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In this paper, the effect of shock-induced collapse of a single gas bubble on the transient fluid and solid
response is numerically investigated. The jet-like bubble collapse and subsequent strong pressure loading
on a nearby semiinfinite deformable solid structure are captured and simulated using a multiphase com-
pressible hydrodynamic model. The objective is to understand the fluid-structure interaction mechanisms,
including the effect of the compressibility of the solid medium on the bubble dynamics and shock wave
propagation, and the effect of shock wave propagation on the transient stress distribution within the
solid. Numerical results demonstrate that the bubble collapse can impart very high pressure pulses to the
nearby structure, leading to very high stresses sustained by the solid. The solid can experience significant
deformation, including yielding, depending on the local fluid conditions.

1. Introduction

Cavitation bubble collapse near a solid boundary can be found in many fields of engineering. Settings
include marine (propellers, torpedoes, and ships) and civil structures (dams and spillways). In addi-
tion, cavitation bubble dynamics can be relevant to many biomedical applications including shock wave
lithotripsy, drug delivery, and other high intensity ultrasonic therapies [Zhong et al. 1997; Ohl and Irink
2003; Ohl and Wolfrum 2003]. Shock-induced collapse of gas bubbles near solid boundaries exhibits
very complex dynamics involving nonspherical bubbles, jet formation, jet impact on structure, jet-induced
shock-structure interaction, and subsequent structural deformation.

A number of theoretical and experimental studies have explored cavitation bubble dynamics near
solid boundaries [Knapp et al. 1970; Tomita and Shima 1986; Philipp and Lauterborn 1998; Tomita et al.
2002]. It has been found that the bubble is no longer spherically symmetric during collapse near a solid
boundary. A liquid jet develops on the side of the bubble opposite the boundary and travels toward the
boundary. The bubble collapses when the liquid jet penetrates the side of the bubble facing the boundary
[Lindau and Lauterborn 2003]. Subsequently, a high velocity jet and strong pressure pulses are directed
toward the solid, which can severely erode it.

It is important to know when a structure will deform or even fail under strong pressure. Earlier
numerical studies on elastic structural response of air/underwater shock loads can be found in [Houlston
et al. 1985; McCoy and Sun 1997], where the dynamic response of isotropic materials subject to blast
loading was modeled using finite element method (FEM). Recently, analytical modeling and numerical
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analysis have been conducted to investigate the shock response of sandwich plates subjected to underwa-
ter blast loading [Xue and Hutchinson 2004; Deshpande and Fleck 2005; Deshpande et al. 2006]. They
represented pressure loads by the acoustic approximation but did not account for the nonlinearity of fluid
compressibility. To overcome this difficulty, [Kambouchev et al. 2006] extended Taylor’s analysis to
include nonlinear compressibility effects of the fluid medium and developed a numerical method based
on the Lagrangian formulation of the compressible Eulerian equations. This method has been tested
against various blast intensities and was recently employed to study metal sandwich plates subjected
to intense air shocks [Vaziri and Hutchinson 2007]. It should be noted that Kambouchev et al. [2006]
focused on the dynamic response of the rigid plates and assumed that the plate deformation and stress-
wave propagation through the plate are negligible. This assumption is valid for stiff materials like steel
or copper but may not be for softer ones like aluminum and plastic, where significant energy dissipates
through the fluid-solid interface and the stress-wave propagation becomes important [Xie et al. 2007b;
Xie et al. 2006].

In most fluid-structure interaction models involving underwater explosions or cavitation collapse, the
fluid pressure loads are imposed as boundary conditions for the solid model which calculates the structural
response, and the fluid and structure models are not fully coupled. However, the structural motion
and deformation can have a significant countereffect on the fluid. Therefore, full coupling between the
fluid and structural solvers is important for practical applications. Kalumuck et al. [1995] and Chahine
et al. [2003] simulated a loosely-coupled fluid-structure interaction (FSI) using a BEM-FEM coupled
numerical scheme, examining interactions between a fluid and either rigid or deformable structures.
Both papers ignored fluid compressibility and assumed a potential flow, which are common assumptions
in the study of bubble dynamics. However, the potential flow assumption is actually not valid for fluid
simulations having shock waves where the effect of fluid and/or air compressibility is significant.

During the shock-induced collapse of a gas bubble near a solid boundary, the resulting bubble collapse
is very violent due to strong shock impact, which can lead to severe damage of the solid boundary. Due
to the strong short-duration pressure loads, the solid can be simulated as a compressible fluid medium
governed by the hydro-elasto-plastic equation of state [Tang and Sotiropoulos 1999; Xie et al. 2006].
Therefore, the system can be treated as a gas-water-solid three-phase compressible system and can thus
be solved using a multiphase compressible hydrodynamic solver [Xie et al. 2007b; Xie et al. 2006].
The objective of this paper is to investigate the effect of shock-induced bubble collapse on a nearby
semiinfinite solid and the countereffect of solid deformation on the fluid and bubble dynamics and on
the shock wave propagation. The stress distribution within the compressible solid is also presented and
analyzed.

2. Numerical methodology

In this work, all mediums are assumed to be compressible and isotropic, and interactions between medi-
ums are always considered in the multiphase hydrodynamic computations. Therefore, the numerical
method must be able to capture moving material interfaces. Due to strong shock wave propagation and
high density ratios between the fluid mediums, the numerical method should be high-order (at least
second), high resolution, and robust. The present numerical method, called the multiphase compressible
hydrodynamic model (MCHM), comprises a second-order Monotone Upstream-centered Scheme for
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Conservation Laws (MUSCL)—developed by Van Leer [1974] for calculating the fluid variables of the
region away from the interfaces—and an explicit characteristic method [Xie et al. 2007b] for calculating
the variables (pressure, velocity and entropy) at the interfaces.

2.1. Governing equations for compressible flows. The governing equations used in the present study
are the Navier-Stokes equations for compressible flows, where the effects of turbulence and surface
tension at the interfaces are neglected. This is a typical and realistic assumption for simulating flows in
cold water and under high pressure conditions where the effects of temperature changes, surface tension,
and turbulence are very small compared to the mechanical driving force (pressure) of the system. The
conservative form of the two-dimensional Navier-Stokes equations can be written as

∂U
∂t

+
∂F(U )
∂x

+
∂G(U )
∂y

=
∂Fv(U )
∂x

+
∂Gv(U )
∂y

, (2–1)

where

U = [ρ, ρu, ρv, E]
T ,

F(U )=
[
ρu, ρu2

+ p, ρuv, (E + p)u
]T
,

G(U )=
[
ρv, ρuv, ρv2

+ p, (E + p)v
]T
,

Fv(U )=

[
0,

2
3
µ(2ux − vy), µ(u y + vx),

2
3
µ(2ux − vy)u +µ(u y + vx)v

]T

,

Gv(U )=

[
0, µ(u y + vy),

2
3
µ(2vy − ux), µ(u y + vx)u +

2
3
µ(2vy − ux)v

]T

.

Here ρ is the gas flow density, p = p(e, ρ) is the pressure, u and v are the flow velocities in the x
(horizontal) and y (vertical) directions. E is the total energy and is given as E = ρe + 0.5ρ(u2

+ v2),
where e is the internal energy per unit mass. µ is the dynamic viscosity of the fluid. To close the Navier-
Stokes Equation (2–1), equations of state (EOS) are required to represent the constitutive behavior of
each medium, that is, for the gas, water, and solid. The typical equations of state for gas and water are
the perfect gas law and Tait’s equation:

p = (γg − 1)ρe,

p = B(ρ/ρ0)
γl − B + A,

where γg is the ratio of specific heat for gas and is set to be 1.4. p0 and ρ0 are 105 Pa and 1000 kg/m3.
B, A and γl are constants of Tait’s EOS and are set to 3.31 × 108 Pa, 105 Pa, and 7.0.

The hydro-elasto-plastic (HEP) equation of state is used to describe the fluid-like constitutive material
behavior of the solid when subject to short-duration, high-impact loads. The HEP equation of state can be
derived by decomposing the total stress and strain into a mean hydrodynamic component and a deviator
component [Tang and Sotiropoulos 1999; Xie et al. 2006]:

p = ph(ρ)+
4
3

s(ρ0, τ0, ρ). (2–2)
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Equation (2–2) assumes the material’s ability to support a deviator stress s can be described by the
longitudinal and bulk wave speeds, and isentropic loading and unloading behavior. ph(ρ) and s(ρ0, τ0, ρ)

denote the mean (hydrostatic) stress and deviator stress (difference between the principal stresses in the
longitudinal and transverse directions) in the solid, and can be expressed as follows:

ph(ρ)=
m
β

(( ρ
ρa

)β
− 1

)
+ pa,

s =

{
τ, |τ |< Y/2,

Y sign(τ )/2, |τ | ≥ Y/2,

(2–3)

where ∂tτ = G/ρ∂tρ. Also m = E/[3(1 − 2µ)], Y , G = E/[2(1 +µ)], and β are the bulk modulus, the
yield stress, the modulus of rigidity, and a model constant. E and µ are Young’s modulus and Poisson’s
ratio. The values of these parameters can be found in Table 1. Note that the first of Equation (2–3) is
equivalent to Murnaghan pressure-volume equation, while the second is the Von Mises yield criterion.
For simple tension/compression, Equation (2–2) can be written as:

p =



ph(ρ)+
2
3

Y, ρ ≥ ρ2,

ph(ρ)+
4
3

(
G ln

ρ

ρ0
+ τ0

)
, ρ1 < ρ ≤ ρ2,

ph(ρ)−
2
3

Y, ρ < ρ1,

(2–4)

where ρ1 = ρ0 exp(−(2τ0 + Y )/2G) and ρ2 = ρ0 exp(−(2τ0 − Y )/2G) represent the equivalent compres-
sion and tension yield densities corresponding to a strain-hardening material. pa , ρa , ρ0 and τ0 are the
reference pressure, reference density, initial density, and initial shear stress. To yield more insight into
the structural response, the normalized solid deviator stress (2s/Y ) can be calculated to assess potential

Parameter Value

pa 1.0 bar

ρa 2700 kg/m3

β 5.275

m 6.863 × 1010 Pa

G 5.224 × 1010 Pa

Y 2.70 × 108 Pa

τ0 0.0 Pa

Table 1. Material properties of aluminum represented by the hydro-elasto-elastic equa-
tion of state.
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yielding of a compressible structure. The value of 2s/Y is between −1.0 and 1.0. If 2s/Y = 1.0 or −1.0,
the structure has reached the Von Mises yield criterion.

It should be noted that the HEP is only valid for short time intervals when a very strong shock load
is suddenly imposed normal to a semiinfinite homogeneous, isotropic solid. The HEP is able to capture
both elastic and plastic deformations. That is, the solid can be under plastic compression, plastic tension,
or elastic deformation for ρ ≥ ρ2, ρ ≤ ρ1, and ρ1 ≤ ρ ≤ ρ2, respectively. It should be emphasized
that the current HEP equation of state ignores the propagation of shear (s-type) waves, and assumes the
pressure (p-type) waves to travel along the principal directions. Hence, it is restricted to the modeling of
very strong shock loads acting normal to the solid surface over a very short duration. For more general
loading scenarios, or far more complex material behaviors, the solid should be modeled using the actual
stress-strain constitutive relationships.

2.2. Multiphase compressible hydrodynamic model. For simulating multiphase compressible flow, the
main difficulty is capturing material interfaces, where calculating one fluid medium requires information
from adjacent fluid mediums. Due to different equations of state across the interfaces, the direct calcula-
tion of nearby flow variables without additional techniques for treating interfaces would lead to numerical
oscillations near the interfaces. Therefore, an efficient and robust interface treatment technique is nec-
essary. The multiphase compressible hydrodynamic model (MCHM) employs an explicit characteristic
method to calculate interface variables (pressure, velocity and entropy), which is simplified from the
modified ghost fluid method (MGFM by Liu et al. [2003]) and has been validated with one-dimensional
analytical solutions in [Xie et al. 2007b]. Formulation of the explicit characteristic method for two-
dimensional problems starts from the characteristic equations for Equation (2–1) in the normal direction
of the material interface:

dpI

dt
+ ρI LcI L

du I

dt
= 0, along

dx
dt

= u I + cI L ,

dpI

dt
− ρI RcI R

du I

dt
= 0, along

dx
dt

= u I − cI R.

(2–5)

Here subscripts I , I L , and I R refer to the interface, the left side of the interface, and the right side of the
interface; ρI L(ρI R) and cI L(cI R) are the density and sound speed at the left (right) side of the interface;
u I and pI are the normal velocity and pressure at the interface. The spatial coordinates of the transient
gas bubble interface and water-structure interface are tracked as zero levels of φ and ψ , two scalar level
set indicator functions which can be solved using the transportation equation [Osher and Sethian 1988]:

∂φ

∂t
+ (Eu · ∇)φ = 0,

∂ψ

∂t
+ (Eu · ∇)ψ = 0.

If ρI L cI L and ρI R cI R are assumed to be piecewise constant between each time step, Equation (2–5) can
be approximated as

pI − pI L

ρI LcI L
+ (u I − u I L)= 0,

pI − pI R

ρI RcI R
− (u I − u I R)= 0.
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Solving these for the interface pressure and normal velocity gives

u I =
pI L − pI R + ρI Lu I LcI L + ρI Ru I RcI R

ρI LcI L + ρI RcI R
,

pI =
pI LρI RcI R + pI RρI LcI L + (u I L − u I R)ρI LcI LρI RcI R

ρI LcI L + ρI RcI R
,

(2–6)

where the values of pI L(pI R), ρI L(ρI R), u I l(u I R) and cI L(cI R) are taken from the left or right side of
the interface in the normal direction.

It should be noted that tension waves are created due to suction from the cavity. The waves propagate
in both the fluid and solid, which may lead to negative stresses in the vicinity of the fluid-structure
interface and a subsequent (slight) negative pI R or negative pI due to numerical inaccuracy. However,
if cavitation occurs near the fluid-solid interface, the acoustic impedance (ρI LcI L) on the liquid side is
negligible compared to (ρI RcI R) on the solid side because the pressure and sound speed are (extremely)
low in the cavitation region. As a result, ρI RcI R � ρI LcI L . Thus, Equation (2–6) can be simplified as
follows:

u I = u I R,

pI = pI L + [u I L − u I R]ρI LcI L .

Here, the second member avoids the numerical prediction of a negative interface pressure when cavitation
occurs near the fluid-solid interface.

3. Results and discussions

3.1. One-dimensional validation studies. First, two one-dimensional shock tube cases are computed to
validate the current method for fluid-structure problems associated with shock impact on a structure. For
the shock tube problem, there is an analytical solution derived from the Riemann problem [Toro 1997],
which can be used to validate numerical methods for multiphase compressible flows. Both cases involve
water-solid two-phase flows, where the high pressure lies in the water side (left). The computational
domain is [0.0 m, 1.0 m] distributed uniformly with 200 grid points, the CFL number is 0.9, and the
interface is initially at 0.4 m. The initial conditions for these two cases are:

Case 1: ul = 10 m/s, pl = 2000 bar, ur = 0 m/s, pr = 1 bar, ρr = 7800 kg/m3,

Case 2: ul = 50 m/s, pl = 25000 bar, ur = −5 m/s, pr = 25 bar, ρr = 7.800088 kg/m3.

Case 1. A water stream impinges onto a stationary solid, leading to shock wave propagation within the
water and the solid. The computation is run to a final time of 5.0×10−3 s. Figure 1 shows pressure profiles
calculated by the multiphase model and by the analytical model. The multiphase model’s predictions
compare well with the analytical solutions, and it captures accurately both shock waves within the water
and the solid.

Case 2. Unlike Case 1, where the solid is initially stationary, Case 2 investigates what happens when
the solid is already moving toward the water. The solution gives a shock wave in both water and solid.
The computation is to run to a final time of 5.0 × 10−3 s. The strong impact leads to two strong shock
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Figure 1. Pressure profiles for shock impact on structural boundary (case 1), where a
right-moving (u = 10 m/s) water stream hits a stationary solid.

waves propagating at a high speed. The pressure profile produced by the multiphase model is in excellent
agreement with the analytical solution, as shown in Figure 2.

3.2. Two-dimensional applications. The two-dimensional problem’s configuration is shown in Figure
3. The shock waves, generated from the left boundary, hits a gas bubble with an initial radius of 0.5 m,
leading to the collapse of the gas bubble. To investigate the effect of structural compressibility on the fluid
and structural responses, the boundary is studied both as rigid and as compressible. The computational
domain is x × y ∈ [−2, 2] × [−4, 4] for the rigid case and x × y ∈ [−2, 6] × [−4, 4] for the aluminum
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Figure 2. Pressure profiles for strong shock impact on structural boundary (case 2),
where a right-moving (u = 50 m/s) water stream hits a left-moving solid (u = −5 m/s).
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Figure 3. Schematic diagram for computations.

case, where the water-aluminum interface is at y = 2m. Uniform grids of size 160 × 320 and 320 × 320
(with 1x = 1y = 1/40 m) are placed in the computational domain for the rigid and aluminum case,
respectively. Nonreflective boundary conditions are used for all four boundaries because the structure is
considered to be semiinfinite. The initial conditions for two-dimensional computations are:

(i) Shock waves: p = pmax exp(−t/tdecay), pmax = 20000 bar, tdecay = 0.4 ms.

(ii) Shock waves: gas bubble: ρg = 1.0 kg/m3, pg = 1.0 bar, ug = 0.0 m/s, vg = 0.0 m/s, γg = 1.4.

(iii) Shock waves: water: ρl = 1000 kg/m3, pl = 1.0 bar, u1 = 0.0 m/s, ν1 = 0.0 m/s, γl = 7.0.

(iv) Shock waves: aluminum: ρs = 2700 kg/m3, ps = 1.0 bar, us = 0.0 m/s and vs = 0.0 m/s.

For two-dimensional computations, the CFL number is set to 0.45. To ensure the stability of compu-
tation, the time step is constrained by

1t f = CFL
min(1x,1y)

max
i, j
(|ui, j | + |vi, j | + ci, j )

, (3–1)

where 1x and 1y are step sizes for x and y directions, and ui, j , vi, j , and ci, j are the flow velocity along
the x-direction, the flow velocity along y-direction, and the flow sound speed.

To investigate the convergence of the current method for multidimensional applications, a grid reso-
lution study is conducted. A series of uniform grids, 161 × 161 (with 1x =1y = 1/20 m), 241 × 241
(with 1x =1y = 1/30 m), and 321 × 321 (with 1x =1y = 1/40m), are employed. The pressure-time
history at the center C of the aluminum boundary surface C is shown in Figure 4a, and the corresponding
pressure profiles along y = 0 at t = 2.40 ms are shown in Figure 4b. The two-dimensional computations
converge well.
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Figure 4. Convergence analysis: (a) pressure time histories at the center C of the struc-
tural surface; (b) pressure profiles along y = 0 at t = 2.40 ms (aluminum).

The remainder of this section contains an investigation of the collapse of a gas bubble near a semiin-
finite rigid boundary and near an aluminum boundary.

First, a time series of pressure contours and velocity vectors are shown in Figure 5a through Figure
6b for the rigid boundary case. At time 1.20 ms (Figure 5a), the shock waves generated from the left
boundary impact compress the left surface of the gas bubble, leading to a nonspherical bubble. The
shock-bubble interaction creates rarefaction waves propagating spherically away from the bubble. At
t = 1.50 ms (Figure 5b), the gas bubble has been compressed, and a toroidal bubble is formed. The
velocity vectors point towards the right side of the rigid boundary due to low pressure inside. At t =

1.65 ms (Figure 5c), the cavitation bubble is near collapse. Large velocity gradients develop around
the right bubble interface, pointing towards the rigid boundary. The cavitation bubble collapses after
t = 1.80 ms (Figure 5d), resulting in a high-speed, high-pressure shock wave that propagates spherically
outward. At this time, the initial shock waves from the left boundary approach the rigid solid boundary.
At time 2.10 ms (Figure 6a), the shock wave generated from the bubble collapse has almost reached the
rigid boundary, while the initial shock waves have already impacted and reflected from it, except at the
region near its center. Obviously, the gas bubble itself will cushion the center, reducing the initial shock
loading. Figure 6a and Figure 6b show that two tiny bubbles are created after the original large bubble
collapses. In the model, the level set technique automatically changes the interface numbers (from one
to two gas bubbles). At t = 2.55 ms (Figure 6b), the shock wave generated from the bubble’s collapse
has arrived at and reflected from the rigid boundary. A very high pressure region develops near the
center region of the rigid boundary, because the reflected shock wave merges with the new shock wave
generated by the collapse of the gas bubble.

The peak flow velocity appears near x = 0.0 m at t = 1.25 ms, because the low bubble pressure
allows the flow to move into it at a higher velocity. The flow velocity decreases when the bubble is
compressed as the internal pressure increases and because rarefaction waves propagate against the flow.
After t = 1.25 ms, the flow velocity starts to decrease as energy dissipates into the surrounding fluid and
as the flow interacts with shock waves reflecting from the solid boundary (t = 2.25 ms and 2.70 ms). To
illustrate shock loading on the rigid boundary, pressure distributions along the rigid boundary at different
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Figure 5. Pressure contours and velocity vectors for bubble collapse near a rigid bound-
ary: (a) t = 1.20 ms, (b) t = 1.50 ms, (c) t = 1.65 ms, (d) t = 1.80 ms.
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Figure 6. Later pressure contours and velocity vectors for bubble collapse near a rigid
boundary: (a) t = 2.10 ms, (b) t = 2.55 ms.

times after the bubble collapse are shown in Figure 8. At t = 1.95 ms, the pressure pulse caused by the
bubble

Figure 7 depicts a time series of velocity profiles along y = 0. collapse has not yet reached the rigid
boundary, while the initial shock wave has already reflected from the rigid boundary. The presence of
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Figure 7. Velocity profiles along y = 0 (rigid boundary case).
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Figure 8. Pressure distributions along the structural surface (rigid boundary case).

x(m)

y(
m

)

-2 -1 0 1 2 3 4 5 6
-4

-2

0

2

4
30000
28800
27600
26400
25200
24000
22800
21600
20400
19200
18000
16800
15600
14400
13200
12000
10800
9600
8400
7200
6000
4800
3600
2400
1200
0

(a)
x(m)

y(
m

)

-2 -1 0 1 2 3 4 5 6
-4

-2

0

2

4
30000
28800
27600
26400
25200
24000
22800
21600
20400
19200
18000
16800
15600
14400
13200
12000
10800
9600
8400
7200
6000
4800
3600
2400
1200
0

(b)

x(m)

y(
m

)

-2 -1 0 1 2 3 4 5 6
-4

-2

0

2

4
30000
28800
27600
26400
25200
24000
22800
21600
20400
19200
18000
16800
15600
14400
13200
12000
10800
9600
8400
7200
6000
4800
3600
2400
1200
0

(c)
x(m)

y(
m

)

-2 -1 0 1 2 3 4 5 6
-4

-2

0

2

4
30000
28800
27600
26400
25200
24000
22800
21600
20400
19200
18000
16800
15600
14400
13200
12000
10800
9600
8400
7200
6000
4800
3600
2400
1200
0

(d)

Figure 9. Pressure contours and velocity vectors for the aluminum boundary: (a) t =

1.20 ms, (b) t = 1.50 ms, (c) t = 1.65 ms, (d) t = 1.80 ms.
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Figure 10. Later pressure contours and velocity vectors for the aluminum boundary: (a)
t = 1.95 ms, (b) t = 2.10 ms, (c) t = 2.25 ms, (d) t = 2.40 ms, (e) t = 2.55 ms, (f)
t = 2.70 ms.
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the bubble maintains atmospheric pressure near the center, but the pressure away from there is very high
due to the initial shock wave. The pressure pulse reaches the solid boundary at around t = 2.10 ms. Thus,
the pressure at the center region of the solid boundary starts to increase and reaches its highest value at
t = 2.25 ms as the secondary shock generated from the bubble collapse arrives. After that, the pressure
here decreases due to interaction between the initial shock wave and the rarefaction waves reflected from
the solid and bubble boundaries (from t = 2.25 ms to t = 2.70 ms).

For the semiinfinite solid body made of aluminum, the flow physics is similar to the rigid boundary
case before the shock waves impact on the boundary (see Figure 9a). The fluid-solid boundary is shown
as a vertical solid line. When the initial shock wave hits the aluminum boundary at t = 1.95 ms, the shock
wave both reflects from it and propagates through it (see Figure 10a). When the shock wave caused by
bubble collapse reaches the boundary, the velocity is particularly high at the center region, leading to the
structural deformation and shock propagation through the center (Figure 10). The shock wave generated
from the bubble collapse propagates throughout the structural domain and can lead to significant stress
within the structure. The deformation of the aluminum boundary away from the center can be observed
in Figure 10e and Figure 11. More displacement occurs away from the center (y = 0) for t ≤ 2.1 ms due
to the air cushioning effect provided by the collapsing bubble. For t > 2.1 ms, more displacement occurs
at the center due to the highly focused pressure reload created by the collapse.

To examine the fluid and structural response, the fluid pressure p contours (lines) and the normalized
solid deviator stress 2s/Y contours (flooded) are plotted together at times 1.80 ms, 1.95 ms, 2.10 ms,
and 2.25ms in Figure 12. |2s/Y | = 1 implies the material has yielded and is in the strain hardening
regime. Beginning at the initial shock wave impact on the solid boundary at t = 1.80 ms (Figure 12a), the
normalized solid deviator stress increases with time, and, at t = 1.95s ms, the aluminum material begins
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Figure 11. The progressive deformation of the aluminum boundary.
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Figure 12. Fluid pressure contours (lines) and 2s/Y normalized deviator stress contours
(flood) for the aluminum boundary: (a) t = 1.80 ms, (b) t = 1.95 ms, (c) t = 2.10 s, (d)
t = 2.25 ms.

to experience plastic deformation, except at the center (see Figure 12b) because of the aforementioned
cushioning. At t = 2.10 ms, the shock wave generated from the bubble collapse hits the boundary, leading
to plastic deformation at the center (Figure 12c). The entire solid region almost yields at t = 2.25 ms due
to the combined initial shock loading and gas bubble reloading (Figure 12d). It can be concluded that
a gas bubble near the structural surface first helps to reduce the shock load, but then generates a strong
focused secondary reload when it collapses.

The velocity profiles along y = 0 for a series of times are provided in Figure 13 to exhibit the time
varying flow variables, which are similar to the rigid boundary case. It should be noted that the center
of the structural surface moves during the pressure reload from the bubble collapse. This can be seen at
t = 2.40 ms and t = 2.70 ms in Figure 11. In addition, the pressure distributions along the surface are
shown in Figure 14 to illustrate the pressure loading of the aluminum boundary. The pressure peaks at
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Figure 13. Velocity profiles along y = 0 (aluminum boundary case).
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Figure 14. Pressure distributions along structural surface (aluminum boundary case).
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Figure 16. Comparison of pressure histories at the center C for both the rigid and the
aluminum boundary.

t = 2.16 ms for the center point C as it experiences the pressure loading created by the bubble collapse.
In addition, pressure distributions along the rigid boundary and the aluminum boundary before the gas
bubble reload at t = 1.95 ms, and after gas bubble reload at t = 2.25 ms, are shown in Figure 15a
and 15b for comparison. Figure 15a shows that pressures away from the gas bubble for the rigid case are
higher than for the aluminum case, because energy dissipates in the deformable aluminum. The pressure
distributions near the bottom/top regions of the structural surface (left and right regions in Figure 15a) are
different for the rigid and the aluminum cases, again mainly because of shock energy dissipates through
solid deformation.

The shock reflects more weakly from the aluminum surface than from the rigid surface, because of
the fully reflective boundary condition. Due to the strong reflected shock from the rigid surface, the
pressure near the rigid boundary drops more rapidly than it does near the aluminum, leading to a lower
predicted pressure distribution near the bottom and top regions of the structural surface. After the bubble
collapse, Figure 15b shows that the peak pressure at the center due to gas bubble reload for the rigid
case is higher than for the aluminum case. This is once again due to the energy dissipation through the
aluminum material.

The pressure histories at the center C are recorded and compared for the rigid and aluminum cases.
Figure 16 shows that the initial shock wave arrives at the boundary at approximately the same time but the
rate of pressure increase and the peak interface pressure for rigid and aluminum boundaries are different.
The peak pressure is higher for the rigid boundary because it does not dissipate energy. However, the
rate of pressure increase is lower for the rigid boundary due to interaction between the initial shock wave
and the reflected rarefaction wave. The differences between the rigid and aluminum boundaries are not
significant due to the relatively high elastic modulus of aluminum and due to the short load duration,
both of which limit the energy dissipated through deformation.

To understand the influence of the bubble on the interface pressure, the pressure history at the center
C is compared with and without the gas bubble in Figure 17. The results indicate that the initial shock
wave arrives at the boundary much later when there is a gas bubble than when there is not, due to the
air cushioning effect. However, when the bubble is forced to implode from high shock load, the peak
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pressure caused by the collapse and the delayed shock impact are both much higher than the peak pressure
caused by the initial shock wave without the bubble. Thus, it is important to consider the effect of gas
bubbles for the overall assessment of structural response to a high intensity shock load.

4. Concluding remarks

A multiphase compressible hydrodynamic model was applied to study multidimensional shock-bubble-
structure interactions. In particular, the shock-induced collapse of a gas bubble near a planar compressible
solid wall has been investigated. A toroidal collapse of gas bubble and a strong shock generated from
bubble collapse have been observed. During the bubble collapse, a high-velocity, high-pressure, jet-like
fluid flow hits the center region of the boundary. The collapse is so violent that the pressure impulse
release rivals the initial shock wave. The deformation of aluminum boundary is due to the initial shock
loading and the subsequent shock-induced collapse of the bubble. It is found that a gas bubble near the
center of the structural surface helps to reduce initial shock loading there but then causes a stronger shock
reload due to the high intensity microjet created as it collapses. In addition, the gas-water and water-
solid interfaces are well represented, the change in the number of interfaces is captured automatically, and
symmetric flow fields are obtained. It should be noted that the current model has some severe limitations.
The hydro-elasto-plastic (HEP) model assumes the deviatoric stress to be secondary, but this is only
reasonable when the structure is under strong impact normal to the planar solid surface; the HEP ignores
the shear (s-type) waves and assumes the pressure (p-type) waves travel along the principal directions,
which limits its applicability to shock duration, strong shock loading normal to a homogeneous isotropic
planar structure. The current Eulerian fluid/Eulerian solid has been validated against the one-dimensional
analytical solutions for the shock-tube problem, but additional experimental validation studies are needed,
especially for the HEP equation of state. To simulate general fluid-structure interaction involving arbitrary
shock loads on anisotropic or inhomogeneous mediums, the solid dynamics can be better captured using a
Lagrangian-FEM solver where the solid behavior is described using the material stress-strain constitutive
relationships. A one-dimensional Eulerian fluid/Lagrangian solid approach has been presented in [Xie
et al. 2007a]. A two-dimensional extension of the Eulerian-Lagrangian solver is ongoing.
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