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THERMAL LOADING

MONCHAI PRUKVILAILERT AND HIDEO KOGUCHI

The stress distribution near a point on the stress singularity line of dissimilar materials in three-dimen-
sional joints under thermal loading are investigated using BEM based on Rongved’s fundamental solu-
tions. Stress distributions for the material combinations in the singularity region, in the no singularity
region, and in the boundary between them on the Dundurs composite plane are investigated. The in-
fluences of thermal expansion coefficients, loading conditions and dimensions on the stress distribution
in three-dimensional joints composed of two blocks are examined. The stress intensity factors in three-
dimensional joints under a uniform change in temperature are proportional to the temperature variation,
1T , and depend on the difference in the thermal expansion coefficients. Furthermore, the level of the
stress distributions around the stress singularity lines also increases significantly as the length of one side
in the parallel cross section to the interface decreases.

1. Introduction

Stress singularities at the interface in the bonded joints of dissimilar materials are induced by mechanical
loading or thermal loading. Thermal stresses are caused by differences in elastic properties and thermal
expansion coefficients in dissimilar materials joints. The stress singularities exist not only at the vertex
in three-dimensional joints of dissimilar materials but also along the intersection of the interface with its
free surfaces. The cross line has been referred to as the stress singularity line. Li et al. [1992] reported
the results of stress analysis for dissimilar materials using three-dimensional BEM based on Kelvin’s
fundamental solutions. In the analysis, the interface must be divided using very fine meshes along the
stress singularity lines, and hugely memory- and time-consuming procedures are required for accurate
analysis. Then, Koguchi [1997] investigated the stress singularity in three-dimensional bonded joints
using three-dimensional BEM based on Rongved’s fundamental solutions. Rongved’s fundamental solu-
tions [Rongved 1955] satisfy boundary conditions at the interface. Therefore, the number of nodes and
elements necessary for accurate analysis decreases, because the BEM based on Rongved’s fundamental
solutions does not require the interface area of dissimilar materials joints to be divided into elements.
Koguchi et al. [2003] also used the fundamental solution for two-phase transversely isotropic materials
to investigate the stress singularity fields in three-dimensional bonded joints using three-dimensional
BEM. Furthermore, Prukvilailert and Koguchi [2005] reported on stress singularity analysis around a
point on the stress singularity line in three-dimensional bonded joints using three-dimensional BEM
based on Rongved’s fundamental solutions. However, this previous research focused only on the stress

Keywords: thermoelasticity, thermal stress, logarithmic singularity, stress singularity, three-dimensional joints, dissimilar
materials, BEM.

149

http://www.jomms.org
http://dx.doi.org/10.2140/pjm.2007.2-1


150 MONCHAI PRUKVILAILERT AND HIDEO KOGUCHI

 20

Fig. 1. Dundurs� composite plane. 
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Figure 1. The Dundurs composite plane.

singularity distributions in three-dimensional bonded joints under mechanical loading. The distributions
of the stress fields near the point on the stress singularity line in three-dimensional joints of dissimilar
materials under thermal loading have not been made clear so far.

In recent years, there has been much research on thermal stresses at the interface in two-dimensional
bonded joints. Munz and Yang [1992], Munz and Yang [1994] and Yang and Munz [1995] investigated
the stress singularities and stress intensity factors near the free edge of a junction between dissimilar ma-
terials subjected to mechanical or thermal loading using the eigenfunction expansion method. Madenci
et al. [1998] and Barut et al. [2001] developed global (special) elements in a finite element analysis
to investigate the thermo-mechanical stress field in a junction between dissimilar materials. It is well-
known that three-dimensional BEM is useful to efficiently analyze the stress fields in three-dimensional
joints, since only surfaces are divided into meshes for analysis. Cruse et al. [1977] and Rizzo and
Shippy [1977] determined the boundary integral equation for three-dimensional thermoelasticity. The
thermoelastic integral equation was also derived using the body force analogy [Karami and Kuhn 1992;
Cheng et al. 2001].

In this paper, we investigate the stress singularity fields near the singular point on the stress singular-
ity line in three-dimensional joints of dissimilar materials under thermal loading using BEM based on
Rongved’s fundamental solutions. The material combinations are mapped on the α2D − β2D Dundurs
composite plane [1969] for the order of stress singularity in a form of power-law singularity, λa , in plane
strain condition as shown in Figure 1. These parameters are defined as:

α2D =
K m(2) − m(1)

K m(2) + m(1)

,

β2D =
K (m(2) − 2) − (m(1) − 2)

K m(2) + m(1)

,

(1)
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Fig. 2. Stress singularity line in a three-dimensional joint of dissimilar materials and 

spherical coordinate system with the origin at the singular point. 
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Figure 2. Stress singularity line in a three-dimensional joint of dissimilar materials and
spherical coordinate system with the origin at the singular point.

where

K =
G(1)

G(2)

, (2)

m(h) =

4(1 − v(h)), for plane strain,

4
1 + v(h)

, for plane stress,
(h = 1, 2) (3)

in which G(h) is the shear modulus and v(h) is the Poisson’s ratio. The subscript h of these material
properties represents the material region; subscript 1 refers to the region of material 1 and subscript 2
refers to the region of material 2. Prukvilailert and Koguchi [2005] investigated the eigenvalues for the
point on the stress singularity line in three-dimensional bonded joints using the formulation of FEM
eigen analysis developed by Yamada and Okumura [1981] and Pageau and Biggers [1995]. The eigen
equation was derived using the principles of virtual work for deducing the root p (eigenvalue). We
obtained quintuple roots (pl = 1) of logarithmic singularity and a root pa where 0 < pa < 1 of rλa

power-law singularity. We found that the order of stress singularity in a form of power-law singularity,
λa(λa = pa − 1), at the point on the stress singularity line, is almost identical to that at the apex of two-
dimensional bonded joints in plane strain condition, and the contour map of λa in the singular region of
the Dundurs composite plane was plotted. The stress singularity field around the singular point on the
stress singularity line according to the eigenvalues obtained by three-dimensional FEM eigen analysis
can be expressed as follows:
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Fig. 3. Mesh division of the model. 
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Figure 3. Mesh division of the model.

σi j (r, θ, φ) = L i j1(θ, φ)+ L i j2(θ, φ) ln(r/L) + L i j3(θ, φ)(ln(r/L))2

+ L i j4(θ, φ)(ln(r/L))3
+ L i j5(θ, φ)(ln(r/L))4

+ (r/L)λa Ki ja(θ, φ, pa),
(4)

where L is the characteristic length of the configuration. L i jm is the stress intensity factor of the loga-
rithmic singularity term (m = 1, 2, . . . , 5), and Ki ja is that of the (r/L)λa term. The subscripts i, j refer
to r, θ and φ in a spherical coordinate system as shown in Figure 2.

2. BEM for thermoelasticity

The stress and displacement fields at a point in the joints with high stress are examined using BEM, which
requires less memory than FEM, especially in the case of three-dimensional joints. Here, Rongved’s
fundamental solutions satisfying the boundary conditions at the interface in dissimilar materials are
applied in our analysis. For thermoelasticity with a uniform temperature variation in dissimilar materials,
the boundary integral equation is derived as follows:

Ci j u j (P) =

∫
S

(
t j (Q)Ui j (P, Q) − Ti j (P, Q)u j (Q)

)
d S(Q) +

∫
S

(
(n j Mϕ)Ui j (P, Q)

)
d S(Q), (5)

where S is the surface of the dissimilar materials model excluding the interface area, P and Q are points
on the boundary, Ci j is the C-matrix derived from the configuration around a boundary point P , and Ui j

and Ti j are Rongved’s fundamental solutions for displacements and surface tractions. Parameter ϕ is a
uniform temperature variation from the stress-free state. The term M varies according to the location of
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Fig. 4. Model for analysis of a three-dimensional joint. 
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Figure 4. Model for analysis of a three-dimensional joint.

an element. We can define M as

M =


2G(1)αT 1(1 + v(1))

(1 − 2v(1))
, in Material region 1,

2G(2)αT 2(1 + v(2))

(1 − 2v(2))
, in Material region 2,

(6)

where αT 1 and αT 2 are the thermal expansion coefficients for material 1 and for material 2, respectively.
A very fine mesh division shown in Figure 3 is used to obtain an accurate stress distribution. The

stress state at internal points can then be derived. First, the strain-displacement relation is written as

εi j =
1
2
(ui, j + u j,i ). (7)

The stress-strain relation for thermoelasticity is given by

σ
(h)
i j = 2G(h)εi j + Nδi jεkk − Mδi jϕ, (8)

where

N =


2G(1)v(1)

(1 − 2v(1))
, in material region 1,

2G(2)v(2)

(1 − 2v(2))
, in material region 2.

(9)

Substitution of Equation (7) into Equation (8) then gives

σ
(h)
i j = G(h)(ui, j + u j,i ) + Nδi j uk,k − Mδi jϕ. (10)
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Fig. 5. Displacements in the z-direction on the upper surface of the model along the edge 

x = 10mm for a uniform temperature variation ( KT 100� ' , cooling down). 
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Figure 5. Displacements in the z-direction on the upper surface of the model along the
edge x = 10 mm for a uniform temperature variation (1T = − 100 K, cooling down.

Finally, the stress σi j at the internal point, ξ , can be obtained by differentiating Equation (5) and substi-
tuting into Equation (10) as follows:

σ
(h)
i j (ξ)=

∫
S

(
tl(Q)D(h)

i jl (ξ, Q)−V (h)
i jl (ξ, Q)ul(Q)

)
d S(Q)+

∫
S

(nl Mϕ)D(h)
i jl (ξ, Q)d S(Q)−Mδi jϕ, (11)

where the third-order tensor components D(h)
i jl (ξ, Q) and V (h)

i jl (ξ, Q) are obtained by substituting Rong-
ved’s fundamental solutions Ui j (ξ, Q) and Ti j (ξ, Q), respectively, in the stress-displacement equations
as follows:

D(h)
i jl (ξ, Q) = G(h)

(
Uil, j (ξ, Q) + U jl,i (ξ, Q)

)
+ Nδi jUkl,k(ξ, Q)

V (h)
i jl (ξ, Q) = G(h)

(
Til, j (ξ, Q) + T jl,i (ξ, Q)

)
+ Nδi j Tkl,k(ξ, Q), (12)

where δi j is the Kronecker delta.
A typical model employed in our calculation is shown in Figure 4. The total number of nodes and

elements are 3067 and 1370, respectively. A very fine mesh division is located around the singular point
on the stress singularity line. For the boundary conditions, the displacements in the x-direction and the
y-direction are free at all surfaces of the model. The displacement in the z-direction at the upper surface
and side surfaces of the model is free, whereas that at the lower surface is fixed to zero.

3. Results and discussion

3.1. Thermal loading. In this section, thermal loading due to a uniform temperature variation (ϕ = 1T :

constant) is applied to the three-dimensional joint model. The material combinations of the joint are cho-
sen so as to lie in the singularity region, in the no-singularity region and at the boundary between the two;
here “singularity” refers to the power-law singularity on the Dundurs composite plane in Figure 1. The
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distance between the vertex of the joint and the singular point where the stress distribution is investigated
is 0.0512 mm as shown in Figure 4. Material properties are first chosen as E(1) = 206 GPa, v(1) = 0.3,
E(2) = 52.6742 GPa, v(2) = 0.26316. The corresponding Dundurs parameters (α2D = 0.6, β2D = 0.2)

are in the singularity region. The thermal expansion coefficient of material 1, αT 1, is 1.0 × 10−6K −1,
and of material 2, αT 2, it is 5.0 × 10−6K −1. The uniform temperature variation 1T is −100K , which
means that the temperature in the joint decreases from the stress-free state (1T is negative, indicating
a cooling-down condition). The upper part of the model (material 2) allows more contraction than the
lower part of the model (material 1, which has a lower value of the thermal expansion coefficient). A
comparison of the displacements in the z-direction along the edge (x = 10 mm) on the upper surface
of the model in the BEM analysis with those in the FEM and theoretical analysis is shown in Figure
5. The theoretical analysis based on the theory of thermoelasticity for the extension of a bar shows the
average displacement over the upper surface of the model. As seen in Figure 5, the displacements for
each of the three methods are close to each other. The results of the BEM and the FEM also show
that the displacement varies over the upper surface of the model. The stress distribution of σθθ at the
interface (θ = 0◦) near the singular point on the stress singularity line along the dimensionless distance
r/L in the present BEM analysis for a uniform temperature variation (1T = −100K ) is shown in Figure
6a. For comparison, we also provide the stress distributions of σθθ in two-dimensional bonded joints,
computed using the formulation developed by Munz and Yang [1992] and the commercial FEM program
(MARC) in plane strain condition. It can be seen that the stress distribution of σθθ for three-dimensional
bonded joints is similar to that for two-dimensional bonded joints, but the magnitude is larger. The stress
distributions of σθθ around the singular points located at 0.0392 mm and 0.0292 mm from the junction
vertex are also investigated. To magnify the difference, Figure 6b shows the stress distributions of σθθ in
a semilog scale for the three singular points. The level of the stress σθθ increases slightly as the singular
point approaches the vertex point. Next, the stress distributions of σθθ for various uniform temperature
variations are investigated and shown in Figure 7. The magnitude of the stress σθθ near the singular
point is proportional to the value of a uniform temperature variation according to the Linear Theory of
Elasticity. Figures 8a–8c show the distributions of several stress components −σi j/1T near the singular
point in a log-log scale for various angles of θ . The stress level of −σθθ/1T in Figure 8a increases as
the angle θ approaches 0.

It is well-known that failure and cracks at the interface of joints usually occur due to the tensile stress
of σθθ . The stress distribution of −σθθ/1T at θ = 0◦ in Figure 8a refers to the stress distribution of σθθ

at the interface in Figure 6a divided by 1T = −100K . Moreover, the stress level of −σrθ/1T in Figure
8b decreases while the stress level of −σrr/1T in Figure 8c increases as the angle θ approaches the free
surface of joints. The stress components computed at θ = −10◦, −30◦ and − 60◦ are not reported in the
corresponding figures since their values are negative. All plots obviously have negative slopes. Therefore,
the occurrence of stress singularity in the form of (r/L)λa singularity (power-law singularity) is possible.
However, the curves deviate from a straight line as the distance from the singular point increases. An
attempt to estimate the stress distribution using a function of the 1st order logarithmic singularity term
and the power-law singularity term for two-dimensional joints does not provide a good fit for the stress
distribution of −σθθ/1T at θ = −60◦ shown in Figure 8a. In the present study, three-dimensional
FEM eigen analysis yields one root of power-law singularity, pa = 0.9073, λa = pa − 1 = −0.0927,
and quintuple roots (pl = 1) of logarithmic singularity. Then, a good fit for the profiles of the stress
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Fig. 6. Stress distributions of TTV  at the interface near the singular point on the stress 

singularity line for a uniform temperature variation ( KT 100� ' ). 
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Figure 6. Stress distributions of σθθ at the interface near the singular point on the stress
singularity line for a uniform temperature variation (1T = − 100 K).

distributions in the neighborhood of the singular point can be obtained using Equation (4) which is
a combination of power-law singularity and 4th order logarithmic singularity distributions. Figure 9a
shows the stress distributions of −σθθ/1T at the interface (θ = 0◦) for various values of αT 2 when
αT 1 is fixed to 1.0 × 10−6K −1. The stress level of −σθθ/1T increases as the value of αT 2 increases.
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Fig. 7. Stress distributions of TTV  at the interface for various uniform temperature 

variations in a semi-log scale.  
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Figure 7. Stress distributions of σθθ at the interface for various uniform temperature
variations in a semilog scale.

Furthermore, Figure 9b shows that the stress field is linear in the difference between the thermal expansion
coefficients. Figures 10a–10c show the log-log plots of −σi j/1T for various angles of θ and the Dundurs
parameters located at the zero boundary of singularity in plane strain condition (α2D = 0.4, β2D = 0.2,
E(1) = 206 GPa, v(1) = 0.3, E(2) = 94.68124 GPa, v(2) = 0.15517). The thermal expansion coefficients
for two dissimilar materials are chosen as αT 1 = 1.0 × 10−6K −1 and αT 2 = 5.0 × 10−6K −1. From the
three-dimensional FEM eigen value analysis, there are five roots of pl = 1 and λa = −0.000455. We also
used Equation (4) to approximate the curves of the stress distributions. Because of the very small order
of stress singularity (λa → 0), the (r/L)λa singularity term in Equation (4) is almost constant in the range
10−4

≤ r/L ≤ 10−2. However, in Figure 10a, the plots of the stress −σθθ/1T have significantly negative
slopes. The plots for the stresses −σrθ/1T and −σrr/1T in Figure 10b-10c also have negative slopes.
This means that the existence of logarithmic singularity clearly influences the characteristics of the stress
fields near the stress singularity line for material combinations at the zero boundary of singularity on
the Dundurs composite plane. We also investigate the stress distributions of −σi j/1T for the Dundurs
parameters located in the no-singularity region (α2D = 0.3, β2D = 0.2, E(1) = 206 GPa, v(1) = 0.3,
E(2) = 121.2716 GPa, v(2) = 0.07143, λa = 0.02752 > 0). It can be found that the characteristics of
the stress distributions of −σi j/1T are similar to those at the zero boundary of singularity, because the
Dundurs parameters in the two cases are not very different. The stress distributions of −σθθ/1T at
the interface for material combinations falling in the no-singularity region and at the zero boundary of
singularity when the difference of the thermal coefficient is varied are shown in Figure 11. The stress
distributions for material combinations in the singularity region, in the no-singularity region, and at
the zero boundary of singularity show that the stress intensity factors in Equation (4) are proportional
to the temperature variation 1T and depend on the difference in the thermal expansion coefficients in
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Fig. 8. Stress distributions of /ij TV� '  for various angles of T  ( 2 20.6, 0.2D DD E  ). 
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Fig. 9. Stress distributions of / TTTV� '  at the interface ( 0T  D ) for various values of 

2TD  ( 6 1
1 1.0 10
T

KD � � u  and 2 20.6, 0.2
D D

D E  ). 
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(b) 
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Figure 9. Stress distributions of − σθθ/1T at the interface θ = 0◦ for various values of
αT 2 (αT 1 = 1.0x10−6K −1 and α2D = 0.6, β2D = 0.2).

two-phase materials, that is,

L i jm and Ki ja ∝ 1T . (13)

The stress intensity factors for the stress −σθθ/1T at the interface under a uniform temperature
variation are shown in Table 1. The stress intensity factors −Lθθ4/1T and −Lθθ5/1T are relatively
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Fig. 10. Stress distributions of /ij TV� '  for various angles of T  ( 2 20.4, 0.2D DD E  ). 
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Figure 10. Stress distributions of − σθθ/1T for various angles of θ (α2D = 0.4, β2D = 0.2).

−Kθθa/1T −Lθθ1/1T −Lθθ2/1T −Lθθ3/1T −Lθθ4/1T −Lθθ5/1T
10−2 GPa/K 10−2 GPa/K 10−2 GPa/K 10−2 GPa/K 10−2 GPa/K 10−2 GPa/K

α2D = 0.6, β2D = 0.2
λ = − 0.0927

4.233E-02 -5.381E-03 7.210E-03 1.072E-03 1.263E-06 8.683E-08

α2D = 0.5, β2D = 0.2
λ = − 0.000455

7.663E-02 -5.510E-02 -4.173E-03 4.575E-04 -1.015E-05 -6.968E-07

α2D = 0.3, β2D = 0.2
λ = − 0.02752

8.490E-02 -6.879E-02 -8.646E-03 1.069E-04 -1.382E-05 -9.482E-07

Table 1. Stress intensity factors for the stress −σθθ/1T at the interface (θ = 0) under a
uniform temperature variation. Note: αT 1 = 1.0 × 10−6K −1, αT 2 = 5.0 × 10−6K −1.



STRESS IN BONDED JOINTS UNDER THERMAL LOADING 161

 36

Fig. 11. Effects of 2TD ( 6 1
1 1.0 10
T

KD � � u ) on / TTTV� '  at the interface ( 0T  D ) for 

( 2 20.4, 0.2
D D

D E  ) and ( 2 20.3, 0.2
D D

D E  ). 
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Figure 11. Effects of αT 2 (αT 11.0x10−6K −1) on σθθ/1T at the interface θ = 0 for
(α2D = 0.4, β2D = 0.2) and (α2D = 0.3, β2D = 0.2).

small compared with other stress intensity factors. For α2D = 0.6 and β2D = 0.2 (singularity region),
the stress intensity factor −Kθθa/1T of the (r/L)λa singularity term is obviously larger than that for

 37

Fig. 12. Stress distributions of TTV  at the interface near the singular point on the stress 

singularity line under various loading conditions. 
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Figure 12. Stress distributions of σθθ at the interface near the singular point on the stress
singularity line under various loading conditions.
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each of the logarithmic singularity terms. For (α2D = 0.4, β2D = 0.2) and (α2D = 0.3, β2D = 0.2), it
can be seen that the plots of the stress −σθθ/1T against the dimensionless distance r/L in a log-log
scale have significantly negative slopes due to the value of the stress intensity factors −Lθθ2/1T of
the ln(r/L) term and −Lθθ3/1T of the (ln(r/L))2 term in Equation (4). In previous papers [Koguchi
1997; Prukvilailert and Koguchi 2005], it was found that the stress intensity factors (L i jm, Ki ja) under
tensile loading are proportional to the magnitude of the applied tensile stress, P , on the upper surface of
three-dimensional joints, that is,

L i jm and Ki ja ∝ P. (14)

For comparison, the stress distributions of σθθ under tensile loading (P = 1 GPa) and under combined
loading of tensile (P = 1 GPa) and thermal loading (1T = −100K ) are also provided in Figure 12. It
can be seen that the characteristic of the stress distribution of σθθ under a uniform temperature variation
is different from that under tensile loading or combined loading. For combined loading, the stress level
of σθθ increases with decreasing temperature from the stress-free state (cooling down).

3.2. Plate structure. Plate structures composed of dissimilar materials bonded together have many ap-
plications in solid mechanics. The stress distributions near the singular point on the stress singularity
line of plate structures under thermal loading are investigated in this section. The geometry of the three-
dimensional structure in Figure 4 is changed to a plate structure. Figure 13 shows the model for analysis.
The width of the y − z plane, 2w, is varied. Two stress singularity lines exist for examination in this
structure. One stress singularity line is located on the y − z plane and another on the x − z plane. The
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Fig. 13. Model for analysis of a plate structure.  
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Figure 13. Model for analysis of a plate structure.
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Fig. 14. Stress distributions / TTTV� '  around the singular point 1S  

at the interface of plate structures. 
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Figure 14. Stress distributions − σθθ/1T around the singular point S1 at the interface
of plate structures.
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Fig. 15. Stress distributions / TTTV� '  around the singular point 2S  

at the interface of plate structures. 
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Figure 15. Stress distributions − σθθ/1T around the singular point S2 at the interface
of plate structures.
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Fig. 16. Variation in the stress / TTTV� ' at the interface against the dimensionless 

variable, /w L , in plate structures. 
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Figure 16. Variation in the stress −σθθ/1T at the interface against the dimensionless
variable, w/L , in plate structures.

distance between the singular points (S1 and S2) and the vertex of the joint is 0.0512 mm. The material
properties are chosen for material combinations corresponding to α2D = 0.6 and β2D = 0.2 (singularity
region). The thermal expansion coefficients are chosen as αT 1 = 1.0×10−6K −1 and αT 2 = 5.0×10−6K −1.
The temperature variation is uniformly applied to the material regions. Figures 14 and 15 show the stress
distributions of −σθθ/1T at the interface around the singular points S1 and S2, respectively, against the
dimensionless distance, r/w. The width, w, is varied from 10 mm to 0.15 mm. For the width w from
10 mm to 4 mm, we found that the plots are almost the same line. However, as the width w gets smaller
(from 1 mm to 0.15 mm), the plots are clearly different from each other. Because the singular point S1

is near the singular point S2, the characteristics of the stress distributions of −σθθ/1T around the two
singular points at the interface are not very different from each other. It can be seen that the dimensionless
distance, r/w, is an appropriate variable to determine the variations of the stress distributions around both
singular points S1 and S2 in plate structures. Therefore, the characteristic length L in Equation (4) is
replaced by the width w for the expression of the stress fields around the singular point on the stress
singularity line in a plate structure.

Furthermore, the variations in the magnitude of the stress −σθθ/1T for the two singular points
(S1 and S2) at the interface against the dimensionless variable w/L for r/w = 1.0 × 10−2 are shown in
Figure 16. For 1 ≥ w/L ≥ 0.4, the width of the model is not much less than the length or the height. So,
the model is a simple three-dimensional structure, and does not behave like a plate structure. Therefore,
the variation of the width in the range 1 ≥ w/L ≥ 0.4 has little influence on the stress distribution of
−σθθ/1T against the variable r/w around the two singular points. For 0.2 ≥ w/L ≥ 0.015, the model
obviously behaves like a plate structure. Then, the stress singularity lines get close enough to raise the
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magnitude of the stress field around each line. Therefore, the level of the stress distributions of −σθθ/1T
around the singular points, S1 and S2, increases rapidly as the width w of a plate structure decreases.

4. Conclusion

In this paper, we created a three-dimensional BEM program for thermoelasticity based on Rongved’s
fundamental solution satisfying the boundary condition at the interface. As a result, accurate analysis
using the present BEM program required less memory and was less time-consuming than BEM analysis
based on Kelvin’s fundamental solutions or FEM analysis. The distributions of stress singularity fields
around the singular point on the stress singularity lines for dissimilar materials in three-dimensional
bonded joints under thermal loading were presented and compared with the results in the previous re-
search studies. For a uniform temperature variation applied to three-dimensional bonded joints, the stress
intensity factors were proportional to the temperature variation, 1T , and depended on the difference in
the thermal expansion coefficients. Logarithmic singularity significantly influenced the characteristics
of the stress distributions in three-dimensional bonded joints under thermal loading. For plate structures
with very small thickness, the level of the stress distributions around the singular points on the stress
singularity lines along the dimensionless distance, r/w, increased rapidly.
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