finitely deformed into a right-circular
cylindrical shell and the effect of tensioning is neglected, that is, [ fr = 0 in (2–3)]. Specifically, for this
solution the functions {r, z, φr , φz} are

r = c1 R,

z = c2 Z ,

φr = c3,

φz = 0,

(3–1)

where {c1, c2, c3} are constants. Now, substituting these functions into the expressions in (2–3), it can
be shown that

m1
=

µ∗H 3

6(1 − ν∗)

(
c3

c2
1

)
1
R

eθ ,

m2
=

µ∗H 3ν∗

6(1 − ν∗)

(
c3

c1c2

)
1
R

ez,

t1
= µ∗H

(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3) + (c2
2 − 1)

)
c1eθ −

µ∗H 3

6(1 − ν∗)

(
c2

3

c3
1

)
H 2

R2 eθ ,

t2
= µ∗H

(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3) + (c2
2 − 1)

)
c2ez,

t3
= µ∗H

(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3) + (c2
3 − 1)

)
c3er .

Moreover, in the absence of contact stress q , the equations of motion (2–1) reduce to(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3) + (c2
1 − 1)

)
−

1
6(1 − ν∗)

(
c2

3

c4
1

)
H 2

R2 =
ρ∗

0 R2ω2

µ∗
,(( ν∗

1 − 2ν∗

)
(c2

1 + c2
2 + c2

3 − 3) + (c2
3 − 1)

)
+

1
6(1 − ν∗)

(
1
c2

1

)
H 2

R2 =
ρ∗

0 H 2ω2

µ∗π2 .

(3–2)

In addition, for this solution it is assumed that the edges Z = ±W/2 are free of resultant force (t2
= 0)

so that (
ν∗

1 − 2ν∗

)(
c2

1 + c2
2 + c2

3 − 3
)
+ (c2

2 − 1) = 0. (3–3)

Next, by introducing the auxiliary constants

B1 =
ν∗

1 − ν∗
,

B2 =
1

6(1 − ν∗)

H 2

R2 ,
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the solution of (3–2) and (3–3) is obtained by solving the equation

(2B1 + 1)c8
1 −

(
(2B1 + 1) +

ρ∗

0 R2ω2(B1 + 1)

µ∗
− B1

ρ∗

0 H 2ω2

µ∗π2

)
c6

1

−

(
B2(2B1 + 1) + B2

ρ∗

0 H 2ω2

µ∗π2

)
c2

1 + B2
2 = 0,

for the positive real root of c1 near unity, and substituting the solution into the equations

c2
3 − 1 = −

(
B1

B1 + 1

)
(c2

1 − 1) −

(
B2

B1 + 1

)(
1
c2

1

)
+

(
1

B1 + 1

)
ρ∗

0 H 2ω2

µ∗π2 ,

c2
2 − 1 = −B1

(
c2

1 + c2
3 − 2

)
,

for positive real values of {c3, c2} near unity. In particular, note that since the value of m2 is nonzero it is
necessary to specify a moment on the edges Z = ±W/2 to maintain the right circular cylindrical shape
of the deformed plate.

4. Linearized equations

To develop simplified equations for determining the contact stress between a deformed saw blade and the
wheel, nonlinear equations associated with the kinematic assumption (2–2) are linearized about the finite
deformation solution (3–1). Also, the function fr associated with tensioning is assumed to be small. For
these linearized equations the kinematics of the steady state deformations are specified by

r = c1 R + ur (Z),

z = c2 Z + uz(Z),

φr = c3 + δr (Z),

φz = δz(Z),

and quadratic terms in the displacements and the contact stress
{
ur , uz , δr , δz , q

}
are neglected.

Straightforward algebraic manipulations yield expressions for the constitutive equations

t1
= t1

θ eθ

= µ∗H

(((
c2

1 − c2
2
)
c1 −

c2
3

6(1 − ν∗)c3
1

H 2

R2

)
+

((
c2

1 − c2
2
)
+

2(1 − ν∗)

(1 − 2ν∗)
c2

1 +
c2

3

2(1 − ν∗)c4
1

H 2

R2

)ur

R

+

( 2ν∗c1c3

(1 − 2ν∗)
−

c3

3(1 − ν∗)c3
1

H 2

R2

)
δr +

(2ν∗c1c2

1 − 2ν∗

)duz

d Z
−
( ν∗c3

6(1 − ν∗)c2
1c2

H
R

)
H

dδz

d Z

)
eθ ,
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t2
= t2

r er + t2
z ez = µ∗H

(
c2c3δz + c2

3
dur

d Z

)
er

+2µ∗H

(( ν∗c1c2

1 − 2ν∗

)ur

R
+

( ν∗c2c3

1 − 2ν∗

)
δr +

((1 − ν∗)c2
2

1 − 2ν∗

)duz

d Z
−

( ν∗c3

12(1 − ν∗)c1c2
2

H
R

)
H

dδz

d Z

)
ez,

t3
= t3

r er + t3
z ez = µ∗H

((
c2

3 − c2
2
)
c3 +

(2ν∗c1c3

1 − 2ν∗

)ur

R
+

((
c2

3 − c2
2
)
+

2(1 − ν∗)c2
3

1 − 2ν∗

)
δr

+

(2ν∗c2c3

1 − 2ν∗

)duz

d Z

)
er + µ∗H

(
(c2

3)δz + (c2c3)
dur

d Z
−

( ν∗

6(1 − ν∗)c1c2

H
R

)
H

dδr

d Z

)
ez,

m1
= m1

θ eθ = µ∗H 2

(( c3

6(1 − ν∗)c2
1

H
R

)
−

( c3

3(1 − ν∗)c3
1

H
R

)ur

R

+

( 1
6(1 − ν∗)c2

1

H
R

)
δr +

( ν∗

6(1 − ν∗)c1c2

)
H

dδz

d Z

)
eθ ,

m2
= m2

r er + m2
z ez = µ∗H 2

(
−

( ν∗

6(1 − ν∗)c1c2

H
R

)
δz

)
er

+µ∗H 2

(( ν∗c3

6(1 − ν∗)c1c2

H
R

)
−

( ν∗c3

6(1 − ν∗)c2
1c2

H
R

)ur

R

+

( ν∗

6(1 − ν∗)c1c2

H
R

)
δr −

( ν∗c3

6(1 − ν∗)c1c2
2

H
R

)duz

d Z
+

( 1
6(1 − ν∗)c2

2

)
H

dδz

d Z

)
ez,

mb = q
(

c1c2 −
c2c3 H

2R

)
er ,

mb3
= −q H

(c1c2

2
−

c2c3

4
H
R

)
er + fr er . (4–1)

Then, the linearized equations of motion for the steady state deformations become

0 = q
(

c1c2 −
c2c3 H

2R

)
+ µ∗

((
−
(
c2

1 − c2
2
)H

R
−

2(1 − ν∗)c2
1

1 − 2ν∗

H
R

−
c2

3

2(1 − ν∗)c4
1

H 3

R3 +
ρ∗

0 H Rω2

µ∗

)ur

R

+

(
−

2ν∗c1c3

1 − 2ν∗

H
R

+
c3

3(1 − ν∗)c3
1

H 3

R3

)
δr −

(2ν∗c1c2

1 − 2ν∗

H
R

)duz

d Z

+

(
c2c3 +

ν∗c3

6(1 − ν∗)c2
1c2

H 2

R2

)
H

dδz

d Z
+ (c2

3)H
d2ur

d Z2

)
,

(4–2a)
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0 =
d

d Z

(( ν∗c1c2

1 − 2ν∗

)ur

R
+

( ν∗c2c3

1 − 2ν∗

)
δr +

((1 − ν∗)c2
2

1 − 2ν∗

)duz

d Z

−

( ν∗c3

12(1 − ν∗)c1c2
2

H
R

)
H

dδz

d Z

)
,

(4–2b)

0 = −q
(c1c2

2
−

c2c3

4
H
R

)
+ µ∗

((
−

2ν∗c1c3

1 − 2ν∗
+

c3

3(1 − ν∗)c3
1

H 2

R2

)ur

R

+

(
−(c2

3 − c2
2) −

2(1 − ν∗)c2
3

1 − 2ν∗
−

1
6(1 − ν∗)c2

1

H 2

R2 +
ρ∗

0 H 2ω2

µ∗π2

)
δr

−

(2ν∗c2c3

1 − 2ν∗

)duz

d Z
−

( ν∗

3(1 − ν∗)c1c2

H
R

)
H

dδz

d Z

)
+ fr ,

(4–2c)

0 = − (c2
3)δz +

(
−c2c3 −

ν∗c3

6(1 − ν∗)c2
1c2

H 2

R2

)dur

d Z

+

( ν∗

3(1 − ν∗)c1c2

H
R

)
H

dδr

d Z
−

( ν∗c3

6(1 − ν∗)c1c2
2

H
R

)
H

d2uz

d Z2

+

( 1
6(1 − ν∗)c2

2

)
H 2 d2δz

d Z2 .

(4–2d)

Moreover, the radial gap 1 of blade’s inner surface relative to the radius of the wheel is defined by

1 =

(
c1 R −

H
2

c3

)
+

(
ur −

H
2

δr

)
− RW . (4–3)

The effects of tensioning on the stiffness and frequencies of vibration of the blade have been studied
by [Lister and Schajer 1993] using a model based on deformations of a plate. The linearized equations
(4–2a)–(4–2d) and (4–3) can be used to determine the influence of both tensioning and different crowned
shapes of the wheel on contact stress q by specifying forms for the tensioning function fr (Z) and the
wheel radius RW (Z). For the general case, portions of the blade are in contact with the wheel and other
portions are free of contact. For a specified form of the tensioning function fr (Z) the equations (4–2)
are solved for {ur , uz, δr , δz} with q = 0 in the free regions. In contact regions 1, as defined in (4–3)
vanishes and the equations (4–2) and (4–3) are solved for {ur , uz, δr , δz, q}. Consequently, the tensioning
function fr influences the functional form of the radial displacement ur which in turn controls the shape
of the blade in free regions and influences the contact stress q in contact regions.

Here, the effects of tensioning and the crowned shape of the wheel are omitted by specifying fr = 0
and a constant value for RW and attention is focused on assessing the influence of elastic deformations
caused by bending a plate into a circular cylindrical shell. Specifically, the wheel is taken to have a
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uniform radius, with the blade and wheel specified by

E∗
= 200 GPa, µ∗

=
E∗

2(1 + ν∗)
, ν∗

= 0.3,

ρ∗

0 = 7.85 Mg/m3, H = 0.0016 m, W = 0.20 m, RW = 0.8 m.

(4–4)

These values are typical dimensions for wide saw blades used in industrial wood cutting band saws. For
other possible values see [Lister and Schajer 1993; Chung and Sung 1998; Damaren and Le-Ngoc 2000].
Using a normalized axial coordinate

α =
Z
W

, (4–5)

the wheel’s edge is specified by
α = αW = 0.4, (4–6)

indicating that 10% of the blade hangs over the wheel’s edge (Figure 1). The portion of the blade
weakened by the gullets which form the blade’s teeth is assumed to provide negligible strength. Also,
the reference length of the blade is specified by the normalized misfit of the blade η defined so that

R −
H
2

= RW + ηH. (4–7)

This formula treats the deformed blade as a right circular cylindrical shell with an inner radius larger
than the wheel’s radius by the amount of ηH .

Details of the solution will be presented in the next section. However, here qualitative aspects are
presented in order to discuss the nature of the boundary conditions. Specifically, attention is focused on
the following three cases:

Case 1: ω = 0; η ≥ η1 : 1 free region

Free region: − 0.5 ≤ α ≤ 0.5,

Case 2: ω = 0; η3 ≤ η ≤ η2 : 2 free regions and 1 contact region with α2 < αW

Free regions: − 0.5 ≤ α ≤ α1, α2 ≤ α ≤ 0.5,

Contact region: α1 ≤ α ≤ α2 < αW ,

Case 3: ω = 0; η ≤ η3 : 2 free regions and 1 contact region with α2 = αW

Free regions: − 0.5 ≤ α ≤ α1, α2 = αW ≤ α ≤ 0.5,

Contact region: α1 ≤ α ≤ αW .

The cases are characterized by three values of η

η3 < η2 < η1,

and two values of α

−0.5 < α1 < α2 ≤ αW < 0.5.

For Case 1 the blade is free and contact first begins at the two points α =α1 and α =α2 =−α1 when η=η1.
For η between the values η1 and η2, the solution is characterized by multiple free and contact regions.
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The solutions in this range of η are complicated and are not particularly significant from an engineering
point of view since the contact stresses remain quite low. Therefore, they will not be analyzed in this
paper. When η = η2 these complications disappear and the solution is characterized by Case 2 with two
free regions and one contact region α1 ≤ α ≤ α2 = −α1 and with the blade separating from the wheel
before it reaches the wheel’s edge (α2 < αW ). Case 3 is also characterized by two free regions and one
contact region which now extends to the wheel’s edge (α2 = αW ).

In the context of the present theory it is possible to specify three boundary conditions at each edge.
It can be seen from (4–1) that the equation of motion (4–2b) requires the axial component of force per
unit length to be constant

t2
z = constant . (4–8)

The boundary conditions at the edges α = ±0.5 and the continuity conditions at the boundaries of the
free and contact regions are specified by

t2
r = 0, (4–9a)

t2
z = 0, (4–9b)

m2
z = 0, for α = −0.5, (4–9c)

{
ur , uz, δr , δz, t2

r , t2
z
}

are continuous for α = αi (i = 1, 2), (4–9d)

uz = 0, for α = αW , (4–9e)

t2
r = 0, m2

z = 0, for α = 0.5. (4–9f)

Here, {t2
r , t2

z , m2
r , m2

z } correspond, respectively, to the shear force, the axial force, a pinching moment,
and a bending moment, each measured per unit length of the blade’s edge. The conditions (4–9a), (4–9b),
(4–9c), (4–9f) together with the result (4–8) indicate that the edges α = ±0.5 are nearly traction free.
The theory is not general enough to ensure that the pinching moment m2

r vanishes at these edges or that it
is continuous at the boundaries (α1, α2). Also, (4–9d) requires continuity of the normal strain δr instead
of continuity of the bending moment m2

z . This means that the geometry of the blade will be continuous
at the boundaries (α1, α2) but that the moments {m2

r , m2
z } can experience jumps there. Furthermore, the

condition (4–9e) removes rigid body translation and requires the same material point on the blade to
remain at the wheel’s edge.

The locations (α1, α2) of the boundaries of the contact regions are determined by the condition that
the contact stress q in the contact region vanishes at these boundaries and that it is positive in the interior
of the contact region. Therefore, this condition requires

Case 2: q = 0, for α = α1, α2, (4–10a)

Case 3: q = 0, for α = α1. (4–10b)

In particular, in Case 3 the contact stress at the wheel’s edge (α = αW ) can suddenly decrease from a
positive value in the contact region to zero in the free region. Also, to discuss the results presented below
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Figure 2. Plots of the radial gap 1 normalized by the thickness H and the circumferen-
tial stress σθ as functions of the normalized axial coordinate α for the onset of contact
with the normalized misfit of the blade η = η1 and no angular velocity ω = 0.

it is convenient to approximate the Cauchy circumferential stress σθ in the band saw blade as

σθ =
t1
θ

c3 H
, (4–11)

where t1
θ is the force per unit present length, and c3 H is the present thickness.

Using the solution we present in the following section, we can show that

η1 = 1.8171E − 2, η2 = −2.6268E − 04, η3 = −1.4676E − 1 for ω = 0. (4–12)

Figure 2 shows results for Case 1 with η = η1 and ω = 0 which causes the blade to just make contact
with the wheel. Figure 2a shows the deformed inner surface of the blade 1 (4–3) and Figure 2b shows
the circumferential stress σθ , both as functions of the normalized axial coordinate α. In Figure 2a note
that the edges α = ±0.5 experience localized bending due to the relief of the edge moments that must be
applied to the simple solution of Section 3. In Figure 2b note that the circumferential stress has a shape
similar to the radial gap 1 in Figure 2a, with the center region being compressive (negative values) and
the edges being tensile (positive values).

5. Solution procedure

In view of the conditions (4–8), (4–9b),and (4–9d), the expression for t2
z in (4–1) can be solved for δr in

both the free and contact regions to obtain

δr = −

(c1

c3

)ur

R
−

((1 − ν∗)c2

ν∗c3

)duz

d Z
+

( (1 − 2ν∗)

12(1 − ν∗)c1c3
2

H
R

)
H

dδz

d Z
. (5–1)



1462 M. B. RUBIN AND E. TUFEKCI

Equation (4–2c) for the contact stress can now be rewritten as

q
(

c1c2 −
c2c3 H

2R

)
= µ∗

((
4c1c3 +

2c1(c2
3 − c2

2)

c3
+

(c2
1 + 2c2

3)

3(1 − ν∗)c3
1c3

H 2

R2 −
2ρ∗

0 H 2ω2c1

µ∗π2c3

)ur

R

+

(4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+

c2

3ν∗c2
1c3

H 2

R2 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)duz

d Z

+

(
−

2ν∗

3(1 − ν∗)c1c2
−

(1 − 2ν∗)(c2
3 − c2

2)

6(1 − ν∗)c1c3
2

−
c2

3

3c1c3
2

−
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 2

R2 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

)H 2

R
dδz

d Z

)
. (5–2)

Next, using (5–1) and (5–2) the remaining equations of motion (4–2a), (4–2d) become(
4c1c3 +

2c1(c2
3 − c2

2)

c3
−
(
3c2

1 − c2
2
)H

R
+

(c2
1 + 2c2

3)

3(1 − ν∗)c3
1c3

H 2

R2

−
(2c2

1 + 3c2
3)

6(1 − ν∗)c4
1

H 3

R3 +
ρ∗

0 H Rω2

µ∗
−

2ρ∗

0 H 2ω2c1

µ∗π2c3

)
ur

R

+

(
4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+ 2c1c2

H
R

+
c2

3ν∗c2
1c3

H 2

R2

−
c2

3ν∗c3
1

H 3

R3 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)
duz

d Z

+

(
c2c3 −

(6ν∗
− 1)c2

2 + (3 − 4ν∗)c2
3

6(1 − ν∗)c1c3
2

H
R

+
ν∗c3(c2

2 − c2
1)

6(1 − ν∗)c2
1c3

2

H 2

R2

−
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 3

R3 +
(1 − 2ν∗)c3

36(1 − ν∗)2c4
1c3

2

H 4

R4 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

H
R

)
H

dδz

d Z

+{c2
3}H

d2ur

d Z2 = 0, (5–3a)

{c2
3}δz +

(
c2c3 +

ν∗(2c2
1 + c2

3)

6(1 − ν∗)c2
1c2c3

H 2

R2

)
dur

d Z
+

(
ν∗c3

6(1 − ν∗)c1c2
2

+
1

3c1c3

)
H 2

R
d2uz

d Z2

−

(
1

6(1 − ν∗)c2
2

+
ν∗(1 − 2ν∗)

36(1 − ν∗)2c2
1c4

2

H 2

R2

)
H 2 d2δz

d Z2 = 0. (5–3b)

Now, for free regions the contact stress q vanishes and the equations of motion (5–2) and (5–3) can
be rewritten as six first order equations in the matrix form

6∑
j=1

(
A f

i j

dy f
j

d Z
+ B f

i j y f
j

)
= 0, (5–4)
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in terms of the vector

y f
i =

(
ur , uz, δz,

dur

d Z
,

duz

d Z
,

dδz

d Z

)
, (5–5)

where the components of the {A f
i j , B f

i j } are recorded in Appendix A. The characteristic equation for the
eigenvalues λ associated with (5–4) becomes

λ
(
a f

2 λ4
+ a f

1 λ2
+ a f

0

)
= 0, (5–6)

where a f
i are real constants given in (A–1). It then follows that (5–4) represents a fifth order system with

eigenvalues that take the forms

λ = ±λ
f
1 , ±λ

f
3 , 0; λ

f
1 =

(
λ

f
R1 ± iλ f

I 1

)
, λ

f
3 =

(
λ

f
R3 ± iλ f

I 3

)
, (5–7)

where {λ
f
R1, λ

f
I 1, λ

f
R3, λ

f
I 3} are real positive numbers and i =

√
−1. The five independent eigenfunctions

φ
f
j ( j = 1, 2, . . . , 5) are, for (−W/2 ≤ Z ≤ α1W ),

φ
f

1 (Z) = Re
(

Y f
1 j exp

(
λ

f
1 (Z − β)

))
,

φ
f

2 (Z) = Im
(

Y f
1 j exp

(
λ

f
1 (Z − β)

))
,

φ
f

3 (Z) = Re
(

Y f
3 j exp

(
λ

f
3 (Z − β)

))
,

φ
f

4 (Z) = Im
(

Y f
3 j exp

(
λ

f
3 (Z − β)

))
,

φ
f

5 = (0, 1, 0, 0, 0, 0),

β =
1
2

(
−

1
2 + α1

)
W for −

W
2 ≤ Z ≤ α1W,

β =
1
2

(
1
2 + α2

)
W for − α2W ≤ Z ≤

W
2 ,

(5–8)

where α1 and α2 represent the boundaries of the free region in consideration, β is the average of the
these boundaries, Re(x) and Im(x) represent the real and imaginary parts of the complex quantity x , and
{Y f

1 j , Y f
3 j } are the eigenvectors which satisfy the equations

6∑
j=1

(
A f

i jλ
f
1 + B f

i j

)
Y f

1 j = 0,

6∑
j=1

(
A f

i jλ
f
3 + B f

i j

)
Y f

3 j = 0. (5–9)

Then, the solution in the free region takes the general form

y f
i (Z) =

5∑
j=1

c f
j φ

f
j (Z), (5–10)

where c f
j are real constants to be determined by the boundary conditions. Moreover, for this solution δr

is obtained by (5–1).
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In the contact regions the value of δr in (5–1) is restricted so that 1 in (4–3) vanishes, which yields(
1 +

c1

2c3

H
R

)ur

R
+

((1 − ν∗)c2

2ν∗c3

)H
R

duz

d Z
−

( (1 − 2ν∗)

24(1 − ν∗)c1c3
2

)H 3

R2

dδz

d Z
= −

(
c1 −

H
2R

c3 −
RW

R

)
. (5–11)

For the contact regions the contact stress q in (5–2) is required to remain positive (except at the boundaries
of the regions) and the equations of motion (5–11) and (5–3) can be rewritten as six first order equations
in the matrix form

6∑
j=1

(
Ac

i j

dyc
j

d Z
+ Bc

i j yc
j

)
= Cc

i , (5–12)

in terms of the vector

yc
i =

(
ur , uz, δz,

dur

d Z
,

duz

d Z
,

dδz

d Z

)
, (5–13)

where the components of {Ac
i j , Bc

i j , Cc
i } are given in Appendix A. The solution in the contact region is

obtained in a manner similar to that in the free regions. Specifically, the characteristic equation for the
eigenvalues λ associated with the homogeneous solution of (5–12) becomes

λ
(
ac

2λ
4
+ ac

1λ
2
+ ac

0
)
= 0, (5–14)

where ac
i are real constants given in (A–2). It then follows that (5–14) represents a fifth order system

with eigenvalues that take the forms

λ = ±λc
1, ±λc

3, 0; λc
1 =

(
λc

R1 ± iλc
I 1
)
, λc

3 =
(
λc

R3 ± iλ f
I 3

)
, (5–15)

where {λ
f
R1, λ

f
I 1, λ

f
R3, λ

f
I 3} are real positive numbers. The five independent eigenfunctions

φc
i (i = 1, 2, . . . , 5)

are specified in the forms

φc
1(Z) = Re

(
Y c

1i exp
(
λc

1(Z − β)
))

, φc
2(Z) = Im

(
Y c

3i exp
(
λc

1(Z − β)
))

, (5–16)

φc
3(Z) = Re

(
Y c

3i exp
(
λc

3(Z − β)
))

, φc
4(Z) = Im

(
Y c

3i exp
(
λc

3(Z − β)
))

, (5–17)

φc
5 = (0, 1, 0, 0, 0, 0), β =

1
2 W

(
α1 + α2

)
, (5–18)

where {Y c
1i , Y c

3i } are the eigenvectors which satisfy the equations

6∑
j=1

(
Ac

i jλ
c
1 + Bc

i j
)
Y c

1 j = 0,

6∑
j=1

(
Ac

i jλ
c
3 + Bc

i j
)
Y c

3 j = 0. (5–19)

In addition, the equations (5–12) require a specific solution of the form

ycP
1 =

Bc
55Cc

4

Bc
41 Bc

55 − Bc
45 Bc

51
, ycP

2 = −

(
Bc

51Cc
4

Bc
41 Bc

55 − Bc
45 Bc

51

)
Z , (5–20)

ycP
5 = −

(
Bc

51Cc
4

Bc
41 Bc

55 − Bc
45 Bc

51

)
, ycP

3 = ycP
4 = ycP

6 = 0. (5–21)
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Then, the solution in the contact region takes the general form

yc
i (Z) =

5∑
j=1

cc
jφ

f
j (Z) + ycP

i (Z), (5–22)

where cc
j are real constants to be determined by the boundary conditions. Moreover, for this solution δr

is obtained by (5–1) and the contact stress q is determined by (5–2).
The specification (5–1) for δr satisfies the condition that t2

z vanishes so that boundary conditions on t2
z

in (4–9) are automatically satisfied. The solutions (5–10) and (5–22) show that there are five constants
to be determined in each of the free and contact regions as well as the boundary values of αi . For the
three cases we present, unknowns and equations are given by:

Case 1:
Unknowns: 5 values of c f

j ;
Equations: (4–9a), (4–9c), (4–9e), (4–9f);

Case 2:
Unknowns: 10 values of c f

j , 5 values of cc
j , {α1, α2};

Equations: (4–9a), (4–9c), 10 Equations (4–9d), (4–9e), (4–9f), 2 Equations (4–10a);

Case 3:
Unknowns: 10 values of c f

j , 5 values of cc
j , {α1};

Equations: (4–9a), (4–9c), 10 Equations (4–9d), (4–9e), (4–9f), 1 Equation (4–10b).

6. Discussion

The equations of the previous section were solved for the problem characterized by (4–4) and (4–6).
Figures 3 and 4 plot values of (a) the radial gap 1 (4–3), (b) the circumferential stress σθ (4–11), and
(c) and (d) the contact stress q as functions of the normalized axial coordinate α in (4–5) for ω = 0 and
different values of misfit η (4–7). Specifically, Figure 3 shows the solution for Case 2 associated with
the largest value of η = η2 (4–12) for which the blade has a single contact region with the wheel and
Figure 4 shows the solution for Case 3 associated with the largest value of η = η3 (4–12) for which the
blade has a single contact region that extends to the edge (α = αW ) of the wheel. Figure 5 shows plots
of the following values: the radial gap 1 (Figure 5a,b); the circumferential stress σθ (Figure 5c); and
the contact stress q (Figure 5d–f) for a high value of tension of η = −2.5 and ω = 0. Also, these figures
include the predictions of the Lamé solution discussed in Appendix B.

Figure 3a, b, Figure 4a, b and Figure 5a,c show that the plots of circumferential stress σθ have the
same shapes as those of the radial gap 1. This means that the circumferential tension is dominated by
the radial displacement of the saw blade. Figure 5b shows that even for the case of high tension, the
end of the blade near α = −0.5 is separated from the wheel. Figures 3c and 4c show two spikes in the
contact stress which occur near the regions where the free saw blade has the smallest radius, as shown in
Figure 2. For Cases 2 and 3 the shape of the contact stress curve in these regions is symmetrical (Figure
3d and Figure 4d). As Figure 5d–f shows, when the tension is high enough to cause the edge α = αW to
be in contact with the saw blade, the contact stress is no longer symmetrical with the maximum contact
stress occurring near the edge α = αW of the wheel. In particular, the maximum contact stress near the
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Figure 3. Plots of the radial gap 1 normalized by the thickness H , the circumferential
stress σθ and the contact stress q as functions of the normalized axial coordinate α for
the onset of a single contact region with the normalized misfit of the blade η = η2 and
no angular velocity ω = 0.

edge α = αW is more than three times that near the edge α = α1 for η = −2.5. Also, Figure 5f shows
that the contact stress exhibits a small decrease from the value q = 0.9 MPa to zero at the edge α = αW .

Moreover, from Figure 5d–f it can be seen that the Lamé solution predicts a uniform contact stress of
about 2 MPa which significantly underpredicts the value of maximum contact stress as well as the value
in the nearly uniform region in the center of the wheel. This means that for an accurate prediction of
the contact stress it is essential to include an analysis of the nonlinear deformation associated with the
formation of the saw blade from a flat plate. In practice, the tensioning process is used to change the
deformed shape of the saw blade by applying controlled plastic deformations. Although the analysis of
plastic deformations is outside of the scope of the present paper, the results presented here suggest that
this process should be carefully analyzed since it could significantly affect the resulting distribution of
contact stress.

The speed of a band saw is often measured in terms of its translational velocity. For example, a
velocity of 2800 m/min is typical for an industrial wood cutting blade [Lunstrum 1981; 1984]. Also see
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Figure 4. Plots of the radial gap 1 normalized by the thickness H , the circumferential
stress σθ and the contact stress q as functions of the normalized axial coordinate α for the
point at which a single contact region reaches the edge of the wheel with the normalized
misfit of the blade η = η3 and no angular velocity ω = 0.

[Eklund 2000; Murata et al. 2002] for velocities associated with other saws. An estimate of the influence
of rotation on the contact stress can be obtained by equating this translational velocity with the velocity
vW of the blade at the surface of the wheel

ω =
vW

RW
. (6–1)

Calculations were performed for vW = 2800 m/min, which corresponds to ω = 58.33 rad/s for η = η3

(Figure 6). The results show that the rotating blade has a higher circumferential stress σθ , a lower contact
stress q and a smaller contact region. The decrease in the contact stress near the blade’s center (α = 0) is
about 0.07 MPa. This is somewhat larger than the magnitude 0.03 MPa predicted by the Lamé solution
(B–7). The decrease in the peak value of the contact stress is about 0.5 MPa. However, even for this
relatively low tension (σθ ≈ 60 MPa) in this thin blade the maximum effect of inertia is insignificant.
Since the effect of inertia remains relatively constant for a given rotational speed, the effect is even more
insignificant for higher tension (that is, for smaller values of η).
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coordinate α for the point at which a single contact region reaches the edge of the wheel
with the normalized misfit of the blade η = η3 and with different angular velocities ω.

One of the difficulties in designing band saw blades is ensuring proper tracking of the blade on the
wheel. As previously mentioned, the tensioning process and a crowned wheel are used to help control
blade tracking [Lister and Schajer 1993; Wong and Schajer 1997; 2002]. The elastic effects of bending
a plate into a circular cylindrical shell analyzed here also should influence tracking. It may be possible
to exploit the facts that when the blade is free of contact it has a deformed shape (Figure 2a) and that
this deformed shape causes stress concentrations when the blade is in contact (Figure 4c and Figure
5d). Specifically, if the wheel were crowned with slight curvature then it may be possible to adjust the
curvature so that the blade would tend to hug the wheel (see Figure 7). The equations of Section 4 include
a model for the tensioning process through the function fr (Z) and allow the wheel to have a crowned
shape. Future research could explore the relative importance of these effects combined with the elastic
effect that has been analyzed in this paper.

In conclusion, in this paper we model a band saw blade as an elastic plate that has been bent into a
circular cylinder. Due to the Poisson effect, axial tension develops on the outer surface of the blade and
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axial compression develops on its inner surface. Consequently, end moments are required to maintain
a right-circular cylindrical shape. The nonlinear equations of a Cosserat surface used to describe this
process have been linearized and the resulting end moments are relieved, causing nonuniform deforma-
tion of the blade. It has been shown that this nonuniformity significantly influences the predictions of
the value and distribution of the contact stress between the blade and the wheel even though the blade is
thin. Also, it has been shown that the value of contact stress predicted by a simple Lamé-type solution
is inaccurate and that the effects of the rotational speed of the wheel are negligible for typical operating
conditions of thin wood-cutting saw blades.

Appendix A. Details of the solutions in the free and contact regions

The nonzero coefficients of {A f
i j , B f

i j } associated with the free region are

A f
11 = A f

22 = A f
33 = 1,

A f
54 = (c2

3 H),

A f
65 =

( ν∗c3

6(1 − ν∗)c1c2
2

+
1

3c1c3

)H 2

R
,

A f
66 = −

( 1
6(1 − ν∗)c2

2
+

ν∗(1 − 2ν∗)

36(1 − ν∗)2c2
1c4

2

H 2

R2

)
H 2,
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and

B f
14 = B f

25 = B f
36 = −1,

B f
41 =

(
4c1c3 +

2c1(c2
3 − c2

2)

c3
+

(c2
1 + 2c2

3)

3(1 − ν∗)c3
1c3

H 2

R2 −
2ρ∗

0 H 2ω2c1

µ∗π2c3

)
1
R

,

B f
45 =

(
4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+

c2

3ν∗c2
1c3

H 2

R2 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)
,

B f
46 =

(
−

2ν∗

3(1 − ν∗)c1c2
−

(1 − 2ν∗)(c2
3 − c2

2)

6(1 − ν∗)c1c3
2

−
c2

3

3c1c3
2

−
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 2

R2 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

)
H 2

R
,

B f
51 =

(
4c1c3 +

2c1(c2
3 − c2

2)

c3
− (3c2

1 − c2
2)

H
R

+
(c2

1 + 2c2
3)

3(1 − ν∗)c3
1c3

H 2

R2

−
(2c2

1 + 3c2
3)

6(1 − ν∗)c4
1

H 3

R3 +
ρ∗

0 H Rω2

µ∗
−

2ρ∗

0 H 2ω2c1

µ∗π2c3

)
1
R

,

B f
55 =

(
4c2c3

ν∗
+

2(1 − ν∗)(c2
3 − c2

2)c2

ν∗c3
+ 2c1c2

H
R

+
c2

3ν∗c2
1c3

H 2

R2

−
c2

3ν∗c3
1

H 3

R3 −
2ρ∗

0 H 2ω2(1 − ν∗)c2

µ∗π2ν∗c3

)
,

B f
56 =

(
c2c3 −

(6ν∗
− 1)c2

2 + (3 − 4ν∗)c2
3

6(1 − ν∗)c1c2

H
R

+
ν∗c3(c2

2 − c2
1)

6(1 − ν∗)c2
1c3

2

H 2

R2

+
(1 − 2ν∗)

36(1 − ν∗)2c3
1c3

2

H 3

R3 +
(1 − 2ν∗)c3

36(1 − ν∗)2c4
1c3

2

H 4

R4 +
ρ∗

0 H 2ω2(1 − 2ν∗)

6µ∗π2(1 − ν∗)c1c3
2

H
R

)
H,

B f
63 = (c2

3),

B f
64 =

(
c2c3 +

ν∗(2c2
1 + c2

3)

6(1 − ν∗)c2
1c2c3

H 2

R2

)
.

The coefficients a f
i in the characteristic Equation (5–6) are

a f
0 =

(
B f

41 B f
55 − B f

45 B f
51

)
B f

63,

a f
1 = A f

65

(
B f

46 B f
51 − B f

41 B f
56

)
+ A f

66

(
B f

41 B f
55 − B f

45 B f
51

)
− A f

54 B f
45 B f

63 +
(
B f

45 B f
56 − B f

46 B f
55

)
B f

64,

a f
2 = A f

54

(
A f

65 B f
46 − A f

66 B f
45

)
.

(A–1)

The nonzero coefficients of (Ac
i j , Bc

i j , Cc
i ) associated with the contact region are
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Ac
i j = A f

i j , Bc
i j = B f

i j (except for i = 4),

Bc
41 =

(
1 +

c1

2c3

H
R

) 1
R

, Bc
45 =

((1 − ν∗)c2

2ν∗c3

)H
R

,

Bc
46 = −

( (1 − 2ν∗)

24(1 − ν∗)c1c3
2

)H 3

R2 , Cc
4 = −

(
c1 −

H
2R

c3 −
RW

R

)
.

The coefficients ac
i in the characteristic Equation (5–14) are

ac
0 =

(
Bc

41 Bc
55 − Bc

45 Bc
51
)
Bc

63,

ac
1 = Ac

65
(
Bc

46 Bc
51 − Bc

41 Bc
56
)
+ Ac

66
(
Bc

41 Bc
55 − Bc

45 Bc
51
)

− Ac
54 Bc

45 Bc
63 +

(
Bc

45 Bc
56 − Bc

46 Bc
55
)
Bc

64,

ac
2 = Ac

54
(

Ac
65 Bc

46 − Ac
66 Bc

45
)
.

(A–2)

Appendix B. Lamé solution

Within the context of small axisymmetric deformations relative to a coordinate system rotating with
angular velocity ω, the steady state equations of motion can be written as

dT ∗

R R

d R∗
+

T ∗

R R − T ∗

θθ

R∗
= −ρ∗

0ω2 R∗,
dT ∗

Z Z

d Z
= 0. (B–1)

For generalized plane stress the displacements are given by

u∗

R = u∗

R(R∗), u∗

θ = 0,

and the constitutive equations for the nonzero stresses and the axial strain eZ Z yield

T ∗

R R =
2µ∗

(1 − ν∗)

(du∗

R

d R∗
+ ν∗

u∗

R

R∗

)
,

T ∗

θθ =
2µ∗

(1 − ν∗)

(
ν∗

du∗

R

d R∗
+

u∗

R

R∗

)
, T ∗

Z Z = 0,

eZ Z = −

( ν∗

1 − ν∗

)(du∗

R

d R∗
+

u∗

R

R∗

)
.

In these equations a superposed (∗) is used to denote that the quantities are associated with the exact
three-dimensional linearized theory.

The boundary conditions for a cylinder of mean radius R and thickness H to be in contact with a
wheel of radius RW with a free outer surface can be expressed as

u∗

R = RW − R1, (B–2)

qL = −T ∗

R R, for R∗
= R1 = R

(
1 −

H
2R

)
, (B–3)

T ∗

R R = 0, for R∗
= R2 = R

(
1 +

H
2R

)
, (B–4)
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where qL is the contact stress predicted by this Lamé solution and R is specified by (4–7). It can easily
be seen that the equations of motion (B–1) are satisfied provided that

d2u∗

R

d R∗2 +
1

R∗

du∗

R

d R∗
−

u∗

R

R∗2 = −

(ρ∗

0ω2(1 − ν∗)

2µ∗

)
R∗, (B–5)

which admits the general solution

u∗

R =

(1 − ν∗

1 + ν∗

)
A1 R∗

+ A2
R2

1

R∗
−

((1 − ν∗)�2

(3 + ν∗)

) R∗3

R2
1

,

T ∗

R R = 2µ∗

(
A1 − A2

R2
1

R∗2 − �2 R∗2

R2
1

)
,

T ∗

θθ = 2µ∗

(
A1 + A2

R2
1

R∗2 −

((1 + 3ν∗)

(3 + ν∗)

)
�2 R∗2

R2
1

)
,

�2
=

ρ∗

0ω2(3 + ν∗)R2
1

16µ∗
,

(B–6)

where the constants {A1, A2} are determined by the boundary conditions (B–2)

A1 =

( (1 + ν∗)

(1 − ν∗) + (1 + ν∗)(R2/R1)2

)( RW

R1
− 1

)
+

((1 + ν∗)

(3 + ν∗)

)((1 − ν∗) + (3 + ν∗)(R2/R1)
4

(1 − ν∗) + (1 + ν∗)(R2/R1)2

)
�2,

A2 =

( (1 + ν∗)(R2/R1)
2

(1 − ν∗) + (1 + ν∗)(R2/R1)2

)( RW

R1
− 1

)
−

((1 − ν∗)

(3 + ν∗)

)((−(1 + ν∗) + (3 + ν∗)(R2/R1)
2
)
(R2/R1)

2

(1 − ν∗) + (1 + ν∗)(R2/R1)2

)
�2.

It then follows that the contact stress is

qL = 2µ
( (1 + ν∗)

(
(R2/R1)

2
− 1

)
(1 − ν∗) + (1 + ν∗)(R2/R1)2

)(( RW

R1
− 1

)
− 2

((1 − ν∗) + (3 + ν∗)(R2/R1)
2

(1 + ν∗)(3 + ν∗)

)
�2
)

. (B–7)

Nomenclature

a f
0 , a f

1 , a f
2 coefficients of the characteristic equation in the free regions

ac
0, ac

1, ac
2 coefficients of the characteristic equation in the contact region

A1/2 scalar related to the shell’s reference area

A f
i j matrix of the derivatives in the free regions

Ac
i j matrix of the derivatives in the contact region

Ai constants in the Lamé solution

B1 auxiliary variable
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B2 auxiliary variable associated with the normalized thickness

B f
i j matrix of the linear coefficients in the free regions

Bc
i j matrix of the linear coefficients in the contact region

c1 circumferential stretch

c2 axial stretch

c3 radial stretch

c f
j coefficients of the eigenfunctions in the contact region

C right Cauchy–Green deformation tensor

Cc
i vector in the contact region

d1/2 scalar associated with the present configuration

D1/2 scalar associated with the reference configuration

dα tangent vectors to the shell’s present surface

d3 director in the present configuration

di reciprocal vectors to the present directors di

Dα tangent vectors to the shell’s reference surface

D3 reference director which models a material fiber through the shell’s thickness

Di reciprocal vectors to the reference directors Di

c f
j coefficients of the eigenfunctions in the free regions

ei rectangular Cartesian base vectors

er , eθ , ez cylindrical polar base vectors

eZ Z axial strain in the Lamé solution

E∗ Young’s modulus associated with small deformations

E Lagrangian strain tensor

fr (Z) function associated with the localized moment which models the tensioning process

F deformation gradient

H reference thickness (in the e1 direction) of the rectangular plate

i
√

−1

I unit tensor

Kαβ second order tensors associated with the energy of bending and torsion

L referenced length (in the e2 direction) of the rectangular plate

m mass per unit reference area

mb assigned force due to body force and contact stresses on the shell’s major surfaces
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mb3 assigned director couple due to body force and contact stresses on the shell’s major

surfaces

mα contact resultant couples on the shell’s edges

m1
θ circumferential value of m1

m2
r radial value of m2

m2
z axial value of m2

q normal contact stress (positive for compression) between the blade and wheel

qL contact stress in the Lamé solution

r deformed radius of the shell’s reference surface

R auxiliary variable associated with the deformed radius of the cylindrical shell

R∗ radial coordinate in the Lamé solution

R1, R2 radii in the Lamé solution

RW radius of the wheel

t time

tα contact resultant forces on the shell’s edges

t3 intrinsic director couple

t1
θ circumferential value of t1

t2
r radial value of t2

t2
z axial value of t2

T ∗

R R , T ∗

θθ , T ∗

Z Z stress components associated with the Lamé solution

ur radial displacement

uz axial displacement

u∗

R radial displacement in the Lamé solution

u∗

θ circumferential displacement in the Lamé solution

v velocity vector

vW blade’s translational velocity

w3 director velocity

W reference width (in the ez direction) of the rectangular plate

x location of a material point in the present configuration

X location of a material point in the reference configuration

y f
i variables in the free regions

yc
i variables in the contact region
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ycP
i vector associated with the particular solution in the contact region

y3 director inertia coefficient

y33 director inertia coefficient

Y f
1 j , Y f

3 j eigenvectors in the free regions

Y c
1 j , Y c

3 j eigenvectors in the contact region

z deformed axial position of the shell’s reference surface

Z reference axial coordinate

α normalized axial coordinate

α1 value of α(< 0) where the blade looses contact with the wheel

α2 value of α(> 0) where the blade looses contact with the wheel

αW normalized axial location of the wheel’s edge

β auxiliary variable

βα inhomogeneous deformation vectors

δr radial director displacement

δz axial director displacement

δi
j Kronecker delta symbol

1 radial gap of the blade’s inner surface relative to the wheel

η normalized misfit of the inner radius of the cylindrical shell relative to that of the wheel

η1 value of η for which the blade first contacts the wheel

η2 largest value of η for which the blade first experiences two free regions and one contact

region

η3 smallest value of η for which the blade first experiences two free regions and one contact

region with the edge of the contact region being the edge of the wheel α2 = αW

θ angular coordinate

θα convected Lagrangian coordinates

λ eigenvalue

λ
f
1 , λ

f
3 eigenvalues in the free regions

λ
f
R1, λ

f
R3 real parts of the eigenvalues in the free regions

λ
f
I 1, λ

f
I 3 imaginary parts of the eigenvalues in the free regions

λc
1, λc

3 eigenvalues in the contact region

λc
R1, λc

R3 real parts of the eigenvalues in the contact region

λc
I 1, λc

I 3 imaginary parts of the eigenvalues in the contact region
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µ∗ shear modulus associated with small deformation

ν∗ Poisson’s ratio associated with small deformations

ρ∗

0 reference mass density (mass per unit volume)

σθ approximate value of the circumferential stress

6 strain energy of the shell per unit reference area

φr radial component of the deformed director d3

φz axial component of the deformed director d3

φ
f
j eigenfunctions in the free regions

φc
i eigenfunctions in the contact region

ω angular velocity of the saw blade

� normalized angular velocity of the saw blade
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