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This paper presents a method for characterizing the formation energy of Stone–Wales defect transforma-
tion in deforming carbon nanotubes. A formula is derived to show that the structural energy variation
consists of the change of atomic potential due to bond reconfiguration in a local defective region, and an
elastic correction that represents the influence of the remaining system. The advantage of the method lies
in its computational efficiency. Specifically, global optimization for the configuration of the defective
tube is eliminated. We use the method to investigate the formation energy distribution in nonuniformly
deforming nanotubes, and to study the energetic interaction between multiple defects. Accuracy of the
method is also assessed through numerical experiments.

1. Introduction

When loaded beyond a certain limit, carbon nanotubes (CNTs) respond to mechanical load via the forma-
tion of topological defects [Buongiorno Nardelli et al. 1998a; 1998b]. In a stretched CNT, a fundamental
defect appears via a 90◦ rotation of a C-C bond from the predominantly transverse direction to the
predominantly axial direction. This transition, known as the Stone–Wales (SW) transformation [1986],
preserves the threefold sp2 bond structure but replaces the hexagon rings with two pentagon-heptagon
(5-7-7-5) pairs as indicated in Figure 1. At large stretches the bond rotation releases the excessive strain
[Buongiorno Nardelli et al. 1998a; 1998b] and results in an energetically favorable state. The SW defect
is active at high temperatures, and further relaxation through successive rotations at neighboring bonds
becomes energetically favorable [Samsonidze et al. 2002a]. In this case, the SW transition furnishes a
mechanism of “intramolecular plasticity” [Yakobson 1998; Buongiorno Nardelli et al. 1998a; 1998b]. At
low temperatures, SW defects are not as active but their presence weakens the local stiffness [Chandra
et al. 2004] and presents a potential site for crack nucleation. Recent studies reported that a SW defect
can significantly reduce the limit strain of a carbon nanotube [Zhang et al. 1998; Zhang and Crespi 2000;
Zhao et al. 2002; Troya et al. 2003; Mielke et al. 2004], and also affect the electrical properties of CNTs
[Choi et al. 2000; Liu et al. 2004b; Nordlund and Hakonen 2005].

The formation energy, namely the energy difference between the defective and the maiden states, is
a significant factor in defect kinetics. For a transformation to be energetically favorable, the defective
state should rest at a lower energy level. Hence, a negative formation energy is often taken as the
necessary condition for defect formation. In order to trigger the transformation, however, the system
must receive sufficient energy to overcome the activation energy barrier [Samsonidze et al. 2002b; Buon-
giorno Nardelli et al. 1998a; Zhao et al. 2002]. It has been reported that a SW defect in a tensile CNT
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Figure 1. Illustration of the defective patches: (a) and (b) are layer models for large
diameter tubes; (c) and (d) are ring models for small diameter tubes.

becomes energetically favorable at about 5–6% strain. However, at lower temperatures the activation
barrier for this formation remains high and thus hinders the defect creation [Zhao et al. 2002]. The for-
mation energy nevertheless remains an important indicator as it reflects the tendency of defect formation
and the thermodynamical stability of the defect. In [Samsonidze et al. 2002a], for example, the energy of
multiple SW defects as a function of the relative position is used to evaluate possible patterns of defect
propagation. Conceivably, the formation energy distribution in a nonhomogeneously deforming CNT
may indicate the possible weak spot where a defect is most likely to occur if the environment permits its
nucleation.

Many researchers have addressed the problem of computing the formation energy of the SW defects
in carbon nanotubes, as well as in boron-nitride tubes. Some papers focused on quantifying the change
of chemical bond energy due to defect reconfiguration [Zhang et al. 1998; Zhang and Crespi 2000;
Pan et al. 2000; Zhou and Shi 2003; Bettinger et al. 2002; Dumitrica et al. 2003; Piquini et al. 2005].
Typically, for this purpose, small isolated patches of atoms were considered. Nevertheless, the formation
energy includes the contribution from elastic distortion. Strictly speaking, the energy variation should
be considered at the structural level. At present, various levels of theories from ab initio calculations
to molecular dynamics (MD) simulations have been applied to structural energetics computation. The
MD approach as in [Moon and Hwang 2004a; 2004b; Marques et al. 2005] can handle relatively large
systems. It should be noted that different theories do lead to different predictions [Grossman et al. 1995;
Bettinger et al. 2002].

In this paper, we present a method for computing the structural energetic variation of SW transfor-
mation in pre-loaded CNTs. The method rests on the observation that a 5-7-7-5 ring is a local defect,
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in the sense that the elastic distortion is confined to a local region and diminishes rapidly after a short
distance. If long range interactions such as the Coulomb force can be neglected, the energetic variation
would result primarily from defective bond reconfiguration and the local elastic distortion. In Section 2,
a formula for the relative Gibbs free energy is derived, in which the relative energy is expressed as a
sum of the change of potential in the local defective region and an elastic correction that approximates
the influences of the remaining system. The formula suggests an efficient way to compute the formation
energy in relatively large scale atomic systems. Instead of computing the global energetics of the defective
system, one only considers an embedded local defective cluster, and takes into account the remaining
system through the correction term. The reduction allows one to readily perform structural level energetic
analysis. For example, one can employ the method to compute the formation energy map, that is, the
formation energy distribution in nonhomogeneously deforming systems. Likewise, one can study the
energetic interaction between multiple defects by placing new defects in a pre-defective system. With
the proposed method, global configuration optimization is performed only once. This local scheme
works for classical potentials with finite range interaction. In Section 4, the method is applied to carbon
nanotubes where the bond energy is modeled by the Brenner potential [Brenner 1990].

2. Structural formation energy of Stone–Wales defect

We consider CNTs at low temperatures where the thermal fluctuation is negligibly small and the atomic
system remains approximately in a quasiequilibrium state. The formation of a defect causes a change of
the total energy in the system. The difference

E f = 5(2)
− 5(1) (1)

defines the formation energy, where 5(1) and 5(2) are the Gibbs free energies of the reference and the
defective systems. As alluded to earlier, the energy difference should primarily result from the reconfig-
uration of sp2 bonds in the defect and its distortion to the surrounding lattices. Inspired by Eshelby’s
method for the inclusion problem [Eshelby 1957] and his approach to defect energetics [Eshelby 1975],
we propose a local approach for computing the energy difference of the entire system.

Figure 2 illustrates the notions used in the localization method. The local cluster D is a small set of
atoms in which a 5-7-7-5 dislocation is to be embedded. The set of atoms that is the complement of D
in the pristine domain is denoted by P . The interface set, denoted by I , includes the atoms in D that
have energetic interaction with any atom in P and vice versa. For pairwise interaction, the interface
set contains the bonding pairs along the internal boundary. For many-body potentials the interface may
extend to a thin layer of atoms. We employ the Brenner bond order potential [1990] to model the bond
energy. The interface set consists of the atoms on the layer of hexagon rings directly connecting D and
P (see Figure 2). In addition, we identify the atoms in P that are subject to external load as the boundary
set B, which can be further divided into disjoint subsets B = Br ∪ Bt corresponding to displacement and
force boundary points.

Consider a reference tube subject to the load

r(1)
i = r̄i , for atom i ∈ Br ,

t(1)
i = t̄i , for atom i ∈ Bt .
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Figure 2. Schematics of the method. (a) Gray dots represent the atoms of the local
cluster D and black dots represent pristine atoms. The interface is marked by the layer
of dashed hexagon rings; (b) The deformed local region with the atom positioned at r(1);
(c) The defective replica D̂, whose boundary is fixed, but interior atoms are allowed to
relax.

Let r(1)
j be the coordinates of atom j at equilibrium. Under the same external load, a defective tube with

a SW dipole embedded in D produces a different equilibrium state r(2). The Gibbs free energies of the
reference and the defective tubes are

5(1)
= EP+D(r(1)) −

∑
b∈Bt

t̄b · r(1)
b ,

5(2)
= EP+D̂(r(2)) −

∑
b∈Bt

t̄b · r(2)
b .

(2)

The total interatomic potential consists of the sum of bond energies Vi j and can be regrouped into the
sum of site potentials Ei . We write

EP+D =

∑
i< j

Vi j =

∑
i∈P+D

Ei . (3)

With Brenner potential and the threefold bond structure, the energy of site i is

Ei =
1
2

∑
j

Vi j , (4)
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where the sum runs over the three sp2 bonds connecting to atom i . The potential of the whole tube can
be naturally split into EP+D = EP + ED, where each term consists of the sum of site energies in the
respective region.

For the succeeding development, we introduce an auxiliary configuration r̂(1) of the defective tube
using an imaginary fixing and replacing process: (1) Select a region D into which a 5-7-7-5 ring is to be
inserted; (2) Fix all the interface atoms; (3) Replace the interior atoms in D with a defective replica. The
interior atoms in D do not directly interact with the interior atoms in P and hence, once the interface
atoms are constrained, any reconfiguration in D will not induce atomic displacements in P . However,
a set of force (called mismatch force) is needed on the interface atoms to keep the them from moving.
This imaginary process leads to a configuration

r̂(1)
i =

{
r(1)

i if i ∈ P ∪ I,

r̂(1)
i if i ∈ D̂ \ I.

Imagine that one isolates the local cluster D and keeps it in the deformed state r(1). To sustain the
deformation, one must apply a set of forces, denoted by t(1), on the interface atoms. This set of forces
corresponds the internal force that interface atoms experience in the reference state r(1). Likewise, to
deform the defective replica D̂ to the auxiliary configuration, one must apply another set of forces t̂(1)

on the interface atoms. By equilibrium, the difference t̂(1)
− t(1) is the interface mismatch force that is

necessary to sustain the configuration r̂(1) in addition to the original boundary forces that are left intact.
We now return to the computation of formation energy. The difference in free energy between the

auxiliary and the reference structure is

E D̂(r̂(1)) − ED(r(1)). (5)

If the mismatch force is gradually released, the defective tube will relax to the final defective configuration
r(2). If the tube is subject to all displacement boundary conditions, the work done by gradually releasing
the mismatch force can be approximated as

−
1
2

∑
s,t∈I

(t̂(1)
s − t(1)

s ) · Cst(t̂(1)
t − t(1)

t ). (6)

where Cst is the compliance matrix associated with the interface atoms evaluated at the auxiliary configu-
ration. Since the relaxation process is elastic, the work reflects the change of potential from the auxiliary
to the final configuration. Adding (5) and (6), the change of free energy from the reference to the final
defective state can be approximated as

E f ≈ E D̂(r̂(1)) − ED(r(1)) −
1
2

∑
s,t∈I

(t̂(1)
s − t(1)

s ) · Cst(t̂(1)
t − t(1)

t ). (7)

In the Appendix, we show that the same formula applies to the force boundary condition as well. Thus, the
formula furnishes a unified local scheme for the computation of the formation energy. The leading term
E D̂(r̂(1)) − ED(r(1)) gives a first order approximation to the structural energy variation. The remaining
term represents structural influence. If the mismatch force is small, this term provides a second order
correction to the formation energy.
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Our experience indicates that the compliance matrix can be replaced by the corresponding compliance
of the reference tube without causing a noticeable difference in the formation energy. This leads to further
simplification in the computation, since the compliance matrix of the reference system can be readily
obtained during configuration optimization.

3. Computational procedure

The molecular mechanics (MM) method with the implementation proposed in [Liu et al. 2004a] is em-
ployed to obtain the equilibrium state of the CNT under loads. The MM calculation is based on the
energy minimization with respect to discrete atomic positions. The free energy in the system is

5 = E(r) −

∑
k∈Bt

t̄k · rk (8)

The first generation Brenner potential [1990; 1992] is used to model CNT bond energy. The parameters
listed as potential I in [Brenner 1990] are used in the computation.

The equilibrium of the atomic system requires that atomic positions cause the total potential energy
to reach its minimum

∂5

∂ri
= 0, (9)

subjected to ri = r̄ on Br . This yields a nonlinear system of 3(N − NBr ) equations where N is the total
number of atoms and NBr the number of atoms subject to boundary displacements. To find equilibrium
atomic positions, the Newton–Raphson method is employed to solve the equations of (9). At the k-th
iteration (configuration), the increments of the atomic coordinates are given by[

∂25

∂d∂d

]∣∣∣∣
d(k)

1d(k+1)
= −

∂5

∂d

∣∣∣∣
d(k)

, (10)

where

K :=
∂25

∂d∂d
is the tangent stiffness matrix (the Hessian), and d is the vector of atomic displacements. The system
(10) is solved iteratively until convergence is achieved.

At convergence we partition the stiffness matrix K into

K =

[
Kss Ksd

Kds Kdd

]
, (11)

where s stands for the degrees of freedom of the interface atoms I , and d denotes the remaining degrees
of freedom. The compliance matrix C in (7) is computed according to

C = (Kss − KsdK−1
dd Ksd)−1.

The procedure for computing the energy difference is summarized as follows:

1. Compute the equilibrium configuration of the reference tube.

2. At the position where a SW ring is to be inserted, select a local cluster, identify the interface, and
record the coordinates of the interface atoms.
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3. Replace the cluster with a defective replica, solve a local equilibrium problem to compute the atomic
coordinates in the replica keeping interface atoms fixed from step 2.

4. Compute the relative energy according to Equation (7).

Global configuration optimization is performed only once, on the reference tube. This reduction
allows one to efficiently compute the defect energetics in a relatively large system, and also to compute
the relative energy as the defect position varies. If the structure has unconstrained rigid body modes
(typical in MD simulations), the tangent stiffness K is singular and hence the compliance cannot be
directly computed. In this case, one can eliminate the rigid body singularity by augmenting K with
several rank-one updates

∑
α aαRα ⊗ Rα, where α (α ≤ 6) is the number of rigid body modes, Rα are

the modes vectors, KRα = 0, and aα are positive scalars. This will not affect the energy computation
since the matching force t̂(1)

− t(1) is self-equilibrium. The proof of this fact is straightforward.

4. Results and discussion

Cluster size. The proposed method is based on the premise that if the size of the local cluster is suffi-
ciently large, the mismatch force should be small, so Equation (7) should provide a second-order accurate
estimation for the formation energy. For practical purposes, it is of foremost importance to investigate
the influence of cluster size on the energy computation. We used two types of clusters. For large diameter
tubes we introduced the layer patch as shown in Figures 1(a) and (b). The pentagon-heptagon ring itself
(bold solid line), which has 16 atoms, is defined as the layer-0 patch. The region enclosed by dashed
lines, with 42 atoms, is termed layer-1; the layer-2 region is enveloped by the dotted line. These types
of clusters are consistent with the defect-shell model of [Zhou and Shi 2003]. For small diameter tubes,
the ring model was introduced. A defective ring is a tube segment that contains a SW defect. Figure 1(c)
shows the family of hierarchically defined defective rings in a (5,5) armchair tube. The ring-1 corresponds
to the segment that just contains a 5-7-7-5 dipole, the ring-2 extends to two additional layers of atoms,
and so on. The corresponding ring models in a (10,0) zigzag appear in Figure 1(d). Note that a 5-7-7-5
dipole has three possible orientations in each chirality [Zhou and Shi 2003]. Here we consider the one
in which the pentagon-pentagon axis points predominantly along the tube axis.

We considered tubes under axial tension by prescribed end-displacement. A SW defect is inserted in
a 5 nm long (10,10) armchair and a 5 nm long (17,0) zigzag. Figures 3(a) and 3(b) show the values of
formation energy obtained using clusters of various sizes. It is seen that, for the (10,10) armchair, the local
cluster as small as layer-0 can yield results almost identical to those by the full tube. The high accuracy
may be attributed to the relatively minor distortion the SW defect produces in the armchair configuration.
In contrast, Figure 3(b) shows that the layer-2 cluster is necessary to achieve a comparable accuracy in
the (17,0) zigzag owing to the relatively large distortion the SW defect produces in a zigzag tube.

The analyses were repeated for the 12 nm long (5,5) armchair and the (10,0) zigzag shown in Figure
4 using the defective ring. Figures 3(a) and 3(b) present the formation energy results. For the armchair,
the ring-1 and the ring-2 results are almost identical and both are very close to the full tube result. On
the contrary, for zigzag tube the ring-1 results show a moderately large deviation from the full tube result.
The ring-2 cluster seems necessary for an accurate estimation. The formation energies of the SW defect
are found to approach zero when the strain is around 6% for armchair tubes and around 12% in zigzag
tubes. These values agree nicely with existing reports [Buongiorno Nardelli et al. 1998a].
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Figure 3. Comparative formation energies versus stretch.

Figure 4. Slender tubes (12nm) used in the computation. Top: (5,5) armchair. Bottom:
(10,0) zigzag.
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Figure 5. Distribution of formation energy in the uniformly stretched nanotube.

Formation energy map. In a nonuniformly deforming CNT, the defect formation energy depends on
the local strain (stress) level and factors such as the distance to the tube boundary. Hence, the spatial
distribution of formation energy provides an indicator for the potential weak spot where a defect transfor-
mation is most likely to occur. We applied the method to study the formation energy distribution. We first
considered a 12 nm long (5,5) armchair under axial tension. Nine locations uniformly placed along the
tube length were chosen where a SW dipole was to be inserted. The formation energies were calculated
for these nine locations respectively, assuming a single SW defect appears in the tube for each time. The
ring-1 model was employed; see Figure 1(c). Figure 5 presents the formation energy distribution under
three levels of strain.

Notably, the formation energy possesses a symmetric distribution and attains its lowest value in the
middle, implying that the defect transformation is most likely to initiate near the middle. Although the
reference state is uniform, the formation energy shows a small variation across the tube length due to
boundary effects. For a further assessment of accuracy, the full tube results are also computed. The
approximate results agree well with the full tube computations in most locations, except near the ends
of the tube, where the solutions deviate slightly.

Bending is a common mode of deformation that slender CNTs are likely to experience. We calcu-
lated the formation energies of the 12ṅm (5,5) armchair in four bent configurations shown in Figure 6.
Configurations (a) and (b) were obtained by applying a transverse force at the tip; and configurations
(c) and (d) were obtained by prescribing end-displacement. Since we were interested in stretch-induced
SW rotation, the defect was inserted in the stretched side of the tube. The same nine locations were
employed. In configurations (a) and (b), the maximum bending moment occurs at the fixed end while
in (c) and (d) the maximum bending occurs in the middle of the tube. Figure 7 shows the formation
energy distribution. For (a) and (b), where maximum bending appears at the end, the lowest formation
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(a) (b) (c) (d)

Figure 6. Four bent configurations of the (5,5) carbon nanotube.

energy is found near the end. In contrast, for (c) and (d), formation energy is lowest in the middle. The
distribution indicates that the formation energy correlates directly with the bending moment, which is
expected since the latter determines the local stretch in the tube. Figure 7 also includes the results from
full tube computation. The approximate results are found to be close to the full tube solution in most
locations. Only near the boundary does the solution show minor deviations.
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Figure 7. The distribution of formation energy on bent (5,5) nanotubes. Curves (a)
through (d) correspond to the configurations in Figure 6.
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Figure 8. Interaction energy between two defects. The cases (a) through (f) correspond
to the relative positions illustrated in Figure 9.

Defect interaction. Samsonidze et al. [2002a] reported that when two SW defects are placed close to
each other, the formation energy varies with their relative position and orientation, indicating that two
defects may repulse or attract each other depending on their relative position. We studied the interaction
of SW defects in stretched tubes using the proposed method. Figure 9 shows a defective (10,0) tube
having a primary SW defect and a secondary defect inserted at various positions. We considered the
following cases: axially adjacent (a); axially distanced (b) and (c); diagonally adjacent (d); axially skewed
(e); and diagonally distanced (f) and (g). For locations (b) and (c), we employed the ring-1 model for
each defect. A larger ring enclosing two SW defects (see part (e) of Figure 9) was used for other cases.
The interaction is characterized by the difference of the Gibbs free energies with and without the second
defect.

(a) (b) (c) (d) (e) (f) (g)

Figure 9. Relatively positioned multiple defects.
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The energy curves are presented in Figure 8. The diagonally adjacent case (d) shows the lowest
interaction energy across the strain range, indicating that such a configuration is most favorable. The
axially skewed location (e) has the second lowest energy across the strain range. Although the defects
are closely packed in (a), the energy is only slightly lower than other cases where the defects are further
separated, suggesting that axially adjacent defects are less likely to appear in a zigzag tube. It is seen that
if the defects are sufficiently distanced from each other, the interaction energies appear to be insensitive
to the relative position. While the pattern of orientation dependence appears to agree with the early report
in [Samsonidze et al. 2002a], the lack of interaction for distanced defects may be a consequence of the
Brenner potential which vanishes after a short cut-off distance.

5. Summary

We have proposed a method to compute the structural energetic variation induced by the formation of
a SW defect. The method exploits the local nature of a SW defect and yet properly takes into account
the energetic influence from the remaining system. The advantage lies in the computational efficiency in
comparison to other methods routinely used in computation of formation energy. Within the framework of
MD (or MM) computation, the method provides an efficient way to study SW energetics at the structural
level. The method applies to systems where the interaction is of finite range. In such systems the
influence of bond reconfiguration can be localized. If long range interactions, such as the Coulomb
force, are significant, the nonlocal effect needs to be carefully considered.

Appendix: Derivation of Equation (7)

Starting from Equations (1) and (2), adding and subtracting the boundary term
∑

s∈I t(1)
s · (r(2)

s − r(1)
s )

gives

E f ≡ 5(2)
− 5(1)

=

(
EP(r(2)) − EP(r(1)) −

∑
b∈Bt

t̄b · (r(2)
b − r(1)

b ) −

∑
s∈I

(−t(1)
s ) · (r(2)

s − r(1)
s )

)

+

(
E D̂(r(2)) − ED(r(1)) −

∑
s∈I

t(1)
s · (r(2)

s − r(1)
s )

)
, (12)

where t(1)
s is the internal force exerted on the interface atoms to maintain D in the reference state r(1).

Adding and subtracting terms further, the energy difference can be written as

E f =

(
EP(r(2)) − EP(r(1)) −

∑
b∈Bt

t̄b · (r(2)
b − r(1)

b ) −

∑
s∈I

(−t(1)
s ) · (r(2)

s − r(1)
s )

)

+

(
E D̂(r(2)) − E D̂(r̂(1)) −

∑
s∈I

t̂(1)
s · (r(2)

s − r(1)
s )

)
+ E D̂(r̂(1)) − ED(r(1)) +

∑
s∈I

(t̂(1)
s − t(1)

s ) · (r(2)
s − r(1)

s ). (13)
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In what follows the two terms in large parentheses will be simplified. The first term corresponds to the
energy variation in region P under the variation of atomic positions r(1)

→ r(2). By Taylor expansion,

EP(r(2)) − EP(r(1)) =

∑
i∈P

∂ E
∂ri

∣∣∣∣
r(1)

· 1ri +
1
2

∑
i, j∈P

1ri ·

[
∂2 E

∂ri∂r j

∣∣∣∣
r(1)

1ri

]
+ O(|1r|3) , (14)

where 1ri = r(2)
i − r(1)

i . Invoking the virtual work principle, we have∑
i∈P

∂ E
∂ri

∣∣∣∣
r(1)

· 1ri =

∑
b∈Bt

t̄b · 1rb +

∑
s∈I

(−t(1)
s ) · 1rs (15)

Substituting (15) and (14) into the first bracket in (13), we find that the first order terms vanish, leaving

1
2

∑
i, j∈P

1ri ·

[
∂2 E

∂ri∂r j

∣∣∣∣
r(1)

1r j

]
+ O(|1r|3). (16)

The domain sum term can be converted into boundary sum. With repeated use of the virtual work
principle we can deduce

∑
i∈P

1ri ·

[
∂2 E

∂ri∂r j

∣∣∣∣
r(1)

1r j

]
= −

∑
s∈I

(t(2)
s − t(1)

s ) · (r(2)
s − r(1)

s ) + O(|1r|3) . (17)

Combining (16) and (17), the expression inside the first bracket in (13) reduces to

−
1
2

∑
s∈I

(t(2)
s − t(1)

s ) · (r(2)
s − r(1)

s ) + O(|1r|3) . (18)

Applying the same procedure to the second bracket yields

E D̂(r(2)) − E D̂(r̂(1)) −

∑
s∈I

t̂(1)
s · (r(2)

s − r̂(1)) =
1
2

∑
s∈I

(t(2)
s − t̂(1)

s ) · (r(2)
s − r(1)

s ) + O(|1r|3). (19)

Substituting (18) and (19) into (13), we conclude

E f = E D̂(r̂(1)) − ED(r(1)) +
1
2

∑
s∈I

(t̂(1)
s − t(1)

s ) · (r(2)
s − r(1)

s ) + O(|1r|3), (20)

where t̂(1)
s − t(1)

s is the mismatch force. The final position r(2) can be obtained by relaxing the mismatch
force, or equivalently by applying a set of equal and opposite forces on the interface. To the first order,
the interface atoms incremental displacements induced by the relaxation can be computed by

r(2)
s − r(1)

s = −

∑
s,t∈I

Cst(t̂(1)
t − t(1)

t ), (21)

where C is the current compliance associated with the interface atoms. In light of this, we can further
write

E f = E D̂(r̂(1)) − ED(r(1)) −
1
2

∑
s,t∈I

(t̂(1)
s − t(1)

s ) · Cst(t̂(1)
t − t(1)

t ) + O(|1r|3). (22)
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It is evident that Equation (7) is second-order accurate with respect to the magnitude of the mismatch
force. If the potential energy is quadratic, the formula becomes exact.
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