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The use of piezoelectric wafer active sensors (PWAS) phased arrays for Lamb wave damage detection in
thin-wall structures is presented. The PWAS capability to tune into specific Lamb-wave modes (which
is an enabling factor for our approach) is first reviewed. Then, a generic beamforming formulation that
does not require the conventional parallel-ray approximation is developed for PWAS phased arrays in
connection with the delay-and-sum beamforming principles. This generic formulation is applied to a 1-D
linear PWAS phased array. Particularly, 1-D PWAS array beamforming reduces to the simplified parallel
ray algorithm when the parallel ray approximation is invoked. The embedded ultrasonic structural radar
(EUSR) algorithm is presented. A couple of simple experiments are used to show that the linear EUSR
PWAS phased array system can successfully detect cracks in large aluminum thin plates.

To improve the EUSR image quality, advanced signal processing is studied for possible integration
into the EUSR system. The approaches include Hilbert transform for envelope detection, thresholding
techniques for removing background noise, discrete wavelet transform for denoising, continuous wavelet
transform for single frequency component extraction, and cross-correlation for time-of-flight detection.

The optimization of linear PWAS arrays is studied next. First we consider the effect of several pa-
rameters affecting the phased-array beamforming: (1) number of elements M ; (2) elementary spacing d;
(3) steering angle φ0; (4) location of the target r . Second, we examine the so-called nonuniform PWAS
arrays which are generated by assigning different excitation weights to each of the array elements. The
design of two nonuniform linear PWAS arrays, the binomial array and the Dolph–Chebyshev array, is
presented. Significant improvement of the EUSR image is observed when using these nonuniform arrays.

1. Introduction

The current use of nondestructive evaluation (NDE) technologies is limited by the fact that the NDE
inspection can be carried out only if the area to be inspected is accessible. In most cases, this can be
achieved only during maintenance checks. For economic reasons, more frequent inspections or even con-
tinuous monitoring are not feasible with the existing NDE techniques [Beral and Speckmann 2003]. One
method of conducting in-service monitoring of structural hot spots is through structural health monitoring
(SHM) using guided waves and in-situ sensors. Guided waves can travel large distance with very little
amplitude loss and inspect large area from a single transducer position [Rose 1995; 1999; 2001]. In-situ
sensors, if sufficiently light and reliable, would offer on-demand structural interrogation capabilities.

Keywords: phased array, piezoelectric wafer , active sensors, embedded ultrasonics structural radar, beamforming, Lamb
waves, damage detection, structural health monitoring, EUSR, PWAS, SHM, NDE.

Financial support from the National Science Foundation, grants NSF CMS-0408578 and NSF CMS-0528873 and from Air
Force Office of Scientific Research grant FA9550-04-0085 are thankfully acknowledged.

459



460 LINGYU YU AND VICTOR GIURGIUTIU

1.1. Motivation. Traditionally, guided waves are generated by ultrasonic transducers that obliquely im-
pinge onto a thin-wall structure. However, such ultrasonic transducers are unsuitable for in-situ SHM due
to their cost, weight, and size. They cannot be attached in large numbers onto a structure without incur-
ring important cost and weight penalties. The advent of commercially-available low-cost piezoelectric
wafers has opened new opportunities for ultrasonic testing. Piezoelectric wafer active sensors (PWAS)
are inexpensive lightweight unobtrusive transducers, which are well suited for SHM applications. These
devices can be permanently attached to the structures for the generation and detection of guided waves
[Giurgiutiu and Zagrai 2000]. Typical PWAS weigh 68 mg, are 0.2 mm thick, and cost less than US$10.

The advantages of using a phased array of transducers for ultrasonic testing are multiple [Moles et al.
2005]. Ultrasonic phased arrays use ultrasonic elements and electronic time delays to create wave beams
by constructive wave interference. Rather than using a single transducer, the phased array utilizes a group
of transducers located at distinct spatial locations. By sequentially firing the individual elements of an
array at slightly different times, the ultrasonic wave front can be focused or steered in specific directions
[Krautkramer and Krautkramer 1990]. The relative amplitudes of the signals radiated by the individual
array elements determine the effective radiation pattern of the array. If the amplitude at a certain distance
is the same for all directions, the wave field of the ultrasonic element is called omnidirectional. An array
constructed of such elements, will have an effective radiation pattern that is uniquely determined by
the beam steering algorithm alone. Inspection of a wide area can be achieved from a single location by
electronically sweeping and/or refocusing the wave beam without physically manipulating the transducer.
The backscattered ultrasonic signals received and stored in the computer can be numerically analyzed
and mapped into an inspection image.

Current ultrasonic phased array technology employs pressure waves generated by ultrasonic trans-
ducers through normal impingement on the structural surface. Such phased arrays have shown clear
advantages in the inspection of very thick specimens and in the sidewise inspection of thick slabs, where
electronic beam scanning and focusing have produced significant improvements in the inspection effi-
ciency. However, they cannot be efficiently used in thin-wall structures because of the small relative
thickness of such structures. New transducers are therefore needed for efficient Lamb wave SHM using
phased array technology.

PWAS phased arrays are capable of in-situ scanning of a large structural area using guided waves but
without the need for actual physical scanning being performed. This advantage steers from the capability
of PWAS phased array to see large areas from a single location [Giurgiutiu and Bao 2002]. A permanently
mounted array of unobtrusive PWAS transducers was shown to map an entire half-plate and detect a small
crack using the embedded ultrasonics structural radar (EUSR) methodology [Giurgiutiu et al. 2006]. The
EUSR image resembles the C-scan of conventional ultrasonic surface scanning but without the need for
actual physical motion of the transducer over the structural surface. Building onto these earlier results,
this paper presents the results of a sustained effort to improve the EUSR-PWAS phased array concept
through a generic phased-array formulation and the use of advanced signal processing methods. Phased-
array design optimization is also discussed for better wave beam steering. This effort has resulted in
increased detection capability, refined detection resolution, and extended detection range [Giurgiutiu and
Yu 2006].
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1.2. Background. The PWAS phased array technique is based on two important concepts: the use of
PWAS for Lamb wave generation and detection, and the tuning between Lamb waves and PWAS that
permits the transmission and reception of selective Lamb-wave modes, as appropriate for phased-array
implementation. These concepts are briefly reviewed in this section.

PWAS coupled Lamb waves. When guided waves travel between two parallel surfaces which are suffi-
ciently close, for example, a plate having a thickness of the order of a wavelength or so, they are called
Lamb waves [Viktorov 1967]. In our work, Lamb waves were excited and detected using PWAS. PWAS
operates on the piezoelectric principle that couples the electrical and mechanical variables in the material

Si j = s E
i jkl Tkl + dki j Ek, D j = d jkl Tkl + εT

jk Ek,

where s E
i jkl is the mechanical compliance of the material measured at zero electric field (E = 0), εT

jk is the
dielectric permittivity measured at zero mechanical stress (T = 0), and dki j represents the piezoelectric
coupling effect. In Lamb wave application, PWAS couple their in-plane motion with the Lamb wave
particle motion on the material surface. As an active sensor, PWAS can be used as transmitters and
receivers to excite and detect Lamb waves. A surface mounted PWAS will couple with both the symmetric
Lamb wave modes (S0, S1, S2, . . . ) and the antisymmetric Lamb wave modes (A0, A1, A2, . . . ).
Figure 1 illustrates PWAS interaction with the S0 and A0 Lamb wave modes. Similarly to conventional
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 Figure 1. PWAS interaction with Lamb modes: top, symmetric mode S0; bottom, anti-
symmetric mode A0 [Giurgiutiu 2005].
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ultrasonic transducers, PWAS can be used in pitch-catch, pulse-echo, phased array, etc. An extensive
description of the use of PWAS for SHM can be found in [Giurgiutiu et al. 2006].

Lamb wave mode selection through PWAS tuning. Lamb waves are dispersive, that is, their phase velocity
varies with the frequency, f , and the thickness of the material, 2d . In addition, for any given frequency, at
least two modes are present. The simultaneous presence of two or more Lamb wave modes complicates
the use of Lamb waves for detecting structural damage. Besides, certain damage is more detectable with
certain Lamb wave modes. In particular, the S0 wave mode is better for the detection of through-the-
thickness cracks and A0 mode is better for corrosion and disbonding. For PWAS phased array application,
it is better to selectively excite low-dispersion Lamb wave modes, such as S0 at low f d value. Given
the PWAS length 2a, wall thickness 2d, and material properties µ and λ, it is possible to find tuning
frequencies at which only one mode is excited; see [Giurgiutiu 2005]. A plane-strain analysis of the
PWAS-structure interaction using the space-domain Fourier analysis was developed in the same paper
to illustrate the principle of PWAS Lamb-wave mode tuning and open a path for a more comprehensive
analysis. The analysis yielded the forward wave solution in the form

εx(x, t)= − j
aτ0

µ

∑
ξ S

sin ξ Sa
NS(ξ

S)

D′

S(ξ
S)

e j (ξ S x−ωt)dξ − j
aτ0

µ

∑
ξ A

sin ξ Aa
NA(ξ

A)

D′

A(ξ
A)

e j (ξ Ax−ωt)dξ, (1)

where τ0 is the interfacial shear stress and ξ S , ξ A are the symmetric and antisymmetric wave numbers.
The expressions for NS, DS, NA, DA are detailed in [Giurgiutiu 2005] and will not be repeated here. The
summations in (1) cover all the symmetric (ξ S) and antisymmetric (ξ A) Lamb wave modes that exist for
a given value of ω in a given structure. The function sin(ξa) in (1) displays maxima when the PWAS
length 2a equals an odd multiple of the half wavelength. Several such maxima and minima exist, each
associated with a certain Lamb wave mode and its wavelength. These maxima and minima allow us to
achieve Lamb mode tuning. A selected Lamb mode can be tuned by choosing the appropriate frequency
for given PWAS dimensions. A plot of the strain solution in the 0 ∼ 700 kHz bandwidth for 7-mm square
PWAS installed on a 1-mm thick aluminum plate is presented in Figure 2, left, while the right half of
the figure gives the dispersion curves. An S0 tuning frequency can be found around 210 kHz, where the
amplitude of the A0 mode is minimized while that of the S0 is still strong. In this way, we achieve tuning
of the S0 mode and reject the A0 mode. Lamb wave tuning offers considerable advantages by allowing
us to select the Lamb waves that are most appropriate for the particular application.

2. Lamb waves PWAS phased array design and implementation

One can employ various methods to steer and focus ultrasonic waves in certain directions. Among
these methods, delay-and-sum beamforming is the oldest and simplest [Johnson and Dudgeon 1993].
The delay-and-sum beamforming was implemented in PWAS phased arrays as the embedded ultrasonic
structural radar (EUSR) algorithm [Giurgiutiu et al. 2006; Yu and Giurgiutiu 2005b]. EUSR assumes
that data from an M-element PWAS array is collected in a round-robin fashion by using one element at
a time as transmitter and all the elements as receivers. With a total of M2 data signals, EUSR conducts
the beam scanning in virtual time as a signal post-processing operation. The EUSR beamforming and
scanning procedure does not require complex devices, nor multichannel electronic circuitry as needed
by the conventional ultrasonic phased array equipment. EUSR implementation of PWAS phased arrays
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Figure 2. Lamb wave S0 mode tuning. Left: predicted Lamb wave strain curve of a
1 mm aluminum plate installed with a 7 mm square PWAS. Right: dispersion curves
within 0 ∼ 700 kHz range.

requires only a function generator, an oscilloscope, a switching device, and a computer [Giurgiutiu et al.
2006].

The original EUSR algorithm uses the parallel rays approximation to simplify the beamforming cal-
culation. This simplifying assumption is only valid if the target is far away from the phased array. If
the scanning field is not sufficiently far away, the parallel ray approximation error is not negligible and
the method breaks down. This can be explained as follows. When the target is not sufficiently far away
from the array, that is, it is in the near field (Figure 3a), the propagating wave front is curved (circular
wave front) and the wave propagating directions vary with the PWAS location. In this situation, wave
propagation direction varies from PWAS element to PWAS element and individual direction vectors need
to be assigned to each PWAS. Using antenna theory [Johnson and Dudgeon 1993], we define the near
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Figure 3. Wave fronts of a PWAS array: (a) near field; (b) far field.
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field and far field, respectively, as the regions in which

0.62

√
D3

λ
< Rnear ≤

2D2

λ
, Rfar >

2D2

λ
, (2)

where D is the array aperture and λ is the excitation wavelength. Only when the target meets the far
field criterion, the wave fronts are plane waves and wave propagation directions are the same for all of
the array elements.

In the region R ≤ 0.62
√

D3/λ, phased array theory is no longer valid; however, other methods for
damage detection such as PWAS electromechanical impedance technique [Zagrai and Giurgiutiu 2001]
can be employed.

2.1. Generic beamforming formulation for PWAS Lamb waves phased arrays. We developed generic
PWAS beamforming formulas for wave beam steering at any point either in the near field or in the far
field. The following assumptions are made:

• All the PWAS elements in the array lie in the same plane and behave as point-wise sources and
receivers (omnidirectional);

• Monochromatic excitation and reception, without considering the dispersion of guided waves and
the waves are propagating at a constant speed c in an isotropic material;

• Simultaneous excitation along the array elements.

The beamforming onto a target P(Er , φ) using an M-PWAS phased array with elements {Esm} is con-
sidered. The origin of coordinate system is defined in the phase center, that is,

∑
Esm/M = 0, for

m = 0, 1, . . . ,M − 1. For all waves arriving at the target P , the delay-and-sum beamforming consists of
two steps:

(1) applying a delay 1m and a weighting factor wm to the propagating wave from the m-th PWAS,
f (Erm, t);

(2) summing up the output signals of the total of M PWAS.

This procedure can be expressed as

z(Er , t)=

M−1∑
m=0

wm f (Erm, t −1m).

For a single-tone radial wave, the wave front at a point Er away from the source can be expressed as

f (Er , t)=
A√
|Er |

e j (ωt−Ek·Er) (3)

with Ek is the wave number, Ek = Eξ ·ω/c, and ω is wave frequency of the wave. For an M-element array,
we apply (3) to each array element m, where m = 0, 1, . . . ,M−1 (see Figure 4). The m-th element is
assumed at location Esm , whereas the direction vector from m-th element to the target is defined as Eξm .
The following notations apply

Eξ =
Er
r
, r = |Er |, Ek = Eξ ·

ω

c
, Erm = Er − Esm, rm = |Erm |, Eξm =

Erm

|Erm |
, Ekm = Eξm ·

ω

c
,
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Figure 4. Schematic of the geometry of the m-th PWAS and the target at P(Er , φ).

where Ekm is the wave number of the wave propagating in the direction of Eξm .
The synthetic wave front arriving at target P(Er , φ) resulting from the superposition of the waves

generated by the M sources can be written as

z(Er , t)=

M−1∑
m=0

wm f (Erm, t)=

M−1∑
m=0

wm ·
A

√
rm

e j[ωt−Ekm ·Erm ]. (4)

Generic beamforming: the triangular algorithm. Equation (4) is rewritten in the form

z(Er , t)= f
(

t −
r
c

)
·

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c , (5)

where the first multiplier represents the wave front emitting from a single source at the origin and is
independent of the array elements. This wave is to be used as a reference for calculating the needed time
delay for each elementary wave. The second multiplier is a summation which is the total effects caused
by individual sources, various weighting factors and locations. Equation (5) shows that the synthetic
signal z(Er , t) is controlled by the multiplier

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c ,

which depends on the weighting factors wm , the location r of the target, and the locations Esm of the
PWAS sources. We identify this multiplier as the beamforming factor, BF , given by

BF(wm, r, sm)=

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c . (6)

Equation (6) is the direct beamforming of a group of M-PWAS fired simultaneously. To achieve beam-
forming in a certain direction φ0, we apply certain delays to the signals from each element. The delays
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are defined as 1m(φ0), m = 0, 1, . . . ,M − 1. Then, the beamforming formula in (6) gives

BF
(
wm, r, sm, φ0,1m(φ0)

)
=

M−1∑
m=0

wm
1

√
rm/r

e jω
( r−rm

c −1m(φ0)
)
,

where rm is a function of sm and φ0. Beamforming is achieved when the delays 1m(φ0) are chosen in
such a way as to maximize BF . We observe that a maximum of BF

(
wm, r, sm, φ0,1m(φ0)

)
is achieved

if the exponential in summation equal to one, that is,

r − rm

c
−1m(φ0)= 0 (beamforming condition), (7)

which yields the delays to be applied to each element:

1m(sm, φ0)=
r(φ0)− rm(sm, φ0)

c
, m = 0, 1, . . . ,M − 1. (8)

Notice that the delays not only depend on the desired maximum beamforming direction, but also depend
on the location of the PWAS sources. Using the delays 1m(sm, φ0), the beamforming factor at the
particular direction φ0 reaches a maximum, that is,

BFmax(wm, r, sm, φ0)=

M−1∑
m=0

wm
1

√
rm(sm, φ0)/r

.

The maximum beamforming depends on the beamforming direction φ0, besides the weighting wm , target
P(r, φ), and PWAS source location sm .

Further manipulation of the beamforming can be obtained by adjusting the weighting factors wm . Thus
far, we conclude that by applying proper time delays and weightings, the phased array beamforming at
a desired direction can be achieved. When the beam steering direction φ0 changes, the phased array
beamforming will accomplish scanning.

Far field beamforming: the parallel algorithm. If the target meets the far field condition, the parallel ray
assumption applies. The generic formulas developed in the previous section can be simplified to become
independent of the target radial position. Since the propagation directions of the waves are now parallel
to each other, we have

Erm ‖ Er , Eξm ≈ Eξ,
√

rm ≈
√

r , Ekm ≈ Eξ ·
ω

c
= Ek, m = 0, 1, . . . ,M − 1.

After applying delay and weighting, the beamforming factor becomes

BF(wm, Esm, φ0)=

M−1∑
m=0

wme jω
( Eξ ·Esm

c −1m(φ0)
)
. (9)

For a particular direction φ0, the beamforming factor can be achieved by setting 1m(φ0) = Eξ · Esm/c.
Substituting that into (9) gives a beamforming factor that depends only on weight wm , that is,

BF max(wm)=

M−1∑
m=0

wm .
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Figure 5. Schematic of an M-PWAS phased array. The coordinate origin is located in
the middle of the array.

2.2. Directional beamforming of 1-D linear PWAS array. The generic PWAS phased array beamform-
ing formulas derived in the previous section will be first applied to the simplest and also one of the most
practical arrays, the 1-D linear array. This is achieved by placing the PWAS along a straight line. Here, a
M-PWAS linear array uniformly spaced at d is considered, as illustrated in Figure 5. The span (aperture)
D of the array is D = (M − 1) · d. With the coordinate system origin located in the middle of the array,
the location vector of the m-th element and the vector rm are

Esm =

[
d
(

m −
M−1

2

)
, 0

]
, Erm = Er − Esm .

Recall from Equation (5) that the synthetic wave front received at P(r, φ) from the M-PWAS array is

z(Er , t)= f
(

t −
r
c

)
·

M−1∑
m=0

wm
1

√
rm/r

e jω
r−rm

c .

The first multiplier represents a wave emitting from the origin and it is independent of the array elements.
This wave is to be used as a reference for calculating the needed time delay for each elementary wave.
The second multiplier, which controls the array beamforming, can be simplified by normalizing rm by
the quantity r , resulting in the beamforming factor

BF(wm,M)=
1
M

·

M−1∑
m=0

wm

exp
(

j 2π
λ
(1 − rm)

)
√

rm
.

The scale factor 1/M is used to normalize the beamforming factor. By further introducing two new
parameters, d/λ and r/d , the beamforming is rewritten as

BF
(
wm,M,

d
λ
,

r
d

)
=

1
M

·

M−1∑
m=0

wm

exp
(

j2π d
λ

r
d
(1 − rm)

)
√

rm
. (10)
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Figure 6. The original beamforming and directional beamforming at 45◦ of an 8 PWAS
phased array with d/λ= 0.5, r/d = 10, {wm} = 1.

For the far field situation, the simplified beamforming is independent of r/d , that is,

BF
(
wm,M,

d
λ

)
=

1
M

·

M−1∑
m=0

wm exp
(

j2π
d
λ

(
m −

M−1
2

)
cosφ

)
. (11)

The beamforming factor in (10) and (11) has a maximum value for φ0 = 90◦. This is the inherent
beamforming of the linear array. The inherent beamforming for an 8-PWAS array with {wm} = 1, d/λ=

0.5, and r/d = 10 is shown in Figure 6 (solid line). Notice that, indeed, the maximum beam is obtained
at 90◦.

Now applying “delays” δm(φ0) to steer the beam towards a preferred direction φ0 the beamforming is

BF
(
wm,M, d

λ
,

r
d
, φ0

)
=

1
M

·

M−1∑
m=0

wm

exp
(

j2π d
λ

r
d
(1 − rm − δm(φ0))

)
√

rm
. (12)

The beamforming factor of (12) reaches its maximum in direction φ0 when the delay δm(φ0) is

δm(φ0)= 1 − rm(φ0)= 1 −
|Er(φ0)− Esm |

|Er(φ0)|
.

By changing the value of φ0 from 0◦ to 180◦, we can generate a scanning beam. Simulation results of
the directional beamforming at φ0 = 45◦ are also shown in Figure 6.

2.3. PWAS array implementation: embedded ultrasonic structural radar (EUSR). The embedded ul-
trasonic structural radar (EUSR) methodology [Giurgiutiu and Bao 2002] was first developed under the
parallel rays approximation and the assumption of a 1-D linear PWAS array permanently attached onto
the structure. We generalize the original EUSR algorithm by implementing the beamforming of a generic
array configuration using the exact wave propagation paths theory presented in previous sections.
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For an M-PWAS array, with all elements fired simultaneously with the same excitation sT (t), the total
signal arriving at target P(r, φ0) is

sP(t)=

M−1∑
m=0

wm
1

√
rm

sT

(
t −

r
c

+
r − rm

c

)
, (13)

where 1/
√

rm represents the decay due to the omnidirectional 2-D wave radiation, r/c is the time traveling
to the target from the origin O , and (r − rm)/c is the time to the target from the m-th element. Wave-
energy conservation, that is, no dissipation, is assumed. If the elements are fired with certain delays
rather than simultaneously, that is, 1m(φ)= (r − rm)/c, Equation (13) becomes

sP(t)= sT

(
t −

r
c

) M−1∑
m=0

wm
1

√
rm
.

This shows a factor of the sum over the signal magnitude of the individual excitation sT (t).
If the delay 1m(φ) is taken at φ = ±φ0, a maximum transmitting wave directed to the target P(r, φ0)

is thus obtained through implementing delays in the firing of the elements in the array.
After the transmission signals arrive at target P , they will be scattered and picked up by the array.

The PWAS transducers serve now as receivers. The signal received at the m-th PWAS will arrive quicker
by 1m(φ) = (r − rm)/c. To synchronize all the received signals, we simply need to delay them with
1m(φ) = (r − rm)/c. Assume that at P(r, φ0) the incoming signal is backscattered with a backscatter
coefficient A; thus, the signal received at each PWAS will be

1
√

rm
sT

(
t −

r
c

+
r − rm

c

)
A

M−1∑
m=0

wm
1

√
rm
.

The receiver beamforming is obtained by assembling all the signals arriving at the same time, that is,

sR(t)=

( M−1∑
m=0

w′

m
1

√
rm

)
sT

(
t −

r
c

)
A

M−1∑
m=0

wm
1

√
rm
, (14)

where appropriate delays 1m(φ)= (r − rm)/c were used, and w′
m as the weighting for reception beam-

forming. Thus, the assembled received signal is further scaled by the factor
∑M−1

m=0 w
′
m/

√
rm .

If the location of target P(r, φ0) is indicated by the angle φ0, the coarse estimation of φ0 can be
implemented by using the φ0 sweeping method. For linear PWAS array, the EUSR algorithm scans
through 0◦ to 180◦ by incrementing φ0 at 1◦ each time, and then finding the direction where the maximum
received energy, max ER(φ0), is obtained. The received energy, ER(φ0) is defined as

ER(φ0)=

∫ tp+ta

tp

|sR(t)|2dt .

2.4. Proof-of-concept laboratory experiments. A smoothed toneburst signal of carrying frequency fc

was used to excite S0 Lamb wave mode in the PWAS array experiments. The PWAS Lamb-wave tuning
principles [Giurgiutiu 2005; Bottai and Giurgiutiu 2005] were used to achieve the tuning frequency. The
general form of the tone-burst excitation was sT (t) = s0(t) cos 2π fct , where s0(t) is a short-duration
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Figure 7. EUSR experiment using an 8-PWAS array: specimen layout and experiment setup.

smoothing Hanning window between 0 and tp that is applied to the carrier signal of frequency fc. The
values tp is calculated by tp = Nc/ fc where Nc is the count number. Since S0 is quasi-nondispersive for
our f d range, we assume a constant wave speed c, and the wavelength λ was determined as λ= c/ fc.

The laboratory proof-of-concept experiments use a set of 1220 mm square 2024 T3 aluminum plates
of 1 mm thickness with different damage types. A PWAS array consisting of eight 7-mm round PWAS
spaced at 8 mm pitch was installed in the center of the plate, as illustrated in Figure 7, left. The damage
was simulated by fully penetrated 1-mm wide and 20-mm long slits representing cracks and pin holes
of various diameters. A 3-count toneburst signal was used as the excitation. The carrying frequency fc

was defined in the range 100 ∼ 600 kHz until the S0 modes was tuned at 300 kHz.
The experimental setup (Figure 7, right) includes a HP33120 function generator to send the excitation

and a TDS210 digital oscilloscope to collect the signals. The collected signals were stored in a computer
through the GPIB interface. A round-robin pattern was used for signal excitation and collection. At
each time, one PWAS acted as transmitter to send out the excitation signal and all the PWAS served as
receivers to pick up the reflection signals.

Then all the elements in the array serve as transmitters in turn. By this means, when the round-robin
data collection is done, a total of M2 signals are recorded. The switch between transmitters and receivers
is implemented through the PWAS-ASCU unit described in [Liu and Giurgiutiu 2005]. A typical raw
signal recorded in the experiments is shown in Figure 8. The signal-to-noise ratio for the raw signal is
found to be 7.6.

The delay-and-sum beamforming procedure was processed as a post processing routine to generate a
virtual scanning beam using the improved EUSR algorithm. This is advantageous and different from the
traditional phased arrays instruments which have high device requirements for sending out all the phased
signals simultaneously through parallel channels.

The virtual scanning result from the EUSR is visualized as a 2-D image by mapping the wave magni-
tude. In addition, a display of an A-scan signal at a user selected direction is also provided. Figure 9 gives
an example of using the PWAS array EUSR to scan a specimen (plate #1) with a broadside crack located
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Figure 8. A typical raw signal collected in the proof-of-concept experiment with close-
up plot of echo from crack.

about 305 mm in front of the array. The excitation frequency was tuned to 300 kHz where the S0 wave
was dominant (Figure 9c). At this frequency, the S0 wave propagates at speed 5440 m/s with λ= 18 mm.
The dark stripe seen in Figure 9b at position of 90◦ and about 305 mm away from the array indicated
the presence of the broadside crack. Figure 9d gives the A-scan signal at 90◦ and 30◦. Note here that
an observation window is used to maximize the display by removing the initial bang and the reflections
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Figure 9. Proof-of-concept PWAS EUSR scanning experiment for detecting a broadside
crack: (a) schematic of half a plate with a broadside crack; (b) mapped EUSR scanning
image; (c) S0 mode tuning curve for using 8 mm round PWAS in a 1 mm thick aluminum
plate; (d) selected A-scan at 90◦.
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from the boundaries. The estimated signal-to-noise ratio for the crack echo was signal-to-noise ratio of
approximately 38, a great enhancement when compared with the raw signal.

The scanning image obtained from the experiment shows that EUSR can correctly show the presence
of the crack and indicates that the crack is centered at 90◦ and around 305 mm in front of the array. These
results match quite well the actual situation. However, there are a couple of dark stripes on the picture
in Figure 9b and the estimation of the crack size is rather coarse. Further work was found needed to
improve the image quality, as shown in the next section.

3. Advanced signal processing for EUSR

Observing the A-scan signals in Figure 9d, it is realized that the multiple lines shown in scanned image
is actually caused by the multiple local maxima in the rectified signal. Such an influence can be removed
by rectifying the signal and replacing it with its envelope. Moreover, background noise is present at
all the time, resulting the circular ripples in the scanned image. To remove these problems, we added
the Hilbert transform and thresholding to the post-processing of the EUSR system. These modules we
inserted immediately after the beamforming algorithm and before the visualization section. In addition,
we applied denoising and filtering at a particular frequency component using wavelet analysis and time-
of-flight detection through cross correlation methods.

3.1. Essential signal processing. Two methods, the Hilbert transform and the thresholding process, are
used as essential signal processing to enhance the EUSR image quality.

Envelop extraction using Hilbert transform. Envelope represents the absolute amplitude of a signal. It
can be easily extracted through the Hilbert transform. Hilbert transform is widely used to construct an
analytical signal which has the envelope of the original signal. The Hilbert transform of a signal x(t) is
defined as (see [Poularikas 2006, Chapter 10])

H(x(t))= −
1
π

∫
+∞

−∞

x(τ )
t − τ

dt .

To build an analytical signal x̃(t), the original signal x(t) is employed to construct the real part, the
Hilbert transform H(x(t)) is employed to construct the imaginary part, that is, x̃(t)= x(t)+ j H(x(t)).
The analytical signal x̃(t) has the property that it has the same envelope as the original signal, that is,
|x̃(t)| = |x(t)|. Hence we can find the envelop of the original signal x(t) by taking the magnitude of the
analytical signal x̃(t). Figure 10 demonstrates the envelope of an A-scan signal recorded at 90◦ extracted
with the Hilbert transform [Yu and Giurgiutiu 2005a]. The original echo of the crack shows many local
maxima, which introduces difficulties in automatically detecting the location of the crack (as the case
shown in Figure 9b). After extracting the envelope, there is only one peak to consider, and peak detection
method can be easily applied.

Thresholding. As shown in Figure 9b, some background noise shows up in the image, resulting in the
ripples in the image. To remove these ripples, a thresholding process is included after the Hilbert trans-
form. By this means, noise signal below the threshold value will be discarded. The original and improved
EUSR scanning image of the broadside crack specimen are shown in Figure 11.
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Figure 10. Envelope extraction by the Hilbert transform.

3.2. Additional advanced signal processing. As options, more modules have been developed for more
signal processing objective as well. These modules include denoising by discrete wavelet transform,
single frequency component filtering by continuous wavelet transform, and precise measurement of TOF
by cross correlation method. Details of this development can be found in Yu and Giurgiutiu [2005a]. An
overview is given next.

Denoising by discrete wavelet transform (DWT). Based on multiresolution analysis (MRA), the discrete
Wavelet transform (DWT) provides a tool for decomposing signals into a set of elementary mutually-
orthogonal building blocks, called wavelets. The DWT is defined as

cm,n =

∫
+∞

−∞

x(t)9m,n(t)dt, 9m,n(t)= 2−m/29(2−m t − n),

where 9m,n(t) are orthonormal wavelets obtained by shifting and dilating a mother wavelet 9(t). The
coefficients cm,n are usually considered as the result of a filter being applied to the signal; the filter is
working as a highpass filter and a lowpass filter to extract the signal’s approximation and detail informa-
tion, respectively. After each filtering process, half of the frequencies of the original signal are removed.
At the same time, half the signal samples can be discarded by a downsampling process of a factor of 2

(a)

 

(b)

 

 

Figure 11. EUSR inspection results: original image (left) and improved image after
Hilbert transform and thresholding process (right).
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Figure 12. A 3-level DWT denoising using Mayer wavelet: (a) original signal from
broadside experiment; (b) denoised clean signal; (c) removed noise.

consistent with the Nyquist rule. Such a decomposition process will continue for l times (called DWT
level) until data remaining is within the user-defined allowable error range, defined in the filter bank
theory [Boggess and Narcowich 2001]. Therefore, the original signal is separated into two parts, the
approximation part, that is, the denoised signal, and the details part, that is, the removed noise. As an
example, a raw signal recorded in the broadside experiment was processed by a 3 level DWT using
the Mayer wavelet. Figure 12a shows the processed original data. Note that, in this proof-of-concept
experiment, the noise level is not severe. After DWT denoising, certain noise (shown in Figure 12c at
a zoomed scale) was removed and a much cleaner signal was obtained (Figure 12b). The small ripples
were significantly reduced (see the circled segments between wave packets). The large components at
the beginning of the noise caused by truncation in initial bang, which were not removed, but they will
be later discarded through time windowing.

Filtering by continuous wavelet transform (CWT). Another way to remove disturbance is offered by the
continuous wavelet transform (CWT). The CWT of signal x(t) using the mother wavelet ψ(t) is

CW T (a, τ )=
1

√
|a|

∫
x(t)ψ∗

( t−τ
a

)
dt, (15)

where a is the scale (or dilation) factor, τ is the translation (or time shift) of the wavelet with respect to
the signal, and the factor 1/

√
|a| is introduced for energy normalization at different scales. The resulting

scale-frequency representation of the magnitude squared, |CW T (a, τ )|2, is the scalogram

|CW T (a, τ )|2 =
1
|a|

∣∣∣∣∫ x(t)ψ∗

( t−τ
a

)
dt

∣∣∣∣2

.
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Figure 13. CWT filtering at 300 kHz using Mayer wavelet: (a) original signal; (b) CWT
filtered result.

The relation between the scale and the filtering frequency f is

f =
dimensionless center frequency of the wavelet

(scale) × (sampling interval)
. (16)

With Equations (15) and (16), we see that a certain frequency component of interest can be extracted by
performing the CWT at the corresponding single scale. We named this process CWT filtering. In PWAS
array application, though excitation at tuned frequency is employed, the signal contains multifrequency
components due to tone-burst characteristics (having certain bandwidth). With CWT filtering, only the
frequency component at the wavelet level corresponding to the excitation frequency is used in the recep-
tion signals, reducing the influence of spectrum spread and dispersion. By this means, disturbances from
other frequencies can be removed. Figure 13 gives the filtering result of the same raw signal as used in
the DWT denoising. The CWT filtering used the Mayer wavelet to extract the frequency component at
300 kHz, which is the excitation frequency. Filtered result is shown in Figure 13b. In addition to the
reduced background noise, it is interesting to observe that the 300 kHz component in the initial bang was
also extracted with more focused energy. This illustrates the advantage of CWT over DWT filtering.

TOF detection by cross correlation. Cross correlation is widely used to detect similarities in two signals.
The cross correlation Rxy(m) of two discrete signals x(n) and y(m) of length N is defined by

Rxy(m)=
1
N

N−1∑
n=0

x(n)y(n − m).

When the input signal x(n) slides along the time axis of the correlated signal y(m) with a small step,
the similarity of the overlapped part of two signals is compared. If the two signals are completely not
similar (unrelated), the correlation coefficient is 0, while if they are identical, the correlation coefficient
is 1. For real signals, the cross correlation method can reduce the noise since the noise is not related to
the signals and not auto-related either.

In our application, since the reflection caused by the damage resembles the original excitation, its
arrival time (TOF) can be extracted using the cross correlation method. Figure 14 illustrates this idea. A
signal received at PWAS (Figure 14b) is correlated with the 3-count toneburst excitation (Figure 14a),
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Figure 14. Cross-correlation for detecting TOF of the echo from the crack: (a) window-
smoothed tone-burst excitation; (b) received signal; (c) cross-correlation coefficients of
the signals.

generating a sequence of cross correlation coefficients (Figure 14c). The local maxima represent the
time instants when the wave packets have largest similarity with the toneburst, that is, at the arrival time
of the wave packet. To locate the TOF of echo from the crack, a time window can be used to cut off
influences from the initial bang and boundary reflections. After the TOF is obtained, the location of the
crack l can be estimated using the wave propagation speed c, that is, l = c · TOF.

3.3. Experiments with improved EUSR. To further confirm EUSR detection ability, more experiments
were conducted on different specimens. These specimens include: (1) plate #2 with a broadside crack
inclined at 30◦; (2) plate #3 with a horizontally positioned offside crack located at 137◦; (3) plate #4
with a broadside pin hole of increasing diameter (0.5 mm, 1 mm, 1.57 mm, 2 mm); (4) plate #5 with
two aligned horizontally positioned offside cracks at 67◦ and 117◦, respectively. Specimen schematics
are shown in Figure 15. All plates have the same dimension as the one used in the proof-of-concept
experiment and the perpendicular distances from the damage to the array are 301 mm for all the plates.

To compare the imaging of the horizontal broadside crack specimen and the 30◦-inclined crack spec-
imen, these EUSR images are presented side-by-side in Figure 16. It is noticed that the image of the
inclined crack is a little further away from the array. This is because some incipient waves were reflected
away due to the slope. The inclined-crack footprint in the EUSR image is also smaller than the parallel
crack. This leads to the idea of an effective crack length, Le = L cosα, where α = 30◦. The slope of the
crack was not clearly indicated in Figure 16, right. We believe that this is due to the lack of resolution
inherent in the 300 kHz S0 Lamb wave used in the detection, which is with the crack length (λS0 ≈ 16 mm
at 300 kHz).

The pin hole damage detection in plate #4 was started from diameter 0.5 mm and then gradually
enlarged to 1 mm, 1.57 mm, and 2 mm (in accordance with available drill bit sizes). EUSR failed to
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Figure 15. EUSR proof-of-concept experimental specimen schematics (all cracks are
20 mm long, 1 mm wide).

detect the pin hole of 0.5 mm diameter. Neither did it detect the pin hole of 1 mm diameter. When the
hole was enlarged to 1.57 mm, EUSR gave a precise indication for the pin hole location, as shown in
Figure 17, left. We considered this dimension as the minimum detectable damage dimension at this
inspection frequency. The EUSR image of the 2 mm pin hole was even stronger, as shown by Figure 17,
right, which is more intense than the left counterpart for the 1.57-mm pin hole.

Figure 18, left, shows the EUSR scanning image of the plate #3, which has a single offside crack
at 137◦. Since the crack orientation is parallel to the array alignment, most of the incipient waves are
reflected away and no specular reflection is present. However, diffraction at crack tips creates suffi-
cient back scatter waves to permit detection. The resulting EUSR image shows the presence the crack,
verifying that EUSR PWAS phased array can detect cracks which are located in nonoptimal positions.
The scanning of plate #5, which has two offside cracks at 67◦ and 117◦, is shown in Figure 18, right.

(a)

 
Plate #1

(b)

 
Plate #2

 

Figure 16. EUSR scanning images of the broadside crack specimens. Left: EUSR
image of plate #1 with a broadside crack. Right: EUSR image of plate #2 with an
inclined broadside crack.
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Figure 17. EUSR scanning images of the pin hole specimen. Left: EUSR image of the
1.57 mm pin hole. Right: EUSR image of the 2 mm pin hole.
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Figure 18. EUSR scanning images of the offside crack specimens. Left: EUSR image
of plate #3 with an offside crack at 137◦. Right; EUSR image of plate #5 with two
offside cracks at 67◦ and 137◦, respectively.

Both cracks are clearly detected in the image with correct center positions. This proves the multicrack
detection capabilities of the EUSR PWAS method.

4. PWAS phased array optimization

The PWAS phased array beamforming at certain direction φ0 is affected by several parameters:

• spacing between neighboring PWAS, d;

• number of PWAS, M ;

• steering angle, φ0;

• weighting factors, {wm}.

Among these parameters, the effect of spacing d is always measured by the wavelength λ. Since
λ= c/ f , when the wavelength λ changes with the frequency, the ratio of d/λ will also change. For the
triangular beamforming, there is an extra parameter needed to be considered, the ratio of r/d . Therefore,
the effect of parameter d can be represented by the ratio d/λ and the ratio r/d. If all the weighting
factors are the same ({wm} = constant), that is, all PWAS in the array are excited uniformly, this type
of phased array is called uniform array. Otherwise, it is called nonuniform array. We will use the
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Figure 19. Beamforming at 120◦ of an eight PWAS phased array spacing at 0.5λ with
various r/D value.

triangular beamforming algorithm to explore how these parameters affect the uniform PWAS phased
array beamforming and then find out how the beamforming is modified by the weighting factors.

4.1. Uniform PWAS phased array. First we consider an M-element uniform PWAS array equally spaced
at pitch d with equal weights, wm = 1.

Effect of the r/d ratio. The ratio r/d determines whether a target is located in the far field or the near
field of the phased array. If the target is in the near field, we have to use the exact triangular algorithm.
Otherwise, we use the parallel ray approximation. To better quantify this ratio, the array span D is used
instead of d using D = (M − 1)d . The field definitions of (2) can be expressed in terms of r/D

0.62

√
(M − 1)

d
λ
<

( r
D

)
near

≤ 2(M − 1)
d
λ
,

( r
D

)
far
> 2(M − 1)

d
λ
.

These definitions show that, for a particular application of an eight PWAS array spaced at half wavelength
(d = λ/2), the near field is contained in the interval r ∈ (1.16D, 7D], while the far field is the outside
area (r > 7D). Beamforming simulations with r/D value evolving from 1, to 2, 5, 7, and 10 are shown
in Figure 19 for a PWAS array directed at 120◦.

The simulation used parameters from the laboratory experiments, that is, aluminum plate of 1 mm
thickness and 3-count toneburst at fc = 300 kHz. Figure 19 shows that very close to the array field
(r/D = 1), directional beamforming does no longer exist (dashed line). However, as the target moves
away from the array (entering near field, r/D = 2), directional beamforming starts to take shape. The
beamforming is getting better when far-field conditions are approached (r/D = 5). In far field, where
parallel rays approximation applies, the effect of r/D vanishes. No significant difference can be noticed
between r/D = 7 and r/D = 10.

Effect of the d/λ ratio. The ratio d/λ shows the influence of spacing on array beamforming. Simulation
results of an eight PWAS array directed at 120◦ with various d/λ values are shown in Figure 20. By
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Figure 20. Beamforming at 120◦ of an eight-PWAS array with r/D = 10 using various
d/λ: (a) d/λ≤ 0.5; (b) d/λ > 0.5.

comparing the beams, it can be seen that the beam width becomes smaller and smaller as d/λ increases.
However, the number of sidelobes also increases. For larger d/λ value, narrow beam width (better
resolution/directivity) is achieved, but more sidelobe disturbing are also presented.

It is also noticed that, for beamforming at d/λ= 0.75 and beyond (Figure 20b), besides the mainlobe
at the desired angle of 120◦, there are other strong and disturbing lobes showing up at other undesired
directions. Such lobes are called grating lobes; they are caused by spatial aliasing [Johnson and Dudgeon
1993]. Grating lobes can have magnitudes as big as the mainlobe magnitude. The grating lobes are
not desired and should be avoided because they give misleading scanning results. According to the
spatial sampling theorem [Johnson and Dudgeon 1993], in order to avoid spatial aliasing, the spacing
d between elements should be smaller or equal to the half wavelength (d/λ≤ 0.5). Otherwise grating
lobes may appear. In practical implementation, this rule should be verified after frequency tuning. For
the 300 kHz tuning frequency used in the proof-of-concept experiments, the ratio d/λ has the value
d/λ= 0.44 (d = 8 mm; c = 5440 m/s). Therefore, no grating lobes are were yet presented.

Effect of the number M of PWAS in the array. The discussion about the influence of the spacing pitch
on the array beamforming indicates that larger spacing may give better directional beams despite of their
byproduct, larger sidelobes. However, the spacing cannot be unlimitedly increased because of the spatial
sampling theorem. The number of elements in the array is another factor that affects the beamforming.
Figure 21 demonstrates how beamforming is modified by different M values, for example, M = 8 and
M = 16. The comparison shows the beamforming of a 16-PWAS array yields a much narrower mainlobe
and slightly stronger sidelobes than that of an 8-PWAS array. Increasing the number of elements is a
simple way to enhance beamforming with the small penalty of larger sidelobes. However, in practice,
more elements will result in wiring issue and will be limited by the available installation space.

Effect of the steering angle φ0. Steering angle φ0 (beamforming direction) is another factor that affects
the beamforming. Figure 22a and b shows beamforming at 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ directions using
eight-PWAS and sixteen-PWAS are arrays, respectively.

An overall examination of Figure 22 indicates that the best beamforming is achieved at φ0 = 90◦, with
a slender and focused beam. As the angle moves to either side of the 90◦ position, the beamforming
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Figure 21. Beamforming at 120◦ of PWAS array with r/D = 10 and d = 0.5λ using
different M . The beam in dash is obtained with M = 8 and the beam in solid is obtained
with M = 16.
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Figure 22. Beamforming at various steering angles with D/r = 10 and d = 0.5λ: (a)
an eight PWAS array; (b) a sixteen PWAS array.

worsens. At 0◦ and 180◦, the beamforming breaks down. In fact, at 0◦, the beamforming split into
two identical halves, one at 0◦, the other at 180◦. Such a lobe at 180◦ is called backlobe. As the
direction increases to 30◦ and 60◦, the back lobe shrinks and the main lobe becomes more directional.
Beamforming at 120◦ and 150◦ are symmetrical about the vertical center to that at 60◦ and 30◦. When
the mainlobe gets closer to 180◦ (such as 150◦), the back lobe starts again increasing. The directional
mainlobe is completely lost again at 180◦. This observations show that a linear PWAS array does not
have a complete 180◦ view but a smaller one. The result in Figure 22b confirms the conclusion, but
certain improvements due to the increased number of elements are apparent. Comparing the results for
M = 8 to those for M = 16, we see that an array with larger M gives larger view area. No directional
beam was obtained at 30◦ by the eight-PWAS array, but it was achieved by the sixteen-PWAS array.

4.2. Nonuniform PWAS phased array. Now we consider the case of having different excitations for the
array’s elements, that is, beamforming of a nonuniform PWAS array. The various excitations, if known,
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can be processed as weighting factors and implemented in the EUSR algorithm, that is,

BF
(
wm,M,

d
λ
,

r
d
, φ0

)
=

1
M

·

M−1∑
m=0

wm

exp
(

j2π d
λ

r
d
(1 − rm − δm(φ0))

)
√

rm
.

Two widely used distributions, the binomial distribution and the Dolph–Chebyshev distribution, will be
used to determine the effect of relative excitation amplitudes in the array.

Binomial array. The coefficients wm for a binomial array can be obtained by using the binomial expan-
sion of the expression (1 + x)M [Johnson and Dudgeon 1993], that is,

(1 + x)M−1
= 1 + (M − 1)x +

(M − 1)(M − 2)
2!

x2
+
(M − 1)(M − 2)(M − 3)

3!
x3

+ · · · .

The positive coefficients of the series at different values of M serve as the relative amplitude distribution
wm for an M-PWAS array. Such a nonuniform array is thereby named a binomial array. For M = 8,
the amplitude weights are {1, 7, 21, 35, 35, 21, 7, 1}. Beamforming simulation results for a binomial
array at different d/λ values are shown in Figure 23a. Larger d/λ yields thinner mainlobe, that is, better
resolution/directivity. Figure 23a also shows that the beamforming of the binomial array has no sidelobes.
Actually, this is the most significant characteristic of binomial arrays. Comparison with the beamforming
of an equivalent uniform array is given in Figure 23b (at d/λ= 0.5). Although the binomial array has a
wider mainlobe, it has no sidelobe at all which gives stronger signal suppression in undesired directions.

The disadvantage of using binomial array becomes, however, apparent if we look at directional beam-
forming away from 90◦, for example, φ0 = 45◦. Figure 23c shows that the binomial array had already
a deteriorated beamforming at 45◦ whereas the equivalent uniform array still has a directional beam. In
addition, the zero sidelobe advantage is lost as we move away from vertical. The binomial arrays have
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Figure 23. Beamforming of eight PWAS binomial array with r/D = 10: (a) beamform-
ing at 90◦ of a binomial array with various d/λ values; (b) beamforming at 90◦ of a
binomial array and an equivalent uniform array with d/λ= 0.5; (c) beamforming at 45◦

of a binomial and equivalent uniform array with d/λ= 0.5.
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Figure 24. Beamforming of an eight PWAS Dolph-Chebyshev array with r/D = 10 and
d/λ= 0.5: (a) beamforming at 90◦ and 45◦; (b) beamforming at 90◦ of all three arrays;
(c) beamforming at 45◦ of all three arrays.

smaller view area than the equivalent uniform arrays and sidelobes may show up when departing from
front focus.

Dolph–Chebyshev array. Though binomial arrays have the unique property of zero sidelobe at 90◦,
they give larger beam width and smaller view area. Another feasible nonuniform array is the Dolph–
Chebyshev array utilizing the Chebyshev distribution. By assigning a sidelobe level, that is, the ratio
of mainlobe magnitude to the first sidelobe magnitude, the Dolph–Chebyshev array coefficients can be
derived [Balanis 2005]. To build an 8-PWAS Dolph–Chebyshev array, for a desired sidelobe level of 20,
the normalized coefficients wm are given by {0.357, 0.485, 0.706, 0.89, 1, 1, 0.89, 0.706, 0.485, 0.357}.
Beamforming at 90◦ and 45◦ of this Dolph–Chebyshev array with d/λ= 0.5 and r/D = 10 is shown in
Figure 24a. It can be seen that, with the designed sidelobe level, the sidelobes are significantly suppressed.
If beamforming at 90◦ of all the three arrays are compared (Figure 24b), we see

(1) considering the sidelobe level, the binomial array has the smallest sidelobes (zero sidelobe), followed
by the Dolph–Chebyshev array while the uniform array has the highest sidelobe level;

(2) considering the mainlobe width (directionality), the uniform array has the thinnest mainlobe and
the Dolph–Chebyshev array is slightly larger, with the binomial array of largest width.

Beamforming at 45◦ is shown in Figure 24c. At this direction, the Dolph–Chebyshev array still has low
sidelobes and directional beamforming. In summary, the Dolph–Chebyshev array is a good compromise
between sidelobe level and mainlobe width. While sidelobes are suppressed, its directivity at off angles
is still well maintained.

4.3. Experiments with weighted EUSR for nonuniform arrays. The simulation results presented in the
previous section have shown that the Dolph–Chebyshev array is expected to have much smaller sidelobes
when compared to the equivalent uniform array, while having almost the same mainlobe width. For the
binomial array, it is expected to have much smaller sidelobe level but with enlarged mainlobe width.
Using the experimental data from the broadside crack specimen collected with the 8-PWAS uniform



484 LINGYU YU AND VICTOR GIURGIUTIU

(a)

Phantom 
shadow 

 

(b)

 

(c)  

Figure 25. Crack detection using weighted EUSR algorithms on eight PWAS nonuni-
form arrays: (a) image of the original uniform array; (b) image of the Dolph–Chebyshev
array; (c) image of the binomial array.

array, we implemented the nonuniform arrays with the weighted EUSR algorithm. Figure 25a gives
the uniform array’s EUSR image before thresholding process. A phantom shadow is present as a ring
in which the crack shows up. Recalling the beamforming simulation results in Figure 24b, we know
that this is caused by the sidelobe effect. With either the Dolph–Chebyshev array or the binomial array,
the corresponding weighted EUSR algorithm should give better images with the phantom removed or
reduced. The scanning results of the two nonuniform arrays are shown in Figure 25b and Figure 25c,
respectively.

Immediately we observe that the sidelobe phantom has been sufficiently suppressed in both images,
as expected. But the crack size in the binomial array image is much wider than that of the uniform array.
The wider crack image further verifies that the binomial array produces the largest mainlobe width among
the three array considered in this study.

5. Conclusions

In this paper, we presented new developments of a novel SHM method, the embedded ultrasonic structural
radar (EUSR) [Giurgiutiu et al. 2006]. The EUSR method uses piezoelectric wafer active sensors (PWAS)
phased array to create directional Lamb wave for systematically interrogating large areas of a thin-wall
structure. After a brief presentation of using PWAS transducers to send and receive Lamb waves, we
introduced the frequency tuning technique that enables the application of phased array theory to PWAS
coupled Lamb waves.
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Original EUSR algorithm was developed on the parallel rays approximation in order to simplify the
beamforming calculation. However, the simplifying assumption is only valid when the target is far away
from the phased array and if the scanning field is not sufficiently far away, the method will deteriorate.
To overcome this problem, a generic beamforming formula, called triangular algorithm, was developed
by using exact wave traveling path for the calculation. Research results show that by applying proper
time delays and weightings, the phased array beamforming at a desired direction can be achieved through
this generic algorithm.

To verify the damage detection ability of PWAS phased array algorithm, a set of laboratory experiments
using a linear 8-PWAS array were conducted to detect various damages in aluminum plates. The beam-
forming is implemented as the signal post-processing algorithm, known as the EUSR method. This post
processing approach used in PWAS phase array implementation is advantageous over the conventional
ultrasonic phased arrays methods since sophisticated multichannel electronic devices are not needed to
precisely delay the individual signals going to the phased array elements. EUSR system collects data in
a round-robin fashion, then performs the scanning in virtual time, and presents the result as a 2-D image.
A proof-of-concept experiment was conducted and successfully verified the crack detection ability of the
EUSR approach.

To improve the display image quality, several advanced signal processing methods were discussed
for current or potential applications in EUSR routine. Signal preprocessing methods include the DWT
denoising to remove the noise and CWT fc-component filtering to eliminate the influence resulted from
spectrum spreading and Lamb waves dispersion. The signal post-processing after EUSR algorithm in-
cludes two steps. First Hilbert transform is used to extract the A-scan signal envelope thus avoiding
the ambiguity caused by multiple local peaks. Then the thresholding process is applied to remove the
background noise. Thus, a clear image with sharp contrast can be obtained to indicate the presence
of damage in the structure with better precision. To locate the position of the crack, TOF detection
module using the cross-correlation method was also implemented. Several experiments were conducted
to estimate the detection ability of the EUSR algorithm.

Beamforming properties of linear PWAS array were investigated. We found that several parameters
can be used to manipulate the output beamforming. They are: ratio d/λ, ratio r/d, number of elements
M , steering angle φ0, and weighting factors wm . The effects are concluded as following:

• Larger d/λ results in thinner mainlobe width. However, the requirement of d/λ ≤ 0.5 should be
met to observe the spatial sampling theorem. Otherwise, grating lobes are present.

• Larger r/d ratio results in better beamforming for the triangular algorithm.

• Larger M results in thinner mainlobe though the sidelobe level gets larger which wiring may become
an issue.

• The effective viewable area of linear arrays is less than 180◦. The actual range is affected by number
of elements and weighting.

• Weighting can further modify the beamforming, affecting, the mainlobe width, the sidelobes, and
viewable area.

Experimentally, two types of nonuniform PWAS arrays were implemented, the Dolph–Chebyshev
array and the binomial array. This was done by using a weighted EUSR algorithm. The results coincide
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with the simulation results: (1) in terms of mainlobe width, uniform array is the best, followed by the
Dolph–Chebyshev array while the binomial array yields the largest mainlobe; (2) in terms of sidelobes,
the binomial array can achieve the “no sidelobe” effect at 90◦ when spaced at half wavelength, while the
Dolph–Chebyshev array has manipulated sidelobe levels.

In a summary, the original contributions of this paper can be summarized as follows:

1. The paper presents an exact beamforming formulation using the exact wave traveling path rather
than using the conventional parallel ray approximation.

2. The paper explores how the PWAS phased array beamforming is affected by several phased array
parameters.

3. The paper presents how advanced signal processing methods can be used to improve the PWAS
phased array performance.

4. The paper verifies the potential application of nonuniform PWAS phased array in the pattern of
binomial array and Dolph–Chebyshev array.

Using proof-of-concept experiments, we have shown that the PWAS phased arrays implemented with
the EUSR algorithm has great potential for in-situ structural health monitoring. To apply this technique
to structures with complicated geometries or to detect small targets (weak reflectors) etc., more research
needs to be done. The use of the generic PWAS array beamforming formulas can be applied to 2-D
array configurations to obtain full range 360◦ scanning. Sustained theoretical research and technological
development will continue to be conducted to more this technique toward practical SHM implementation.
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