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SANASAM SARAT SINGH AND SUSHIL KUMAR TOMAR

A problem of reflection and transmission of shear waves (SH waves) at a corrugated interface between
two distinct fiber-reinforced elastic half-spaces has been analyzed. Rayleigh’s method of approximation
is used to determine the reflection and transmission coefficients. We find that (i) these coefficients
are functions of the angle of incidence and the elastic parameters of the media, (ii) the coefficients
corresponding to irregularly reflected and transmitted waves are proportional to the amplitude of the
corrugated interface, and (iii) reflection and transmission coefficients of the regularly reflected and trans-
mitted waves are greater than those of irregularly reflected and transmitted waves. The energy ratios
of reflected and transmitted waves are also presented. Numerical computations are performed and the
results obtained are presented graphically. Some earlier results by other workers are recovered by our
treatment.

1. Introduction

Problems of wave propagation in elastic media have applications in various fields, such as engineering,
geophysics, and seismology. When elastic waves are transmitted through one medium to another medium
of different characteristics, the phenomena of reflection and transmission take place. These phenomena
depend not only upon the characteristics of the media but are also influenced by the shape of the interface
between the two media. Thus, while investigating the problems of reflection and transmission of elastic
waves from a corrugated interface, one must take into account the shape of the corrugated interface.
Rayleigh [1893] was the first who attempted to solve a problem of wave scattering of sound waves and
electromagnetic waves from a rough surface. He gave an approximate method of solving this problem
for a sinusoidal surface with a small amplitude, restricting himself to the case of normal wave incidence.
In his method, the amplitude and slope of the interface which is expressed in Fourier series are assumed
to be very small. By using the boundary conditions of the problem, the unknown coefficients in the
solutions are determined for any order of approximation. Rayleigh used this method, in his paper “On
the dynamical theory of grating” [1907], and later, researchers in various fields applied his method
to explain reflection and transmission phenomena of waves from irregular boundary surfaces. Using
different techniques, many problems of reflection and refraction of elastic waves from irregular boundary
surfaces have appeared in the open literature, such as [Abubakar 1962; Asano 1960; 1961; 1966; Dunkin
and Eringen 1962; Tomar and Saini 1997; Okamoto and Takenaka 1999; Tomar et al. 2002; Gupta 1987;
Kumar et al. 2003; Tomar and Kaur 2003; Kaur and Tomar 2004; Kaur et al. 2005].

Keywords: SH waves, fiber reinforcement, Rayleigh’s method of approximation, apparent velocity, reflection coefficient,
transmission coefficient.
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Chattopadhyay and Choudhury [1990] studied propagation, reflection and transmission of magneto-
elastic shear waves in a self-reinforced medium. Later, Chattopadhyay and Choudhury [1995] studied
magnetoelastic shear waves in an infinite self-reinforced elastic plate. Sengupta and Nath [2001] inves-
tigated surface waves (Rayleigh, Love and Stoneley types) in anisotropic fiber-reinforced solid elastic
media. Pradhan et al. [2003] studied the dispersion of Love waves in a self-reinforced layer over an
elastic non-homogeneous half-space. Singh and Singh [2004] studied the propagation of plane waves in
fiber-reinforced elastic media and showed that the phase velocities of quasi P and SV waves depended
on the angle between direction of propagation and the direction of reinforcement. They also discussed
the reflection of these elastic waves from the free surface of a fiber reinforced elastic half-space. In this
paper, a problem of an SH wave striking obliquely at a corrugated interface between two dissimilar fiber-
reinforced elastic half-spaces has been discussed. The amplitude and slope of the corrugated interface
are assumed to be very small and Rayleigh’s method of approximation has been used to explain the
reflection and transmission coefficients for first and second order approximation of the corrugation. For
a special type of interface, that is, where the corrugated interface is a simple harmonic interface given
by ζ = d cos npx , we have obtained the formulae of reflection and transmission coefficients of regularly
and irregularly reflected and transmitted waves in closed form for the first order approximation of the
corrugation. Partitioning of energy due to reflected and refracted waves at the corrugated interface is
also presented. Numerically, the effects of corrugation and frequency parameters on these coefficients
are studied for a particular model and the results obtained are shown graphically. In the present work,
if we neglect the reinforcement parameters, we reduce to the case of a problem in an isotropic medium.
In this case, the problem of Asano [1960] can be recovered by setting α = β = 0 and µL = µT . The
expressions of energy ratios of regularly and irregularly reflected and transmitted waves are obtained and
their variations are depicted graphically with respect to the angle of incidence.

2. Basic relations and equations

The constitutive relations for a fiber-reinforced linear elastic medium, as given in [Belfield et al. 1983],
are

τi j = λekkδi j + 2µT ei j + α
(
akamekmδi j + ekkai a j

)
+ 2

(
µL − µT

)(
ai akek j + a j akeki

)
+ βakamekmai a j , (i, j, k, m = 1, 2, 3), (1)

where τi j is the stress tensor, ei j is the strain tensor, µT and λ are elastic constants, α, β, and (µL − µT )

are fiber-reinforcement parameters having the dimensions of stress, and ai are the components of a unit
vector a that gives the direction of fiber-reinforcement. Spencer [1974] has shown that if the preferred
direction of a is chosen along the x-axis then µT can be identified as the shear modulus in transverse shear
across the preferred direction and µL as the shear modulus in longitudinal shear in the preferred direction.
He also established some relations among the elastic constants and given their physical meaning. It can
be seen that if α = β = 0 and µL = µT , then (1) reduces to the generalized Hooke’s law for an isotropic
medium. The strain tensor ei j in terms of displacement components ui is given by

ei j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (2)
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The equations of motion in a fiber-reinforced medium without body forces are

∂τi j

∂x j
= ρ

∂2ui

∂t2 , (i, j = 1, 2, 3), (3)

where ρ is the density of the medium.
Let the direction of reinforcement be along the x-axis: a = (1, 0, 0). For an SH wave propagating in

the x1x2 plane and having displacement along x3 axis, we have ∂/∂x3 ≡ 0. Using the notations u3 ≡ u,
∂/∂x1 ≡ ∂/∂x , and ∂/∂x2 ≡ ∂/∂y, and substituting Equations (1) and (2) into (3), we obtain

µL
∂2u
∂x2 + µT

∂2u
∂y2 = ρ

∂2u
∂t2 .

This is the equation of motion for SH wave propagation in a fiber-reinforced elastic medium.

3. Problem and boundary conditions

Let the x and z axes of a Cartesian coordinate system be on the horizontal plane and the y axis be
pointing vertically downward. Let the equation of the corrugated interface separating the two different
homogeneous fiber-reinforced elastic half-spaces, namely L1[−∞ < y ≤ ζ(x)] and L2[ζ(x) ≤ y < ∞],
be given by y = ζ(x). The geometry of the problem is shown in Figure 1.
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Figure 1. Geometry of the problem.
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We shall take both the half-spaces as homogeneous such that the length scale of the reinforcement (that
is, the cross section of the fiber, or the separation between fibers) is small compared to the wavelength.
We denote the elastic parameters and density in the medium L l (l = 1, 2) by the quantities µLl , µTl , and
ρl , respectively. Fourier series representation of the function ζ(x) is given by

ζ(x) =

∞∑
n=1

(
ζneinpx

+ ζ−ne−inpx), (4)

where ζ(x) is a periodic function of x and independent of y whose mean value is zero, ζn and ζ−n

are Fourier series coefficients, p is the wave number, n is the series expansion order and i =
√

−1.
Introducing the constants d , cn and sn such that ζ1 = ζ−1 =

1
2 d , ζn =

1
2(cn − isn), ζ−n =

1
2(cn + isn), and

n = 2, 3, 4, . . . into (4), we obtain

ζ = d cos px +

∞∑
n=2

[
cn cos npx + sn sin npx

]
.

If the coefficients ζn = ζ−n vanish for n = 2, 3, 4, . . . then the equation of the corrugated interface reduces
to the simple harmonic interface ζ = d cos px , where d is the amplitude of the corrugation and 2π/p is
the wavelength of corrugation.

The equation of motion for SH wave propagation in the fiber-reinforced elastic half-spaces L l (l = 1, 2)

are

µLl

∂2ul

∂x2 + µTl

∂2ul

∂y2 = ρl
∂2ul

∂t2 .

An incident plane SH wave at the corrugated interface, after propagating through the medium L1, will
give rise to regularly reflected and regularly transmitted waves as well as irregularly reflected and irreg-
ularly transmitted waves [Asano 1960]. The irregularly reflected and transmitted waves are due to the
corrugation of the interface. Thus, the system of waves which arises due to corrugation on both sides
of the regularly reflected waves are called irregularly reflected waves. Similarly, the system of waves
which arises on both sides of regularly transmitted wave are called irregularly transmitted waves. These
waves propagate with different amplitudes but with the same velocity as the regular waves. The n-th
component of the spectrum form of an irregularly reflected wave is given by

uirr
1 = A+

n exp
( iω

c1

(
c1t − x sin θ+

n + η+

n y
))

+ A−

n exp
( iω

c1

(
c1t − x sin θ−

n + η−

n y
))

,

where A+
n and A−

n are the amplitude constants of the irregularly reflected SH waves propagating at angles
of reflection θ+

n and θ−
n respectively, and where

η±

n =

√
ρ1c2

1

µT1

−
µL1

µT1

sin2 θ±
n .
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The total displacement u1 in the medium L1 will contain the displacements due to the incident wave, the
regularly reflected wave, and all irregularly reflected SH waves:

u1 = A0 exp
( iω

c1

(
c1t − x sin θ − ηy

))
+ A exp

( iω
c1

(
c1t − x sin θ + ηy

))
+

∞∑
n=1

(
A+

n exp
( iω

c1

(
c1t − x sin θ+

n + η+

n y
))

+ A−

n exp
( iω

c1

(
c1t − x sin θ−

n + η−

n y
)))

, (5)

where A0 is the amplitude of the incident wave, θ is the angle of incidence, ω is the angular frequency,
c1 =

√
µL1/ρ1 is the speed of SH wave along x-axis in medium L1, A is the amplitude of the regularly

reflected SH wave with the angle of reflection θ , and

η =

√
ρ1c2

1

µT1

−
µL1

µT1

sin2 θ.

Similarly, the n-th component of the spectrum form of the irregularly transmitted wave is given by

uirr
2 = B+

n exp
( iω

c2

(
c2t − x sin φ+

n − η+

0n y
))

+ B−

n exp
( iω

c2

(
c2t − x sin φ−

n − η−

0n y
))

,

where B+
n and B−

n are the amplitudes of the irregularly transmitted waves with transmitted angles φ+
n

and φ−
n , and

η±

0n =

√
ρ2c2

2

µT2

−
µL2

µT2

sin2 φ±
n .

Thus, the displacement u2 in the medium L2 will contain the displacements due to regularly transmitted
waves and due to all irregularly transmitted SH waves as

u2 = B exp
( iω

c2

(
c2t − x sin φ − η0 y

))
+

∞∑
n=1

(
B+

n exp
( iω

c2

(
c2t − x sin φ+

n − η+

0n y
))

+ B−

n exp
( iω

c2

(
c2t − x sin φ−

n − η−

0n y
)))

, (6)

where c2 =
√

µL2/ρ2 is the speed of the SH wave along the x axis in medium L2, B is the amplitude of
the regularly transmitted wave, φ is the angle which the transmitted wave makes with the normal, and

η0 =

√
ρ2c2

2

µT2

−
µL2

µT2

sin2 φ.

The angles of the regularly reflected and regularly transmitted waves are related by Snell’s law:

sin θ

c1
=

sin φ

c2
=

1
c
, (7)

where c is the apparent velocity. The relation between the angles of the regular wave and the correspond-
ing irregular waves is given by the Spectrum theorem [Abubakar 1962; Asano 1960]:

sin θ±

n − sin θ = ±
npc1

ω
, sin φ±

n − sin φ = ±
npc2

ω
, (8)
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where the ± signs on both sides of each equality are matched.
The appropriate boundary conditions are the continuity of displacements and traction at the corrugated

interface. Mathematically, at y = ζ(x), these boundary conditions are

[u1]L1 = [u2]L2, (9)

[τ32 − ζ ′τ31]L1 = [τ32 − ζ ′τ31]L2, (10)

where

ζ ′
=

∞∑
n=1

(ζneinpx
− ζ−ne−inpx)inp.

The boundary condition given in (10) can be expressed in terms of displacements as

µT1

∂u1

∂y
− ζ ′µL1

∂u1

∂x
= µT2

∂u2

∂y
− ζ ′µL2

∂u2

∂x
. (11)

Substituting Equations (5)–(8) into the boundary conditions (9) and (11), we obtain

A0 exp
(
−iηωζ

c1

)
+ A exp

(
iηωζ

c1

)
+

∞∑
n=1

(
A+

n exp
(

iη+

n
ωζ

c1

)
e−inpx

+ A−

n exp
(

iη−

n
ωζ

c1

)
einpx

)

= B exp
(
−iη0

ωζ

c2

)
+

∞∑
n=1

(
B+

n exp
(
−iη+

0n
ωζ

c2

)
e−inpx

+ B−

n exp
(
−iη−

0n
ωζ

c2

)
einpx

)
(12)

and

−A0µT1
η

c1
exp

(
−iηωζ

c1

)
+ Aη

µT1

c1
exp

(
iηωζ

c1

)
+

∞∑
n=1

µT1

c1

(
A+

n η+

n exp
(

iη+

n
ωζ

c1

)
e−inpx

+ A−

n η−

n exp
(

iη−

n
ωζ

c1

)
einpx

)

+ ζ ′ µL1

c1

(
sin θ

(
A0 exp

(
−iηωζ

c1

)
+ A exp

(
iηωζ

c1

))

+

∞∑
n=1

(
A+

n

(
sin θ+

npc1
ω

)
exp

(
iη+

n
ωζ

c1

)
e−inpx

+A−

n

(
sin θ−

npc1
ω

)
exp

(
iη−

n
ωζ

c1

)
einpx

))

=
µT2

c2

(
−Bη0 exp

(
−iη0

ωζ

c2

)
−

∞∑
n=1

(
B+

n η+

0n exp
(
−iη+

0n
ωζ

c2

)
e−inpx

+ B−

n η−

0n exp
(
−iη−

0n
ωζ

c2

)
einpx

))

+ ζ ′ µL2

c2

(
B sin φ exp

(
−iη0

ωζ

c2

)
+

∞∑
n=1

(
B+

n

(
sin φ+

npc2
ω

)
exp

(
−iη+

0n
ωζ

c2

)
e−inpx

+B−

n

(
sin φ−

npc2
ω

)
exp

(
−iη−

0n
ωζ

c2

)
einpx

))
.

(13)

Equations (12) and (13) provide the reflection and transmission coefficients for any order of approxima-
tion of corrugation.
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4. Solution for the first order approximation

Since we assume that the corrugation and slope of the interface are small, the first order approximation
to the exponential term containing ζ can be written as

exp
(
±iηωζ

c1

)
= 1 ± iη

ωζ

c1
, etc. (14)

Substituting Equations (4) and (14) into the boundary conditions (12) and (13), and comparing the term
independent of x and ζ in both sides of the equations, we have

−
A
A0

+
B
A0

= 1, µT1η
A

A0c1
+ µT2η0

B
A0c2

=
ηµT1

c1
. (15)

Comparing the coefficients of e−inpx for A+
n and B+

n on both sides of the equations, we get

A+
n

A0
−

B+
n

A0
= iζ−nω

((
1 −

A
A0

) η

c1
−

Bη0

c2 A0

)
, (16)

µT1η
+

n
A+

n

A0c1
+ µT2η

+

0n
B+

n

A0c2

= iζ−n

(
µL1np

sin θ

c1
−µT1ω

η2

c2
1
+

(
µL1np

sin θ

c1
−µT1ω

η2

c2
1

)
A
A0

+

(
−µL2np

sin θ

c1
+µT2ω

η2
0

c2
2

)
B
A0

)
. (17)

Similarly, comparing the coefficients of einpx for A−
n and B−

n , we obtain

A−
n

A0
−

B−
n

A0
= iζnω

((
1 −

A
A0

) η

c1
−

Bη0

c2 A0

)
, (18)

µT1η
−

n
A−

n

A0c1
+ µT2η

−

0n
B−

n

A0c2

= iζn

(
−µL1np

sin θ

c1
−µT1ω

η2

c2
1
−

(
µL1np

sin θ

c1
+µT1ω

η2

c2
1

)
A
A0

+

(
µL2np

sin θ

c1
+µT2ω

η2
0

c2
2

)
B
A0

)
. (19)

Solving the system of equations (15), we obtain the reflection and transmission coefficients of the regu-
larly reflected and transmitted SH waves as

A
A0

=
1 − M
1 + M

,
B
A0

=
2

1 + M
, (20)

where M = (µT2η0c1)/(µT1ηc2). These are the reflection and transmission coefficients of the SH wave
at a plane interface between two different fiber-reinforced elastic half-spaces.

Solving the systems (16)–(17) and (18)–(19), we obtain

A+
n

A0
=

1A+
n

1+
n

,
B+

n

A0
=

1B+
n

1+
n

,
A−

n

A0
=

1A−
n

1−
n

,
B−

n

A0
=

1B−
n

1−
n

, (21)
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where

1A+
n

= iζ−n

(
µT2ω

η+
onη

c1c2
+ µL1np

sin θ

c1
− µT1ω

η2

c2
1

+

(
µL1np

sin θ

c1
−µT1ω

η2

c2
1
−ωµT2

η+
onη

c1c2

)
A
A0

+

(
−µL2np

sin θ

c1
+µT2ω

η2
0

c2
2
−ωµT2

η+
onη0

c2
2

)
B
A0

)
,

1B+
n

= iζ−n

(
µT2ω

η+
onη

c1c2
+ µL1np

sin θ

c1
− µT1ω

η2

c2
1

− µT1ω
ηη+

n

c2
1

− µT2ω
ηη+

0n

c1c2

+

(
µL1np

sin θ

c1
− µT1ω

η2

c2
1

− ωµT2

η+
onη

c1c2
+ ω

η

c1

(η+
n µT1

c1
+

η+

0nµT2

c2

)) A
A0

+

(
−µL2np

sin θ

c1
+ µT2ω

η2
0

c2
2

− ωµT2

η+
onη0

c2
2

+ ω
η0

c2

(η+
n µT1

c1
+

η+

0nµT2

c2

)) B
A0

)
,

1A−
n

= iζn

(
µT2ω

η−
onη

c1c2
− µL1np

sin θ

c1
− µT1ω

η2

c2
1

−

(
µL1np

sin θ

c1
+µT1ω

η2

c2
1

+ωµT2

η−
onη

c1c2

)
A
A0

+

(
µL2np

sin θ

c1
+µT2ω

η2
0

c2
2

−ωµT2

η−
onη0

c2
2

)
B
A0

)
,

1B−
n

= iζn

(
µT2ω

η−
onη

c1c2
− µL1np

sin θ

c1
− µT1ω

η2

c2
1

− µT1ω
ηη−

n

c2
1

− µT2ω
ηη−

0n

c1c2

−

(
µL1np

sin θ

c1
+ µT1ω

η2

c2
1

+ ωµT2

η−
onη

c1c2
+ ω

η

c1

(η−
n µT1

c1
+

η−

0nµT2

c2

)) A
A0

+

(
µL2np

sin θ

c1
+ µT2ω

η2
0

c2
2

− ωµT2

η−
onη0

c2
2

+ ω
η0

c2

(η−
n µT1

c1
+

η−

0nµT2

c2

)) B
A0

)
,

1+

n =
η+

n µT1

c1
+

η+

0nµT2

c2
, 1−

n =
η−

n µT1

c1
+

η−

0nµT2

c2
.

The formulae in Equation (21) give reflection and transmission coefficients of irregularly reflected and
transmitted waves for the first order approximations. Note that these coefficients depend on the elastic
parameter of the medium, angle of incidence, corrugation parameter, and frequency of the incident wave.

5. Solution for second order approximation

For the second order approximation, we assume that the corrugation of the interface is so small that we
can neglect the term containing the third and higher powers of ζ :

exp
(
±iηωζ

c1

)
= 1 ± iηωζ

c1
−

(
η
ωζ

c1

)2
, etc. (22)

Substituting Equations (4) and (22) into the boundary conditions (12) and (13), and comparing the term
independent of x , the coefficients of e−inpx , and those of einpx separately on both sides of the resulting
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equations, one obtains six equations in six unknowns (see Appendix). The reflection and transmission
coefficients of the reflected and transmitted waves at the corrugated interfaces for the second order ap-
proximation can be obtained by solving these equations for any value of n.

6. The case of a simple harmonic interface

We now obtain the reflection and transmission coefficients of incident plane SH waves at an interface
given by ζ = d cos px . This equation for the interface can be obtained by setting ζ1 = ζ−1 =

1
2 d and

ζn = ζ−n = 0 for n = 2, 3, . . . in Equation (4). In this case, 2π/p is the wavelength and d is the amplitude
of corrugation. Thus, the reflection and transmission coefficients for the first order approximation of the
corrugation can be obtained by setting n = 1 in Equation (21), and we obtain

A+

1

A0
=

1A+

1

1+

1
,

B+

1

A0
=

1B+

1

1+

1
,

A−

1

A0
=

1A−

1

1−

1
,

B−

1

A0
=

1B−

1

1−

1
, (23)

where

1A+

1
=

id
2

(
µT2ω

η+

o1η

c1c2
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7. Energy equation

The expression of the energy flux for SH waves is obtained by multiplying the total energy per unit
volume, which is twice the mean kinetic energy density, by the velocity of the propagation and the area
of the wave front involved. The area of the wave front is proportional to the cosine of the angle between
the wave normal and the vertical. The modulus of energy ratio of the regularly and irregularly reflected
and transmitted SH waves are expressed as

ERF =
| A |

2

| A0 |2
, E+

RF−n =
| A+

n |
2 cos θ+

n

| A0 |2 cos θ
, E−
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| A−

n |
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n
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,
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| B |

2

| A0 |2
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n |
2

| A0 |2
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n

ρ1c1 cos θ
,

where ERF is the ratio of the energy of regularly reflected wave to the energy of the incident wave,
E±

RF−n are the ratios of the energy of an irregularly reflected wave for the n-th spectrum to the energy
of an incident wave, ETR is the ratio of the energy of a regularly transmitted wave to the energy of an
incident wave, and E±

TR−n are ratios of the energy of an irregularly transmitted wave for n-th spectrum
to the energy of an incident wave. Thus, the energy partitioning equation at the corrugated interface is
given by∣∣∣∣ A
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When n = 1, Equation (24) reduces to∣∣∣∣ A
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Thus, the sum of energy ratios of the reflected and transmitted waves at the interface ζ = d cos px must
be equal to unity.

8. Particular case

When the fiber-reinforced elastic half-spaces L1 and L2 are reduced to isotropic half-spaces, we have
µT1 =µL1 =µ1, c2

1 =µ1/ρ1, µT2 =µL2 =µ2, c2
2 =µ2/ρ2, η=cos θ and η0 =cos φ. With these values, the

reflection and transmission coefficients at the plane interface between two uniform elastic half-spaces can
be obtained from Equation (20), with a modified value M given by M = (µ2c1 cos φ)/(µ1c2 cos θ). This
result perfectly matches those given in Achenbach [1976]. (For the relevant problem, refer to Equations
(5.77) and (5.78) on page 184).
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Moreover, in this case, the values of η+

1 , η−

1 , η+

01 and η−

01 reduce to η+

1 = cos θ+

1 , η−

1 = cos θ−

1 , η+

01 =

cos φ+

1 , η−

01 = cos φ−

1 . The reflection and transmission coefficients for the first-order approximation of
corrugation are given by Equation (23), with the modified values
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For the normal incidence, that is, when θ = φ = 0 and from spectrum theorem given by Equation (8), we
have cos θ+

1 = cos θ−

1 , cos φ+

1 = cos φ−

1 . In this case of normal incidence, we see that A+

1 /A0 = A−

1 /A0

and B+

1 /A0 = B−

1 /A0. These are the same results as obtained by Asano [1960] for the relevant problem.
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9. Numerical results and discussion

To study the effect of various parameters on reflection and transmission coefficients, we computed the
latter for a specific model having a simple cosine law interface, ζ = d cos px . We used the following
relevant elastic parameters in the fiber-reinforced media:

In medium L1, µL1 = 4.4×109 N/m2, µT1 = 1.89× 109 N/m2 and ρ1 = 5.60× 103 kg/m3. In medium
L2, µL2 = 5.66 × 109 N/m2, µT2 = 2.46 × 109 N/m2, and ρ2 = 7.80 × 103 kg/m3. Unless otherwise
specified, ωd/c1 = 0.12, pd = 0.00155 and θ = 25◦.

Figures 2 and 3 show the variation of the modulus of reflection and transmission coefficients and
energy ratios of reflected and transmitted waves with angle of incidence θ . Figure 2, top, shows that the
reflection coefficient A/A0 decreases, while the transmission coefficient B/A0 increases with increasing
θ . It is also clear that the reflection and transmission coefficients at plane interface between two fiber-
reinforced half-spaces possess reverse behavior with angle of incidence.

In Figure 2, bottom, the reflection coefficients A+

1 /A0 and A−

1 /A0 of irregularly reflected waves at
angles θ+

1 and θ−

1 start from a certain value which increases up to θ = 12◦, and thereafter decrease
with increasing angle of incidence. The transmission coefficient B+

1 /A0 of irregularly transmitted waves
at angle φ+

1 increases with increasing angle of incidence, while the transmission coefficient B−

1 /A0 of
irregularly transmitted waves at angle φ−

1 starts from a certain value which increases up to θ = 14◦

and thereafter decreases with angle of incidence. Figure 3 shows the variation of energy ratios with θ .
Note that ERF increases and ETR decreases with the angle of incidence. However, the rate of increase
or decrease is very slow up to θ = 60◦ but at a very fast rate thereafter. At normal incidence, ETR has
maximum value and ERF has minimum value. The energy ratios E+

RF−1 and E−

RF−1 of irregularly reflected
waves at angles θ+

1 and θ−

1 , respectively, start from a certain value, increase slightly up to θ = 13◦, and
thereafter decrease with θ , achieving minimum values near grazing incidence. The energy ratio E+

TR−1
increases with increase in the angle of incidence in an almost similar pattern as that of ERF with θ . The
energy ratio E−

TR−1 starts from a certain value at normal incidence and then increases until θ = 16◦. It
then decreases to certain value and again starts increasing, achieving maximum value at θ = 83◦. Beyond
this point, the energy ratio decreases with the angle of incidence. These figures show that for the incident
energy, the maximum amount of energy is carried by regularly reflected and transmitted waves, and a
very small amount by irregular waves. The sum of energy ratios is very close to unity, which shows that
there is no dissipation during transmission.

Figures 4 and 5 show the variation of the modulus of reflection and transmission coefficients and
energy ratios with the frequency parameter (ωd/c1), when the SH wave is incident at θ = 250. We see
that the reflection and transmission coefficients of regular waves and their corresponding energy ratios
are not influenced by the frequency parameter. The reflection coefficients A+

1 /A0, and A−

1 /A0, and the
transmission coefficients B+

1 /A0, and B−

1 /A0 of the irregular waves increase linearly with the increase
in the frequency parameter. Thus the reflection and transmission coefficients of irregular waves are
influenced by the frequency parameter. Figure 5, bottom, shows that the energy ratios of irregular waves
increase with increasing frequency parameter.

Figures 6 and 7 show the variation of the modulus of reflection and transmission coefficients and
energy ratios with the corrugation parameter pd. The top part of Figures 6 and 7 show that reflection
and transmission coefficients of regular waves and their corresponding energy ratios are not influenced by
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Figure 2. Variation of the modulus of reflection and transmission coefficients of regular
(top) and irregular (top) waves with angle of incidence, when pd = 1.55 × 10−3 and
ωd/c1 = 0.12.
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Figure 3. Variation of the modulus of the energy ratios of regularly (top) and irregularly
(bottom) reflected and transmitted SH waves, when pd = 1.55 × 10−3 and ωd/c1 = 0.12.
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larly (top) and irregularly (bottom) reflected and transmitted SH waves with frequency
ωd/c1, when pd = 1.55 × 10−3 and θ = 25◦.
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and θ = 25◦.
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Figure 6. Variation of the modulus of reflection and transmission coefficients of regu-
larly (top) and irregularly (bottom) reflected and transmitted SH waves with corrugation
parameter pd, when ωd/c1 = 0.12 and θ = 25◦.
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Figure 7. Variation of the modulus of energy ratios of regularly (top) and irregularly
(bottom) reflected and transmitted SH waves with corrugation parameter pd, when
ωd/c1 = 0.12 and θ = 25◦.
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the corrugation parameter, as was expected. Figure 6, bottom, shows that the reflection coefficient A+

1 /A0

and the transmission coefficient B+

1 /A0 increase as the corrugation parameter pd increases, while the
reflection coefficient A−

1 /A0 and the transmission coefficient B−

1 /A0 decrease as pd increases. Hence,
the coefficients corresponding to irregular waves are found to be influenced by the corrugation parameter
pd . In Figure 7, bottom, we see that as the corrugation parameter pd increases, the energy ratios E+

RF−1
and E−

RF−1 decrease at a very small rate, the energy ratio E+

TR−1 increases, and the energy ratio E−

TR−1
decreases but at very small rate.

10. Conclusions

The reflection and transmission phenomena of an incident SH wave at a corrugated interface between two
dissimilar elastic fiber-reinforced half-spaces are studied. It is assumed that amplitude and slope of the
corrugated interface are small and the formulae for reflection and transmission coefficients for the first
and second order approximations of corrugation are presented using Rayleigh’s method of approximation.
These coefficients are expressed in the closed form for the first order approximation of corrugation, and
for a special type of interface. The energy partition equation at a corrugated interface is also obtained.
Numerically, these coefficients and energy ratios are calculated for a specific model and the results
obtained are shown graphically. We conclude that

(i) The reflection and transmission coefficients are functions of elastic parameters and the angle of
incidence. Moreover, the coefficients of irregularly reflected and transmitted waves, and hence the
energy ratios, are functions of the corrugation parameters and frequency of the incident wave.

(ii) The reflection and transmission coefficients of regularly reflected and transmitted SH waves are
independent of the corrugation and frequency parameters. But there is a significant effect of cor-
rugation and frequency on the reflection and transmission coefficients of irregularly reflected and
transmitted waves. Reflection and transmission coefficients of irregularly reflected and transmitted
waves increase as the normalized frequency ωd/c1 and corrugation parameter pd increase.

(iii) The reflection and transmission coefficients of regular waves are greater than those of irregular
waves. It is also noted that the energy ratio of regular waves is greater than the energy ratios of
irregular waves,

(iv) The coefficients and energy ratios of irregular waves increase with increasing frequency and corru-
gation parameter. The sum of the energy ratios of reflected and transmitted waves for first order
approximation of corrugation is found to be very close to unity.
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Appendix: Equations for the second-order approximation(
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