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MAGNETOTHERMOELASTIC STRESSES INDUCED BY A TRANSIENT
MAGNETIC FIELD IN AN INFINITE CONDUCTING PLATE

MASAHIRO HIGUCHI, RYUUSUKE KAWAMURA, YOSHINOBU TANIGAWA AND HIDEKI FUJIEDA

We investigate the dynamic and quasistatic behavior of magnetothermoelastic stresses induced by a
transient magnetic field in an infinite conducting plate. A transient magnetic field defined by an arbitrary
function of time acts on both surfaces of the infinite plate and parallel to them. The fundamental equa-
tions of one-dimensional electromagnetic, temperature and elastic fields are formulated, and solutions for
the magnetic field, eddy current, temperature change and dynamic and quasistatic solutions for stresses
and deformations are analytically derived, in terms of the excitation function. The stress solutions are
determined to be sums of a thermal stress component caused by eddy current loss and a magnetic stress
component caused by the Lorentz force. The case of a magnetic field defined by a smoothed ramp
function with a sine-function profile is examined in particular, and the dynamic and quasistatic behavior
of the stresses are numerically calculated.

1. Introduction

Mechanical structures that are activated when a magnetic field is applied has been of increasing interest
in recent years. When a time-dependent magnetic field acts on a conducting medium, an eddy current is
induced, which generates heat; this is the eddy current energy loss due to the Joule effect. The conducting
medium is also subjected to a Lorentz force. Thus, two kinds of stress arise: thermal stress caused by
eddy current loss magnetic stress caused by the Lorentz force.

In the field of magnetoelasticity or magnetothermoelasticity, many studies have employed an analytical
treatment of the interaction between elastic, electromagnetic and temperature fields; see, for instance,
[Kaliski and Nowacki 1962; Kaliski and Michalec 1963; Paria 1967; Wauer 1996; Banerjee and Roy-
choudhuri 1997; Wang et al. 2002; 2003; Librescu et al. 2003; Ezzat and Youssef 2005; Zheng et al.
2005]. However, there have been only a few analytical studies of thermal stresses induced by time-
dependent magnetic fields [Moon and Chattopadhyay 1974; Chian and Moon 1981; Wauer 1995]. Moon
and Chattopadhyay [1974] have studied thermal stresses and magnetic stresses in a conducting half-space
caused by an applied jump in tangential magnetic field at the boundary. Chian and Moon [1981] have
extended that work, investigating the same stresses in a hollow cylindrical conductor caused by a pulsed
magnetic field at the cavity. Wauer [1995] has studied the dynamic behavior of a magnetothermoelastic
plate layer whose surfaces are subjected to a magnetic field composed of a constant and a harmonically
oscillating part in the direction parallel to the surfaces. He has mentioned the stability of the plate due to
the external magnetic field. Pantelyat and Féliachi [2002] have studied the mechanical behavior of metals
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in induction heating devices by using of finite element method. They have calculated thermoelastic-
plastic stresses induced by an alternating magnetic field, taking into account the temperature dependence
of the material properties.

Here we investigate the dynamic and quasistatic behavior of magnetothermoelastic stresses induced
by a transient magnetic field on an infinite conducting plate made of a nonferromagnetic metal such
as copper or aluminum. Assuming an applied magnetic field defined by an arbitrary function of time,
acting on both sides of the plate and parallel to it, we formulate the fundamental equations of the one-
dimensional electromagnetic, temperature and elastic fields. We then solve for the electromagnetic field,
temperature change and dynamic and quasistatic solutions of stresses and displacements, analytically
deriving expressions for these fields in terms of the arbitrary excitation function. The stresses solutions
are determined to be the sums of a thermal stress and a magnetic stress component.

We then focus on the case of an excitation given by a smoothed ramp function with sine-function
profile, studying numerically the dynamic and quasistatic behavior of the induced thermal and magnetic
stresses.

2. Fundamental equations

2.1. Electromagnetic field. Figure 1 shows an infinite conducting plate of thickness 2b with a Cartesian
coordinate system, subject to a time-dependent magnetic field H0φ(t) that is uniformly distributed along
the x and z directions and acts on both side surfaces of the infinite plate in the z direction, starting at
time t = 0. Here H0 is a reference magnetic field strength and φ(t) is an arbitrary function of time.

Let the magnetic field be H = (0, 0, Hz(y, t)) in the infinite plate, and let the electric field vector be
E = (Ex(y, t), 0, 0). Disregarding the displacement current, the governing equations and the constitutive
relations of electromagnetics reduce to (see [Stoll 1974; Moon and Chattopadhyay 1974])

−
∂ Ex

∂y
+

∂ Bz

∂t
= 0,

∂ Hz

∂y
= Jx ,

σ

(
Ex + Bz

∂v

∂t

)
= Jx , Bz = µHz,

(1)

where Bz is the magnetic flux in the z direction, Jx is the electric current density in the x direction, v

is the displacement in the y direction (as discussed later, no displacement is considered in the x and z
directions), and σ and µ are the electric conductivity and the magnetic permeability in the infinite plate.

b

xz

y

H03(t)

-b H03(t)

Figure 1. Conditions and coordinate system of infinite plate.
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This leads to the fundamental equation of magnetic field [Moon and Chattopadhyay 1974]:

∂2 Hz

∂y2 = µσ
∂ Hz

∂t
+ µσ

∂

∂y

(
Hz

∂v

∂t

)
, (2)

where the second term on the right is a nonlinear coupling term with elastic field. This coupling term is
small compared with the first term µσ∂ Hz/∂t , as shown in [Moon and Chattopadhyay 1974; Chian and
Moon 1981]. Therefore, the coupled equation (2) with the elastic field reduces to the uncoupled equation

∂2 Hz

∂y2 = µσ
∂ Hz

∂t
. (3)

The boundary conditions and initial condition are

at y = ±b : Hz = H0φ(t),

at t = 0 : Hz = 0.
(4)

The current density Jx = ∂ Hz/∂y induced by the variation of the magnetic field is called the eddy current.

2.2. Temperature field. The eddy current Jx generates Joule heat, giving rise to the so-called eddy cur-
rent loss w(y, t). The eddy current loss per unit time per unit volume is given by (see [Moon and
Chattopadhyay 1974])

w(y, t) = σ−1 Jx(y, t)2. (5)

We assume that the infinite plate with zero initial temperature change is heated by the eddy current
loss w(y, t) from time t = 0, and that both side surfaces are insulated, or subjected to surrounding media
at temperature 0, with relative heat transfer coefficients h.

The one-dimensional heat conduction equation taking into account the eddy current loss [Moon and
Chattopadhyay 1974] is then given by

∂T
∂t

= κ
∂2T
∂y2 +

w

Cρ
, (6)

with boundary conditions and initial condition

at y = ±b :
∂T
∂y

± hT = 0,

at t = 0 : T (y, 0) = 0,

(7)

where T = T (y, t) is temperature change and κ , C and ρ denote the thermal conductivity, the specific
heat and the mass density. If both surfaces are insulated, then h in (7) becomes zero. In (6), the coupling
term with strain is neglected because the coupling effect mainly occurs at large times [Boley and Tolins
1962; Moon and Chattopadhyay 1974].
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2.3. Elastic field. Besides the temperature change arising from the eddy current loss, the plate is sub-
jected to a Lorentz force f , given by (see [Moon and Chattopadhyay 1974])

f = J × B =


∂ Hz
∂y

0

0

×

 0
0

µHz

=


0

−
µ

2
∂

∂y
[
Hz(y, t)

]2
0

 (8)

Thus the Lorentz force only has a y component:

fy(y, t) = −
µ

2
∂

∂y

(
Hz(y, t)

)2 (9)

Because the temperature change and Lorentz force depend only on y and t , the displacement com-
ponents are assumed to be (0, v(y, t), 0). Thus the stress-displacement relations taking into account
temperature change reduce to (see [Sternberg and Chakravorty 1959])

σxx(y, t) = σzz(y, t) =
(1 − ν)E

(1 + ν)(1 − 2ν)

(
ν

1 − ν

∂v

∂y
−

1 + ν

1 − ν
αT
)

,

σyy(y, t) =
(1 − ν)E

(1 + ν)(1 − 2ν)

(
∂v

∂y
−

1 + ν

1 − ν
αT
)

,

(10)

where (σxx , σyy, σzz) are the stress components and ν, E and α denote the Poisson ratio, the Young’s
modulus and the coefficient of linear thermal expansion. The equation of motion in the y direction,
taking into account Lorentz force, is given by (see [Moon and Chattopadhyay 1974])

∂σyy

∂y
+ fy = ρ

∂2v

∂t2 . (11)

Substitution of (9) and σ̄yy from (10) into (11) leads to the displacement equation of motion

∂2v

∂y2 =
1

C2
L

∂2v

∂t2 +
1 + ν

1 − ν
α

∂T
∂y

+
(1 + ν)(1 − 2ν)

(1 − ν)E
µ

2
∂

∂y

(
Hz
)2

, (12)

where

CL =

√
(1 − ν)E

(1 + ν)(1 − 2ν)ρ
. (13)

is the velocity of longitudinal wave. The infinite plate is at rest before t = 0 and we suppose that the
surfaces are traction-free (σyy = 0). Thus the mechanical boundary conditions and initial conditions are

at y = ±b :
∂v

∂y
=

1 + ν

1 − ν
αT,

at t = 0 : v =
∂v

∂t
= 0.

(14)
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2.4. Dimensionless quantities. We define the dimensionless quantities

ȳ =
y
b
, H̄z =

Hz

H0
, τ =

t
µσb2 , J̄x =

bJx

H0
, w̄ =

σb2w

H 2
0

, T̄ =
Cγ T
µH 2

0
, h̄ = bh,

f̄y =
b fy

µH 2
0
, (σ̄xx , σ̄yy, σ̄zz) =

(σxx , σyy, σzz)

µH2
0

2

, v̄ =
(1 − ν)E

(1 + ν)(1 − 2ν)

2
bµH 2

0
v

(15)

and

χ1 = µσκ, χ2 = µσbCL , χ3 =
2αE

(1 − 2ν)Cρ
. (16)

In terms of these dimensionless quantities, the equality Jx = ∂ Hz/∂y and Equations (3)–(7), (9), (10),
(12), (14) become:

(1) Electromagnetic field:

Equation system:
∂2 H̄z

∂ ȳ2 =
∂ H̄z

∂τ
(17)

with conditions
at ȳ = ±1 : H̄z = φ(τ)

at τ = 0 : H̄z = 0
(18)

Eddy current: J̄x(ȳ, τ ) =
∂ H̄z(ȳ, τ )

∂ ȳ
(19)

(2) Temperature field:

Eddy current loss: w̄(ȳ, τ ) =
(
J̄x(ȳ, τ )

)2 (20)

Equation system:
∂ T̄
∂τ

= χ1
∂2T̄
∂ ȳ2 + w̄ (21)

with conditions
at ȳ = ±1 :

∂ T̄
∂ ȳ

± h̄T̄ = 0

at τ = 0 : T̄ = 0
(22)

(3) Elastic field:

Lorentz force: f̄y(ȳ, τ ) = −
1
2

∂

∂ ȳ

(
H̄z(ȳ, τ )

)2 (23)

Stress-displacement relations:
σ̄xx(ȳ, τ ) = σ̄zz(ȳ, τ ) =

ν

1 − ν

∂v̄

∂ ȳ
− χ3T̄

σ̄yy(ȳ, τ ) =
∂v̄

∂ ȳ
− χ3T̄

(24)
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Equation system:
∂2v̄

∂ ȳ2 =
1
χ2

2

∂2v̄

∂τ 2 + χ3
∂ T̄
∂ ȳ

+
∂

∂ ȳ

(
H̄z
)2 (25)

with conditions
at ȳ = ±1 :

∂v̄

∂ ȳ
= χ3T̄

at τ = 0 : ū =
∂ ū
∂τ

= 0
(26)

3. Solutions

3.1. Magnetic field. To transform the inhomogeneous boundary condition H̄z = φ(τ) from (18) into a
homogeneous one, we assume that the solution of (17) is given by

H̄z(ȳ, τ ) = hz(ȳ, τ )+ φ(τ). (27)

By substitution of (27) into (17)–(18), the equation system with respect to hz becomes

∂2hz

∂ ȳ2 =
∂hz

∂τ
+

∂φ(τ)

∂τ
(28)

with boundary and initial conditions

atȳ = ±1 : hz = 0,

at τ = 0 : hz = −φ(0).
(29)

By separation of variables, the solution of (28) will be assumed to be of the form

hz(ȳ, τ ) =

∞∑
n=1

an(τ ) cos(kn ȳ), (30)

where the an(τ ) are unknown functions of τ and the kn are the positive roots of the eigenequation

cos(kn) = 0 ∴ kn =
(2n − 1)π

2
(n = 1, 2, . . . ) (31)

The solution hz(ȳ, τ ) in (30) clearly satisfies the homogeneous boundary conditions in (29).
Substitution of (30) into (28) gives

−

∞∑
n=1

k2
nan(τ ) cos(kn ȳ) =

∞∑
n=1

dan(τ )

dτ
cos(kn ȳ) +

dφ(τ)

dτ
(32)

Multiplying both sides by cos(km ȳ) and integrating it from −1 to 1, we obtain

−

∞∑
n=1

k2
nan(τ )

∫ 1

−1
cos(kn ȳ) cos(km ȳ) dȳ

=

∞∑
n=1

dan(τ )

dτ

∫ 1

−1
cos(kn ȳ) cos(km ȳ) dȳ +

∫ 1

−1

dφ(τ)

dτ
cos(km ȳ) dȳ. (33)
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By virtue of the orthogonal property of trigonometric functions, we obtain∫ 1

−1
cos(kn ȳ) cos(km ȳ) dȳ =

{
1 (m = n),

0 (m 6= n).
(34)

Substituting (34) into (33) gives

dan(τ )

dτ
+ knan(τ ) = −

∫ 1

−1

dφ(τ)

dτ
cos(kn ȳ) dȳ. (35)

By use of the initial condition in (29), the solutions of (35) are determined to be

an(τ ) =
2(−1)n

kn
ân(τ ). (36)

where the ân(τ ) are determined by the function φ(τ):

ân(τ ) =

∫ τ

0
e−k2

n(τ−τ ′) dφ(τ ′)

dτ ′
dτ ′. (37)

From (27), (30) and (36), the magnetic field H̄z is written as

H̄z(ȳ, τ ) = φ(τ) + 2
∞∑

n=1

(−1)n

kn
cos(kn ȳ)ân(τ ). (38)

Substitution of (38) into (19) gives the eddy current J̄x as follows:

J̄x(ȳ, τ ) = 2
∞∑

n=1

(−1)n+1 sin(kn ȳ)ân(τ ). (39)

3.2. Temperature field. By separation of variables, the solution of (21) will be assumed to be of the
form

T̄ (ȳ, τ ) =

∞∑
j=β

b j (τ ) cos(p j ȳ), β =

{
0 for h̄ = 0,

1 for h̄ > 0,
(40)

where the b j (τ ) are unknown functions of τ , and the p j are the nonnegative roots of the eigenequations

sin p j = 0 (p j ≥ 0 for j = 0, 1, 2, . . . ) if h̄ = 0,

tan p j =
h
p j

(p j > 0 for j = 1, 2, 3, . . . ) if h̄ > 0.
(41)

The solution T̄ (ȳ, τ ) in (40) clearly satisfies the boundary conditions in (22).
By virtue of the orthogonal property of trigonometric functions, we have∫ 1

−1
cos(p j ȳ) cos(pl ȳ) dȳ =

{
M j (l = j),

0 (l 6= j),
(42)
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where M j =


2 ( j = 0)

1 for h̄ = 0

h̄ + h̄2
+ p2

j

h̄2 + p2
j

for h̄ > 0

 ( j > 0)
(43)

Substituting (40) into (21) and using (42), we obtain

db j (τ )

dτ
+ χ1 p2

j b j (τ ) =
1

M j

∫ 1

−1
w̄(ȳ, τ ) cos(p j ȳ) dȳ (44)

Through the use of the initial condition in (21), the solutions of (44) are determined to be

b j (τ ) =


1
2

∫ 1

−1

(∫ τ

0
w̄(ȳ, τ ′) dτ ′

)
dȳ ( j = 0)

1
M j

∫ 1

−1

(∫ τ

0
e−χ1 p2

j (τ−τ ′)
w̄(ȳ, τ ′) dτ ′

)
cos(p j ȳ) dȳ ( j > 0)

(45)

Substituting (39) into (20), we obtain the eddy current loss:

w̄(ȳ, τ ) = 4
∞∑

m=1

∞∑
n=1

(−1)m+n sin(km ȳ) sin(kn ȳ)âm(τ )ân(τ ) (46)

Substitution of (46) into (45) gives

b j (τ ) =


2

∞∑
n=1

b̂(0)
n (τ ) ( j = 0),

4
M j

∞∑
m=1

∞∑
n=1

I1 jmn b̂ jmn(τ ) ( j > 0),

(47)

where

I1 jmn =(−1)m+n
∫ 1

−1
sin km ȳ sin kn ȳ cos p j ȳ dȳ

=



−
1
2(−1)m+n (m + n = j + 1)

1
2(−1)m+n (|m − n| = j)

0 (otherwise)

 if h̄ = 0,

h̄ cos(p j )
2(k2

m + k2
n − p2

j )

(2kmkn)2 − (k2
m + k2

n − p2
j )

2
if h̄ > 0,

(48)
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and where the b̂(0)
n (τ ) and b̂ jmn(τ ) are determined by the function φ(τ):

b̂(0)
n (τ ) =

∫ τ

0

(
ân(τ

′)
)2 dτ ′,

b̂ jmn(τ ) =

∫ τ

0
e−χ1 p2

j (τ−τ ′)âm(τ ′)ân(τ
′) dτ ′.

(49)

Substituting (47) into (40), we obtain for the temperature change

T̄ (ȳ, τ ) = 2
∞∑

n=1

b̂(0)
n (τ ) + 4

∞∑
j=1

1
M j

cos(p j ȳ)

∞∑
m=1

∞∑
n=1

I1 jmn b̂ jmn(τ ) (50)

where, for h̄ > 0, the first term on the right-hand side in (50) is ignored.

3.3. Elastic field.

3.3.1. Dynamic solutions. To transform the inhomogeneous boundary condition ∂v̄
∂ ȳ = χ3T̄ from (26)

into a homogeneous one, we assume that the displacement v̄(ȳ, τ ) is given by

v̄(ȳ, τ ) = v1(ȳ, τ )+ v2(ȳ, τ ), (51)

where v1(ȳ, τ ) satisfies

∂2v1

∂ ȳ2 = 0 with boundary condition
∂v1

∂ ȳ
= χ3T̄ at ȳ = ±1. (52)

The solution of (52) is

v1 = χ3T̄ (±1, τ )ȳ, (53)

where T̄ (1, τ ) = T̄ (−1, τ ) from (50).
Substitution of (51) with (52) into (25)–(26) gives the equation system with respect to v2 as

∂2v2

∂ ȳ2 =
1
χ2

2

∂2v2

∂τ 2 +
1
χ2

2

∂2v1

∂τ 2 + χ3
∂ T̄
∂ ȳ

+
∂

∂ ȳ
(H̄z)

2 (54)

with conditions

at ȳ = ±1 :
∂v2

∂ ȳ
= 0,

at τ = 0 :
∂v2

∂τ
= −

∂v1

∂τ
, v2 = −v1.

(55)

By separation of variables, the solution of (54) will be assumed to be of the form

v2(ȳ, τ ) =

∞∑
i=1

ci (τ ) sin(ηi ȳ), (56)
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where the ci (τ ) are unknown functions of τ and the ηi are the positive roots of the eigenequation

cos(ηi ) = 0 ∴ ηi =
(2i − 1)π

2
(i = 1, 2, . . . ). (57)

The solution v2(ȳ, τ ) in (56) clearly satisfies the homogeneous boundary conditions in (55).
By the orthogonality of trigonometric functions, we obtain∫ 1

−1
sin(ηi ȳ) sin(ηq ȳ) dȳ =

{
1 (q = i),

0 (q 6= i).
(58)

Substituting (56) into (54), and using (58) we obtain

∂2ci (τ )

∂τ 2 + �2
i ci (τ )

= −

∫ 1

−1

∂2v1

∂τ 2 sin(ηi ȳ) dȳ − χ3χ
2
2

∫ 1

−1

∂ T̄
∂ ȳ

sin(ηi ȳ) dȳ − χ2
2

∫ 1

−1

∂

∂ ȳ

(
H̄z
)2 sin(ηi ȳ) dȳ, (59)

where the �i are the natural angular frequencies of the i-th mode in dimensionless form:

�i = χ2ηi . (60)

By the use of the initial condition in (55), the solutions of (59) are determined to be

ci (τ ) =

∫ 1

−1

(
−v1(ȳ, τ )+ �i

∫ τ

0
sin �i (τ − τ ′)v1(ȳ, τ ′) dτ ′

)
sin(ηi ȳ) dȳ

− χ3
χ2

ηi

∫ 1

−1

∂

∂ ȳ

(∫ τ

0
sin �i (τ − τ ′)T̄ (ȳ, τ ′) dτ ′

)
sin(ηi ȳ) dȳ

−
χ2

ηi

∫ 1

−1

∂

∂ ȳ

(∫ τ

0
sin �i (τ − τ ′)

(
H̄z(ȳ, τ ′)

)2 dτ ′

)
sin(ηi ȳ) dȳ. (61)

Substitution of (38), (50) and (53) into (61) gives

ci (τ ) = cT
i (τ ) + cM

i (τ ), (62)

where

cT
i (τ ) =

4(−1)i

η2
i

χ3

(
1
2

∞∑
n=1

(
b̂(0)

n (τ ) − �i ĉ
T (0)
in (τ )

)
+

∞∑
j=1

cos(p j )

M j

∞∑
m=1

∞∑
n=1

I1 jmn

(
b̂ jmn(τ ) +

η2
i

p2
j − η2

i
�i ĉT

i jmn(τ )

))
(63)

is the contribution from the temperature change (the first term on the right-hand side being ignored, for
h̄ = 0), and

cM
i (τ ) =

4(−1)iχ2

ηi

(
ĉM(1)

i i (τ ) +

∞∑
m=1

∞∑
n=1

4η2
i

(k2
m + k2

n − η2
i )

2 − (2kmk2
n)

2
ĉM(2)

imn (τ )

)
(64)
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is the contribution from the Lorentz force. In these expressions ĉT (0)
in (τ ), ĉT

i jmn(τ ), ĉM(1)
i i (τ ) and ĉM(2)

imn (τ )

are defined in terms of the excitation function φ(τ) by

ĉT (0)
in (τ ) =

∫ τ

0
sin �i (τ − τ ′)b̂(0)

n (τ ′) dτ ′,

ĉT
i jmn(τ ) =

∫ τ

0
sin �i (τ − τ ′)b̂ jmn(τ

′) dτ ′,

ĉM(1)
i i (τ ) =

∫ τ

0
sin �i (τ − τ ′)φ(τ ′)âi (τ

′) dτ ′,

ĉM(2)
imn (τ ) =

∫ τ

0
sin �i (τ − τ ′)âm(τ ′)ân(τ

′) dτ ′.

(65)

From (51), (53), (56), and (62), we have

v̄T (ȳ, τ ) = χ3T̄ (±1, τ )ȳ +

∞∑
i=1

cT
i (τ ) sin(ηi ȳ),

v̄M(ȳ, τ ) =

∞∑
i=1

cM
i (τ ) sin(ηi ȳ),

(66)

where v̄T (ȳ, τ ) and v̄M(ȳ, τ ) are the radial displacements due to temperature change and due to Lorentz
force, respectively, and satisfy

v̄(ȳ, τ ) = v̄T (ȳ, τ )+ v̄M(ȳ, τ ). (67)

Substituting (67) with (66) into (24), we obtain the dynamic solutions for the stress components:

σ̄ T
xx(ȳ, τ ) = σ̄ T

zz(ȳ, τ ) =
ν

1 − ν

(
χ3T̄ (±1, τ )+

∞∑
i=1

cT
i (τ )ηi sin(ηi ȳ)

)
− χ3T̄ (ȳ, τ ),

σ̄ T
yy(ȳ, τ ) = χ3

(
T̄ (±1, τ )− T̄ (ȳ, τ )

)
+

∞∑
i=1

cT
i (τ )ηi sin(ηi ȳ),

(68)

σ̄ M
xx (ȳ, τ ) = σ̄ M

zz (ȳ, τ ) =
ν

1 − ν

∞∑
i=1

cM
i (τ )ηi sin(ηi ȳ),

σ̄ M
yy (ȳ, τ ) =

∞∑
i=1

cM
i (τ )ηi sin(ηi ȳ),

(69)

where (σ̄ T
xx , σ̄

T
yy, σ̄

T
zz) and (σ̄ M

xx , σ̄ M
yy , σ̄ M

zz ) are the thermal and magnetic stress components, satisfying

σ̄xx = σ̄ T
xx + σ̄ M

xx , σ̄yy = σ̄ T
yy + σ̄ M

yy , σ̄zz = σ̄ T
zz + σ̄ M

zz . (70)
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3.3.2. Quasistatic solutions. We now derive the quasistatic solutions of the displacements and stresses.
Neglect of the inertia term on the right-hand side of (25) gives the equilibrium equation

d2v̄

dȳ2 = χ3
dT̄
dȳ

+
d

dȳ

(
H̄z
)2 (71)

Solving (71) with the boundary condition in (26), we obtain the quasistatic solutions of the displace-
ments due to temperature change and due to Lorentz force:

v̄T (ȳ, τ ) = χ3

∫
T̄ (ȳ, τ ) dȳ, v̄M(ȳ, τ ) =

∫
H̄z(ȳ, τ )2 dȳ − φ(τ)2. (72)

Substituting (72) with the relation of (67) into (24), we obtain the quasistatic solutions of the stress
components as follows:

σ̄ T
xx(ȳ, τ ) = σ̄ T

zz(ȳ, τ ) = −
1 − 2ν

1 − ν
χ3T̄ (ȳ, τ ), σ̄ T

yy(ȳ, τ ) = 0, (73)

σ̄ M
xx (ȳ, τ ) = σ̄ M

zz (ȳ, τ ) =
ν

1 − ν

(
H̄z(ȳ, τ )2

− φ(τ)2), σ̄ M
yy (ȳ, τ ) =

(
H̄z(ȳ, τ )

)2
−
(
φ(τ)

)2
, (74)

These quasistatic thermal stresses and magnetic stresses satisfy the relations in (70).

4. Numerical results and discussion

So far we have assume the excitation φ(τ) to be arbitrary. Now we specialize to the case of a smoothed
ramp function with a sine-function profile:

φ(τ) =

 sin
(

π

2τ0
τ
)

(τ < τ0),

1 (τ ≥ τ0),
(75)

where τ0 is the (nondimensional) rise time. The particular expressions for the various functions of τ in
(37), (49) and (65) — ân(τ ), b̂(0)

n (τ ), b̂ jmn(τ ), ĉT (0)
in (τ ), ĉT

i jmn(τ ), ĉM(1)
i i (τ ), and ĉM(2)

imn (τ ) — will not be
spelled out because they can be easily derived.

We carried out numerical calculations corresponding to the analytical results above in the case of
aluminum, whose material properties are

µ = 4π × 10−7
[H/m], σ = 3.42 × 107

[S/m], C = 2.7 × 103
[J/kgK], ρ = 0.9 × 103

[kg/m3
],

κ = 92.6 × 10−6
[m2/sec], ν = 0.33, E = 70 [GPa], α = 24 × 10−6

[1/K].

In addition, since the nondimensional variable χ2 in (16) includes the half-thickness b, this dimension
needs to be fixed. We chose b = 1.0 × 10−4

[m] to ensure the convergence of the solutions. The rise time
τ0 is given by

τ0 = ε
1
χ2

,

where ε is a dimensionless parameter and 1/χ2 is the nondimensional time needed by the stress waves
created at the surfaces to arrive at the middle of the infinite plate.
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Figure 2. Time evolution of the eddy current J̄x , for ε = 0.5.

We first present the numerical results for ε = 0.5. Figure 2 shows the time evolution of eddy current J̄x .
It shows a peak ahead of τ = τ0 at the surface (ȳ = 1.0), then it decays slowly with time. Figure 3 shows
the time evolution of the temperature change T̄ for h̄ = 0.0 and 1.0 until they attain steady state. It can be
seen from that figure that temperature changes take a long time to attain a steady state, in comparison with
the eddy current J̄x . This is because the value of χ1 in (16), which is the ratio of the diffusion coefficient
of temperature field κ to that of magnetic field (µσ)−1, is very small: χ1 = κµσ ∼= 3.98 × 10−3 for
aluminum. In the case of h̄ = 1.0, the temperature change converges to zero, whereas in the case of
h̄ = 0.0 (insulated plate), it converges to a value that can be determined from (45):

T̄ =
1
2

∫ 1

−1

(∫
∞

0
w̄(ȳ, τ ′) dτ ′

)
dȳ. (76)

However, as shown in Figure 4 (short-term time evolution of temperature), there is not a large dif-
ference between the insulated and noninsulated cases: the temperature changes always propagate from
the surface more slowly than the eddy current. Therefore numerical results on the thermal stresses
are shown only for the case of h̄ = 0.0. Figure 5 shows the dynamic and quasistatic behaviors of the
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Figure 3. Time evolution of temperature changes T̄ , for h̄ = 0.0 and 1.0, ε = 0.5.
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Figure 4. Short-term evolution of temperature change T̄ , for h̄ = 0.0 and 1.0, ε = 0.5.

thermal stress σ̄ T
xx(= σ̄ T

zz) at the middle (ȳ = 0.0) and the surface (ȳ = 1.0) of the infinite plate versus
nondimensional time τ . Note that the dynamic solution of σ̄ T

xx corresponds to the quasistatic one at the
surface (see (68) and (73) ), and that the quasistatic solution is proportional to temperature change T̄
with the negative constant −(1 − 2ν)χ3/(1 − ν) ∼= −2.06 for aluminum. Therefore, the thermal stress
σ̄ T

xx is compressive at the surface. However, the dynamic stress at the middle shows different behavior
from the quasistatic one as shown in Figure 5. The dynamic behavior of the thermal stress σ̄ T

yy is shown
in Figure 6. Consequently, the quasistatic one is identically zero as shown by the second relation in (73).
In Figure 6, a new nondimensional time τE is introduced for convenience. The nondimensional time τE

is based on the longitudinal wave velocity CL , defined as

τE =
τ

χ2
=

CL

b
t.
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Figure 5. Dynamic and quasistatic behaviors of the thermal stress σ̄ T
xx versus nondimen-

sional time τ , for h̄ = 0.0, ε = 0.5.
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Figure 6. Dynamic behavior of the thermal stress σ̄ T
yy versus nondimensional time τ

and τE , for h̄ = 0.0, ε = 0.5.

We see from Figure 6 that a pulsed stress wave is induced by the rapid surface temperature rise in
Figure 4. As shown in Figure 7, the stress waves created on both surfaces propagate to the middle, and
then interfere with each other at the middle. Therefore, the absolute value of the stress at the middle
becomes about twice of those in distant positions from the middle as shown in Figures 6 and 7.

Figure 8 shows the dynamic and quasistatic behaviors of the magnetic stress σ̄ M
yy at the middle versus

nondimensional time τ . The magnetic stress components σ̄ M
xx and σ̄ M

zz are omitted here because those
components are proportional to the component σ̄ M

yy with ν/(1 − ν) ∼= 0.49 as shown by (69) and (74).
Although the maximum absolute value of the quasistatic stress σ̄ M

yy is less than 1, as shown by the second
relation in (74), the absolute value of the dynamic stress can exceed 1, as shown in Figure 8. The variation
in the y direction of the dynamic magnetic stress σ̄ M

yy is shown in Figure 9.
The stress waves, whose maximum absolute value is 1, created at both surfaces due to the Lorentz

force propagate into the middle, and then get superimposed. Therefore, the maximum absolute value of
the dynamic stress becomes 2 except near the surfaces, as shown in Figure 9. Comparing the magnetic
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Figure 7. Variation in the y direction of the dynamic thermal stress σ̄ T
yy .
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Figure 8. Dynamic and quasistatic behavior of the magnetic stress σ̄ M
yy versus nondi-

mensional time τ and τE , for ε = 0.5.
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Figure 9. Variation in the y direction of the dynamic magnetic stress σ̄ M
yy .

stress σ̄ M
yy in Figure 8 with the thermal stress σ̄ T

yy in Figure 6, we see that the former is the dominant
stress component in the y direction.

Numerical results for ε = 10.0 — eddy current, thermal stress and magnetic stress — are presented
in Figures 10–12. It can be seen from Figure 10 that the eddy current J̄x is small and varies slowly in
comparison with the case ε = 0.5. Therefore, the maximum absolute values of both the thermal stress
σ̄ T

xx and the magnetic stress σ̄ M
yy are smaller and there is almost no difference in behavior between the

dynamic and quasistatic solutions.
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