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It is established that upper and lower bounds predict results far apart from each other for the effective elas-
tic properties of semicrystalline polymers such as polyethylene. This is manly due to the high anisotropy
of the elastic properties of the crystals. Composite modeling has been used to predict intermediate results
between the bounds. Here, we show the details of composite modeling based on a two phase inclusion
(crystalline lamella and amorphous domain) as the local representative element of a semicrystalline
polymer. Three approaches, two composite bounds, and a composite self-consistent model, are used
to compute the overall elastic properties. Details of the development of these approaches are given in
this paper. We find good agreement between results from these approaches and experimental results for
polyethylene.

1. Introduction

Under a nondistorted state, semicrystalline polymer morphology is often presented in the shape of
spherulites. Each spherulite is composed of crystalline plates arranged radially and separated by an
amorphous domain. The macroscopic mechanical behavior of the spherulitic polymer is assumed to be
isotropic. When the material is distorted, the spherulitic morphology disappears, leading to an oriented
morphology with privileged directions. This arrangement contributes to the increase in global elastic
anisotropy. We note that the elastic stiffness in the chain direction of the crystalline lamellae is very high.
This local anisotropy appears at a macroscopic scale in the case of oriented polymers.

One of the current and very important challenges for cost-effective design of new advanced polymers
and polymer matrix composites hinges upon the use of advanced computational methods and novel
micromechanical models that bridge the gap between different material length scales. Here we consider
simplified homogenization techniques based on continuum mechanics where the molecular architecture
and molecular weight are not explicitly accounted for. However, their effects are somehow included in
the values chosen for the homogenized local properties and in the volume fractions of the phases.

For the general case of predicting the effective properties of heterogeneous media, such as the two
phase composites, there exist several theories that are used as averaging schemes. For instance, the
asymptotic method proposed by [Berlyand and Kozlov 1992; Berlyand and Promislow 1995] can be used
to predict the asymptotic behavior of the effective elastic properties of a two phase composite material
as the ratio δ of the moduli for the soft (matrix) and hard (inclusion) phases tends to zero (δ → 0).
This asymptotic method has been used to design both isotropic and orthotropic composite materials
with particular elastic properties. Among other widely used theories are the Hashin–Shtrikman bounds
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[1963], the Mori–Tanaka approach [Mori and Tanaka 1973; Benveniste 1987], the Ponte Castaneda–
Willis approach [1995], the double inclusion theory [Hori and Nemat-Nasser 1993; Hu and Weng 2000;
Aboutajeddine and Neale 2005] and the statistical approach [Lin and Garmestani 2000; Jefferson et al.
2005]. Specific application of these approaches to semicrystalline polymers is yet to be done to compare
results for these materials. While this is an important task, it is out of the scope of the present work, in
which we discuss simpler methods.

To calculate the mechanical properties of semicrystalline polymers, Takayanagi et al. [1966] con-
sidered the two polymer phases as oriented crystalline blocks alternating with an amorphous phase.
This simple model was used to predict the tensile moduli parallel and perpendicular to the draw di-
rection. Another model, proposed by Barham and Arridge [1977], considers the composite nature of
the semicrystalline polymer. These two models are used and discussed in [Ward 1985]. Wang [1973]
proposed a composite model based on the self-consistent approach of [Hill 1964; 1965; Hermans 1967].
To predict the elastic constant for transcrystalline polyethylene using Hertman’s formulation, [Wang
1973] considered transcrystalline polyethylene as crystalline fibers embedded in an isotropic amorphous
matrix.

Ahzi et al. [1995] showed that the classical upper and lower bounds result in estimates far apart from
each other for elastic isotropic polyethylene (PE), and that the results of [Wang 1973] for transcrystalline
PE are very close to those predicted by the classical upper bound. They also suggested the use of two-
phase composite inclusion-based modeling to develop intermediate estimates of the elastic properties of
semicrystalline polymer. However, some of the details of the intermediate modeling approach were not
given in [Ahzi et al. 1995].

Molecular weight is not explicitly accounted for in our present proposed approach. It is well es-
tablished that small-strain tensile deformation properties, such as Young’s modulus, yield stress, and
yield strain are directly related to percent crystallinity, independently of molecular weight; [Jordens et al.
2000]. However for low and medium density, Nakayama et al. [1991] and Capaccio et al. [1976] have
shown that the crystallinity decreases with increasing molecular weight of PE. This is the case for PE
processed following the standard procedure based on slow cooling from the melt, according to this last
reference. For instance, the thickness of the amorphous domains is directly related to the square root of
molecular weight [Flory 1969]. Under these conditions the crystalline PE has an orthorhombic structure,
but when PE is processed under high pressure, a hexagonal crystalline phase is obtained [de Langen et al.
2000]. In the present work we consider PE obtained by slow cooling, where the crystalline phase can be
considered as entirely orthorhombic [Addiego et al. 2006]. In our approach, the percent of crystallinity
is imposed and therefore the corresponding molecular weight is implicitly accounted for. For other
processing procedures where the link between crystallinity and molecular weight may not be so simple,
our approach should be modified. This can be done by introducing the molecular weight effect directly
in the expression of the local properties. Averaging will therefore account for the effect of molecular
weight. However, this point is out of the scope of the current paper.

The present work is based on the composite model of [Ahzi et al. 1995], where the following hypothe-
ses are considered: the elementary representative volume of a semicrystalline polymer is considered as a
two-phase composite inclusion representing a crystalline plate and the neighboring amorphous domain.
These composite inclusions can be modeled as an extended sandwich with an infinite planar interface
(Figure 1). We give the details of the development of three composite models: composite upper bound,
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Figure 1. Two-phase composite inclusion.

composite lower bound and composite self-consistent model. To illustrate the result of these intermediate
models, we applied them to predict the elastic properties of spherulitic polyethylene. We also compare
these results to experimental ones from the literature. These comparisons show that the developed inter-
mediate models give good bounding of experimental results for different crystallinities.

2. Local elastic properties

The elastic constants of the crystals of polyethylene (PE) used in this work are computed in [Zehnder
et al. 1996] using atomistic simulations. These elastic constants are expressed in the orthonormal axis
of the orthorhombic unit cell of PE crystals as follows:

Cc
=



8.50 5.00 4.50 0.00 0.00 0.00
5.00 9.00 6.40 0.00 0.00 0.00
4.50 6.40 250.00 0.00 0.00 0.00
0.00 0.00 0.00 2.80 0.00 0.00
0.00 0.00 0.00 0.00 1.70 0.00
0.00 0.00 0.00 0.00 0.00 3.40


GPa,

Sc
= (Cc)−1

=



0.17 −0.09 −0.0006 0.00 0.00 0.00
−0.09 0.16 −0.0025 0.00 0.00 0.00
−0.0006 −0.0025 0.004 0.00 0.00 0.00

0.00 0.00 0.00 0.35 0.00 0.00
0.00 0.00 0.00 0.00 0.58 0.00
0.00 0.00 0.00 0.00 0.00 0.29


GPa−1.

For the amorphous phase, since polyethylene (PE) is rubbery at room temperature, atomistic simula-
tions cannot be used to compute the elastic properties. However, Gray and McCrum [1969] reported a
Poisson ratio ν = 0.49 and a shear modulus Ga

= 0.1 GPa for polyethylene. The shear modulus appears
to be two orders of magnitude higher than what one would expect for the rubbery phase of PE. This
is due to the fact that the measured value is influenced by the presence of the crystalline phase. In the
applications shown in this work, we will keep ν = 0.49 and shear modulus Ga

= 0.1 GPa. As one would
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Figure 2. Classical bounds for the shear modulus (left) and bulk modulus (right) for
isotropic PE.

expect, the amorphous domains in semicrystalline polymers will not have the same properties as the
corresponding bulk material.

3. Classical upper and lower bounds (Voigt and Reuss)

For a semicrystalline polymer with a volume fraction fa of the amorphous phase, the classical bounds,
Voigt (upper bound) and Reuss (lower bound), can be used to compute the effective (average) elastic
properties. The Voigt model assumes the uniformity of strain in the material which leads to the expression

Ceff
=

〈
faCa

+ (1 − fa)Cc〉 (1)

for the effective stiffness tensor. The Reuss model assumes uniformity of the stress which yields the
expression

Seff
=

〈
fa Sa

+ (1 − fa)Sc〉 (2)

for the effective compliance tensor. Here, 〈 · 〉 represents the volume average over the aggregate. These
classical bounds were implemented in [Ahzi et al. 1995] to predict the effective elastic properties of
polyethylene with isotropic distribution of the crystalline lamellae, which represent a spherulitic mor-
phology of polyethylene. The analytical integration procedure for isotropic distribution is outlined in
Appendix A. The predicted effective isotropic properties are shown in Figure 2, which depicts the evolu-
tion of the shear and bulk moduli as functions of the crystallinity of PE. These results show a very large
gap between the predictions of the Voigt and the Reuss models for increasing values of crystallinity. This
gap is due to the high anisotropy of the crystalline phase and the fact that these classical models account
for the composite nature of semicrystalline polymers, such as PE, only through the volume fraction of the
two phases. The wide gap between the two model predictions makes it difficult to consider the classical
bounds for accurate predictions of the elastic properties of semicrystalline polymers. Polyethylenes
usually have crystallinities ranging from 0.3 to 0.8 and for this range the gap between the curves is too
wide to make an estimate of the actual values of the macroscopic elastic properties. As seen in the next
section, the development of new composite bounds ensures that the gap between these new bounds is
drastically reduced compared to the classical bounds, and hence more accurate predictions of the elastic
properties can be made.
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4. Proposed composite modelling

Composite inclusion model. The morphology of semicrystalline polymers may be thought of as an
assemblage of two-phase inclusions. Each inclusion consists of a crystalline lamella and an adjacent
amorphous layer as shown in Figure 1 (see also [Ahzi et al. 1990; Ahzi et al. 1995] and [Lee et al.
1993]). The inclusions are of high aspect ratio and are modeled as infinitely extended planar structures
with planar interface between the crystalline and the amorphous phase. Lamellar twist is neglected and
linear elasticity is assumed for each individual phase as well as for the composite inclusion and the
matrix. Let σ c, σ a , and σ I be the Cauchy stress tensors of the crystalline phase, amorphous phase and
the inclusion respectively and let εc, εa and ε I be the corresponding infinitesimal elastic strain tensors.
The constitutive relation for each phase as well as for the composite inclusion may be written as follows:

Crystalline lamella.
σ c

= Ccεc or εc
= Scσ c, (3)

Crystalline lamella.
σ a

= Caεa or εa
= Saσ a, (4)

Crystalline lamella.
σ I

= C I ε I or ε I
= SI σ I . (5)

Here Cc, Ca , nad C I represent the fourth order stiffness tensors for the crystalline lamella, the amorphous
domain and the composite inclusion respectively, and Sc, Sa , SI are the corresponding compliance
tensors (the inverses of the stiffness tensors). The inclusion stress and strain may be obtained by the
volume average of the constituent’s stress and strain fields

σ I
= faσ

a
+ (1 − fa)σ

c, (6)

and
ε I

= faε
a
+ (1 − fa)ε

c, (7)

where fa is the volume fraction of the amorphous phase, assumed to be the same for all inclusions.

Interface compatibility and equilibrium. Let us first define the vector form of the stress and strain tensors.
These tensors can be expressed as

σ ≡
(
σ11, σ22, σ33, σ23, σ13, σ12

)T
≡

(
σ1, σ2, σ3, σ4, σ5, σ6

)T
, (8)

and
ε ≡

(
ε11, ε22, ε33, ε23, ε13, ε12

)T
≡

(
ε1, ε2, ε3, ε4, ε5, ε6

)T
, (9)

where the superscript T designates the transpose.
The interface between the crystalline and the amorphous phase of each inclusion requires the enforce-

ment of the compatibility and equilibrium conditions. Considering an orthonormal basis (e1, e2, e3)

with e3 normal to the interface and (e1, e2) in the plane of the interface, we can then write the strain
compatibility at the interface as

εc
α = εa

α = ε I
α. (10)
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Here α takes the values 1, 2 and 6. This means that the in-plane strains are continuous across the interface.
The stress equilibrium conditions ensure interface traction equilibrium. These conditions are represented
by

σ c
β = σ a

β = σ I
β . (11)

Here β takes the value 3, 4 and 5.
Now the problem is to determine the expressions for C I and SI from the stiffness and compliance

tensors of the individual phases. From Equations (3), (4), and (5) we note that, to get the expression for
the inclusion stiffness and compliance tensors, we need to express σ a and σ c in terms of σ I , and εa and
εc in terms of ε I . From the above linear relations, we show (see Appendix B) that the phase stress and
strain tensors are linearly related to the inclusion stress and strain tensors, respectively. These relations
are given by

σ a
= Raσ I , and σ c

= Rcσ I (12)

εa
= Qaε I and εc

= Qcε I . (13)

The fourth order tensors Qa , Qc, Ra and Rc depend on the elastic moduli of the phases. These mapping
tensors are termed phase concentration tensors and the analytical determination of their expressions are
given in Appendix B.

Inclusion elastic constants. Introducing the constitutive relations given by (3), (4) and (5) in Equation
(6) we obtain

C I ε I
= fa Caεa

+ (1 − fa)Ccεc, (14)

and the use of (12) in (13) leads to

C I ε I
=

[
fa Ca Qa

+ (1 − fa)Cc Qc]ε I . (15)

Thus, the inclusion stiffness tensor is obtained as

C I
= fa Ca Qa

+ (1 − fa)Cc Qc. (16)

Similarly, introducing the constitutive relations (3), (4), and (5) in (7) we obtain

SI σ I
= fa Saσ a

+ (1 − fa)Scσ c. (17)

If the relations of (12) are used in (17), we obtain

SI σ I
=

[
fa Sa Ra

+ (1 − fa)Sc Rc]σ I . (18)

Thus, the inclusion compliance tensor is obtained as

SI
= fa Sa Ra

+ (1 − fa)Sc Rc. (19)

We note that the expression (19) for the composite inclusion elastic constants is dual to Equation (16):
C I

= (SI )−1. However, Voigt-type inclusion-averaging, C I
Voigt, is obtained by setting Qa and Qc to

identity in relation (16). Reuss-type inclusion averaging, SI
Reuss, is also obtained by setting Ra and Rc

to identity in relation (19).
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33 component.

The stiffness matrix C I is an important indicator regarding the elastic constants of bulk crystalline
polymers such as polyethylene. If we assume the chain direction of the crystalline lamella to be parallel to
the inclusion interface normal (e3), the C I

33 element of the inclusion stiffness matrix reflects the variation
of local elastic stiffness with crystallinity. Figure 3 shows the variation of this stiffness component as
function of crystallinity for the three local averaging schemes discussed above: C I

Composite, C I
Voigt, and

C I
Reuss = (SI

Reuss)
−1.

Composite averaging schemes. The overall (effective) elastic properties of an aggregate consisting of
N inclusions is obtained by averaging the local elastic properties. We consider an aggregate of volume
V subjected to a remote macroscopic stress tensor σ̄ and to the corresponding macroscopic elastic strain
tensor ε̄. Considering the overall behavior to be linear elastic, Hooke’s law is then given by

σ̄ = Ceffε̄ or ε̄ = Seffσ̄ , (20)

where Ceff and Seff are the effective stiffness and compliance tensors of the aggregate, respectively.
The consistency condition dictates that the average of the local stresses and strains should equal the
macroscopic ones, that is

σ̄ = 〈σ I
〉 ≡

1
V

∫
σ I dV , (21)

and

ε̄ = 〈ε I
〉 ≡

1
V

∫
ε I dV . (22)

To obtain an expression for the effective elastic constants as a function of the local ones, we need
to apply an interaction law which consists of a relationship between the macroscopic stress (or strain)
tensors. This will depend upon the type of averaging scheme chosen.
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Composite lower bound. The lower bound estimate assumes stress uniformity within the aggregate. To
extend this model to our composite approach, we assume the composite-inclusion stress to be uniform,
and the macroscopic stress σ̄ to be

σ I
= σ̄ . (23)

Note that the stress in each phase σ a and σ c are not necessarily equal to σ̄ . Substituting (23) in (5) we
obtain

ε I
= SI σ̄ . (24)

Taking the volume average of this relation leads to

〈ε I
〉 = 〈SI

〉σ̄ . (25)

By imposing the global condition (22), and the second equation of (20) we obtain the following expres-
sion for the effective compliance tensor:

Seff
= 〈SI

〉. (26)

Using the expression (19), the composite lower bound averaging expression (27) can be written as

Seff
= 〈SI

〉 =
〈
fa Sa Ra

+ (1 − fa)Sc Rc〉. (27)

We note that relation (27) reduces to the Reuss estimate given by (2) if the phase concentration tensors
R reduce to identity. The effective stiffness tensor is then obtained by inverting the effective compliance
tensor:

Ceff
= (Seff)−1. (28)

Composite upper bound. For the composite upper bound estimate, we assume strain uniformity in the
aggregate. That is, each composite inclusion is subjected to the same macroscopic strain ε̄

ε I
= ε̄, (29)

which allows εa and εc to deviate from ε̄. Substituting (29) in the first part of (5) and taking the volume
average of the resulting relation we obtain

〈σ I
〉 = 〈C I

〉ε̄. (30)

Using the global equilibrium condition (21) and comparing to the first part of (20) we obtain the com-
posite upper bound expression for the effective elastic stiffness tensor

Ceff
= 〈C I

〉. (31)

Using (16), relation (33) becomes

Ceff
= 〈C I

〉 =
〈
fa Ca Qa

+ (1 − fa)Cc Qc〉. (32)

Here again, we note that relation (32) reduces to the Voigt estimate given by (1) if the phase concentration
tensors Q reduce to identity The effective compliance tensor for the composite upper bound is then
obtained by inverting the effective stiffness tensor, as

Seff
= (Ceff)−1. (33)
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Self-consistent estimate. In our proposed composite bounds, partial local compatibility and equilibrium
are satisfied. This is due to the composite inclusion interface conditions given by (10) and (11). To
develop a composite self-consistent scheme, we propose to use the two-phase composite inclusion as the
local representative element with an elliptical shape, and embedded in infinite homogeneous equivalent
medium. To derive the self-consistent interaction law, we use the integral equation method for which
details are given in Appendix C. This treatment is analogous to the work of [Zeller and Dederichs 1973],
where the Green function method is used to define the integral equation linking local velocity gradient
to the macroscopic one. The interaction law obtained by this scheme, in terms of the inclusion versus
the macroscopic strain (or stress) tensors, can be expressed by one of the two following dual expressions
(see Appendix C):

ε I
= B I

〈B I
〉
−1ε̄ or σ I

= AI σ̄ . (34)

Here the fourth order strain-concentration tensor, B I , and the stress-concentration tensor AI depend on
the effective elastic constants, the inclusion elastic constants, and the shape of the inclusion. Because of
the normalization procedure used in the development of the self-consistent scheme (see (Appendix C),
the consistency conditions (21) and (22) are trivially satisfied by the interaction law (34).

If we insert (34) in the first equation of (5) we obtain

σ I
= C I B I

〈B I
〉
−1ε̄. (35)

Taking the volume average of (35) and making use of (21), then comparing the final expression with the
first equation of (20) leads to the following composite self-consistent expression of the effective stiffness
tensor

Ceff
= 〈C I B I

〉〈B I
〉
−1. (36)

If we use (16), the above expression becomes

Ceff
=

〈[
f a Qa Ca

+ (1 − fa)QcCc]B I 〉
〈B I

〉
−1. (37)

The self-consistent estimate of the effective compliance tensor can be obtained by inverting the stiffness
tensor given by (37). Or, if we use the interaction law given by the second equation of (34) and reasoning
similar to that given above, a dual expression to (37) can be obtained as

Seff
=

〈(
fa Ra Sa

+ (1 − fa)Rc Sc)AI 〉. (38)

5. Results and discussion

Predicted results for isotropic polyethylene. To illustrate differences between model predictions, we
first evaluate the single inclusion elastic constant C I

33 as a function of crystallinity. For this, the crystal
elastic constants of the polyethylene are computed by [Zehnder et al. 1996] using atomistic simulations
(see Section 1), while those for the amorphous phase are calculated using a shear modulus Ga

= 0.1 GPa.
In Figure 3, the values of C I

33 have been plotted against crystallinity for the Voigt model (Equation (16),
with Qa

= Qc
= I), Reuss model (as in Equation (19), with Ra

= Rc
= I), and composite inclusion

model (Equation (16)). The nature of the curves reflects that the C I
33 elastic constant for the Voigt model

increases almost linearly as a function of the crystallinity, compared to the composite inclusion and Reuss
models. These predicted results show moderate variation of the elastic constant C I

33 with the crystallinity
for the composite inclusion and Reuss models except for polyethylene with high crystallinity.
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Comparisons between models. The predicted results for the effective shear and bulk moduli as a func-
tion of crystallinity of isotropic polyethylene are reported in Figure 4. We notice that the gap between
the composite inclusion bounds is drastically reduced relative to the classical bounds except for high
concentration of the crystalline phase. In fact, the composite inclusion bounds demonstrate dependence
of the stiffness of the crystalline and amorphous phases by enforcement of interface compatibility and
equilibrium conditions, which result in reduction of the stiffness of the composite inclusion in the chain
direction. In contrast, the classical Voigt and Reuss models assume that the crystalline and amorphous
phases deform independently. The imposed uniform strain and high stiffness of the crystals in the chain
directions are responsible for over-prediction of the elastic properties by the classical Voigt model.

Regarding self-consistent representation based on the composite inclusion-model, the predicted results
fall between the composite bounds. At low crystallinity, the self-consistent curves show a closer response
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to the composite inclusion lower bound. This behavior is moderately inverted as crystallinity increases
but remains in general closer to the composite inclusion lower bound.

Shape effect for the composite self-consistent model. Since the self-consistent approach accounts for
inclusion shape effects, in the shear and bulk moduli are reported in Figure 5 for isotropic polyethylene
with different inclusion shapes: spherical (a/c = b/c = 1), penny-shaped (a/c = b/c = 5), and oblate
(a/c = 5, b/c = 10). It can be seen that the predicted elastic properties are very similar for both the
penny-shaped and oblate-shaped inclusions. Both the penny and oblate shapes can be used as good
inclusion shape approximations of the lamellar structure of polyethylene.

Comparison with experimental results. Davidse et al. [1962] have determined the Young’s modulus by
measuring the sound velocity, ν, and density, ρ, of various polyethylene samples. The Young’s modulus
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is related to the sound velocity as
E = v2ρ. (39)

According to [Janzen 1992a; 1992b; 1997], the experimental results of Davidse et al. [1962] cannot be
uncritically accepted because their measurements are about three times greater than those obtained from
bending and tensile tests. Though this difference was attributed to larger deformations in the bending
and tensile tests, the anomaly needs to looked into with a deeper perspective.

[Janzen 1992b] has compared values of the Young’s modulus of polyethylene obtained from ultrasound
techniques with those obtained from static compression tests. The ultrasound experimental data are from
[Hartmann and Jarzynski 1974], while static compression results are taken from [Lagakos et al. 1986].

Experimental data from [Janzen 1992b] and [Davidse et al. 1962] are compared to our predicted results
in Figure 6 for the Young’s and shear moduli. These results show that the experimental results lie within
the composite inclusion bounds.
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Figure 6. Predicted Young’s modulus (left) and shear modulus (right) compared to ex-
perimental results of [Janzen 1992b; Davidse et al. 1962].
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Conclusion

An averaging scheme for a semicrystalline polymeric material is developed to predict the evolution of the
elastic properties function of the crystalline phase volume fraction. The proposed scheme is formulated
so as to enforce the local equilibrium and compatibility conditions, which are violated partially by Voigt
and Reuss estimates. The classical Voigt and Reuss averaging schemes, where the presence of both crys-
talline and amorphous phases is represented only by their relative volume fractions, results in far-apart
estimates of the effective elastic properties, particularly for the high volume fraction of the crystalline
phase. To develop new bounds, the problem of two-phase composite inclusion is considered, where the
crystalline and amorphous domains of such a homogenized inclusion are subject to piecewise constant
strains and stresses. The satisfaction of interface compatibility and traction equilibrium results in a softer
inclusion stiffness, particularly in the crystallographic chain direction. Composite bounds, as well as a
self-consistent averaging scheme are used to predict elastic properties of isotropic polyethylene. The
composite approach resulted in much narrower difference between the new composite bounds compared
to the classical ones. Comparison of predictions of the composite inclusion models with experimental
data shows good agreement. We are working on other homogenization approaches for these materials.

An important shortcoming of the proposed modeling is related to the effects of molecular weight and
molecular architecture that are ignored. Molecular weight is certainly an important factor that needs
to be addressed. In our model, molecular weight is included in a very simple implicit way through the
crystallinity and through the chosen values for the local properties. A way to extend the proposed model to
include the effect of molecular weight would be to express the crystallinity and local properties as function
of the molecular weight. In the modeling proposed here the effect of molecular architecture (that is, linear
versus branched chains) cannot be accounted for in an explicit way since the local properties (inputs)
are rather homogenized over a local volume. Only molecular simulations can directly account for the
effect of molecular architecture. Thus, one way of resolving this would be to combine our modeling with
molecular simulations. The latter can be used to compute the local properties as function of molecular
architecture then use the results as input for our modeling. We note that for the crystalline phase, the input
we used (the elastic properties of the crystalline phase), are those based on atomistic simulations. Here
again, the atomistic simulations were conducted on a small volume, which represents only a fraction
of the crystalline lamella. In our approach, we have simplified the problem by assuming that these
atomistically computed properties are homogeneous within the entire crystalline lamella. Without these
simplifying assumptions, no homogenization technique can be developed based on continuum mechanics.

Appendix A. Isotropic distribution

This appendix develops the inclusion average of the stiffness (or compliance), in the case of isotropic
distribution of the aggregate such as in spherulitic morphology. If we consider θ , φ and 8 to be the Euler
angles between the local coordinate system of inclusion and the global coordinate system, we can write
the inclusion average of the stiffness (or compliance) as

〈C I
i jkl〉 =

∫ 2π

0

∫ 2π

0

∫ π

0
ai i ′, a j j ′, akk′, all ′,C I

i ′ j ′k′l ′8 sin θ dθ dφ dψ, (A1)
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where 8= 1/(8π2) and the transform matrix components ai j ′ are given by

a11′ = cosψ cosθ cosφ− sinψ sinφ,

a12′ = −cosψ sinφ− sinψ cosθ cosφ,

a13′ = sinθ cosφ,

a21′ = cosψ cosθ sinφ+ sinψ cosφ,

a22′ = −sinψ cosθ sinφ+ cosψ cosφ,

a23′ = sinθ sinφ,

a31′ = −cosψ sinθ,

a32′ = sinψ sinθ,

a33′ = cosθ.

Carrying out this integration we get the following nonzero components of the symmetric effective stiff-
ness tensor:

Ceff
= 〈C I

〉,

Ceff
11 = Ceff

22 = Ceff
33 =

1
15

(
3(C I

11 + C I
22 + C I

33)+ 2(C I
12 + C I

13 + C I
23)+ 4(C I

44 + C I
55 + C I

66)
)
,

Ceff
12 = Ceff

23 = Ceff
13 =

1
15

(
(C I

11 + C I
22 + C I

33)+ 4(C I
12 + C I

13 + C I
23)− 2(C I

44 + C I
55 + C I

66)
)
,

Ceff
21 = Ceff

31 = Ceff
32 = Ceff

12

Ceff
44 = Ceff

55 = Ceff
66 =

1
15

(
(C I

11 + C I
22 + C I

33)− (C
I
12 + C I

13 + C I
23)+ 3(C I

44 + C I
55 + C I

66)
)
.

(A2)

Appendix B. Determination of phase concentration tensors

The phase concentration tensors relate the stress and strain of the phases to the inclusion stress as shown
by Equations (10)–(13). We first determine the expression for the tensors Qc and Qa . In this appendix,
the Greek subscripts α and α′ take the values 1, 2 and 6, and β and β ′ take the values 3, 4 and 5. The
non-Greek subscripts take all integer values from 1 to 6.

Determination of Qc. The second relation in (13) may be written in component form as

εc
i = Qc

i jε
I
j , (B1)

where the index i and j both range from 1 to 6. For the index α = 1, 2, and 6 we can write this equation
as

εc
α = Qc

α jε
I
j . (B2)

Using the compatibility condition as given by (9) we can write (B2) as

ε I
α = Qc

α jε
I
j . (B3)

Now, when j = α, Qc
α j should be equal to identity and when j 6= α, Qc

α j should be zero, that is,

Qc
α j = δα j , (B4)

where δ is the Kronecker delta symbol.
To determine the other components of Qc, that is, Qβ j , with β = 3, 4, 5 we need to consider the

equilibrium condition σ c
β = σ a

β represented by Equation (9). Inserting Hooke’s law into this equation we
obtain

Cc
β jε

c
j = Ca

β jε
a
j . (B5)

Equation (5) may be rewritten as

εa
j =

1
fa
ε I

j −
1 − fa

fa
εc

j . (B6)
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Substituting this in (B5) we obtain(
Cc
β j +

1 − fa

fa
Ca
β j

)
εc

j =
1
fa

Ca
β jε

I
j . (B7)

This equation can be split into components represented by indices α and β as(
Cc
ββ ′ +

1 − fa

fa
Ca
ββ ′

)
εc
β ′ +

(
Cc
βα +

1 − fa

fa
Ca
βα

)
εc
α =

1
fa

Ca
β jε

I
j , (B8)

where β ′ takes the value 3, 4 and 5. Using the compatibility condition εc
α = ε I

α as given Equation (8), we
obtain (

Cc
ββ ′ +

1 − fa

fa
Ca
ββ ′

)
εc
β ′ =

1
fa

Ca
β jε

I
j −

(
Cc
βα +

1 − fa

fa
Ca
βα

)
δα jε

I
j . (B9)

This equation may be written in a more convenient form as

Hββ ′εc
β ′ = Kβ jε

I
j , (B10)

where

Hββ ′ = Cc
ββ ′ +

1 − fa

fa
Ca
ββ ′ (B11)

and

Kβ j =
1
fa

Ca
β j −

(
Cc
βα +

1 − fa

fa
Ca
βα

)
δα j . (B12)

From (B10) we get
εc
β ′ = H−1

ββ ′ Kβ jε
I
j . (B13)

Comparing with (B1) we deduce
Qc
β j = H−1

ββ ′ Kβ ′ j . (B14)

Finally, (B4) and (B14) define the tensor Qc completely.

Determination of Qa. Equation (13) in indicial notation may be written as

εa
i = Qa

i jε
I
j (B15)

again continuity condition (9) implies
Qa
α j = δα j . (B16)

The other components of Qa
α j ie. Qa

β j are obtained as follows. Substituting (B1) in (7) we obtain

ε I
β = faε

a
β + (1 − fa) Qc

β jε
I
j (B17)

or

εa
β =

1
fa

(
δβ j + (1 − fa)Qc

β j
)
ε I

j ; (B18)

comparing this with (B15) we obtain

Qa
β j =

1
fa

(
δβ j + (1 − fa)Qc

β j
)
. (B19)
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Therefore, (B16) and (B19) define the tensor Qa completely. We now determine the phase concentration
tensors Rc and Ra .

Determination of Rc. The second relation in (12) in indicial notation may be written as

σ c
i = Rc

i jσ
I

i . (B20)

For β = 3, 4, and 5 we can write
σ c
β = Rc

β jσ
I
j . (B21)

Using the equilibrium condition (11) leads to

Ra
β j = δβ j . (B22)

The remaining components of Ra are determined by considering the compatibility conditions. Introduc-
ing Hooke’s law into the compatibility equation εc

α = εa
α as given by (10) we obtain

Sc
α jσ

c
j = Sa

α jσ
a
j . (B23)

From (6) and (B23) we obtain (
Sc
α j +

1 − fa

fa
Sa
α j

)
σ c

j =
1
fa

Sa
α jσ

I
j . (B24)

Splitting this equation into components given by the indices α and β we obtain(
Sc
αα′ +

1 − fa

fa
Sa
αα′

)
σ c
α′ +

(
Sc
αβ +

1 − fa

fa
Sa
αβ

)
σ c
β =

1
fa

Sa
α jσ

I
j , (B25)

where α′ takes the value 1, 2 and 6. Using the equilibrium relation σ c
β = σ I

β as given by (11) we obtain(
Sc
αα′ +

1 − fa

fa
Sa
αα′

)
σ c
α′ =

1
fa

Sa
α jσ

I
j −

(
Sc
αβ +

1 − fa

fa
Sa
αβ

)
δβ jσ

I
j . (B26)

This equation may be written in a more convenient form as

Lαα′σ c
α′ = Mα jσ

I
j , (B27)

where

Lαα′ = Sc
αα′ +

1 − fa

fa
Sa
αα′, (B28)

and

Mα j =
1
fa

Sa
α j −

(
Sc
αβ +

1 − fa

fa
Sa
αβ

)
δβ j . (B29)

Thus
σ c
α′ = L−1

αα′ Mα jσ
I
j . (B30)

Comparing this with Equation (B20) gives

Rc
α j = L−1

αα′ Mα′ j . (B31)

Therefore, (B22) and (B31) define the tensor Rc.
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Determination of Ra. The first relation in (12) in indicial notation may be written as

σ a
i = Ra

i jσ
I
j . (B32)

The equilibrium condition (11) implies
Ra
β j = δβ j . (B33)

The other components of Ra
i j , that is, Ra

β j are obtained as follows. Substituting (B32) in (6) we obtain

σ I
β = faσ

a
β + (1 − fa)Rc

β jσ
I
j , (B34)

or

σ a
β =

1
fa

(
δβ j − (1 − fa)Rc

β j
)
σ I

j . (B35)

Comparing this with (B32) we obtain

Ra
β j =

1
fa

(
δβ j − (1 − fa)Rc

β j
)
. (B36)

Equations (B33) and (B36) define the tensor Ra completely.

Appendix C. Self-consistent model

In this appendix we develop the self consistent approach applied to semicrystalline polymers. This
approach is based on the self-consistent scheme developed in [Zeller and Dederichs 1973] for the elastic
properties of polycrystals. Here, we assume small elastic deformations, and that the components of the
strain field, εi j , are defined as the symmetric part of the displacement gradient:

εi j =
1
2(ui, j + u j,i ) (C1)

with

ui, j =
∂ui

∂r j
, (C2)

where the ui are the components of the displacement vector and the r j the components of the spatial
position vector r .

In an elastic material, the stress field is in general dependent on the spatial position r , and is related
to the strain field εi j through a local Hooke’s law

σi j = Ci jklεkl ≡ Ci jkluk,l . (C3)

The elastic constants are statistically fluctuating quantities which can be decomposed into a sum of a
constant part, C0

i jkl , and a fluctuating part, C̃i jkl(r)

Ci jkl = C0
i jkl + C̃i jkl . (C4)

The macroscopic homogeneous material is subject to a stress field σ̄i j , and a corresponding strain field ε̄i j .
The elastic constants C0

i jkl used in the decomposition can be taken as equal to those of the homogeneous
equivalent medium, as

C0
i jkl = Ceff

i jkl . (C5)
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The problem consists of finding a solution for the local strain or stress fields as a function of the macro-
scopic fields. We start by writing the equilibrium

σi j, j = Ceff
i jkluk,l j + (C̃i jkluk,l), j = 0. (C6)

The solution of the Navier equation given by (C6), for given surface displacements ū∗

i , can be written as

ui (r)= ū∗

i (r)+
∫

V
Gik(r, r ′)

[
C̃klmn(r ′)um,n(r ′)

]
,l ′d r ′, (C7)

where V is the volume of the entire aggregate and Gkl(r, r ′) are the components of a Green tensor which
satisfies the equilibrium relation

Ceff
i jkl Gkm,l j (r, r ′)+ δimδ(r − r ′)= 0. (C8)

It is convenient to assume an infinite medium. This assumption implies the following properties:

Gi j (r, r ′)= Gi j (r − r ′) (C9)

Gi j,l ′ = −Gi j,l . (C10)

Note that indexes with a prime symbol are relative to r ′.
By partial integration and subsequent differentiation of (C7) we obtain an integral equation for the

local strain tensor

εi j (r)= ε̄∗

i j +

∫
V

gi jkl(r, r ′)C̃klmn(r ′) εmn(r ′)d3r ′, (C11)

where

gi jkl =
1
4(Gik, jl + G jk,il + Gil, jk + G jl,ik). (C12)

We are now looking for an approximate solution of the integral equation (C11). For this, we make use of
the Eshelby’s solution and proof [1957] of the uniformity of the strain field within an ellipsoidal inclusion
embedded in a linear matrix. Our material is represented by N inclusions, and the strain of each of them
can be taken as

ε I
i j =

1
VI

∫
VI

εi j (r)d3r, (C13)

where VI is the volume of the inclusion I . Since the strain is uniform within each inclusion, we have

εi j (r)=

N∑
I=1

ε I
i j1I (r), Ci jkl(r)=

N∑
I=1

C I
i jkl1I (r), C̃i jkl(r)=

N∑
I=1

C̃ I
i jkl1I (r). (C14)

Here, 1I is the characteristic function of the inclusion I . It has unit value if r falls within VI and zero
value if not.

If we insert (C13) and (C14) into (C11) and neglect the inclusion-inclusion interaction terms [Molinari
et al. 1987], the integral equation (C11) is then approximated by

ε I
i j = ε̄∗I

i j +0i jklC̃ I
klmnε

I
mn. (C15)
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The matrix-inclusion interaction tensor 0 is given by

0i jkl =
1
VI

∫
VI

∫
VI

gi jkld3rd3r ′. (C16)

Note that the Eshelby tensor is defined as Ei jkl = −0i jmnCeff
mnkl .

Finally, a rearrangement of (C15) leads to

ε I
i j = B I

i jkl ε̄
∗

kl, (C17)

with

B I
i jkl =

[
Ii jkl −0i jmnC̃ I

mnkl
]−1
. (C18)

At this point, the macroscopic strain ε̄∗ is not specified. The consistency condition requires that the
average of local (inclusion) strains should equal the macroscopically imposed strain. If all inclusions
of the aggregate have parallel principal axes, this condition is easily met, which also implies that ε̄∗

is exactly the macroscopically imposed strain. However, if the principal axes of the inclusions are not
parallel, the consistency condition needs to be enforced using a normalization procedure. For this, we
denote by ε̄ the macroscopically imposed strain and assume the relation

ε̄∗
= K ε̄, (C19)

where the fourth order tensor K is uniform. If we insert (C19) into (C17) we obtain

〈ε I
〉 = 〈B I

〉K ε̄. (C20)

Therefore, the consistency condition leads to

K = 〈B I
〉
−1. (C21)

The final expression of the interaction law (C17) is given by

ε I
= B I

〈B I
〉
−1ε̄. (C22)

Now, if we insert Hooke’s law into (C17), a dual interaction law that expresses the inclusion stress σ I

as a function of the macroscopic one, σ̄ can be obtained as

σ I
i j = AI

i jkl σ̄kl, (C23)

with

AI
= C I B I

〈B I
〉
−1(Ceff)−1. (C24)

By averaging Equations (C23) and using the estimate given by (36) with relation (C24), one can easily
show that 〈AI

〉 = I .
To compute the interaction tensor 0 we use the Fourier transform method. Details of the computations

may be found in [Ghahremani 1977] and [Gavazzi and Lagoudas 1990].
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