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BINGJIN CHEN, DONGWEI SHU AND ZHONGMIN XIAO

The electro-elastic interaction between a piezoelectric dislocation and collinear rigid lines embedded in a
piezoelectric medium is studied in the framework of linear elastic theory. The rigid lines are considered,
respectively, as dielectrics or conductors. We present a general solution of the problem based on the
extended Stroh’s formalism. Explicit expressions of the field intensity factors are obtained for the special
case of a single rigid line. The image force acting on the piezoelectric dislocation due to the presence
of a single rigid line is calculated by using the generalized Peach-Koehler formula. Numerical examples
show the shielding effects of field intensity factors and image force on the dislocation. The solution we
present can be served as a Green’s function for investigating the micro-crack initiation mechanism at the
tip of a rigid line.

1. Introduction

Piezoelectric materials are widely used in devices such as sensors and actuators. When subjected to
mechanical and electric loads, these piezoelectric materials can fail prematurely due to defects arising
in the manufacturing process. It is therefore important to study how defects such as dislocations and
inclusions disturb the field variables, and how stress concentration arises as a result of defects. When
a flat inclusion is much harder than the matrix, it is reasonable to consider it as a rigid line. There
are numerous contributions to the literature on electro-elastic coupling characteristics of piezoelectric
composite materials. To name a few, Pak [1992a] studied the anti-plane problem of a piezoelectric
circular inclusion; Meguid and Zhong [1997] provided a general solution for the elliptical inhomogene-
ity problem in piezoelectric material under anti-plane shear and an in-plane electric field; Kattis et al.
[1998] investigated the electro-elastic interaction effects of a piezoelectric screw dislocation with circular
inclusion in piezoelectric material; Deng and Meguid [1998; 1999] considered the interaction between
the piezoelectric elliptical inhomogeneity and a screw dislocation located inside inhomogeneity and
outside inhomogeneity respectively under anti-plane shear and an in-plane electric field. More recently,
Huang and Kuang [2001] evaluated the generalized electro-mechanical force for dislocation located
inside, outside and on the interface of elliptical inhomogeneity in an infinite piezoelectric medium.

For rigid line problems in piezoelectric media, Liang et al. [1995] derived an exact general solution for
an infinite piezoelectric medium with a rigid line and a crack. Shi [1997] investigated the collinear rigid
lines under anti-plane deformation and in-plane electric field in piezoelectric media. Deng and Meguid
[1998] addressed the plane problem of an interfacial rigid line between dissimilar piezoelectric materials.
Gao and Fan [2000] investigated the generalized plane problem of piezoelectric media with collinear
rigid lines under the loads at infinity. Chen et al. [2002] studied the problem of a screw dislocation
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near a semi-infinite rigid line in a piezoelectric solid. More recently, Liu and Fang [2003] dealt with the
interaction problem of a piezoelectric screw dislocation with circular interfacial rigid lines.

In the present work, we address the plane problem of a dislocation interacting with collinear rigid
lines in piezoelectric media. Following this brief introduction, in Section 2 we outline the basic theory
of the Stroh formalism. In Section 3 we state the problem to be investigated. We solve the problem of
dielectric lines in Section 4 and that of conducting lines in Section 5. We present numerical examplesin
Section 6, and concluding remarks in Section 7.

2. The Stroh formalism

In fixed rectangular coordinates xi (i = 1, 2, 3), the basic equations for linear piezoelectric materials at
constant temperature can be written as

σi j, j = 0, (2–1)

Di,i = 0, (2–2)

γi j =
1
2(ui, j + u j,i ), (2–3)

Ei = −φ,i , (2–4)

σi j = ci jklγkl − eki j Ek, (2–5)

Di = eiklγkl + εik Ek, (2–6)

where σi j , γi j , ui , Di , Ei , φ are stress, strain, mechanical displacement, electric displacement, electric
field and electric potential, respectively. ci jkl , eki j and εi j are the corresponding elastic, piezoelectric and
dielectric constants, respectively, which satisfy the symmetric relations

ci jkl = ckli j = ci jlk = c j ikl, eki j = ek ji , εik = εki , (2–7)

where i, j, k, l = 1, 2, 3, repeated Latin indices mean summation, and a comma stands for partial differ-
entiation.

Substitution of (2–3) and (2–4) into (2–5) and (2–6) yields

σi j = ci jkluk,l + eki jφ,k, (2–8)

Di = eikluk,l − εikφ,k . (2–9)

Furthermore, substituting (2–8) and (2–9) into (2–1) and (2–2) results in

(ci jkluk + eli jφ),li = 0, (2–10)

(eikluk − εilφ),li = 0. (2–11)

Here we only address a generalized two-dimensional deformation problem in the (x1, x2) plane. There-
fore all the variables are constant along the x3 axis. For such two-dimensional deformations where the
physical quantities only depend on the coordinates x1 and x2, the general displacement solution to the
above equations is

u =
{
u1 u2 u3 u4

}T
= a f (z), z = x1 + px2, (2–12)
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or

uk = ak f (z), k = 1, 2, 3, 4, (2–13)

where u4 = φ is the electric displacement, p and a are constants to be determined, and f (z) is an arbitrary
function of z. Substituting (2–12) into (2–10) and (2–11) yields(

c1 jk1 + p(c2 jk1 + c1 jk2) + p2c2 jk2
)
ak +

(
e1 j1 + p(e1 j2 + e2 j1) + p2e2 j2

)
a4 = 0, (2–14)(

e1k1 + p(e1k2 + e2k1) + p2e2k2
)
ak −

(
ε11 + p(ε12 + ε21) + p2ε22

)
a4 = 0, (2–15)

where k = 1, 2, 3. In view of (2–7), these equations can be rewritten as(
Q + p(R + RT ) + p2T

)
a = 0, (2–16)

where

Qik = ci1k1, Rik = ci1k2, Tik = ci2k2. (2–17)

The stresses and electric displacements can be expressed as

σi j =
(
(ci jk1 + pci jk2)ak + (e1 j i + pe2 j i )a4

)
f ′(z), (2–18)

Di =
(
(eik1 + peik2)ak − (ε1i + pε2i )a4

)
f ′(z), (2–19)

or

{σ2 j , D2}
T

= (RT
+ pT )a f ′(z), {σ1 j , D1}

T
= ( Q + p R)a f ′(z). (2–20)

Defining

b = (RT
+ pT )a, (2–21)

and comparing it with (2–16), we get

b = (RT
+ pT )a = −

1
p
( Q + p R)a. (2–22)

By introducing the additional solution

8 = b f (z), (2–23)

then (2–20) can be expressed as

{σ2 j , D2}
T

= 8,1, {σ1 j , D1}
T

= −8,2. (2–24)

The eigenvalue problem (2–16) gives four pairs of complex conjugates and corresponding vectors.
pα (α = 1, 2, 3, 4) as the eigenvalues with positive imaginary part, and aα and bα as the associated
vectors, we can write

pα+4 = p̄α, aα+4 = āα, bα+4 = b̄α, (2–25)
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where the over-bar denotes the complex conjugate. Assuming that pα are distinct, the general solution
can be written as

u =

4∑
α=1

(
aα fα(zα) + āα fα+4(z̄α)

)
, (2–26)

8 =

4∑
α=1

(
bα fα(zα) + b̄α fα+4(z̄α)

)
, (2–27)

where zα = x1 + pαx2 and fl (l = 1, 2, 3, 4, 5, 6, 7, 8) are arbitrary functions to be determined according
to the boundary conditions. In many applications they could be assumed to have the same function form

fα(zα) = qα f (zα), fα+4(z̄α) = q̄α f̄ (z̄α), (2–28)

where qα are constants to be determined, and f̄ (z̄α) is the conjugate complex of f (zα). Defining two
4 × 4 complex matrices

A =
[
a1 a2 a3 a4

]
, (2–29)

B =
[
b1 b2 b3 b4

]
, (2–30)

Equations (2–26) and (2–27) can be written as

u = A f (z) + A f (z̄), (2–31)

8 = B f (z) + B f (z̄), (2–32)

where
f (z) = 〈 f (zα)〉q, (2–33)

with

〈 f (zα)〉 = diag
[

f (z1), f (z2), f (z3), f (z4)
]
, (2–34)

q = {q1, q2, q3, q4}
T . (2–35)

With the help of (2–22), the eigenvalue problem (2–16) can be expressed in a standard form as[
−T−1 RT T−1

RT−1 RT
− Q −RT−1

] [
a
b

]
= p

[
a
b

]
, (2–36)

The A and B expressed in (2–29) and (2–30) satisfy the normalized orthogonality relation[
BT AT

B̄T Ā
T

][
A Ā
B B̄

]
=

[
I 0
0 I

]
, (2–37)

from which three real 4 × 4 matrices can be defined

S = i(2ABT
− I), H = 2i AAT , L = −2i B BT , (2–38)
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where, I is the 4 × 4 identity matrix and i =
√

−1. It is easy to show that

H L − SS = L H − ST ST
= I, LS + ST T = SH + H ST

= 0. (2–39)

For a dislocation d = [d1, d2, d3, d4] located at zd in an infinite homogenous material, the vector q and
the functions f (zα) in (2–33) can be written as

q =
1

2π i
BT d, f (zα) = ln(zα − zdα). (2–40)

Differentiating (2–31) and (2–32) with x1, we obtain

u,1 = AF(z) + AF(z̄), (2–41)

8,1 = B F(z) + B F(z̄) = i M AF(z) − i M AF(z̄), (2–42)

where

F(z) = d f (z)/dz, (2–43)

M = −i B A−1
= H−1

+ i H−1 S. (2–44)

3. Statement of the problem

The physical problem to be investigated is shown in Figure 1. A charged dislocation d = [d1, d2, d3, d4]

is located at the point zd(rd , θd) near some rigid lines Lr (r = 1, 2, . . . , N ) embedded in an infinite
piezoelectric medium. The rigid lines are assumed to be collinearly located along the x1-axis of a
Cartesian coordinate system x1x2x3. The dislocation is assumed to be straight and infinitely long in
the x3-direction, suffering a finite discontinuity in the displacement and electric potential across the slip
plane. Assume that the deformations of the solid depend on x1 and x2 only.

The mechanical boundary conditions at any rigid line surface are

u j (t)+ = u j (t)− = u j0 + wr x1δ j2, j = 1, 2, 3, t ∈ Lr , (3–1)

where the superscript “+” and “−” refer, respectively, to the upper and lower rigid line surfaces, u j0 are
displacements of the inclusions, wr is the counterclockwise rotation with respect to the x3 axis, and δ j2

is the Kronecker coefficient.

dr  

dθ  

),( ddd rz θ  y  

x  

 

ra  rb  
rL  

Figure 1. A piezoelectric screw dislocation near collinear rigid line inclusions.
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The electric boundary conditions at any rigid line surface are

E1(t)+ = E1(t)−, t ∈ Lr (3–2a)

D2(t)+ = D2(t)−, t ∈ Lr , (3–2b)

for the dielectric rigid lines, and

u4(t)+ = u4(t)− = u40, t ∈ Lr (3–3)

for the conducting rigid lines, where u40 is a constant.
By using the perturbation technique, the complex potential vectors for the current problem can be

expressed as

F(z) = F0(z) + F1(z), (3–4)

where F0(z) is associated with the unperturbed field that is related to the solutions of an infinite homo-
geneous medium without the inclusions and is holomorphic in the entire domain except at zd . F0(z) can
be expressed as

F0(z) =
1

2π i

〈 1
zα−zdα

〉
BT d. (3–5)

The function F1(z) corresponds to the perturbed field due to the introducing of the rigid lines and is
holomorphic in the entire domain excluded the rigid lines. It is an unknown function to be determined
according to the boundary conditions of the rigid lines.

4. Interaction of a dislocation with rigid dielectric lines

4.1. Determination of the complex potential function. In this case, the boundary conditions (3–1) and
(3–2) apply. Conditions (3–1) and (3–2) can be rewritten as

u′

j (t)
+

= u′

j (t)
−

= wrδ j2, E1(t)+ = E1(t)−, j = 1, 2, 3, t ∈ Lr , (4–1)

D2(t)+ = D2(t)−, t ∈ Lr , (4–2)

where the prime denotes differentiation with respect to x1. Using (2–41) and (3–4), condition (4–1)
becomes

AF(t)+ + AF(t)− = h0, t ∈ L (4–3)

AF(t)− + AF(t)+ = h0, t ∈ L (4–4)

which leads to

[AF(t) − AF(t)]+ − [ AF(t) − AF(t)]− = 0, t ∈ L , (4–5)

[AF(t) + AF(t)]+ + [AF(t) + AF(t)]− = 2h0, t ∈ L , (4–6)

where h0(t) = (0, wr , 0, −E1(t))T , and E1(t) the unknown function that indicates the boundary value of



DISLOCATION INTERACTING WITH COLLINEAR RIGID LINES 29

E1(z) on the inclusion faces [Gao and Fan 2000]. The substitution of (3–4) into (4–5) and (4–6) yields

[AF1(t) − AF1(t)]+ − [AF1(t) − AF1(t)]− = 0, t ∈ L (4–7)

[AF1(t) + AF1(t)]+ + [AF1(t) + AF1(t)]− = 2[h0(t) + h(t)], t ∈ L , (4–8)

where

h(t) = −
A

2π i

〈 1
t − zdα

〉
BT d +

Ā
2π i

〈 1
t − z̄dα

〉
B̄T d. (4–9)

Based on the theory of [Muskhelishvili 1975] and the assumption that F1(z) vanishes at infinity, the
solution of boundary problems (4–7) and (4–8) can be obtained as

AF1(z) − AF1(z) = 0, (4–10)

AF1(z) + AF1(z) = h0(z) + 2[Z(z) + X0(z)P(z)], (4–11)

where

X0(z) =

N∏
j=1

(z − a j )
−

1
2 (z − b j )

−
1
2 , (4–12)

Z(z) =
X0(z)
2π i

∫
L

h(t)dt
X+

0 (t)(t − z)
, (4–13)

P(z) = cN zN
+ cN−1zN−1

+ · · · + c0. (4–14)

Incorporating Equations (4–10) and (4–11) results in

AF1(z) =
h0(z)

2
+ Z(z) + X0(z)P(z). (4–15)

Taking the limit z → ∞ in (4–15), and noting that F1(∞) = 0, and E1(∞) = 0, the constant cN can be
obtained as

cN = (0, −wr/2, 0, 0)T . (4–16)

The other constants, that is, the vector cN−1, . . . , c0 and wN , . . . , w1 can be determined by single-value
displacement, the irrotationality of electric fields and the force equilibrium conditions. With reference
to (2–42), these conditions can be written as∮

3

AF1(z)dz = 0, Ĥ2

∮
3

AF1(z)zdz = 0, (4–17)

where 3 is the closed path around each inclusion, and Ĥ2 is the second low of the real 4 × 4 matrix
Ĥ = H−1. The complex potential is therefore obtained if the function E1(z) is known.

To obtain E1(z), we introduce the condition (4–2). Using (2–42), (4–2) can be rewritten as

i M4 AF+

1 (t) − i M̄4 AF
−

1 (t) = i M4 AF−

1 (t) − i M̄4 AF
+

1 (t), (4–18)

where the vector M4 is the fourth low of the matrix M as expressed in (2–44). From [Muskhelishvili
1975] we know that the solution of the Equation (4–18) is

Ĥ4 AF1(z) = 0, (4–19)
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Figure 2. A piezoelectric screw dislocation near a rigid line inclusion.

where Ĥ4 = (Ĥ41, Ĥ42, Ĥ43, Ĥ44)
T is the fourth low of the real 4 × 4 matrix Ĥ . Inserting (4–15) into

(4–19) yields

E1(z) =
Ĥ43

Ĥ44
wr +

2Ĥ4

Ĥ44
[Z(z) + X0(z)P(z)]. (4–20)

The complex potentials for the problem are thus determined. After F(z) has been obtained,we can
calculate the stress and the electrical displacement fields. Thus, we can derive the field intensity factors
and the force on the dislocation.

As an example, consider a single rigid line as shown in Figure 2. We can then simplify Equations
(4–12) to (4–14) as

X0(z) = (z2
− a2)

−
1
2 , (4–21)

P(z) = c1z + c0, (4–22)

Z(z) =
Ā

4π i

〈
1

zα − z̄dα

−

√
z̄dα

2 − a2√
zα

2 − a2(zα − z̄dα)
−

1√
z2
α − a2

〉
B̄T d

−
A

4π i

〈
1

zα − zdα

−

√
zdα

2 − a2√
z2
α − a2(zα − zdα)

−
1√

z2
α − a2

〉
BT d. (4–23)

Substituting (4–15), together with (4–21), (4–22) and (4–23) into (4–17) yields

c0 = 0, Ĥ2c1 = 0. (4–24)

Then, substituting (4–16) into (4–24) yields

c0 = 0, c1 = 0, wr = 0, (4–25)

The complex potentials are thus written as

AF1(z) = (I − Y)Z(z), (4–26)
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where I is the 4 × 4 identity matrix, and

Y =


0 0 0 0
0 0 0 0
0 0 0 0

Ĥ41/Ĥ44 Ĥ42/Ĥ44 Ĥ43/Ĥ44 1

 . (4–27)

When the material is purely elastic, the solution reduces to that of [Fan and Keer 1993].

4.2. Field intensity factors. Using (2–24), the field intensity factors at the right rigid line tip can be
defined as

K = {K II , K I , K II , K D}
T

= lim
x1→a

√
2π(x1 − a)8,1(x1), (4–28)

where

8,1(x1) = 2 Re i M AF1(x1) = −2H−1 S(I − Y) Re Z(x1). (4–29)

Substituting (4–23) into (4–29) yields

8,1(x1) =
H−1 S(I − Y)

π

√
x2

1 − a2

(
Im A

〈√x2
1 − a2 −

√
z2

dα − a2

x1 − zdα

− 1
〉

BT d

)
. (4–30)

The field intensity factors are thus obtained as

K =
H−1 S(I − Y)

√
πa

(
Im A

〈√
zdα + a
zdα − a

− 1
〉

BT d
)

. (4–31)

When the dislocation lies along the real axis zd = (xd , 0), (4–15) reduces to

K = −
H−1 S(I − Y)Sd

2
√

πa

(√
xd + a
xd − a

− 1
)

. (4–32)

4.3. Force on dislocation. To analyze the possible balance position of a dislocation, it is of interest to
compute the image force acting on the dislocation due to the presence of the rigid lines. The image force
per unit length is defined as the negative gradient of the interaction energy with respect to the position
of the dislocation. The image force [Pak 1990] can be written as

Fx1 = d1σ
1
21 + d2σ

1
22 + d3σ

1
23 + d4 D1

2 = dT 81
,1, (4–33)

Fx2 = −
(
d1σ

1
11 + d2σ

1
12 + d3σ

1
13 + d4 D1

1
)
= dT 81

,2, (4–34)

where 81 is associated with the perturbed field calculated from F1(z) with zα → zdα, that is,

F1(zdα) =
1

2π i

[
A−1(I − Y) Ā〈G1〉B̄T

+ A−1(I − Y)A〈G2〉BT ]d, (4–35)
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with

G1(zdα) =

√
z2

dα − a2 −

√
z̄2

dα − a2 − (zdα − z̄dα)

2(zdα − z̄dα)

√
z2

dα − a2
,

G2(zdα) = −

zdα −

√
z2

dα − a2

2(z2
dα − a2)

.

(4–36)

As a result, we obtain

81
,1(zdα) =

1
π

Im
(
B A−1(I − Y) Ā〈G1〉B̄T

+ B A−1(I − Y)A〈G2〉BT )d, (4–37)

81
,2(zdα) =

1
π

Im
(
B A−1(I − Y) Ā〈pαG1〉B̄T

+ B A−1(I − Y)A〈pαG2〉BT )d. (4–38)

When the dislocation lies on the x1-axis, that is, zad = x1d = xd , we can simplify the expressions (4–37)
and (4–38)as

81
,1(xd) = −g(xd)H−1 S(I − Y)Sd, (4–39)

81
,2(xd) = g(xd) Im

(
B A−1(I − Y)

(
Ā〈pα〉B̄T

− A〈pα〉BT ))d, (4–40)

where

g(xd) =
1

2π

xd −

√
x2

d − a2

x2
d − a2

. (4–41)

5. Interaction of a dislocation with rigid conducting lines

5.1. Determination of the complex potential function. In the case of rigid conducting lines, the bound-
ary conditions (3–1) and (3–3) apply. Conditions (3–1) and (3–3) can be rewritten as

u′

j (t)
+

= u′

j (t)
−

= wrδ j2, j = 1, 2, 3, t ∈ Lr (5–1)

u′

4(t)
+

= u′

4(t)
−

= 0, t ∈ Lr , (5–2)

where the prime denotes differentiation with respect to with x1. With reference to (2–41) and (3–4),
conditions (5–1) and (5–2) arrive at

AF(t)+ + AF(t)− = h0, t ∈ L , (5–3)

AF(t)− + AF(t)+ = h0, t ∈ L , (5–4)

which lead to [
AF(t) − AF(t)

]+
−
[

AF(t) − AF(t)
]−

= 0, t ∈ L , (5–5)[
AF(t) + AF(t)

]+
+
[

AF(t) + AF(t)
]−

= 2h0, t ∈ L , (5–6)
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where h0 = (0, wr , 0, 0)T . Substituting (3–4) into (5–5) and (5–6) yields[
AF1(t) − AF1(t)

]+
−
[

AF1(t) − AF1(t)
]−

= 0, t ∈ L , (5–7)[
AF1(t) + AF1(t)

]+
+
[

AF1(t) + AF1(t)
]−

= 2[h0 + h(t)], t ∈ L , (5–8)

where h(t) is as defined in (4–9). This problem is a special case of the case solved in the previous section.
The solution can be obtained from the previous solution by setting Y = 0. For a single rigid conducting
line as shown in Figure 2, the complex potential corresponding to the perturbed field is

AF1(z) = Z(z), (5–9)

where Z(z) is as in (4–23).

5.2. Field intensity factors. The field intensity factors at the right inclusion tip can be defined as

K =
H−1 S
√

πa

(
Im A

〈√
zdα + a
zdα − a

− 1
〉

BT d
)

. (5–10)

When the dislocation lies along the real axis zd = (xd , 0), Equation (5–15) reduces to

K = −
H−1 S2d
2
√

πa

(√
xd + a
xd − a

− 1
)

. (5–11)

5.3. Force on dislocation. The image force on dislocation can be written as

Fx1 = dT 81
,1(zdα), (5–12)

Fx2 = dT 81
,2(zdα), (5–13)

where

81
,1(zdα) =

1
π

Im
[
B A−1 Ā〈G1〉B̄T

+ B〈G2〉BT ]d, (5–14)

81
,2(zdα) =

1
π

Im
[
B A−1 Ā〈pαG1〉B̄T

+ B〈pαG2〉BT ]d. (5–15)

G1(zdα) and G2(zdα) are as defined in (4–36). When the dislocation lies on the x1-axis, that is, zda =

x1d = xd , we simplify (5–14) and (5–15) as

81
,1(xd) = g(xd)(H−1

− L)d, (5–16)

81
,2(xd) = g(xd) Im

{
B A−1

[ Ā〈pα〉B̄T
− A〈pα〉BT

]
}

d, (5–17)

where g(xd) is as defined in (4–41).

6. Numerical examples

The previous sections derived the explicit expressions for the field intensity factors and the forces on the
dislocation. However they are not straightforward since several variables are involved. In this section,
we present some numerical illustrations. As an example, we address the case when the dislocation lies
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along θd = π/6. The material is assumed to be PZT-5H, with the x1-axis the polling direction. The
material constants [Pak 1992b] are

c11 = 117 GPa, c12 = c13 = 53 GPa,

c22 = c33 = 126 GPa, c23 = 55 GPa,

c44 = 35.5 GPa, c55 = c66 = 35.3 GPa,

e11 = 23.3 C/m2, e12 = e13 = −6.5 C/m2,

e35 = e26 = 17 C/m2,

ε11 = 130 × 10−10 C/Vm,

ε22 = ε33 = 151 × 10−10 C/Vm.

(6–1)

For pα (α = 1, 2, 3, 4), the values of A and B are then calculated as follows:

p1 = −0.17351 + 0.93175i,

p2 = 0.17351 + 0.93175i,

p3 = 0.93367i,

p4 = 0.99718i,

(6–2)

A11 = −.8521 × 10−6
+ .3117 × 10−5i, A12 = .3117 × 10−5

− .8521 × 10−6i,

A13 = .4133 × 10−5
+ .1433 × 10−5i, A14 = 0,

A21 = −.3561 × 10−5
+ .4268 × 10−6i, A22 = −.4268 × 10−6

+ .3561 × 10−5i,

A23 = −.1189 × 10−5
+ .1189 × 10−5i, A24 = 0,

A31 = 0, A32 = 0,

A33 = 0, A34 = −.2657 × 10−5
+ .2657 × 10−5i,

A41 = 722.3288 + 2351.6593i, A42 = 2351.6593 + 722.3288i,

A43 = −3006.4445 − 3006.4445i, A44 = 0.

(6–3)

B11 = −262382.5644 − 27548.9152i, B12 = 27548.9157 + 262382.5653i,

B13 = −41491.1280 + 41491.1353i, B14 = 0,

B21 = −22107.3141 − 277484.1268i, B22 = −277484.1276 − 22107.3141i,

B23 = 44438.6631 − 44438.6550i, B24 = 0,

B31 = 0, B32 = 0, B33 = 0, B34 = −94074.2510 − 94074.2510i,

B41 = −.7241 × 10−4
− .1944 × 10−4i, B42 = .1944 × 10−4

+ .7241 × 10−4i,

B43 = −.8535 × 10−4
+ .8535 × 10−4i, B44 = 0.

(6–4)

6.1. Field intensity factors. The expression (4–31) gives the field intensity factors at the right rigid line
tip arising from the dislocation d = (d1, d2, d3, d4)

T located at zd near a rigid dielectric line. Expression
(5–10) does the same for a rigid conducting line. When these intensity factors have the same sign as
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those arising from the remote applied stress or electric displacement, the total intensity factors increase.
The dislocation then anti-shields the rigid line tip; otherwise the dislocation shields it. Shielding effects
from d1, d2, and d4 on K I , K II , K III , K D for the dislocation located along θd = π/6 near a rigid line
are illustrated in Figures 3 to 8, in relation to the normalized dislocation radial location rd/a. To plot
the four field intensity factors in one figure, the values of K I , K II , K III , K D were properly normalized
in the figures with positive values. The normalized intensity factors are denoted as K ∗

I , K ∗

II , K ∗

III , K ∗

D
in the figures, where

K ∗

j (d j ) =
K j (d j )

K j0(d j )
, j = I, II, III, D, (6–5)

with

K j0(d j ) =
d j

2
√

πa
× 1010 N/m2, K D0(d j ) =

d j
√

πa
× 2 N/Vm, j = I, II, III

K j0(d4) =
d4

√
πa

× 2 N/Vm, j = I, II, III, K D0(d4) =
d4

√
πa

× 10−9 N/V2.

(6–6)

In the above equations, dI = d1, dII = d2, dIII = d3.
Figure 3 shows that the glide dislocation d1 always shields K I while anti-shielding K II and K D when

it is near a dielectric line tip. The shielding effects from the glide dislocation on K II and K D appear

ard
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Figure 3. The shielding effect from the glide dislocation d1 located along θd = π/6 on
the field intensity factors for a rigid dielectric inclusion.
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Figure 4. The shielding effect from the glide dislocation d1 located along θd = π/6 on
the field intensity factors for a rigid conducting inclusion.

in a very similar way. But the glide dislocation d1 does not affect K III . This occurs because the glide
dislocation does not contribute any anti-plane deformations.

Figure 4 also shows that the glide dislocation d1 always shields K I while anti-shielding K II and K D ,
but does not affect K III when it is near a conducting line tip. A comparison of Figures 3 and 4 indicates
that the conductivity of the inclusion only has apparent effects on K I .

Figures 5 and 6 show the shielding effects from the climb dislocation d2 for a rigid dielectric line and
a rigid conducting line, respectively. We find that the two figures are nearly the same, which indicates
that the conductivity of the rigid line is not sensitive to the shielding effects from d2.

Figures 7 and 8 show the shielding effects from the electrical dislocation d4 for a rigid dielectric
line and a rigid conducting one, respectively. The comparison of these two figures also indicates that the
conductivity of the rigid line only has apparent effects on K I . For a rigid dielectric line, it first anti-shields
and then shields K I when increasing rd/a; while for a rigid conducting one, it always shields K I .

6.2. Image force on dislocation. Expressions for the image forces on the dislocation due to existence of
the inclusion are calculated using (4–33) and (4–34) together with (4–37) and (4–38) for a rigid dielectric
line, and by (5–12) to (5–15) for a rigid conducting one. As such, the slip and climb parts of the image
forces can be calculated as follows:

Fr = Fx cos θd + Fy sin θd ,

Ft = −Fx sin θd + Fy cos θd .
(6–7)
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Figure 5. The shielding effect from the climb dislocation d2 located along θd = π/6 on
the field intensity factors for a rigid dielectric inclusion.

ard

)( 2
* dK

*
IK
*
IIK

*
IIIK
*
DK

Figure 6. The shielding effect from the climb dislocation d2 located along θd = π/6 on
the field intensity factors for a rigid conducting inclusion.
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Figure 7. The shielding effect from the electrical dislocation d4 located along θd = π/6
on the field intensity factors for a rigid dielectric inclusion.
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Figure 8. The shielding effect from the electrical dislocation d4 located along θd = π/6
on the field intensity factors for a rigid conducting inclusion.
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Figures 9 and 10 plot the normalized slip image force Fr/F0 and climb image force Ft/F0 varied with
the normalized radial location rd/a, respectively, for a rigid dielectric line.
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Figure 9. Variations of the radial normalized image forces on the dislocation located
along θd = π/6 near a rigid dielectric inclusion.
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Figure 10. Variations of the tangential normalized image forces on the dislocation lo-
cated along θd = π/6 near a rigid dielectric inclusion.
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Figures 11 and 12 plot those for a rigid conducting line. The dislocation has four different dislocation
strength characteristics (d1, d2, d3, d4). We allow the dislocation to have only one non-zero strength
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Figure 11. Variations of the radial normalized image forces on the dislocation located
along θd = π/6 near a rigid conducting inclusion.

ard

*
tF

)( 1
* dFt

)( 2
* dFt

)( 3
* dFt

)( 4
* dFt

Figure 12. Variations of the tangential normalized image forces on the dislocation lo-
cated along θd = π/6 near a rigid conducting inclusion.
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characteristic. The other three are zero in each plotted curve. The normalizing factors in each curve are
given by

F0 =
dT Ld
4πa

. (6–8)

Figures 9 and 10 show that, a rigid dielectric line always repels the mechanical dislocation in the
radial direction, while it does little on the electrical dislocation; it always attracts the dislocation to the
real axis when it is close to the rigid line tip. On the other hand, Figures 11 and 12 show that a rigid
conducting line always repels the dislocation in the radial direction and attracts the dislocation in the
tangential direction when the dislocation is close to the inclusion.

7. Conclusions

The interaction problem of a dislocation and collinear rigid lines embedded in a piezoelectric media is
addressed. The lines considered are for either conductors or dielectrics. We obtain a closed form solution
using the complex potential method, and explicitly derive field intensity factors and the forces on the
dislocation for a single inclusion case.We present numerical examples and discuss the results.
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