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ONE-DIMENSIONAL THERMOELASTIC WAVES IN ELASTIC HALF-SPACE
WITH DUAL PHASE-LAG EFFECTS

SNEHANSHU KR. ROYCHOUDHURI

The theory of thermoelasticity with dual phase-lag effects is employed to study the problem of one-
dimensional disturbances in an elastic half-space with its plane boundary subjected to (i) a constant step
input of temperature and zero stress, and (ii) a constant step input of stress and zero temperature. The
Laplace transform method is used to solve the problem. Expressions for displacement, temperature and
stress fields are obtained for small values of time. It is found that the solutions consist of two coupled
waves both of which propagate with finite speeds and attenuation, influenced by the two delay times
and thermoelastic coupling constant. The discontinuities that occur at the wave fronts are obtained. The
characteristic features of the underlying theory are analyzed by comparing the results of the present
analysis with their counterparts in coupled thermoelasticity theory (CTE) and in other generalized ther-
moelasticity theories ETE, TRDTE and TEWOED.

1. Introduction

Thermoelasticity theories which involve finite speed of thermal signals (second sound) have created much
interest during the last three decades. The conventional coupled dynamic thermoelasticity theory (CTE),
based on the mixed parabolic-hyperbolic governing equations of [Biot 1956; Chadwick 1960], predicts
an infinite speed of propagation of thermoelastic disturbances. To remove the paradox of infinite speed
for propagation of thermoelastic disturbances, several generalized thermoelasticity theories have been de-
veloped, which involve hyperbolic governing equations. Among these generalized theories, the extended
thermoelasticity theory (ETE) proposed by Lord and Shulman [1967] involving one relaxation time
(called single-phase-lag model) and the temperature-rate-dependent theory of thermoelasticity (TRDTE)
proposed by Green and Lindsay [1972] involving two relaxation times are two important models of
generalized theory of thermoelasticity. Experimental studies [Kaminski 1990; Mitra et al. 1995; Tzou
1995a; 1995b] indicate that the relaxation times can be of relevance in the cases involving a rapidly
propagating crack tip, a localized moving heat source with high intensity, shock wave propagation, laser
technique etc. Because of the experimental evidence in support of finiteness of heat propagation speed,
the generalized thermoelasticity theories are considered to be more realistic than the conventional theory
in dealing with practical problems involving very large heat fluxes at short intervals like those occurring
in laser units and energy channels. For a review of the relevant literature, see [Chandrasekharaiah 1986;
Ignaczak 1989].

Green and Naghdi [1977; 1992; 1993] formulated three different models of thermoelasticity among
which, in one of these models, there is no dissipation of thermoelastic energy. This model is referred to as
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the G–N model of thermoelasticity without energy dissipation (TEWOED). Problems concerning gener-
alized thermoelasticity theories and G–N theory have been studied by many authors [RoyChoudhuri and
Debnath 1983; RoyChoudhuri 1984; 1985; 1987; Dhaliwal and Rokne 1988; 1989; RoyChoudhuri 1990;
Chandrasekharaiah and Murthy 1993; Chandrasekhariah and Srinath 1996; RoyChoudhuri and Banerjee
2004; RoyChoudhuri and Bandyopadhyay 2005; RoyChoudhuri and Dutta 2005; 2005]. Tzou [1995a;
1995b] and Ozisik and Tzou [1994] have developed a new model called dual phase-lag model for heat
transport mechanism in which Fourier’s law is replaced by an approximation to a modification of Fourier’s
law with two different time translations for the heat flux and the temperature gradient. According to this
model, classical Fourier’s law Eq = −k E∇T has been generalized as Eq(P, t + τq) = −k E∇T (P, t + τT )

where the temperature gradient E∇T at a point P of the material at time t + τT corresponds to the heat
flux vector Eq at the same point at time t + τq . Here k is the thermal conductivity of the material. The
delay time τT is interpreted as that caused by the microstructural interactions (small-scale heat transport
mechanisms occurring in microscale) and is called the phase-lag of the temperature gradient. The other
delay time is τq interpreted as the relaxation time due to the fast transient effects of thermal inertia
(small-scale effects of heat transport in time) and is called the phase-lag of the heat flux. If τq = τ ,
τT = 0, Tzou [1995a; 1995b] refers to the model as the single phase-lag model. The case τq 6= τT (6= 0)

corresponds to the dual phase-lag model of the constitutive equation connecting the heat flux vector and
the temperature gradient. The case τq = τT ( 6= 0) becomes identical with the classical Fourier’s law.
Further for materials with τq > τT , the heat flux vector is the result of a temperature gradient and for
materials with τT > τq , the temperature gradient is the result of a heat flux vector. For a review of the
relevant literature, see [Chandrasekharaiah 1998]. A hyperbolic thermoelastic model was developed in
this same reference, taking into account the phase-lag of both temperature gradient and heat flux vector
and also the second order term in τq in Taylor’s expansion of heat flux vector and the first order term in
τT in Taylor’s expansion of the temperature gradient in the generalization of classical Fourier’s law. It
may be pointed out that ETE was formulated by taking into account the thermal relaxation time, which
is in fact the phase-lag of the heat flux vector (single phase-lag model).

The purpose of the present paper is to consider thermoelastic interaction in an elastic half-space in
the context of the thermoelasticity theory based on the Tzou model [1995a; 1995b] of heat transport
mechanism with dual phase-lag effects. The plane boundary is subjected to (i) a constant step input of
temperature and zero stress and (ii) a constant step input of stress and zero temperature. Laplace transform
is used as a mathematical tool. The expressions for displacement, temperature and stress in the half-space
are derived for small times. The solution for displacement, temperature and stress consist of two waves
– one, the predominantly elastic wave (E-wave) and the other, the predominantly thermal wave (T-wave)
in nature, both propagating with finite speeds modified by the nondimensional delay times τ ∗

q and τ ∗

T .
It is observed that the displacement is continuous at both the wave fronts while both the temperature
and stress fields suffer finite jumps at these locations. Further the waves suffer exponential attenuation
at both the wave fronts as in ETE and TRDTE. Similar problems have been studied in [Dhaliwal and
Rokne 1988; 1989] in the context of ETE and TRDTE, and in [Chandrasekhariah and Srinath 1996] in the
context of TEWOED. The results of the present analysis are compared with those derived in the context
of ETE, TRDTE, TEWOED and CTE. The present investigation has brought to light some similarities
and differences for the theories ETE, TRDTE, TEWOED and CTE.
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2. Formulation of the problem: basic equations

An isotropic elastic homogeneous half-space is considered. The plane boundary is subjected to a constant
step input of temperature and zero stress. We study the disturbances produced in the half-space. The solid
is subjected to one-dimensional deformation so that all the field variables are functions of the spatial co-
ordinate x and time t . If θ is the temperature increase at time t above the uniform reference temperature
θ0 and Eu the displacement vector, the heat transport equation which includes dual phase-lag effects (see
[Ozisik and Tzou 1994; Tzou 1995a; 1995b] ) is

k
(

1 + τT
∂

∂t

)
∇

2θ =

(
1 + τq

∂

∂t
+

1
2
τ 2

q
∂2

∂t2

)
(ρcv θ̇ + βθ01̇ − ρR), (1)

where τT and τq are the phase-lag of the temperature gradient and of the heat flux respectively, often
referred to as the delay times, k is the thermal conductivity of the solid, and R is the heat source term.
In addition, 1 = div ū and β = (3λ + 2µ)αt . The displacement equation of motion is

µ∇
2
Eu + (λ + µ) grad 1 − β grad θ + ρ EF = ρ Ëu. (2)

Here λ and µ are Lamé constants, ρ is the constant mass density of the solid, αt is the coefficient of
linear thermal expansion of the material, k is the thermal conductivity, cv is the specific of the solid.

For one-dimensional deformation Eu = (u(x, t), 0, 0) and θ = θ(x, t). In absence of heat source and
body forces, the Equations (1) and (2), in case of one- dimensional disturbances, reduce to

k
(

1 + τT
∂

∂t

)∂2θ

∂x2 =

(
1 + τq

∂

∂t
+

1
2
τ 2

q
∂2

∂t2

)(
ρcv θ̇ + βθ0

∂2u
∂x∂t

)
(3)

and

(λ + 2µ)
∂2u
∂x2 − β

∂θ

∂x
= ρ

∂2u
∂t2 . (4)

We introduce the following nondimensional variables

ξ =
c1x
κ

, η =
c2

1t
κ

, 2 =
θ

θ0
, U =

c1(λ + 2µ)u
κβθ0

,

where κ = k/ρcv is the thermal diffusivity. The Equations (3)–(4) reduce to the following nondimensional
forms (

1 + τ ∗

T
∂

∂η

)∂22

∂ξ 2 =

(
1 + τ ∗

q
∂

∂η
+

1
2
τ ∗

2

q
∂2

∂η2

)(∂2

∂η
+ ε

∂2U
∂ξ∂η

)
(5)

and
∂2U
∂ξ 2 −

∂2

∂ξ
=

∂2U
∂η2 , (6)

where

τ ∗

q =
τqc2

1

κ
, τ ∗

T =
τT c2

1

κ
, ε =

β2θ0

ρ2cvc2
1
, τ =

σxx

βθ0
=

∂U
∂ξ

− 2

are respectively the nondimensional delay times, the thermoelasticity coupling, and the nondimensional
stress.

If τ ∗
q

2 is neglected and τ ∗

T = 0, on setting τ ∗
q = τ = thermal relaxation parameter, the equation (5) and

(6) reduce to L-S theory.
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Further if τ ∗
q

2 is neglected and τ ∗

T 6= 0, Equation (5) reduces to(
1 + τ ∗

T
∂

∂η

)∂22

∂ξ 2 =

(
1 + τ ∗

q
∂

∂η

)(
∂2

∂η
+ ε

∂2U
∂ξ∂η

)
. (7)

This equation with the equation of motion (6) then constitutes a coupled system of field equations of a
thermoelasticity theory with non-Fourier heat transport equation (7).

3. Solution of the problem in the Laplace transform domain

We now proceed to study one-dimensional thermoelastic disturbances in the half-space ξ ≥ 0 on the basis
of Equations (5)–(6). We define the Laplace transforms of the functions U(ξ, η) and 2(ξ, η) by{

U (ξ, s), 2(ξ, s)
}

=

∫
∞

0
{U (ξ, η),2(ξ, η)}e−sηdη,

where Re(s) > 0, s is the Laplace transform parameter. We assume that the medium is at rest at η = 0
and has its temperature, temperature-velocity and temperature acceleration equal to zero at η = 0. This
means that

U =
∂U
∂η

=
∂2U
∂η2 = 0 and 2 =

∂2

∂η
=

∂22

∂η2 = 0, for η = 0, ξ ≥ 0. (8)

If the disturbances are caused by the sudden application of a constant step in temperature on the boundary
which is stress-free at time η > 0 (Danilovskaya’s problem [1950]), then this leads to the boundary
conditions

2(0, η) = 20 H(η), τ (0, η) = 0, η > 0,

where 20 is a positive constant, and H(η) is the Heaviside unit step function, taking the value 1 if η > 0
and 0 if η ≤ 0.

On using stress-strain-temperature relations, the conditions become

θ(0, η) = 20 H(η),
∂U
∂ξ

(0, η) = 20 H(η), for η > 0. (9)

Alternatively, if the thermoelastic interactions are caused by a uniform step in the stress applied to the
boundary of the half-space, which is held at reference temperature θ0, then the following boundary
conditions hold:

τ(0, η) = −τ0 H(η), 2(0, η) = 0, η > 0,

where τ0 is a positive constant, or

∂U
∂ξ

(0, η) = −τ0 H(η), 2(0, η) = 0, for η > 0. (10)

Now the equations (5) and (6), on taking Laplace transform, reduce to

(N D2
− M)2 = εM DU , (11)

(D2
− s2)U = D2, (12)
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where

D =
d

dξ
, M = s

(
1 + τ ∗

q s +
1
2
τ ∗

q
2s2

)
, N = 1 + τ ∗

T s.

This leads to the following equation satisfied by U and 2[
N D4

− (Ns2
+ M + Mε)D2

+ Ms2](U , 2) = 0. (13)

The solutions of equation (13), vanishing as ξ → ∞, are assumed to take the form

U = c1e−m1ξ + c2e−m2ξ , 2 = c1
1e−m1ξ + c1

2e−m2ξ , (14)

where m1,2 are the roots with positive real part of the equation

Nm4
− (Ns2

+ M + Mε)m2
+ Ms2

= 0. (15)

Again, on taking the Laplace transform of the boundary conditions (9) we have

2 =
20

s
and

dU
dξ

=
20

s
, on ξ = 0. (16)

Substituting the solutions (14) into (12) and equating the coefficients of like exponentials, we obtain

c1
1 =

c1(s2
− m2

1)

m1
, c1

2 =
c2(s2

− m2
2)

m2

Using the conditions (16) and solving for c1, c2, we arrive at the following solutions in the Laplace
transform domain:

Case (i):
U =

20
s

1
(m2

2−m2
1)

[
m1e−m1ξ − m2e−m2ξ

]
,

2 =
20
s

1
(m2

2−m2
1)

[
(s2

− m2
1) e−m1ξ − (s2

− m2
2) e−m2ξ

]
,

τ =
20s

(m2
2−m2

1)

[
e−m2ξ − e−m1ξ

]
, for ξ > 0.

(17)

Case (ii):

U =
τ0

s3(m2
1 − m2

2)

[
m1(s2

− m2
2) e−m1ξ − m2(s2

− m2
1) e−m2ξ

]
,

2 =
τ0(s2

− m2
1)(s

2
− m2

2)

s3(m2
1 − m2

2)

[
e−m1ξ − e−m2ξ

]
,

τ =
τ0

s(m2
1 − m2

2)

[
−(s2

− m2
2) e−m1ξ + (s2

− m2
1) e−m2ξ

]
, for ξ > 0.

(18)

The roots of the biquadratic equation (15) are given by

m2
1,2 =

1
2N

[
Ns2

+ M(1 + ε) ±
{
(Ns2

+ M(1 + ε))2
− 4M Ns2}1/2

]
. (19)
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Clearly the roots given by (19) are real if s is real, since

(Ns2
+ M(1 + ε))2

− 4M Ns2
= (M − Ns2)2

+ M2ε2
+ 2Mε(M + Ns2) > 0.

The inverse Laplace transforms of (17)–(18) then determine U, 2, τ . Since m1,2 involve the Laplace
parameter s, determination of U, 2, τ is difficult. Since the second sound effects are short-lived, it is
sufficient to derive and analyze the solutions for small η. This is done by taking Laplace parameter s to
be large.

Taking the sign + in (19), we have for large s,

m1 ∼=
s
v1

+
1
2

λ2
λ1

1
v1

+
1

2v1

(
λ3
λ1

−
1
4

λ2
3

λ2
1

)
1
s
. (20)

Taking the sign − in (19), we have for large s

m2 ∼=
s
v2

+
1
2

µ2
µ1

1
v2

+
1

2v2

(
µ3
µ1

−
1
4

µ2
3

µ2
1

)
1
s
, (21)

where λ1 = A +
√

A2 − 4F , λ2 = B +
L1
2

√
A2 − 4F −

A+
√

A2−4F
τ ∗

T
,

v1 =

(
2τ ∗

T

λ1

)1/2

, v2 =

(
2τ ∗

T

µ1

)1/2

,

λ3 = C +

√
A2 − 4F

8
(4L2

2 − L2
1) +

1

τ ∗

T
2 (A +

√
A2 − 4F) −

1
τ ∗

T
(B +

L1

2

√
A2 − 4F),

L1 =
2AB − 4D

A2 − 4F
, L2 =

B2
+ 2C A − 4E
A2 − 4F

, A = τ ∗

T +
1
2
(1 + ε)τ ∗

q
2
,

(22)

B = 1 + (1 + ε)τ ∗

q , C = 1 + ε, D =
1
2
τ ∗

q
2
+ τ ∗

T τ ∗

q ,

E = τ ∗

T + τ ∗

q , F =
1
2
τ ∗

T τ ∗

q
2
,

µ1 = A −

√
A2 − 4F,

µ2 = B −
L1

2

√
A2 − 4F −

1
τ ∗

T

(
A −

√
A2 − 4F

)
,

µ3 = C −

√
A2 − 4F

8
(4L2

2 − L2
1) +

1

τ ∗

T
2

(
A −

√
A2 − 4F

)
−

1
τ ∗

T

(
B −

L1

2

√
A2 − 4F

)
.

We note that

A2
− 4F =

1
4

[(
2τ ∗

T − τ ∗

q
)2

+ ε2τ ∗

q
4
+ 4τ ∗

T τ ∗

q
2
ε
]
> 0

and A > 0.
This indicates that v1,2 are both real.
Clearly λ1, µ1 > 0 since A >

√
A2 − 4F and F > 0. Further λ1 > µ1 implies v2 > v1.
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Now we are to prove that, under suitable restrictions on material constants, λ2 and µ2 are positive.
We have

λ2 = B +
L1

2

√
A2 − 4F −

A +
√

A2 − 4F
τ ∗

T
, µ2 = B −

L1

2

√
A2 − 4F −

A −
√

A2 − 4F
τ ∗

T
.

Now

λ2 > 0, if B +
L1

2

√
A2 − 4F >

A +
√

A2 − 4F
τ ∗

T
.

That is, if

B >
A
τ ∗

T
+

√
A2 − 4F

τ ∗

T

(
1 −

L1τ
∗

T

2

)
.

Similarly,

µ2 > 0, if B >
A
τ ∗

T
−

√
A2 − 4F

τ ∗

T

(
1 −

L1τ
∗

T

2

)
.

We impose the restriction on material parameters such that 1 > L1
2 τ ∗

T . Then since A, τ ∗

T > 0, B
must be positive under the restriction 1 > L1

2 τ ∗

T . The required restriction, on substitution for L1, yields
A2

− 4F > τ ∗

T (AB − 2D). This leads to the inequality

(τ ∗

q − 2τ ∗

T )[(1 + ε)τ ∗
2

q − 2τ ∗

T (1 − ε)] > 0.

This is satisfied if τ ∗
q > 2τ ∗

T and

(1+ε)τ ∗
2

q −2τ ∗

T (1−ε) > (1+ε)4τ ∗
2

T −2τ ∗

T (1−ε) = 2τ ∗

T {2(1+ε)τ ∗

T +ε−1} > 0 or 2(1+ε)τ ∗

T > 1−ε.

Thus the two conditions are 2(1 + ε)τ ∗

T > 1 − ε, that is,

τT ∗ >
1 − ε

2(1 + ε)
and τ ∗

q >

√
2τ ∗

T (1 − ε)

(1 + ε)
.

Further since τ ∗
q > 2τ ∗

T , we must have

τ ∗

q >
1 − ε

1 + ε
=: ε0.

The required restrictions on material constants for λ2 > 0 then reduce to

τq >
kε0

ρcvc2
1

and τT >
k

2ρcvc2
1
ε0.

Since λ2 > 0 implies µ2 > 0, the inequalities

τq >
kε0

ρcvc2
1

and τT >
kε0

2ρcvc2
1

imply that µ2 > 0. Using the results

m1 ∼=
s
v1

+
1
2

λ2

λ1

1
v1

and m2 ∼=
s
v2

+
1
2

µ2

µ1

1
v2
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for large s, we obtain the following results after simplification:

m1

s(m2
2 − m2

1)
∼=

1
L0v1

1
s2 −

1
L0

(
M0

L0
+

λ2

2λ1

)
1
v1

1
s3 ,

m2

s(m2
2 − m2

1)
∼=

1
L0v2

1
s2 −

1
L0

(
M0

L0
+

µ2

2µ1

)
1
v2

1
s3 ,

s2
− m2

2

s(m2
2 − m2

1)
∼=

1
L0

(
v2

2 − 1
v2

2

1
s

−

( M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

) 1
s2 +

( λ2

λ1v
2
1

M0

L0
+

v2
1 − 1
v2

1

(M2
0 − N0L0)

L2
0

) 1
s3

)
,

s2
− m2

1

s(m2
2 − m2

1)
∼=

1
L0

(
v2

1 − 1
v2

1

1
s

−

( M0

L0

v2
1 − 1
v2

1
+

λ2

λ1v
2
1

) 1
s2 +

( µ2

µ1v
2
2

M0

L0
+

v2
2 − 1
v2

2

(M2
0 − N0L0)

L2
0

) 1
s3

)
,

(s2
− m2

1)(s
2
− m2

2)

s3(m2
1 − m2

2)
∼= −

1
L0

(
(v2

1 − 1)(v2
2 − 1)

v2
1v

2
2

1
s

−

((v2
1 − 1)µ2

v2
1 · µ1v

2
2

+
(v2

2 − 1)

v2
2

α1

) 1
s2

+

( µ2

µ1v
2
2
α1 +

(v2
2 − 1)

v2
2

α2

) 1
s3

)
,

where

L0 =
1
v2

2
−

1
v2

1
, M0 =

µ2

µ1v
2
2

−
λ2

λ1v
2
1
, N0 =

1
4

(
µ2

2

µ2
1v

2
2

−
λ2

2

λ2
1v

2
1

)
,

α1 =
M0

L0

(v2
1 − 1)

v2
1

+
λ2

λ1v
2
1
, α2 =

λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)

v2
1

(M2
0 − N0L0)

L2
0

.

Finally we obtain the following solutions for displacement, temperature and stress fields in the Laplace
transform domain for large s:

Case (i):

U (ξ, s) ∼= 20

[{
1

L0v1

1
s2 −

1
L0

(
M0

L0
+

λ2

2λ1

)
1
v1

1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

−

{
1

L0v2

1
s2 −

1
L0

(
M0

L0
+

µ2

2µ1

)
1
v2

1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
,

2(ξ, s) ∼=
20

L0

[{
(v2

1 − 1)

v2
1

1
s

−

(
M0

L0

v2
1 − 1
v2

1
+

λ2

λ1v
2
1

)
1
s2

+

(
λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)

v2
1

(M2
0 − N0L0)

L2
0

)
1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ
−

{
(v2

2 − 1)

v2
2

1
s

−

(
M0

L0

(v2
2 − 1)

v2
2

+
µ2

µ1v
2
2

)
1
s2

+

(
µ2

µ1v
2
2

M0

L0
+

(v2
2 − 1)

v2
2

(M2
0 − N0L0)

L2
0

)
1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
,
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τ(ξ, s) ∼=
20

L0

[
−

{
1
s

−
M0

L0

1
s2 +

M2
0 − L0 N0

L2
0

1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

+

{
1
s

−
M0

L0

1
s2 +

M2
0 − L0 N0

L2
0

1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
·ξ

]
.

Case (ii):

U (ξ, s) ∼=
τ0

L0

[
−

1
v1

{
(v2

2 − 1)

v2
2

1
s2 −

(
M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

)
1
s3

+

(
µ2

µ1v
2
2

M0

L0
+

(v2
2 − 1)

v2
2

(M2
0 − N0L0)

L2
0

)
1
s4

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

+
1
v2

{
(v2

1 − 1)

v2
1

1
s2 −

(
M0

L0

(v2
1 − 1)

v2
1

+
λ2

λ1

1
v2

1

)
1
s3

+

(
λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)

v2
1

(M2
0 − N0L0

L2
0

)
1
s4

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
,

2(ξ, s) ∼= −
τ0

L0

[
(v2

1 − 1)(v2
2 − 1)

v2
1v

2
2

1
s

−

{
(v2

1 − 1)µ2

v2
1v

2
2µ1

+
(v2

2 − 1)

v2
2

(
M0

L0

(v2
1 − 1)

v2
1

+
λ2

λ1v
2
1

)}
·

1
s2

+

{
µ2

µ1v
2
2
α1 +

v2
2 − 1
v2

2
α2

}
1
s3

]
×

{
e−

(
s
v1

+
λ2

2λ1v1

)
ξ
− e−

(
s
v2

+
µ2

2µ1v2

)
ξ
}
,

τ (ξ, s) ∼=
τ0

L0

[{
(v2

2 − 1)

v2
2

1
s

−

(
M0

L0

(v2
2 − 1)

v2
2

+
µ2

µ1v
2
2

)
1
s2

+

(
µ2

µ1v
2
2

M0

L0
+

(v2
2 − 1)

v2
2

(M2
0 − N0L0)

L2
0

)
1
s3

}
e−

(
s
v1

+
λ2

2λ1v1

)
ξ

−

{
(v2

1 − 1)

v2
1

1
s

−

(
M0

L0

(v2
1 − 1)

v2
1

+
λ2

λ1v
2
1

)
1
s2

+

(
λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)(M2

0 − L0 N0

v2
1 L2

0

)
1
s3

}
e−

(
s
v2

+
µ2

2µ1v2

)
ξ

]
.

4. Derivation of small-time solutions

Inverse Laplace transforms of the expressions yield the following small-time solutions for displacement,
temperature and stress fields.
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Case (i):

U (ξ, η) ∼= 20

[
e−

λ2
2λ1v1

ξ

{
1

L0v1

(
η −

ξ

v1

)
−

1
L0

( M0

L0
+

λ2

2λ1

) 1
v1

1
2

(
η −

ξ

v1

)2
}

H
(
η −

ξ

v1

)
− e−

µ2
2µ1v2

ξ

{
1

L0v2

(
η −

ξ

v2

)
,

−
1
L0

( M0

L0
+

µ2

2µ1

) 1
v1

1
2

(
η −

ξ

v2

)2
}

H
(
η −

ξ

v2

)]
, (23)

2(ξ, η) ∼=
20

L0

[
e−

λ2
2λ1v1

ξ

{
(v2

1 − 1)

v2
1

−

(
M0

L0

(v2
1 − 1)2

v2
1

+
λ2

λ1v
2
1

)(
η −

ξ

v1

)

+

(
λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)

v2
1

(M2
0 − N0L0)

L2
0

)
1
2

(
η −

ξ

v1

)2
}

H
(
η −

ξ

v1

)

−e−
µ2

2µ1v2
ξ

{
(v2

2 − 1)

v2
2

−

(
M0

L0

(v2
2 − 1)

v2
2

+
µ2

µ1v
2
2

)(
η −

ξ

v2

)

+

(
µ2

µ1v
2
2

M0

L0
+

(v2
2 − 1)

v2
2

(M2
0 − N0L0)

L2
0

)
1
2

(
η −

ξ

v2

)2
}

H
(
η −

ξ

v2

)]
, (24)

τ(ξ, η) ∼=
20

L0

[
−e−

λ2
2λ1v1

ξ

{
1 −

M0

L0

(
η −

ξ

v1

)
+

M2
0 − L0 N0

L2
0

1
2

(
η −

ξ

v2

)2
}

H
(
η −

ξ

v1

)
+e−

µ2
2µ1v2

ξ

{
1 −

M0

L0

(
η −

ξ

v2

)
+

(M2
0 − L0 N0)

L2
0

1
2

(
η −

ξ

v2

)2
}

H
(
η −

ξ

v2

)]
. (25)

Case (ii):

U (ξ, η) ∼=
τ0

L0

[
−

e
v1

−
λ2

2λ1v1
ξ
{

(v2
2 − 1)

v2
2

(
η −

ξ

v1

)
−

(
M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

)
1
2

(
η −

ξ

v1

)2

+

(
µ2

µ1v
2
2

M0

L0
+

(v2
2 − 1)

v2
2

(M2
0 − N0L0)

L2
0

)
1
6

(
η −

ξ

v1

)3
}

H
(
η −

ξ

v1

)

+
e−

µ2
2µ1v2

ξ

v2

{
(v2

1 − 1)

v2
1

(
η −

ξ

v2

)
−

(
M0

L0

v2
1 − 1
v2

1
+

λ2

λ1

1
v2

1

)
1
2

(
η −

ξ

v2

)2

+

(
λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)

v2
1

(M2
0 − N0L0)

L2
0

)
1
6

(
η −

ξ

v2

)3
}

H
(
η −

ξ

v2

)]
, (26)
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2(ξ, η) ∼= −
τ0

L0

[
φ
(
η −

ξ

v1

)
H

(
η −

ξ

v1

)
e−

λ2
2λ1v1

ξ
− ϕ

(
η −

ξ

v2

)
H

(
η −

ξ

v2

)
e−

µ2
2µ1v2

ξ

]
, (27)

τ(ξ, η) ∼=
τ0

L0

[
e−

λ2
2λ1v1

ξ

{
v2

2 − 1
v2

2
H

(
η −

ξ

v1

)
−

(
M0

L0

v2
2 − 1
v2

2
+

µ2

µ1v
2
2

)(
η −

ξ

v1

)
H

(
η −

ξ

v1

)

+

(
µ2

µ1v
2
2

M0

L0
+

(v2
2 − 1)

v2
2

(M2
0 − N0L0)

L2
0

)
1
2

(
η −

ξ

v1

)2
H

(
η −

ξ

v1

)}

−e−
µ2

2µ1v2
ξ

{
v2

1 − 1
v2

1
H

(
η −

ξ

v2

)
−

(
M0

L0

(v2
1 − 1)

v2
1

+
λ2

λ1v
2
1

)(
η −

ξ

v2

)
H

(
η −

ξ

v2

)

+

(
λ2

λ1v
2
1

M0

L0
+

(v2
1 − 1)(M2

0 − N0L0)

v2
1 L2

0

)
1
2

(
η −

ξ

v2

)2
H

(
η −

ξ

v2

)}]
, (28)

where

ϕ(η) =
(v2

1 − 1)(v2
2 − 1)

v2
1v

2
2

−

{
(v2

1 − 1)µ2

v2
1v

2
2µ1

+
(v2

2 − 1)

v2
2

(
M0

L0

(v2
1 − 1)

v2
1

+
λ2

λ1v
2
1

)}
η+{
µ2

µ1v
2
2
α1 +

v2
2 − 1
v2

2
α2

}
1
2
η2.

5. Analysis of the solutions

The short-time solutions (23)–(28) for displacement, temperature, and stress fields reveal the existence
of two waves. Each of U , 2 and τ is composed of two parts and that each part corresponds to a wave
propagating with a finite speed. The speed of the wave corresponding to the first part is v1 and that
corresponding to the second part is v2. The faster wave has its speed equal to v2 and the slower wave
has its speed equal to v1.

One cannot classify (5) independently of (6) (as hyperbolic or parabolic), since a type of the coupled
system (5)–(6) must be determined.

For τ ∗
q

2
= 0, we obtain from (22),

A = τ ∗

T , B = 1 + (1 + ε)τ ∗

q ,

C = 1 + ε, D = τ ∗

T τ ∗

q ,

E = τ ∗

T + τ ∗

q , F = 0,

λ1 = 2τ ∗

T , λ2 = 2ετ ∗

q ,

µ1 = 0, µ2 = 2τ ∗

q ,
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L1 =
2 + 2τ ∗

q (ε − 1)

τ ∗

T
,

L2 =
{
(1 − τ ∗

q )2
+ ε2τ ∗

q
2
+ 2ετ ∗

q (1 + τ ∗

q ) + 2τ ∗

T (ε − 1)
}
(τ ∗

T )2.

These give

v2 = ∞, v1 −→ 1, L0 −→ −1, M0 = −ετ ∗

q /τ ∗

T , N0 = −
ε2τ ∗

q
2

4τ ∗

T
2 .

Therefore, for τ ∗
q

2
= 0, the system of equations (5)–(6) is of the mixed parabolic-hyperbolic type.

For τ ∗
q

2
6= 0, and τ ∗

T 6= 0, v2 corresponds to the modified speed of thermal signals and v1 corresponds
to the modified elastic dilatational wave speed, both modified by delay times in the thermoelastic solid
with dual phase-lag effects. Since v1 < v2, the faster wave is the predominantly modified Tzou wave (T-
wave) and the slower is a predominantly modified elastic wave (E-wave). The first term of the solutions
(23)–(28) represents the contribution of the E-wave near its wave front ξ = v1η and the second term
represents the contribution of the T-wave near its wave front ξ = v2η. We observe also that both the waves
experience decay exponentially with the distance (attenuation), which is also the case in CTE, ETE and
TRDTE, but not the case in TEWOED where the waves do not experience attenuation (see [Dhaliwal and
Rokne 1988;1989; Chandrasekhariah and Srinath 1996;1997]. From (23)–(28), we further note that all
of U, 2, τ are identically zero for ξ > v2η. This implies that at a given instant of time η∗, the points of
the solid ξ > 0 that are beyond the faster wave front ξ = v2η∗ do not experience any disturbances. This
observation confirms that, like ETE, TRDTE, TEWOED the thermoelasticity theory with dual phase-lag
effects is also a wave thermoelasticity theory. Moreover it is interesting to record that at a given instant,
the region 0 < ξ < v2η∗ is the domain of influence of the disturbance, contrary to the result that this
domain extends and the effects occur instantaneously everywhere in the solid as predicted by CTE, see
[Boley and Tolins 1962].

By direct inspection of the solutions (23)–(28), we find that in both cases U is continuous whereas
both 2 and τ are discontinuous at both the wave fronts. The finite jumps experienced by temperature
and stress at the wave fronts are as follows:

Case (i):

[2]ξ=v1η = −
20

L0

v2
1 − 1
v2

1
e−

λ2
2λ1

η
,

[2]ξ=v2η =
20

L0

v2
2 − 1
v2

2
e−

µ2
2µ1

η
,

[τ ]ξ=v1η =
20

L0
e−

λ2
2λ1

η
,

[τ ]ξ=v2η = −
20

L0
e−

µ2
2µ1

η
.
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Case (ii):

[2]ξ=v1η =
τ0

L0

(v2
1 − 1)(v2

2 − 1)

v2
1v

2
2

e−
λ2

2λ1
·η
,

[2]ξ=v2η = −
τ0

L0

(v2
1 − 1)(v2

2 − 1)

v2
1v

2
2

e−
µ2

2µ1
·η
,

[τ ]ξ=v1η = −
τ0

L0

v2
2 − 1
v2

2
e−

λ2
2λ1

·η
,

[τ ]ξ=v2η = +
τ0

L0

v2
1 − 1
v2

1
e−

µ2
2µ1

·η
.

(29)

Here [ f ] denotes the jump of the function f across a wave front. The finite jumps are not constants
but they decay exponentially with distance from the boundary. The same results are observed to occur in
ETE, TRDTE [Dhaliwal and Rokne 1988;1989], but not in TEWOED where the jumps are all constants
[Chandrasekhariah and Srinath 1996;1997]. However the discontinuity in temperature and stress at both
the wave fronts is a situation common in the context of ETE, TRDTE and TEWOED [Norwood and
Warren 1969; Sherief and Dhaliwal 1981; Dhaliwal and Rokne 1988;1989; Chandrasekhariah and Srinath
1996]. Clearly the finite jumps of 2 and τ in the present analysis depend on the delay times τ ∗

T , τ ∗
q

and the thermo elastic coupling ε. The magnitudes of these jumps are exact, valid for short times and
hold for all possible values of ε, τ ∗

T and τ ∗
q . The expressions for jumps for case (ii) reveal another

interesting phenomenon. The temperature is discontinuous at both the wave fronts in spite of the fact that
the boundary load is purely mechanical in nature. This implies that the application of a discontinuous
mechanical load on the boundary does generate discontinuities in temperature. This phenomenon is
present in ETE as well, see [Sharma 1987] but absent in TRDTE [Chandrasekharaiah and Keshavan
1992]. According to TRDTE, the temperature is continuous when the applied load is purely mechanical
in nature [Chandrasekharaiah and Keshavan 1992]. A similar observation has been made in the half-
space problem in the context of TEWOED [Chandrasekharaiah 1996; Chandrasekharaiah and Srinath
1997].

If the effect of τ ∗
q

2 is neglected with τ ∗

T 6= 0, v1 → 1, and v2 → ∞, then there exists only one wave
front ξ = η (E-wave front) and the T-wave propagates with infinite speed as expected from Equations
(5)–(6) with τ ∗

q
2

= 0. In this case the jumps of 2 and τ at the elastic wave front ξ = η are given as
follows:

Case (i):

[2]ξ=η = 0, [τ ]ξ=η = −20e
−

1
2 ε

τ∗
q

τ∗
T

ξ
.

Case (ii):

[2]ξ=η = 0, [τ ]ξ=η = τ0 · e
−

1
2 ε·

τ∗
q

τ∗
T

ξ
. (30)

The jumps of temperature disappear at the E-wave front whereas that of stress τ exists and depends on
ε, τ ∗

T , τ ∗
q . These results are in complete agreement (for τ ∗

T = τ ∗
q ) with the corresponding results obtained

in the context of CTE with classical Fourier’s law, see [Boley and Tolins 1962]. Moreover, it is interesting
to record from solutions (25) and (28) that because of delay times, the position of jumps of stress shifts
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from ξ = η in CTE to ξ = v1η in the present analysis. Also the dual phase-lag model introduced by
[Tzou 1995a;1995b] brings to light the jumps of temperature 2 at the E-wave front too, which are not
encountered in CTE.
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