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We report experiments and simulations of the dynamic and quasistatic compressive response of single
and hex-arrayed thick aluminum tubes. The investigation aims to further characterize how tube-based
sandwich structures absorb energy. First, we study by compression tests the quasistatic buckling of single
tubes of 7075 aluminum, an alloy showing sufficient ductility and plasticity to make it potentially a good
choice for energy absorbing devices. The experiments show geometry-dependent buckling modes. The
corresponding finite element numerical simulations correlate well and will help estimate the maximum
load level, and the buckling and postbuckling responses. Second, we study the dynamic buckling of
sandwiched, hex-arrayed 3003 aluminum tubes. The simulations and experimental results correlate well
and show a remarkable increase in energy absorbing capacity, which is caused by the postbuckling
interaction of neighboring tubes. They also show that, as the tube spacing is decreased, the overall
energy absorbed increases significantly. We also simulate how varying tube length and thickness affect
the buckling of the array under dynamic loading.

1. Introduction

Metal components absorb energy well because they deform before failing. Plastic deformation, specifi-
cally plastic tube buckling, can effectively dissipate large amounts of energy. Circular tubes can absorb
more energy with their favorable stroke length per unit mass.

Sandwich structures, consisting of two plates separated by metal tubes, may mitigate impulsive (short
duration) loads. Reid [1993] suggested tubes exhibit excellent energy absorbing characteristics when
loaded by high velocity impacts. Others have suggested ways to improve the crashworthiness of sand-
wiches, for example, by varying the tubes’ cross sectional geometry. Among all the cross sections
examined by Mamalis et al. [2003], thick-walled circular tubes exhibited the most stable crash mode.
The experimental investigations—for example, [Lee 1962; Batterman 1965; Horton et al. 1966; Johnson
et al. 1977; Nemat-Nasser et al. 2007]—have shown that relatively thick shells (radius to thickness ratio
R/t < 50) buckle axisymmetrically, whereas this symmetry breaks for thinner shells and they instead
buckle in a diamond pattern. Lee [1962], Batterman [1965], and Tennyson and Muggeridege [1969]
have found that initial imperfections can significantly influence diamond-shaped circumferential mode
buckling (when R/t < 100), according to an incremental theory.

In contrast to the elastic response, Gerard [1962] reported in inelastic buckling that the axisymmetric
solution always corresponds to a lower buckling stress than the asymmetric solution with circumferential
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modes, and that the imperfections are of no significance in either case. Theoretical investigations also
suggest that plastic buckling is less sensitive to imperfection than elastic. (See Gellin [1979], who used
J2-deformation theory to model thick shells with sinusoidal axisymmetric imperfections).

Using a J2 corner theory plasticity model, Tvergaard [1983b] compared the elastic and plastic response
in cylindrical shells with initial axisymmetric imperfections and showed that they bifurcate into a nonax-
isymmetric shape. For sufficiently thin-walled shells, the bifurcation occurs before the load maximum.
In thick-walled shells, the axisymmetric deformations are stable beyond the maximum load, at which
the collapse localizes into a single outward buckled mode. His investigations also show that localization
delays bifurcation considerably, such that a sufficiently thick-walled shell collapses in an axisymmetric
mode. Budiansky and Hutchinson [1966] have shown that tubes collapse at lower loading under dynamic
compression than under static loading. In other studies, Karagiozova et al. [2000] studied the inertial
effects on axisymmetrically deformed cylindrical shells. Weingarten et al. [1964] have experimentally
quantified how the buckling coefficient varies with R/t .

In this paper, we report our experimental and numerical investigations of the dynamic and quasistatic
response of thick (R/t < 20) hex-arrayed and single aluminum tubes under axial compressive loads.
We considered aluminum alloys that have good ductility and plasticity at low temperatures and high
strain rates, and that do not fracture [Nemat-Nasser and Guo 2004]. We not address the effects of edge
constraint, imperfection, and tube length because they do not significantly influence the plastic buckling
and postbuckling of thick cylindrical tubes. This assumption is supported by extensive experimental and
numerical investigations over the last 50 years.

We present the results of two series of experiments. One consists of quasistatic experiments of single
tubes, and the other involves dynamic impact experiments of hex-arrayed tubes. We used an Instron
hydraulic testing machine and a Hopkinson bar apparatus for these experiments, respectively. First, we
measured the energy absorbing characteristics of single 7075 aluminum tubes under quasistatic loading.
Next, we measured through dynamic impact (compression) tests the dynamic behavior of sandwiched,
hex-arrayed 3003 aluminum tubes. We accompanied both of these experiments with finite element simu-
lations. The experiments and simulations show that tight, hexagonally packed sandwiches maintain their
load carrying capacity even after the initial buckling, as each tube becomes supported by its neighbors.
Finite-element simulations also show the how varying tube length and thickness (with constant outer
diameter) affects the structure’s ability to absorb energy. We find that as the thickness and length increase,
the absorbed energy per unit mass also increases, but stops growing at a maximum level; however, if the
two geometrical parameters are disproportionately increased, that energy may drop noticeably.

From these experiments and simulations of the dynamic behavior of sandwich structures with tube
cores, we conclude that finite element models properly informed by experimental measurements can
reliably predict the overall behavior of complex tube-based sandwich structures. Such models can thus
become a powerful tool for designing optimal energy absorbing sandwich structures subject to dynamic
and static loads.

2. Experimental procedure and results

Designing crashworthy structures, that is, structures capable of withstanding and mitigating the effect of
impact, requires understanding structural dynamics and also the properties and deformation mechanisms
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of the material and the larger structure. Axially compressed aluminum tubes absorb energy particularly
well, due to their plastic buckling deformation modes. In this section, we report on experiments on the
quasistatic compressive behavior of aluminum tubes and pair them with simulations to better understand
their deformation mechanisms. All the tubes used in this research are thick-walled with R/t < 20.
Consequently, we find, the tubes collapse plastically, and the buckling mode and load are insensitive
to imperfections and to the length to radius ratio L/R above the proportional limit. As pointed out by
Tvergaard [1983b], this can be best explained by axisymmetric localization, which occurs mainly in thick
cylindrical shells. We too have observed this localization.

In the following subsection, we describe quasistatic experiments on 7075 aluminum tubes and, in the
next subsection, dynamic experiments on the 3003 aluminum hex-arrayed tubes.

2.1. Quasistatic experiments and results. We performed two quasistatic experiments on two different
7075 aluminum tubes. They are loaded using an Instron hydraulic testing machine with a specially
designed arbor. The first tube (tube-I), has R/t = 18, while the second (tube-II) has R/t = 6. The theory
of cylindrical shell buckling considers both tubes to have thick shells, since (R/t < 100), and they both
buckle plastically.

2.1.1. Tube I experiment. Tube I is a 7075 aluminum rod machined into a thick-walled tube of outer
diameter 4.50 mm, wall thickness 0.127 mm (R/t = 18), and length 11.80 mm. It has a uniform thickness
with accurately cut ends. Figure 1 shows a photograph of the arbor consisting of two steel bars (of
maraging steel), an aluminum tube specimen, and an extensometer. The specimen is sandwiched between
the two bars in the arbor. The experimental setup fixes the tube’s ends against lateral displacement but
allows them to rotate. The first quasistatic buckling test is conducted at 295 K (room temperature). The
load displacement is controlled with a crosshead speed of about 10−3 mm/s. An extensomer measures
the axial displacement; it is attached to the arbor and calibrated before testing. Signals from the load
cell and the extensometer go to a data acquisition system, the SCXI 1001, using Labview software. We
analyze these acquired data using suitable calibration factors. Simultaneously, photographs are taken
by a digital camera with a close-up lens. The photographs are paired, at each buckling step, with the

Extensometer 

Maraging steel bar 

Aluminum tube 

Maraging steel bar 

 
Figure 1. Experimental setup for quasistatic buckling test of 7075 aluminum tube.
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Figure 2. Displacement versus time for aluminum tube-I; displacement-controlled load-
ing with crosshead speed of 6.71× 10−3 mm/s and corresponding load history. At right,
the same for tube-II with crosshead speed 5.33× 10−2 mm/s.

corresponding load state. Figure 2 (left) displays the load and displacement history for a crosshead speed
of 6.71× 10−3 mm/s.

In the initial stages, the tube deforms in an axisymmetric pattern near one end, as shown in Figure 3.
As the axial load is slowly increased, a short axisymmetric bulge develops near one end of the tube (step
1). This bulge continues to grow as the load continues to increase toward a maximum value (step 2);
during this time, the load versus displacement curve is linear, indicating elastic deformation. The peak
loading corresponds to the first buckling fold. Afterward, the load drops off while the bulge develops
into an axisymmetric ring (from step 3 to step 6). The maximum load that the tube can sustain is defined
to be the buckling load; the corresponding mode is the buckling mode. This buckling mode is called a
ring mode in the literature.

After the initial symmetric or concentric deformation, the tube begins to deform in an asymmetric or
diamond (third harmonic) mode at a load less than the bucking load (steps 9 and 11 in Figure 3). We note

Figure 3. Photographs of aluminum tube-I buckling in uniaxial compression;
displacement-controlled loading with crosshead speed 6.71× 10−3 mm/s: numbers indi-
cate the load state in Figure 2; see [Nemat-Nasser et al. 2006].
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Figure 4. Schematic cross-sectional and lateral views of a hex-arrayed tube structure.

that the static axial crushing tests by Mamalis and Johnson [1983] and Abramowicz and Jones [1984]
on aluminum circular cylinders exhibited similar behavior.

2.1.2. Tube II experiment. Tube II is a 7075 aluminum rod machined into a thick-walled tube of outer
diameter 4.52 mm, wall thickness 0.381 mm (R/t = 6), and length 8.76 mm. The experimental setup is
exactly the same as in the first experiment. The total displacement in this test is less than 1 mm, and
no postbuckling folding is observed. Figure 2 (right) displays how the load and displacement vary with
time under displacement-controlled loading with a crosshead speed of 5.33× 10−2 mm/s.

2.2. Dynamic experiments and results. The hex-arrayed tube structure consists of two square plates
and seven 3003 aluminum tubes, each of outer diameter 15.87 mm, wall thickness 1.65 mm, and height
12.7 mm (R/t = 5). Figure 4 shows the cross sectional and lateral views. Each sample is individually
fabricated, and hence it may have slight geometric and dimensional imperfections.

 

Figure 5. Schematic view of the dynamic compression test of hex-arrayed tubes and
Hopkinson bar equipment setup.



1906 SIA NEMAT-NASSER, MAHMOUD REZA AMINI, JEOM YONG CHOI AND JON ISAACS

 

Figure 6. A photo of the hex-arrayed structure attached to the output Hopkinson bar.

The dynamic tests use a single Hopkinson bar setup, shown in Figures 5, 6 and 7. A hex-arrayed
sandwich structure is impacted by a striker bar at 32m/s. The deformation process is documented using
an Imacon 200 high-speed camera. Just before impact, the striker bar velocity is measured by the sensors
near the end of the gas gun. The force transmitted through the structure is measured by a strain gauge
attached to the 3 inch output bar. The 7075 aluminum striker bar has a 3 inch (7.62 cm) diameter, length
4.5 inch (11.43 cm), and weight 1460 g. Below, we report our experimental results for three tests, denoted
as test-I, test-II, and test-III, corresponding to tube spacings of less than 0.1 inch (2.5 mm), 0.2 inch
(5 mm), and 0.5 inch (12.5 mm). Figure 8 shows the top view of two such hex-arrayed structures.

 

Figure 7. Experimental setup for dynamic compression test of hex-arrayed tubes.
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Figure 8. Top view of the hex-arrayed 3003 aluminum tubes. (a) compact spacing
(< 0.1 inch), (b) loose spacing (= 0.5 inch).

Figure 9 shows the deformed configuration of the test-II specimen captured by the high-speed camera
at 40 µs time intervals. In Figure 10 the vertical lines mark the camera timing, and the curve plots the
compressive load transmitted through the sandwich structure, as recorded by the strain gauge attached
to the output bar.

Figure 11 presents the load versus displacement curves of three tests. The load is normalized by
the mass of the corresponding structure to properly compare arrayed tube structures of different length,
thickness, and outer diameter. The load versus displacement curves show that the transmitted postbuck-
ling load decreases as the tube spacing is increased. The response of the two structures with greater
tube spacing (0.2 inch and 0.5 inch) follows the classic tube buckling pattern: the load drops off after
reaching a peak value, although there is slight postbuckling interaction of the 0.2 inch spaced tubes. On
the other hand, because adjacent tubes interact in the tightly-packed structure (0.1 inch tube spacing),
their postbuckling plastic deformation is interrelated and more complex. A slightly larger buckling load
is essentially maintained over the entire deformation process and even increases at large displacements.

 

Figure 9. The deformed shape of the test II specimen captured by an Imacon-200 high-
speed camera at 40 µs intervals.
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Figure 10. The vertical lines show the camera timing and the curve presents the com-
pressive load history of the structure obtained from the strain gauges attached to the
output bar.

3. Material models

We detail the material constitutive models used in this study. For the tubes, we use the Johnson–Cook
material model that is already provided by the LS-DYNA, using material parameters that have been
experimentally established by Rule and Jones [1998] for 7075 aluminum. In this model the flow stress
τ is expressed as

τ = (A+ Bγ n)(1+C ln ε̇∗)(1− T ∗m),

where ε̇∗ = γ̇ /γ̇0 is the dimensionless strain rate, (γ̇0 is normally taken to be 1.0 /s); the parameters A,
B and C , are material constants; γ is the effective plastic strain; and T ∗ is a normalized temperature

Figure 11. Illustration of normalized load-displacement experimental relations for test-
I, test-II and test-III; Load is normalized by the mass of the system. Tube dimensions:
OD= 15.87 mm; wall thickness = 1.65 mm; and length = 12.7 mm.
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defined by

T ∗ =
T − Tr

Tm − Tr
,

where Tm = 877 K is the melting temperature of the material. T is the material’s actual temperature, and
Tr is a reference temperature which must be less than the lowest temperature of interest; we have used
Tr = 298 K. The complete expression for the Johnson–Cook model for 7075 aluminum is (in MPa)

τ = (452+ 457γ 0.357)(1+ 0.01 ln ε̇∗)(1− T ∗1.1),

where,

T ∗ =
T − 298

579
.

To model the 3003 aluminum tubes, we have implemented a user-defined physics-based (PB) material
model [Nemat-Nasser and Guo 2004] into LS-DYNA. This is an elastic-viscoplastic constitutive model
developed using the kinetics and kinematics of dislocation motion; see [Nemat-Nasser 2004] for details.
We evaluate the resulting macroscopic constitutive parameters using a series of quasistatic and dynamic
experiments over a broad range of temperatures and strain rates. The model is thus reliable and can
be used to simulate high strain-rate deformations, for example, those involved in blast-induced plastic
deformations and shear banding. In this model the flow stress τ is expressed as a function of temperature
T , effective plastic strain γ , and effective plastic strain rate γ̇ as

τ =


c0+ c1γ

n
+ τ 0

(
1−

[
−kT
G0

(
ln γ̇

γ̇0
+ ln f (γ, T )

)] 1
q
) 1

p

f (γ, T ), for T ≤ Tc,

c0+ c1γ
n1, for T ≥ Tc,

where

f (γ, T )= 1+ a

[
1−

(
T
Tm

)2
]

γ m, Tc =
−G0

k

(
ln

γ̇

γ̇0
+ ln f (γ, T )

)−1

and where G0 is the total energy of the short-range barrier to the motion of dislocations, measured per
atom; k is the Boltzmann constant; γ̇0 is a reference strain rate; Tm is the melting temperature; and c0,
c1, τ 0, n, m, p, q , and a are material parameters. Nemat-Nasser [2004] detail the parameters used in the
PB model. The final constitutive relation for this material is

τ =


64γ 0.4

+ 72
{

1−
[
−3.2× 10−5T

(
ln γ̇

2×1010 + ln f (γ, T )
)] 1

2
} 3

2

f (γ, T ), for T ≤ Tc,

64γ 0.4, for T ≥ Tc,

where

f (γ, T )= 1+ 6

[
1−

(
T

916

)2
]

γ 0.05, Tc =

[
−3.2× 105

(
ln

γ̇

2× 1010 + ln f (γ, T )

)]−1
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Figure 12. Comparison of PB-model (physical-based model) predictions with experi-
mental results at strain rates of 0.0001 /s and 9500 /s. Initial temperatures obtained by
Nemat-Nasser and Guo [2004].

the stress is in MPa, and T is in degrees Kelvin. Figure 12 compares the experimental results with the
PB-model predictions at strain rates of 10−3 /s and 9500 /s, for indicated initial temperatures. As is seen,
the model correlates well with the experimental data.

4. Numerical simulation procedures

We now report the results of our simulations of the nonlinear dynamic and static deformation and buck-
ling of single and hex-arrayed tubes. We used the finite element LS-DYNA 970 code that incorporates
experimentally-based nonlinear material models, including strain-rate and temperature effects. The code
is based on an updated Lagrangian formulation; it is fully vectorized and can be used to analyze the
transient dynamic response of solids and structures [Hallquist 2001].

4.1. Finite element model. We model hex-arrayed and single tubes using 4-node Belytschko–Tasy shell
elements with two Gauss integration points through the thickness and an hourglass viscosity to damp
out the zero-energy modes. The mesh density is optimized to capture smoothly and with reasonable
computational cost the buckling geometry and structural collapse. The code automatically models the
contact between adjacent tubes through its single-surface contact option. We model the sandwich plates
as rigid walls and consider the nodes of the tubes as slave nodes. We assume fixed boundary conditions
at both ends of all the tubes, because, in our experiments, the tubes are welded to the top and bottom
plates of the sandwich structure.

4.2. Numerical integration of plasticity model. To apply the constitutive models presented in Section 3
for the three-dimensional calculations, the J2-plasticity model is integrated using a radial return algorithm.
In this semiimplicit backward Euler method, increments in the effective plastic strain and temperature
are calculating after the time step, and then the flow-stress condition is enforced. Given the total strain
tensor εn , the plastic strain tensor ε

p
n , the effective plastic strain γn , the stress tensor σn at time n, and

the total strain-increment tensor 1ε = ε̇1t , the code computes the quantities (εn+1, ε
p
n+1, γn+1, σn+1),

as follows:
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(i) The trial stress σ (0) is computed by the elastic predictor using

σ (0)
= σn + 2G1ε′+ K trace(1ε),

where 1ε′ is the deviator of the total strain-increment tensor, G is the shear modulus, and K is the
bulk modulus.

(ii) The effective plastic strain rate γ̇n+1 follows from assuming the strain increment is all plastic. This
is a reasonable approximation because the elastic part is negligibly small.

(iii) The effective trial stress σ̄ (0) is computed and compared with the current flow stress, τ(γn, γ̇n+1, Tn)

(discussed in Section 3). If the trial state is elastic, the effective plastic strain, plastic strain-rate,
and temperature are not updated, and the trial stress is used as the stress at the end of the time step.
However, if the effective trial stress exceeds the flow stress, then the radial return algorithm for
plastic loading is applied in four steps:
(a) Initialization:

k = 0, ε p(0)
= ε p

n , γ (0)
= γn, 1γ (0)

= 0, (4–1)

where k is the iteration counter and superscripts correspond to the iteration number.
(b) Check flow stress at the kth iteration:

f (k)
= σ̄ (k)

− τ
(
γ (k), γ̇n+1, Tn

)
. (4–2)

If f (k) < TOL (an arbitrary small number, here 10−5), then the iteration has converged and the
temperature is updated; otherwise the process is continued.

(c) Compute the increment in the effective plastic strain:

δγ =
σ̄ (0)
− 3G1γ − τ

(
γ (k), γ̇n+1, Tn

)
3G+ ∂τ

∂γ

(
γ (k), γ̇n+1, Tn

) , 1γ (k+1)
=1γ (k)

+ δγ. (4–3)

(d) Update the plastic strain tensor, effective plastic strain and total stress, set k← k+ 1, and go to
step (iii.b).

5. Numerical simulation of single-tube buckling

In this section, we present results of the finite element simulation of the quasistatic tube buckling and
compare them with the experiments. We compare both the buckling load and mode, and focus on the
postbuckling behavior. We discuss some relevant published analytical results.

In general, the finite element simulations agree well with the experimental results, both for the buckling
load and the buckling mode. On the other hand, the previously published analytical predictions we have
examined do not seem to yield accurate estimates of the buckling load, nor do they predict the observed
postbuckling behavior.

5.1. Computational results. The simulation of tube-I predicts that the tube initially buckles at one end
in an axisymmetric mode. As the crushing continues, the buckling mode changes from an axisymmetric
bulge to a triangular shape. The mode changes during the postbuckling process because the boundary
condition changes for the remaining unbuckled portion of the cylinder. The simulated buckling mode and
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Figure 13. Sequence of plots from deformation and buckling of the 7075 aluminum
tube-I in the finite element model with uniaxial compression; displacement-controlled
loading with crosshead speed 6.71× 10−3 mm/s, presented in Figure 2.

its changes during loading agree fairly well with the experimental results; see Figures 13 (left) and 14
(left).

For the simulation, we apply the displacement boundary conditions discussed for the experiments in
Figure 2. It predicts the buckling load to be 910 N, whereas the experimental buckling load is 1051 N,
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Figure 14. Comparison of experimental and numerical load variation with displacement
of the crosshead for 7075 aluminum tube-I, of dimensions: OD= 4.50 mm; wall thick-
ness = 0.127 mm; and length = 11.80 mm. At right, the same for tube-II, of dimensions:
OD= 4.52 mm; wall thickness = 0.381 mm; and length = 8.76 mm.
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Figure 15. Axisymmetric axial buckling collapse mechanism due to Alexander [1960].

for a 13.4% error. The simulation produces three postbuckling peaks which agree with the experimental
results both in number and in their approximate values.

Abramowicz and Jones [1984] have provided a comprehensive review and substantial data on the
axisymmetric buckling modes of cylindrical shells. Their analysis is based on work done by Alexander
[1960]. Their assumed buckling mechanism, illustrated in Figure 15, takes place in a section of length 2H
and consists of three stationary (relative to the material) plastic hinges separating two outward moving
portions which stretch circumferentially. Abramowicz and Jones determine the crushing force PB in
terms of the material properties and tube geometry after minimizing the global work and arrive at the
following expression:

4PB

σ0t2 = 20.79
(

D
t

)1/2

+ 11.90,

where σ0 is the yield stress of the material, t is the thickness, and D is the outer diameter. For our
experiment described above, this equation gives PB = 225.5 N, whereas, the experimental mean crush-
ing force is approximately 452 N. This significant underestimation typifies predictions of this analysis
and is ascribed by Alexander [1960] to the assumption that the convolutions flatten into discs. That
assumption is inconsistent with our experimental observations and numerical simulations. Ignoring the
plastic hardening is another possible reason for this underestimation.

For aluminum tube-II, shown in Figures 14 (right) and 16 (right), the numerical model provides
a reasonable representation of the experimental results, both for the buckling load and the buckling
mode. The simulation predicts the buckling load to be around 2600 N, whereas, the experiment shows
a buckling load of 2950 N, for an 11.8% error. Figure 14 compares the experimental and numerical
load-displacement curves. The simulation predicts that the buckling starts at the end of the tube and also
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Figure 16. Sequence of plots from simulating deformation and buckling of the thick
7075 aluminum tube in uniaxial compression; displacement-controlled loading with
crosshead speed 5.33× 10−2 mm/s, presented in Figure 2.

when the displacement reaches a specific level; see Figure 16. It predicts a stable postbuckling response
that agrees with the experimental observations.

Two important observations about the buckling mode are apparent from the foregoing numerical and
experimental results. First, the buckling mode is axisymmetric, and, second, the buckling begins near
the ends of the tubes. We explain these observations as follows.

Axisymmetric buckling has only stretching in the hoop direction, whereas nonaxisymmetric buckling
primarily involves bending in that direction. The energy required for either mode, that is, hoop direction
stretching or hoop direction bending, is a function of tube thickness. As this increases, the energy
required for stretching increases linearly. On the other hand, the bending energy varies quadratically
with the thickness, making it increase more rapidly with thickness. For sufficiently thick tubes (roughly
R/t < 40), the hoop bending energy exceeds the hoop membrane energy, and thus the buckling occurs
in the lower energy axisymmetric mode [Allan 1968].

That buckling begins at the ends can be explained by the end boundary conditions and axisymmetric
buckling localization theory [Tvergaard 1983a]. If the tubes were not constrained at the ends, then,
as the load increases, the axial shortening would cause a radial expansion that is uniform along the
axis (Poisson effect). However, because the tubes are constrained at both ends by friction, there arises
an axisymmetric, radial shear stress which begins at the tube ends and decays rapidly away from the
boundary. This additional shear stress triggers localized axisymmetric buckling at the boundaries. This
behavior is observed in the quasistatic experiments and predicted by the finite element simulations.

6. Numerical simulation of hex-arrayed tube-buckling

To enhance energy absorption while keeping the system as light as possible, one may exploit the post-
buckling interaction of adjacent tubes. As for a single tube, hex-arrayed tubes initially respond linearly
to a compressive load. However, after they begin to buckle, they begin to interact with one another,
enhancing the energy absorption of the structure.

How hex-arrayed tubes respond to a compressive load depends on their spacing. Here, we present the
experimental and numerical results of dynamic compression tests of hex-arrayed tubes and document the
effect of varying tube spacing, length, and thickness (for a fixed outer diameter).
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Figure 17. The numerical results of normalized load per mass with displacement varia-
tion of the sandwich plates for the hex-arrayed 3003 aluminum tubes compared at three
different spacing levels, using Nemat-Nasser’s physics-based (PB) material model. Tube
dimensions: OD= 15.9 mm; wall thickness = 1.65 mm; and length = 13.0 mm.

6.1. Computational results. Each tube has outer diameter 15.87 mm, wall thickness 1.65 mm, and height
13.0 mm (R/t = 5). All the simulations are performed with the same setup, using an impact speed of
32 m/s. Their fixed boundary conditions simulate welding the tubes to the plates. Figure 17 compares
the load histories for the three simulations. For all three tube spacings, they predict a buckling load per
unit mass of approximately 3 KN/g, while the experiments show this value to be 2.6 KN/g. Although the
numerical models qualitatively predict the experimental trends, the remaining quantitative discrepancy is
not fully understood. It may be that the fabrication has introduced various imperfections in the samples
[Meissner 2004], while the simulation assumes perfectly arranged hex-array structures.

The finite element model predicts that the tight structure (gaps < 0.1 inch) maintains the load level,
perhaps because the tubes interact after buckling. The experiment shows the same effect. For less tight
structures, with tube spacings of 0.2 inch and 0.5 inch, the load histories are almost the same, although
the 0.2 inch one exhibits some postbuckling interaction. The finite element simulations predict lower
buckling loads than for the tight structure, which is in good agreement with the experimental results; see
Figure 14. The simulations predict reasonably well how the overall behavior and the energy absorption
depend on the tube spacing. Figure 18 presents the predicted final deformed configuration of the tubes
with 0.2 inch spacing; Figure 19 shows the corresponding deformation sequences.

 

Figure 18. Final finite element configuration of the hex-arrayed 3003 aluminum tubes at
maximum deformation; spacing equal to 0.2 inch, using Nemat-Nasser’s physics-based
material model.
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Figure 19. Sequence of numerical prediction of hex-arrayed tube structure buckling
with 0.2 inch spacing, under dynamic loading.

6.2. Parametric study of hex-arrayed tube-buckling. We have simulated how the arrays respond to
varying thickness and length, while keeping the outer diameter constant at 1.59 cm. To sensibly compare
the results, we normalize the dissipated energy and the applied load by the mass of the system. All
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Figure 20. Effect of thickness on the normalized load per unit mass variation with dis-
placement of the sandwich plates. The tubes have spacing less than 0.1 inch, equal to
.02 inch, and equal to .05 inch. They have lengths 1.3 cm and outer diameter 1.59 cm.
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Figure 21. Buckling load and dissipated energy per unit mass of the hex-arrayed tube
structure, normalized and plotted against varying thickness and spacing levels. The
length of the tubes is 1.3 cm and the outer diameter is 1.59 cm.

simulations have the same fixed boundary conditions, with a 32 m/s impact velocity. We model aluminum
3003 using Nemat-Nasser’s PB model, presented in Section 2.

To analyze the effect varying tube thickness, we chose five different values of 0.851, 1.051, 1.251,
1.451, and 1.651 mm, while keeping the length at 1.30 cm and the outer diameter at 1.59 cm. For each
thickness, we studied all three tube spacings considered in the previous section. Figure 20 shows the
simulation results. Increasing the thickness from 1.051 to 1.451 mm causes an increase in the normalized
load for all three tube spacings. However, further increasing the thickness from 1.451 to 1.651 mm does
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Figure 22. Variation of normalized load per unit mass of the hex-arrayed tube structure
with deflection of unit length for tubes of different lengths and compact spacing (<
0.1 inch). The outer diameter of the 3003 aluminum tubes is 1.59 cm.
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Figure 23. Variation of energy absorbed per unit mass and length of the hex-arrayed
aluminum tube structure with different length to outer diameter ratios. The spacing is
compact (< 0.1 inch) and the thickness is 0.145 cm.

not cause a significant drop in the normalized buckling load or the normalized dissipated energy. For
comparison, we further rescale the normalized dissipated energies by the largest one, namely, that of the
tightly spaced tubes with thickness 1.451 mm; see Figure 21.

To analyze the effect of varying tube length, we choose various lengths L from 0.32 cm to 2.60 cm,
while keeping a fixed outer diameter at 1.59 cm, the thickness at 1.451 mm, and a spacing less than
0.1 inch. The simulations show that, as L/R increases, the buckling mode changes from a single barrel
in the middle to a double barrel at the ends. This change occurred as L went from 1.3 cm to 1.95 cm.
Figure 22 illustrates how the rescaled, normalized load varies with the deflection per unit length of the
tubes. As length increases, starting from 0.325 cm, the absorbed energy (per unit mass per unit length)
increases and reaches a maximum at 1.3 cm; however, increasing the length further does not seem to
result in an increase in the absorbed energy (per unit mass, per unit length), as is illustrated in Figure 23.
Among the simulations conducted in this study, the hex-arrayed tube structure with an outer diameter
to thickness OD/t = 11 and outer diameter to length OD/L = 1.22 showed the best energy-absorption
performance.

7. Conclusions

We measured and simulated quasistatic buckling of single aluminum tubes and dynamic buckling of
hex-arrayed aluminum tubes. The methods achieved excellent agreement in the buckling load, buckling
mode, and the postbuckling behavior. The finite element calculations incorporate rate- and temperature-
sensitive physics-based constitutive models for aluminum 3003 that we integrated into LS-DYNA using
a J2-plasticity model and a radial-return algorithm.

The single tube experiments and simulations have confirmed that the buckling mode—that is, the
deformation path of least resistance—depends on the geometrical ratios and the tube thickness. The
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single tube initially buckled into an axisymmetric pattern near one end, and then, as the load level
significantly dropped, continued into a diamond deformation mode.

The experiments and simulation of the hex-arrayed tube structures suggest that their energy absorption
increases with a decrease in their spacing, due to postbuckling interaction between the adjacent tubes.
Finally, we examined how varying the array’s geometrical parameters affected their energy absorption.
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