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We analyze functionally graded material (FGM) plates with two opposite edges simply supported and
the other two edges free subjected to a uniform load. Even though an FGM plate is a kind of composite
material, if the Young’s modulus of the FGM plates varies along the thickness direction and the Pois-
son’s ratio is constant in the whole FGM plate, the bending and in-plane problems in FGM plates under
transverse load only are uncoupled. Therefore, the analytical solution to the bending problem of FGM
plates is obtained in this study by Fourier series expansions, which agrees very well with a finite element
calculation. Results show that the maximum tensile stresses are located at the bottom of the FGM plates.
However, the maximum compressive stresses move to the inside of the FGM plates. The coefficients
A11, B11, C11 defined in this paper relate to the area and to the first and the second moments of the area
under the E(z) curve from z = −h/2 to z = h/2. The parameter Q11, representing the location of
the centroid of the area under the E(z) curve, is related to the location of the neutral surfaces, and S11

represents the bending stiffness of the FGM plates.

1. Introduction

Functionally graded materials (FGMs), a type of composite material produced by continuously varying
the volume fractions in the thickness direction to obtain a predetermined profile, have received much
attention recently because of the advantages of decreasing the mismatch in material properties and re-
ducing residual and thermal stresses [Chung and Chi 2001; Lee and Erdogan 1994]. Many researchers
have been working toward an understanding of the material constituent [Chi and Chung 2002; Bao and
Wang 1995; Suresh and Mortensen 1998], fracture mechanics [Chi and Chung 2003; Jin and Noda 1994;
Jin and Batra 1996; Delale and Erdogan 1983; Gu and Asaro 1997; Cai and Bao 1998; Jin and Paulino
2001; Erdogan and Wu 1996; Erdogan and Chen 1998], and processing of FGMs [Kwon and Crimp
1997; Kesler et al. 1997].

FGMs may be applied to plate structures in aircraft, space vehicles, reactor vessels, and other engi-
neering applications as a thermal barrier. Studies of thermoelastic deformations of FGM plates can be
found in many references in the literature. Obata and Noda [1996] theoretically analyzed and numerically
calculated the steady thermal stresses in an FGM plate composed of PSZ and Ti-6Al-4V, and determined
the optimal FGM plates. Praveen and Reddy [1998] investigated nonlinear transient thermoelastic re-
sponses of functionally graded ceramic-metal plates by using a plate finite element that accounts for the
transverse shear strains, rotary inertia and moderately large rotations in the Von Karman sense. An exact
solution was obtained in [Vel and Batra 2002] for three-dimensional deformations of a simply supported
FGM thick rectangular plate subjected to mechanical and thermal loads on its top and/or bottom surfaces.
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The exact solutions for mechanical and thermal loads are used to assess the accuracy of classical plate
theory, first-order shear deformation theory, and a third-order shear deformation theory. Transient thermal
stresses in FGM plates with a simple power-law distribution were investigated in [Vel and Batra 2003].

Buckling behavior plays an important role in plate structures. Elastic bifurcation buckling of FGM
plates under in-plane compressive loading was studied in [Feldman and Aboudi 1997], based on a com-
bination of micromechanical and structural approaches. Ma and Wang [2004] investigated the axisym-
metric bending and buckling solutions for an FGM circular plate based on third-order plate theory and
classical plate theory. The results showed that the first-order shear deformation plate theory is enough
to consider the effect of shear deformation on the axisymmetric bending and buckling of FGM plates.
The problems of thermal buckling in the axial direction of cylindrical shells made of FGMs varying as a
power form were discussed in [Wu et al. 2005]. Moreover, the dynamic stability of conical FGM shells
subjected to a periodic impulsive pressure was studied in [Sofiyev 2004] by applying Galerkin’s method.

Understanding of the mechanical behavior of an FGM plate becomes very important in assessing the
safety of the plate structure. Woo and Meguid [2001] applied Karman theory for large deformations to
obtain the analytical solution for plates and shells under transverse mechanical loads and a temperature
field. He et al. [2001] studied the vibration control of the FGM plates with integrated piezoelectric
sensors and actuators by a finite element formulation based on the classical laminated plate theory. Chi
and Chung [2006a; 2006b] analyzed the mechanical behaviors of a simply supported rectangular FGM
plate with sigmoid functions of the volume fraction of the constituents by the Fourier series expansion.
The collocation multiquadric radial basis is used in [Ferreira et al. 2005] to analyze static deformations
of simply supported FGMs modeled by a third-order shear deformation theory and a meshless method.

The closed-form solution to the problems of FGM plates subjected to transverse loads with two op-
posite edges simply supported and the other two edges free is not found in the literature. Therefore, this
study will focus on the simple but important problems of FGM plates with two opposite edges simply
supported and the other two edges free. The material properties of the FGM plates considered here are
assumed to change continuously throughout the thickness of the plate, according to the volume fraction
of the constituent material based on the power-law and sigmoid functions. The analytical solution is
obtained by the Fourier series expansion and compared with the finite element calculation.

2. Governing equations

Consider a linearly elastic, moderately thick, rectangular FGM plate subjected to a transverse load. As-
sume the plate has a uniform thickness h in the range 1/20 ∼ 1/100 of its span. The deformations and
the stresses of the FGM plate are derived under the following assumptions:

1. Line elements perpendicular to the middle surface of the plate before deformation remain normal
and unstretched after deformation.

2. The deflection of the FGM plate is small in comparison with its thickness h, so the linear strain-
displacement relations are valid.

3. The normal stress in the thickness direction can be neglected because of the thickness assumption.

4. For the nonhomogeneous elastic FGM plate, the Young’s modulus and Poisson’s ratio of the FGM
plate are functions of the spatial coordinate z.
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2.1. Stress field of FGM plates. According to assumption 1, the transverse strain components εzz , γxz ,
and γyz are negligibly small. Under the assumption of small deformation, the strain field of the FGM
plate is

εx =
∂u
∂x

= εx0 − z
∂2w(x, y)

∂x2 , (1a)

εy =
∂v

∂y
= εy0 − z

∂2w(x, y)

∂y2 , (1b)

γxy =
∂u
∂y

+
∂v

∂x
= γxy0 − 2z

∂2w(x, y)

∂x∂y
, (1c)

εz = γxz = γyz = 0, (1d)

where

εx0 =
∂u0(x, y)

∂x
εy0 =

∂v0(x, y)

∂y
γxy0 =

∂u0

∂y
+

∂v0

∂x

are strains at the middle surface. The quantities u0(x, y), v0(x, y), w0(x, y) are the displacements at
the middle surface. It is known that neglecting the transverse shear deformations may lead to significant
errors when applied to moderately thick plates with thickness larger than 0.1 of span [Tauchert 1986].
However, Shames and Dym [1985] indicated that for a plate with a thickness less than 0.1 of its span, the
classical theory of plates is expected to give good results. In this paper, the thickness of the moderately
thick FGM plate is assumed to be in the range 1/20 ∼ 1/100 of its span, therefore the transverse shear
deformations are negligible.

Based on assumptions 3 and 4, the stress-strain relation of an FGM plate for plane stress condition is

σx =
E(z)

1−ν(z)2

(
εx0 + ν(z)εy0 − z

(
∂2w

∂x2 + ν(z)∂
2w

∂y2

))
, (2a)

σy =
E(z)

1−ν(z)2

(
εy0 + ν(z)εx0 − z

(
∂2w

∂y2 + ν(z)∂
2w

∂x2

))
, (2b)

τxy =
E(z)

1−ν(z)2

(1−ν(z)
2

)(
γxy0 − 2z ∂2w

∂x∂y

)
. (2c)

2.2. Axial forces, shear forces, and bending moments of FGM plates. The stress resultants per unit
length of the middle surface are defined by integrating stresses along the thickness. Thus the in-plane
axial forces Nx , Ny , and Nxy , and the bending moments per unit length of the middle surface, Mx , My ,
and Mxy are defined as follows, with α = x, y:

Nα =

∫ h/2

−h/2
σα dz, Nxy =

∫ h/2

−h/2
τxy dz, Mα =

∫ h/2

−h/2
zσα dz, Mxy =

∫ h/2

−h/2
zτxy dz.
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Substituting the relations (2) into these defining equations, we obtain the in-plane axial forces and the
bending moments in terms of the middle-surface strains and deflection:


Nx

Ny

Nxy

 =

A11 A12 0

A12 A11 0

0 0 A66




εx0

εy0

γxy0

 +

B11 B12 0

B12 B11 0

0 0 B66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


, (3)


Mx

My

Mxy

 =

B11 B12 0

B12 B11 0

0 0 B66




εx0

εy0

γxy0

 +

C11 C12 0

C12 C11 0

0 0 C66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


, (4)

where the coefficients of Ai j , Bi j and Ci j are the integration of the material properties of the FGM plate

(A11, B11, C11) =

∫ h/2

−h/2

1
1 − ν(z)2

(
E(z), zE(z), z2 E(z)

)
dz, (5a)

(A12, B12, C12) =

∫ h/2

−h/2

ν

1 − ν(z)2

(
E(z), zE(z), z2 E(z)

)
dz, (5b)

(A66, B66, C66) =

∫ h/2

−h/2

1
2(1 + ν(z))

(
E(z), zE(z), z2 E(z)

)
dz. (5c)

2.3. Equilibrium and compatibility equations for FGM plates. Assume that the FGM plate is subjected
to the distributed loads qx , qy and qz along the x , y and z directions. Then the equilibrium equations of
the FGM plate are (see [Chi and Chung 2003])

∂ Nx

∂x
+

∂ Nyx

∂y
+ qx = 0 (6)

∂ Nyx

∂x
+

∂ Ny

∂y
+ qy = 0 (7)

∂2 Mx

∂x2 + 2
∂2 Mxy

∂x∂y
+

∂2 My

∂y2 = −qz(x, y). (8)

If the FGM plate is only subjected to the transverse load qz , that is, if qx = qy = 0, the in-plane Equa-
tions (6) and (7) can be solved in term of a stress function φ(x, y) defined by

Nx =
∂2φ

∂y2 ; Ny =
∂2φ

∂x2 ; Nxy = −
∂2φ

∂x∂y
. (9)
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Using Equations (3) and (9), the strains at the middle surface are then expressed in terms of the stress
function φ(x, y) and the deflection w as


εx0

εy0

γxy0

 =

P11 P12 0

P12 P11 0

0 0 P66




∂2φ

∂y2

∂2φ

∂x2

∂2φ

∂x∂y


+

Q11 Q12 0

Q12 Q11 0

0 0 Q66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


. (10)

Consequently, the bending moments rearranged by substituting (10) into (4) are


Mx

My

Mxy

 =

−Q11 −Q12 0

−Q12 −Q11 0

0 0 −Q66




∂2φ

∂y2

∂2φ

∂x2

∂2φ

∂x∂y


+

S11 S12 0
S12 S11 0
0 0 S66




−
∂2w

∂x2

−
∂2w

∂y2

−2
∂2w

∂x∂y


, (11)

where

P11 = A11/1,

P12 = −A12/1,

P66 = −1/A66,

Q11 = (A12 B12 − A11 B11)/1,

Q12 = (A12 B11 − A11 B12)/1,

Q66 = −B66/A66,

S11 = B11 Q11 + B12 Q12 + C11,

S12 = B11 Q12 + B12 Q11 + C12,

S66 = C66 + B66 Q66,

(12)

and
1 = A2

11 − A2
12.

Consequently, we substitute (11) into (8) and the equilibrium equation becomes

Q12
∂4φ

∂x4 + 2(Q11 − Q66)
∂4φ

∂x2∂y2 + Q12
∂4φ

∂y4 + S11
∂4w

∂x4 + 2(S12 + 2S66)
∂4w

∂x2∂y2 + S11
∂4w

∂y4 = qz(x, y).

(13)
In a similar manner, the compatibility equation for a plane problem expressed in terms of stress function
φ(x, y) and the deflection w are derived as

P11
∂4φ

∂x4 + (2P12 − P66)
∂4φ

∂x2∂y2 + P11
∂4φ

∂y4 − Q12
∂4w

∂x4 − 2(Q11 − Q66)
∂4w

∂x2∂y2 − Q12
∂4w

∂y4 = 0. (14)

Equations (13) and (14) provide the simultaneous equations to solve the stress function φ(x, y) and the
deflection w. They are particular cases of the nonlinear equations presented in [Woo and Meguid 2001].
Similar formulae for the equilibrium and compatibility equations in (13) and (14) can also be found in
[Nowinski and Turski 1953] and [Sokolowski 1958].

If both the Young’s modulus and Poisson’s ratio are considered for calculating the coefficient, the
integration will turn out to be very complex. Chi and Chung [2003] showed that the influence of Poisson’s
ratio on the mechanics of FGM plates is much less than that of the Young’s modulus. Therefore, the
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solutions for the material with Poisson’s ratio assumed to be constant and Young’s modulus varying in
the thickness direction are derived in Section 3.

For material with ν =constant and E = E(z), it can be found that

(A12, B12, C12) = ν(A11, B11, C11),

(A66, B66, C66) =
1 − ν

2
(A11, B11, C11),

(P12, Q12, S12) = ν(−P11, 0, S11),

(P66, Q66, S66) =

(
−2(1 + ν)P11, Q11,

1 − ν

2
S11

)
,

(15)

where

P11 =
1

(1 − ν2)A11
, Q11 = −

B11

A11
, and S11 = B11 Q11 + C11.

Consequently, the equilibrium and compatibility equations are simplified as

S11∇
4w = q(x, y), (16)

∇
4φ = 0. (17)

It can be seen that for the FGM plate with constant Poisson’s ratio, the governing equations of the bending
problem expressed in Equation (16) and the in-plane problem in Equation (17) are uncoupled.

3. Solution to FGM plates with two opposite edges simply supported and two other edges free

Consider an FGM plate with length a, width b, and uniform thickness h subjected to the lateral load
qz(x, y). The coordinates x and y define the plane of the plate, whereas the z-axis originating at the
middle surface of the plate is in the thickness direction. The Poisson’s ratio of the FGM plate is assumed
to be constant and the Young’s modulus varies functionally in the thickness direction. Further assume
that two opposite edges of the FGM plate are simply supported and the other edges are free, as shown
in Figure 1.

The deflection w must satisfy the boundary conditions of w = 0 and w′′
= 0 at x = 0 and x = a.

Therefore the deflection of the FGM plate can be assumed as

w(x, y) =

∞∑
m=1

wm(y) sin
mπx

a
. (18)

Consequently the distributed loading qz(x, y) can be expanded by Fourier series

qz(x, y) =

∞∑
m=1

qm(y) sin kx,

where qm(y) =
∫

qz(x, y) sin kx dx and k = mπ/a. For the special case when the FGM plate is under a
uniform load with magnitude qz(x, y) = q0, the quantity qm(y) = 4q0/(mπ) where m is an odd number.



THE FLEXIBILITY OF FUNCTIONALLY GRADED MATERIAL PLATES . . . 69

0q

0q

x x

Figure 1. The configuration of an FGM plate.

To satisfy the governing equation of ∇
4φ = 0, the stress function is also assumed as

φ(x, y) =

∞∑
m=1

φm(y) sin
mπx

a
. (19)

Substituting (18) and (19) into (16) and (17), we rewrite the governing equations as

k4wm(y) − 2k2w′′

m(y) + w′′′′

m(y) =
qm(y)

S11
, (20)

k4φm(y) − 2k2φ′′

m(y) + φ′′′′

m(y) = 0. (21)

The solution of (20) consists of a homogeneous part wmh(y), and a particular part wmp(y). The partic-
ular part cannot be determined until qm(y) is specified. However, the homogeneous part can be easily
determined as

wmh(y) = A1m cosh ky + A2mky sinh ky + A3m sinh ky + A4mky cosh ky. (22)

Similarly, φm(y) is obtained in the form

φm(y) = B1m cosh ky + B2mky sinh ky + B3m sinh ky + B4mky cosh ky. (23)

Because of symmetry with respect to the y-axis,

A3m = A4m = B3m = B4m = 0.

The unknown constants Aim and Bim can be determined from the boundary conditions on the free edges
(y = ±b/2) as My = 0,

Vy +
∂ Mxy

∂y
= 0,

and

{
Ny = 0,

Nxy = 0.
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The conditions Ny(y = ±b/2) = 0 and Nxy(y = ±b/2) = 0 give B1m = B2m = 0. Consequently, the
stress function φ(x, y) = 0. The boundary conditions My = 0 and Vy + ∂ Mxy/∂y = 0 at y = ±b/2 yield

A1m =

νwmp(y)
(1+ν

1−ν
sinh kb

2
−

kb
2

cosh kb
2

)
3+ν

2
sinh kb − (1 − ν)

kb
2

, A2m =

νwmp(y) sinh kb
2

3+ν

2
sinh kb − (1 − ν)

kb
2

. (24)

With the aid of φ(x, y) = 0, the complete solution of the FGM plate with two opposite edges simply
supported and two other edges free is

w(x, y) =

∑
m

(
A1m cosh ky + A2mky sinh ky + wmp(y)

)
sin kx, (25a)

Nx = Ny = Nxy = 0, (25b)
Mx

My

Mxy

 = S11

1 ν 0
ν 1 0
0 0 (1 − ν)/2

 
κx

κy

κxy

 , (25c)


εx0

εy0

γxy0

 = Q11


κx

κy

κxy

 , (25d)


εx

εy

γxy

 = (Q11 + z)


κx

κy

κxy

 , (25e)


σx

σy

τxy

 =

(
E(z)

1 − ν2

)(
Q11 + z

S11

) 
Mx

My

Mxy

 , (25f)

where κx = −
∂2w

∂x2 , κy = −
∂2w

∂y2 , κxy = −2
∂2w

∂x∂y
, and

∂2w

∂x2 = −

∑
m

k2(A1m cosh ky + A2mky sinh ky + wmp(y)
)

sin kx,

∂2w

∂y2 =

∑
m

k2(A1m cosh ky + A2m(2 cosh ky + ky sinh ky) + w′′

mp(y)
)

sin kx,

∂2w

∂x∂y
=

∑
m

k2(A1m sinh ky + A2m(sinh ky + ky cosh ky) + w′

mp(y)
)

cos kx,

for an FGM plate under a uniform load with magnitude qz(x, y) = q0, the particular solution wmp equals
4q0/(ak5S11).
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4. Material gradient and the physical meaning of the coefficients

For the FGM plate in Figure 1, Poisson’s ratio is assumed to be constant. The Young’s moduli on the
upper and lower surfaces of the FGM plate differ and are preassigned according to the performance
demands, but the Young’s modulus inside FGM plates varies continuously in the thickness direction
with power-law functions (P-FGM) or sigmoid functions (S-FGM).

4.1. Material properties and parameters of P-FGM plates. The volume fraction of the P-FGM is as-
sumed to obey a power-law function

g(z) =

( z + h/2
h

)p
, (26)

where p is the material parameter and h is the thickness of the plate. Once the local volume fraction
g(z) has been defined, the material properties of a P-FGM can be determined by the rule of mixture (see
[Bao and Wang 1995])

E(z) = g(z)E1 + [1 − g(z)]E2, (27)

where E1 and E2 are the Young’s moduli of the bottom and top surfaces of the FGM plate, respectively
(z = ±h/2). The variation of the Young’s modulus of a P-FGM plate in the thickness direction with
different material parameters p is plotted in Figure 2, which indicates that the overall stiffness of the
FGM plate increases as the parameter p decreases. It is seen from Figure 2 that the Young’s modulus
varies rapidly at the top surface (z/h = −0.5) of the plate, therefore it must be very carefully defined in
finite element analysis when dividing the meshes near the top surface.

 

E2 E1

p=0.1

p=0.25

p=0.5

p=1

p=2

p=4

p=10

z 
/ h

-0.5

0.5

 

Figure 2. Variation of the Young’s modulus of a P-FGM plate with differing material
parameters p.
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Substituting the gradation of the Young’s modulus of P-FGM plates in (27) into the definition of
coefficients in Equations (5), we obtain the coefficients of P-FGM plates:

A11 =
h

1 − ν2

(
E2 + (E1 − E2)

1
p + 1

)
,

B11 =
h2

2(1 − ν2)
(E1 − E2)

p
(p + 1)(p + 2)

,

C11 =
h3

12(1 − ν2)

(
E2 + (E1 − E2)

3(p2
+ p + 2)

(p + 1)(p + 2)(p + 3)

)
,

Q11 =
−ph

2(p + 2)

(E1 − E2)

(pE2 + E1)
,

S11 =
h3

12(1 − ν2)

(
E2 +

3(p2
+ p + 2)(E1 − E2)

(p + 1)(p + 2)(p + 3)
−

3p2(E1 − E2)
2

(p + 1)(p + 2)2(pE2 + E1)

)
.

(28)

4.2. Material properties of S-FGM plates. In the case of adding an FGM of a single power-law function
to the multilayered composite, stress concentrations appear on one of the interfaces where the material
is continuous but changes rapidly [Lee and Erdogan 1994; Bao and Wang 1995]. Therefore, we defined
the volume fraction using two power-law functions to ensure smooth distribution of stresses among all
the interfaces. The Young’s modulus of the S-FGM plate is defined based on two power-law functions
[Chung and Chi 2001]

g1(z) = 1 −
1
2

(h/2 − z
h/2

)p
for 0 ≤ z ≤ h/2, (29a)

g2(z) =
1
2

(h/2 + z
h/2

)p
for − h/2 ≤ z ≤ 0. (29b)

By using the rule of mixture, the Young’s modulus of the S-FGM plate can be calculated by

E(z) = g1(z)E1 + [1 − g1(z)]E2 for 0 ≤ z ≤ h/2, (30a)

E(z) = g2(z)E1 + [1 − g2(z)]E2 for − h/2 ≤ z ≤ 0. (30b)

The variation of the Young’s modulus of a P-FGM plate in the thickness direction with different material
parameters p is plotted in Figure 3 which shows that the material properties rapidly change near the top
and bottom surfaces for p � 1 but vary rapidly near the middle surface for p � 1. Therefore, if the
S-FGM plate is used as the undercoat in a laminated material, the material distribution with p � 1 is the
better choice.
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E2 E1

p=1
p=2

p=4

p=10
z 

/ h

p=0.5

p=0.25 p=0.1

-0.5

0.5
 

 

Figure 3. Variation of the Young’s modulus of an S-FGM plate with differing material
parameters p.

A similar approach to that used for P-FGM plates yields for the coefficients of S-GFM plates

A11 =
h

1 − ν2

( E1 + E2

2

)
,

B11 =
h2

8(1 − ν2)
(E1 − E2)

p2
+ 3p

(p + 1)(p + 2)
,

C11 =
h3

12(1 − ν2)

E1 + E2

2
,

Q11 =
−h(E1 − E2)(p2

+ 3p)

4(E1 + E2)(p + 1)(p + 2)
,

S11 =
h3

8(1 − ν2)

(
E1 + E2

3
−

(E1 − E2)
2(p2

+ 3p)2

4(E1 + E2)(p + 1)2(p + 2)2

)
.

(31)

4.3. Physical meaning of the quantities A11, B11, and C11. For FGM plates with constant Poisson’s
ratio, the parameters A11, B11, and C11 are defined in (5a) as

(A11, B11, C11) =
1

1 − ν2

∫ h/2

−h/2

(
E(z), zE(z), z2 E(z)

)
dz

Therefore, it is clear that (1 − ν2)A11 equals the area under the E(z) curve from z = −h/2 to z = h/2,
referred to in Figure 4, as indicated in [Mushelishvili 1953]. Similarly, the parameters B11, and C11 are
related to the first and second moments of the area under the E(z) curve from z = −h/2 to z = h/2 with
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x
x

x
x

Figure 4. Distribution of the Young’s modulus in the thickness direction of an FGM plate.

respect to the z = 0 axis. They are simplified as

(1 − ν2)A11 = the area under the E(z) curve from z = −h/2 to z = h/2, (32a)

(1 − ν2)B11 = (1 − ν2)A11 × z̄, (32b)

(1 − ν2)C11 = Ī + (1 − ν2)A11 × z̄2, (32c)

where z̄ is the distance from the centroid of the area (1 − ν2)A11 to the axis z = 0, and I is the second
moment of the area (1 − ν2)A11 with respect to the axis passing through the centroid. It can be seen from
Equation (32c) that the location of the centroid z̄ can be expressed by the parameters A11 and B11 as

z̄ =
B11

A11
. (33)

From Equations (28) and (31), the quantity B11 is positive if the Young’s moduli satisfy E1 > E2; in this
case the location of the centroid z̄ is also positive.

4.4. Physical meaning of the parameters Q11 and S11. Because of the zero strains at the neutral surface,
the neutral surface is located at Q11 + z = 0 according to (25e). Therefore, the physical meaning of the
parameter Q11 is the negative of the location of the neutral surface of the FGM plates. Based on (15)
where Q11 = −B11/A11 and (33) where z̄ = B11/A11, we obtain Q11 + z̄ = 0 which means that the axes
of the neutral surface and the centroid of the area under the E(z) curve coincide. Therefore, the neutral
surface of the FGM plates for bending problems can be evaluated directly by determining the location of
the centroid of the E(z) curve, which is related to the quantity B11 in (33). Consequently, it is concluded
that when the origin of the z-axis is located at the central axis of the area under the E(z) curve parallel
to the middle surface, the quantity B11 = 0.

The neutral surfaces versus the material parameter p with different ratios of Young’s moduli are plotted
in Figure 5 for P-FGM and S-FGM plates. The two halves of the figure indicate that the neutral axes
move far away from the z = 0 axis as the parameter p increases for E1/E2 > 1 (with E1 fixed). With the
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Figure 5. Locations of the neutral surfaces versus the material parameter p for E1 =

196 GPa and varying E2. Top: P-FGM plate. Bottom: S-FGM plate.

same parameter p and Young’s moduli E1 and E2, the locations of the neutral surfaces of the S-FGM
plates are closer to the middle surfaces than those of the P-FGM plates.

It is also worthwhile to investigate the quantity S11. With the aid of (15), (32c) and (33), the parameter
S11 can be rewritten as

S11 =
I

1 − ν2 , (34)
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where I is the second moment of the area (1 − ν2)A11 with respect to the axis passing through the
centroid. For homogeneous plates (E1 = E2 = E), the quantity S11 equals Eh3/12(1 − ν2) according to
(28) and (31), and this is the bending stiffness of a homogeneous plate. By comparing the equilibrium
equation of FGM plates in (16) with that of homogeneous plates, it is shown that parameter S11 is related
to the bending stiffness of FGM plates. Therefore, the parameter S11 is here called the bending stiffness
of FGM plates.
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Figure 6. Bending stiffness versus material parameter p for E1 = 196 GPa and varying
E2. Top: P-FGM plate. Bottom: S-FGM plate.
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The ratios of S11 to the bending stiffness of homogeneous plates Eh3/12(1 − ν2) are plotted in Figure
6 for P-FGM and S-FGM plates. The figure shows that S11 = Eh3/12(1 − ν2) for a homogeneous plate
in which E1 = E2. The bending stiffness of FGM plates S11 decreases with increase of p for E1/E2 > 1.
However for P-FGM plates, the bending stiffnesses S11 are almost the same and close to that of the
homogeneous plate for p � 1. It also can be seen that the bending stiffness S11 decreases when E1/E2

(E1 fixed) increases for both S-FGM and P-FGM plates, because the overall stiffnesses of the plates
decrease with the increase of E1/E2.

5. Numerical results

For the problem in Figure 1, if the aspect ratio a/b is large, the behavior of the plate will be similar to
that of a beam. Therefore, consider a homogeneous plate in which E1 = E2 = E and Poisson’s ratio is
ν = 0 subjected to a uniform load q0. If the aspect ratio a/b of the plate is large, the maximum deflection
located at x = a/2 is approximated by 5q0ba4/384E I = 15q0a4/96Eh3

= 0.15625q0a4/Eh3. This value
will be compared with the solution to a homogeneous plate given in Equation (25a).

When E1 = E2 = E , and ν = 0, Equations (28) and (31) become

(1 − ν2)A11 = Eh, B11 = Q11 = 0, C11 = S11 = Eh3/12(1 − ν2).

As mentioned previously, the quantity (1−ν2)A11 represents the area under the E(z) curve from z =−h/2
to z = h/2 which is equal to Eh. The results of Q11 = 0 and B11 = 0 reveal that the location of the neutral
surface is at the origin of the z-axis, and that the axes of the neutral surface and the centroid of the area
under the E(z) curve coincide, respectively. Moreover, the term (1 − ν2)C11, the second moment of the
area under the E(z) curve from z = −h/2 to z = h/2 with respect to z = 0 axis, is equal to the bending
stiffness of FGM plates S11 times (1 − ν2).

The coefficients A1m and A2m in (24) are approximated by zero as the aspect ratio a/b becomes large.
Then, the displacement of a homogeneous rectangular plate based on (25a) is simplified as w(x, y) =∑

m wmp(y) sin kx . Hence, the maximum displacement of the homogeneous rectangular plate located at
y = 0, x = a/2 is obtained as

w(x = a/2, y = 0) =
48q0a4

π5 Eh3

∑
m=1,3,5,...

1
m5 sin

mπ

2
,

≈ 0.15625
q0a4

Eh3 .

(35)

The result of (35) derived from (25a) with E1 = E2 = E , ν = 0 and large a/b is almost the same as
the result from beam theory. The comparison of the deflections of a homogeneous plate and a beam is
shown in Figure 7 for different aspect ratios. The figure shows that if the aspect ratio a/b is large, the
deflections at the line x = a/2 based on the plate theory and beam formulation are almost the same for
zero or nonzero Poisson’s ratio. However if the aspect ratio a/b is small, the deflection at the center of
the homogeneous plate will be identical to that of the beam theory only for Poisson’s ratio ν = 0.

Next, consider an FGM plate in which the boundary and load conditions are shown in Figure 1.
Because of the symmetry about the x- and y-axes, only one quarter of the full plate in Figure 1 is under
consideration when using the finite element program MARC. On the edge y = 0 of the one-quarter plate,
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Figure 7. Comparison of the deflections of a homogeneous plate and beam.
 

 
 

Figure 8. Deformation of an FGM plate at the neutral surface.

hinges are put at the neutral surface, while on the symmetric edges (that is, y = 0 and x = a/2), rollers are
used such that displacements in z-direction are allowed. In the finite element mesh, because there is no
stress singularity in the plate, solid eight-node elements are applied and 20 × 20 equally divided elements
are used in the x- and y-directions. In order to simulate the variation of the material properties of the
FGM plate, sixty layers in the thickness direction are used. Each layer has constant material properties,
but the material properties differ from layer to layer. The material properties of all layers in the mesh
are determined from the functions of volume fractions, according to the given E1, E2, ν.

The dimensions of the FGM plate in Figure 1 are taken as a = b = 100 cm and h = 2 cm, so the width
to thickness ratio is equal to 50. The Poisson’s ratio of the FGM plate is assumed to be constant for the
whole plate and is taken as v = 0.3. It is assumed that the Young’s modulus at the bottom surface of the
FGM plate E1, is 196 GPa, while that at the top surface of the S-FGM plate E2, varies with the ratio of
E1/E2. The deflections and strains of the FGM plate for the material parameter p = 2 and the ratios of
Young’s modulus E1/E2 = 1, 2, 4, 10, 20, 50 are under investigation.

The deformed configuration of an FGM plate at the neutral surface is shown in Figure 8. The dimen-
sionless deflections along the x = a/2 axis from y = 0 to y = b/2 and those along the y = 0 axis from
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Figure 9. Deflection of an S-FGM plate. Top: from y = 0 to y = b/2 along the line
x = a/2. Bottom: from x = a/2 to x = a along the line y = 0.

x = a/2 to x = a are plotted in Figure 9. Figures 8 and 9 reveal that the FGM plate exhibits saddle
deformation which is the same as in homogeneous plates. The analytical and numerical results agree
very well for small E1/E2 and are slightly different for large E1/E2. However, the error is less than 5%.

The dimensionless stresses σx/q0 and σy/q0 at the center of the plate along the thickness direction for
p = 2 and different E1/E2 ratios are presented in Figure 10. These figures show that the stresses of the
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Figure 10. Distribution of stresses σx (top) and σy (bottom) at the center of an S-FGM
plate along the thickness direction for different E1/E2 ratios.

S-FGM plate along the thickness direction are cubed. This is reasonable because the material parameter
p = 2. For a homogeneous plate in which E1/E2 = 1, the magnitude of the tensile and compressive
stresses are equal and located at the top and bottom surfaces. However, as the ratio of E1/E2 increases,
the magnitudes of the tensile and compressive stresses are no longer equal. The maximum stress is tensile
and is located at the bottom surface of the plate. However, the maximum compressive stress moves from
the top surface to inside of the plate, and this phenomenon becomes clear for large E1/E2.
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Figure 11. Distribution of stresses σx (top) and σy (bottom) at the center of an S-FGM
plate along the thickness direction for differing material parameters p ≥ 1.

Next we focus on a fixed value E1/E2 = 4, with changing material parameters p = 1, 2, 4, and 10, and
p = 1/2, 1/4, and 1/10. The dimensionless stresses σx/q0 and σy/q0 at the center of the FGM plates are
plotted in Figure 11 for p = 1, 2, 4, and 10 and in Figure 12 for p = 1/2, 1/4, and 1/10. It is clear from
these four figures that the stress distributions differ little for different parameters p when E1/E2 is fixed.
Specifically, the stresses at the top and bottom surfaces are almost the same for p < 1. This phenomenon
occurs because the bending stiffness S11 for E1/E2 = 4 doesn’t change very much for different values
of p.
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Figure 12. Distribution of stresses σx (top) and σy (bottom) at the center of an S-FGM
plate along the thickness direction for differing material parameters p < 1.

So far, the results in this paper show that the analytical solution agrees very well with FEM simulation.
However, the limitations and range of validity of the proposed model need to be investigated. Therefore,
further considerations will focus on how thick the FGM plate is, or how steep the material gradient can
be for the theoretical solution to fail.

The theoretical solutions in this paper are based on the assumption that the thickness of a moderately
thick FGM plate is in the range 1/20 ∼ 1/100 of its span, and thus transverse shear deformations can
be negligible. To examine this assumption, we fix the ratio E1/E2 = 10 but take the thickness of the
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Figure 13. Error in maximum deflection versus thickness-to-length ratio h/a (fixed a).
Top: P-FGM plate; bottom: S-FGM plates. In both cases E1/E2 = 10.

plate h = 2 cm, 4 cm, 8 cm, 16 cm, or 24 cm, and the corresponding ratios of thickness to length h/a =

0.02, 0.04, 0.08, 0.16, 0.24. The maximum deflections located at the center of the plate are evaluated
by theoretical equation and FEM simulation. The errors, which are the differences between theoretical
and numerical results divided by the theoretical results, are plotted in Figure 13 for P-FGM and S-FGM
plates for various ratios h/a. These figures indicate that for moderately thick FGM plates with thickness
less than 0.1 of the span, the error is less than 5%. This means that for an FGM plate with thickness
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Figure 14. Error of maximum deflection of P-FGM plates versus ratio E1/E2 between
Young’s moduli. Top: P-FGM plate; bottom: S-FGM plates. In both cases h/a = 0.02.

less than 0.1 of its span, the classical theory of plates will give good results, as indicated in [Shames and
Dym 1985] for homogeneous plates.

To investigate the effect of the steepness of the material gradient on the FGM plates, the ratio of
thickness to length is fixed at 0.02 (that is, h/a = 0.02), but the ratios of Young’s moduli are taken as
E1/E2 = 1, 10, 20, 50, 80, 120, and 200. The errors in maximum deflections versus the ratios E1/E2,
plotted in Figure 14 for P-FGM and S-FGM plates, are all in the range 0.1% to 0.5%. Therefore, the
linear assumption for the displacement field is still accurate for FGMs with steep material gradients.

6. Conclusions

We applied a Fourier series expansion to the analysis of FGM plates with two opposite edges simply
supported and the other two edges free, subjected to uniform load. The results lead to these conclusions:

(1) The analytical solution obtained agrees very well with the finite element solution. The deformed
configuration of the FGM plates is a saddle deformation, which is the same as that of a homogeneous
plate. The maximum tensile stresses are located at the bottom of the FGM plates. However, the
maximum compressive stresses move to the inside of the FGM plates, especially for larger E1/E2.

(2) In general, the bending and in-plane problems in FGM plates are coupled. But if the material
properties of the FGM plate are such that the Young’s modulus varies along the thickness direction
but the Poisson’s ratio is constant for the whole FGM plate, as in the problem solved in this paper,
then the governing equations for the bending and in-plane problem become uncoupled.

(3) The parameters of A11, B11, C11, Q11, and S11 defined in this paper have physical meaning. The
quantity (1 − ν2)A11 represents the area under the E(z) curve from z = −h/2 to z = h/2. The



THE FLEXIBILITY OF FUNCTIONALLY GRADED MATERIAL PLATES . . . 85

parameters B11 and C11 are related to the first and second moment of the area under the E(z) curve
from z =−h/2 to z = h/2 with respect to the z = 0 axis. The ratio of B11/A11 is equal to the centroid
location z̄, of the area under the E(z) curve. The parameter Q11 = −B11/A11 = −z̄ represents the
location of the centroid of the area under the E(z) curve. The parameter S11 is called here the
bending stiffness of FGM plates.
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