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MACROSCOPIC ELASTIC PROPERTIES OF RANDOMLY PACKED BALLOONS

ISAO TAGUCHI AND MICHIO KURASHIGE

Macroscopic elastic properties of sintered, randomly packed balloons are estimated for various degrees
of sintering and for a wide range of balloon wall thickness. Macroscopic elastic moduli are little affected
by a balloon’s inner/outer diameter ratio for thicker balloons, while those of thinner balloons are very
sensitive to the ratio. The elastic moduli rapidly decline with decreasing wall thickness. They are larger
in the direction of gravity than in the horizontal one, corresponding to gravity-affected packing structures.
Specific elastic moduli have a peak against porosity. Poisson’s ratios are negative in some cases of very
thin balloon walls and very low sintering degree. Comparison of the present random packing with the
regular simple cubic packing reveals that there is a significant difference between them in their elastic
properties and their structures of anisotropy, although both have almost the same coordination number.

1. Introduction

Cellular solids have many diverse applications such as hot gas and ion exchange filters, thermal protection
systems, energy and sound absorption systems, heat exchangers, catalyst supports and porous implants
for surgical treatments [Gibson and Ashby 1997; Ashby et al. 2000]. They may be regarded as porous
materials with a very high porosity or very low solid volume fraction [Torquato 2001]. Among the
cellular solids, foams are most commonly and widely used. The foams are usually classified by their
pore type of either open or closed cells.

The open-cell foams are neither as stiff nor as strong as the closed-cell foams, and they allow fluids
to flow through whereas the closed-cell foams do not. Because of this, they can be exploited in multi-
functional applications of load supporting and heat dissipation [Wadley 2002; Queheillalt et al. 2002].

Open-cell metallic foams typically achieve mechanical behaviors close to theoretical predictions. Al-
though the mechanical properties of closed-cell metallic foams theoretically exceed those of open-cell
foams, defects reduce their measured properties to values similar to those for the open-cell foams [An-
drews et al. 1999; Sanders and Gibson 2003b]. Bonded compacts of balloons may be a good alternative
in terms of mechanical properties as well as in their ability to allow fluids to flow through connected
pores.

In recent years, bonded compacts of balloons (or hollow spheres) made of ceramic, metal, inorganic
glass, carbon, etc. have started to become commercially available and have been applied to various
engineering practices [Torobin 1986; Norris and Gojny 1990; Andersen et al. 2000]. Because the ma-
terials made by bonding balloons contain both types of connected and closed pores, these structures
have significant potential for those multifunctional applications which require a combination of impact
energy absorption, acoustic attenuation [Gasser et al. 2004a] and/or thermal insulation, in addition to
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structural load support; the bonded balloons also have potential for improved mechanical properties and
high-porosity structures, that is, for high specific stiffness and strength.

Another important usage of the microballoons is as syntactic foams, which are mixtures of microbal-
loons and polymeric (or metallic) matrix material [Bardella and Genna 2001; Marur 2005]. Because
the microballoons are dispersed in the matrix material, the syntactic foams are closed-cell foams and do
not allow fluids to flow through connected pores. We will exclude the syntactic forms from the present
argument.

Using the finite element method, Sanders and Gibson [2003b] analyzed the mechanical properties of
simple cubic (SC) packed hollow-sphere foams, and compared them with those for the open-cell and
closed-cell foams. The results indicated that the theoretical values of moduli and strength stand between
those of the open- and closed-cell foams. Furthermore, they also obtained those of body-centered cubic
(BCC) and face-centered cubic (FCC) packings [Sanders and Gibson 2003a]. It was found that the FCC
packing gives the highest values of moduli and strength.

Like Sanders and Gibson [2003a], Gasser et al. [2003] investigated the uniaxial tensile elastic prop-
erties of regular FCC hollow sphere packings, and expressed three independent elastic constants of the
materials for FCC stacking in terms of polynomial expressions [Gasser et al. 2004b]. They compared the
results with the estimations from the formulae proposed by Sanders and Gibson [2003a]; it was shown
that the polynomial expressions are valid for the case where the size of necks is much smaller than 0.2
times the balloon radius.

All of the above studies have dealt with regular stackings. However, bonded balloon aggregates are
usually fabricated by dumping balloons into a container and in some cases by tapping it to obtain denser
packings, leading to random structures. Thus, we need to take into account the randomness of balloon
structures. It should be noted that the randomness hinders us from using the finite element analysis of
such unit cells as those in SC, BCC and FCC stackings; we have to resort to another method.

For randomly packed solid spherical particles, Kurashige et al. [1999a] proposed a three-step simula-
tion method. This method constructs a random packing of spheres in a computer by sequential deposition
of them, followed by replacing the packing, after sintering it, by a three-dimensional random network of
springs of six degrees of freedom, and then by estimating effective elasticity coefficients by conventional
structural analysis. The results by this simulation were in good agreement with experimental ones. More-
over, Kato et al. [2002] extracted a statistical characteristic of the random packing structure from data
on the random packing; although this kind of statistic is important to understand some relations between
the packing structures and their macroscopic characteristics, it cannot be obtained in other models, such
as the self-consistent models. They also estimated the mechanical properties (effective elastic moduli
and elastic wave speeds) by the same evaluation method as that in Kurashige et al. [1999a]. From
this evaluation, it was found that the packing structure of spherical particle random packings and the
elastic property of sintered compacts are of transverse anisotropy, due to gravity. Furthermore, Kurashige
et al. [1999b] applied the method to the thermal conductivity estimation of sintered solid particles; they
confirmed the usefulness of their method.

The present paper treats elastic properties of the bonded balloon random packing. We deal here with
the sintered balloons, which imply that the bonding material is identical to that of the balloons, but the
present method is applicable to blazed balloon random packings, or those bonded by other methods. We
carry out a thorough simulation using the above method [Kurashige et al. 1999a; Kato et al. 2002] to
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(c) Computer Simulation of Random Network

Random Network

Random Packings Six Degrees of Freedom Springs

(a) Geometrical Model Construction
(b) FEM Analysis

Extract

Figure 1. Three step simulation method: (a) geometrical model construction of ran-
domly packed balloon aggregate by the method of a rigid sphere free fall into a virtual
box; (b) evaluation of the characteristics of a microscopic structure by FEM analysis
of spring constants for a sintered balloon pair; (c) simulation of macroscopic material
properties by 3D structural analysis of a random network of springs, yielding desired
macroscopic elastic moduli.

examine statistical characteristics of the balloon packings and their macroscopic elastic properties and
to propose simple formulae to estimate the elasticities, by going through the following steps. (We will
use the term balloon packings, although there is no difference in packing structures and their statistical
characteristics between solid and hollow spheres.)

First, to generate a structural model of sintered balloon aggregates, we carry out a random packing
simulation of the sequential accumulation method of equal-sized balloons into a virtual box (see Figure
1a) combined with the use of periodic boundary conditions and random ups and downs of the box floor
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level. Some statistical characteristics of aggregate microstructures are examined by using such parame-
ters as porosity, coordination number, cumulative frequency of diameters of the circles appearing on a
cross-section created by cutting the aggregate and cumulative angular distribution of all contact points
within the aggregate.

Next, we extract a pair of connected spheres from the packing and regard it as a spring with six
degrees of freedom: one for elongation and torsion, and two for bending and shearing. Properties of the
microstructure element (that is, spring constants) are estimated by the finite element method; see Figure
1b.

Finally, we carry out tensile and shear tests of a random network of springs, with rigid hinges, of
six degrees of freedom with the spring constants already estimated by the finite element method (Figure
1c). From this simulation, we obtain the average tensile (or shear) stress and the average strain resulting
from the applied load. Thus, the desired macroscopic Young’s and shear moduli and Poisson’s ratios are
determined.

We also calculate Young’s modulus for the SC packing using the present three-step method to confirm
its validity. To consider an optimum design, macroscopic specific (that is, per weight) elastic moduli are
precisely estimated for a wide range of balloon thickness and sintering degree. Furthermore, we compare
the results for the present random packing with those for the regular packing obtained by Sanders and
Gibson [2003b].

2. Geometrical model construction

2.1. Equation of motion. To generate a spherical particle random packing structure in a computer, we
carry out the simulation by the method of rigid sphere free fall into a box. More details can be found in
[Taguchi et al. 2006].

We sequentially release a spherical particle with diameter D from random positions into a virtual box
in the computer. The motion equation of the sphere in a vectorial form can be expressed as:

c
dx
dt

= k1d − mgk, (1)

where x is the position vector of a falling sphere’s center, k is the unit vector along the z axis pointing
upward and 1d is the overlapping depth vector of the sphere in collision with another still one. Constants
c, k, m and g are the viscosity, the spring constant between two or more particles in collision, mass of
each particle, and the gravitational acceleration, respectively. We solve equation Equation (1) by the
Runge–Kutta–Gill method.

2.2. Simulation method. Consider the virtual box of 0 ≤ x ≤ B, 0 ≤ y ≤ B, 0 ≤ z ≤ H(B < H). We
do not stop introducing balloons until the cubic region 0 ≤ x ≤ B, 0 ≤ y ≤ B, 0 ≤ z ≤ H is completely
filled with balloons. For the box size B/D = 16 adopted, 5 runs were made with 5 different sets of
pseudo-random numbers, giving 5 samples. Five lists of final coordinates of all balloons’ centers will be
used to analyze the statistical characteristics and to estimate the elastic moduli of sintered balloons later
on.

The effects of the boundaries of the virtual box in which spheres accumulate are eliminated by intro-
ducing the cyclic boundary condition. The level of the box floor is moved up and down for each sphere
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B/D = 16

Sample 1 0.417439
Sample 2 0.417035
Sample 3 0.417106
Sample 4 0.416517
Sample 5 0.417406

Mean 0.417101

Standard deviation 0.000372

Table 1. Porosities of five samples; their mean and standard deviation.

by a magnitude given by pseudo-random numbers in order to avoid packing regularity on the floor. The
algorithm by Wichmann and Hill [1982] is used for the generation of the random numbers.

3. Statistical characteristics of geometrical model

3.1. Porosity. Porosity associated only with interstitial void space between the hollow spheres is one
of the most important parameters characterizing a random packing of particles. It should be cautioned
that the porosity excludes hollow space in the hollow spheres. The porosity of the random packing
constructed by the above method is evaluated from the center coordinate lists and shown in Table 1. As
seen from this table, the mean porosity is about 41.7%. This mean value is in good agreement with that
obtained by Kato et al. [2002].

In general, random packings are classified into three categories [Haughey and Beveridge 1969; Tory
et al. 1973]: very loose random packing (0.44 ≤ φ ≤ 0.47), random loose packing (0.41 ≤ φ ≤ 0.44),
and close random packing (φ ≈ 0.36).

The mean porosity shown in Table 1 reveals that our packings fall in the category of random loose
packing. The porosity φ = 0.417 obtained here is rather small in the range of the loose random packing,
because the present method allows no bridging.

3.2. Coordination numbers. Next, we examine the coordination number for our random packings for
the box size B/D = 16. The coordination number is defined as the number of contact points of a particle
with neighboring ones in a regular or irregular packing of particles. With a few regular packings, it is 6
for the SC, 8 for BCC and 12 for FCC; in contrast, there is a possibility that a sphere is in contact with
four to twelve other spheres for the random packing [Nolan and Kavanagh 1992].

Table 2 shows the mean coordination number for all particles for each sample and the mean value and
standard deviation for the five samples. The mean value 6.019 is in good agreement with that obtained by
Kato et al. [2002]. It is found that the average coordination number for the random packing constructed
is very near to that for the regular SC packings.

Figure 2 shows the distribution of the coordination numbers for the five samples. From this figure, it
can be seen that the coordination distribution has its peak at 6 and ranges from 4 — 8 for all samples;
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Coordination Number

Sample 1 6.016345
Sample 2 6.020791
Sample 3 6.020047
Sample 4 6.019235
Sample 5 6.020346

Mean 6.018755

Standard deviation 0.001921

Table 2. Coordination number for five samples; their mean and standard deviation.

it has negligibly small percentage for three and nine contact points and no sphere has more than then
contact points. Little difference in the distribution can be seen among the samples.

3.3. Cumulative frequency of diameters of circles appearing on a cross-section. If a randomly packed
aggregate of balloons is sectioned along a plane, a large number of double circles will appear on its
resultant cross-section; the outer circles have various values of diameter D′, which is naturally smaller
than or equal to D. Cumulative distribution of the diameter f (D′/D) is theoretically given by

f (D′/D) = 1 −

√
1 − (D′/D)2, (2)
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Figure 2. Coordination number distribution for all five samples.



MACROSCOPIC ELASTIC PROPERTIES OF RANDOMLY PACKED BALLOONS 535

Diameter Ratio (D'/D)

C
u
m
u
la

ti
v

e 
F

re
q
u

en
cy

 i
n
 t
h

e 
x
 C

o
n
st

an
t 
P
la
n

e
 (
%
)

(a)

C
u
m

u
la

ti
v

e 
F

re
q

u
en

cy
 i

n
 t

h
e 
z
 C
o

n
st

an
t 
P

la
n

e
 (
%
)

Diameter Ratio (D'/D)

(b)

Figure 3. Cumulative frequencies of diameters of circles appearing on x and z cross
sections created by cutting aggregate, corresponding to (a) and (b), respectively.

provided that the centers of packed balloons are distributed in a uniformly random manner [Debbas and
Rumpf 1966; Bennett 1972].

Figures 3a and 3b show the cumulative frequencies of diameters of simulated random packings for
all samples in terms of percentage for the x , z = constant cross sections, respectively. (The figure
for y = constant is omitted because it is similar to that for x = constant). Here, the solid line is the
theoretical prediction given by Equation (2). Each frequency is for each of five sectional planes x/D
or z/D = 0.1, 0.3, 0.5, 0.7 and 0.9. It is seen that the frequencies scatter more around the theoretical
value for the smaller diameter ratio. The scattering in [Kato et al. 2002] is smaller than the present one,
because there the frequencies were calculated by averaging over the five sectional planes. The cumulative
frequency for the z = constant planes is not different from that for the x = constant plane. This implies
that the centers of spheres are almost uniformly randomly distributed equally along the three mutually
orthogonal directions, although the scattering on the z = constant planes seems somewhat larger.

3.4. Distributions of branch orientations. A branch is defined as a segment connecting the centers of
balloons in contact; the spheres are judged to be in contact if the length of branch is equal to or smaller
than the diameter of sphere D, and not in contact if larger.

Although the sphere centers appear to be uniformly distributed as shown in the above subsection, it
may be important to examine orientations of all branches.

Kato et al. [2002] examined distributions, not cumulative ones, of the branch orientations in the similar
random packings. They divided the domain of zenithal and azimuthal angles into sub-domains by 10◦

step and calculated both the angular frequencies for each step, which were depicted in the form of a bar
chart. They concluded that the peak in the zenithal distributions appears around 45◦ from the vertical



536 ISAO TAGUCHI AND MICHIO KURASHIGE

C
u
m

u
la

ti
v
e 

A
zi

m
u
th

al
 D

is
tr

ib
u
ti

o
n
 o

f 
B

ra
n
ch

 (
%

)

Azimuthal Angle (deg)

Figure 4. Cumulative azimuthal distributions of branch orientations.

line, while the distributions are uniform in the horizontal plane. In the present paper, we use both the
cumulative azimuthal and zenithal distributions of branch orientations in more detail and better accuracy.

Before calculating both of the angular distributions, let us introduce the spherical polar coordinate
(r, θ, ϕ), where θ and ϕ are the zenithal and azimuthal angles, respectively. The zenithal angle is
measured from the z-(vertical) axis, while the azimuthal angle is from the x-axis in the x − y plane.
The zenithal and azimuthal angles of the k-th branch (k = 1, 2, . . . , N , with N being the total number of
branches) are denoted by θk and ϕk , respectively.

First, to examine the azimuthal distribution of branch orientations, consider the domain of

ϕ, (−π/2, π/2].

If ϕk is in (π/2, π], ϕk should be replaced by ϕk −π ; similarly, that in (−π, π/2] by ϕk +π . Furthermore,
we rearrange the branches in ascending order of azimuthal angles in the range of (−π/2, π/2]. We define
the cumulative frequency of the branch orientations in the following way:

F(ϕ) =

(
1∑N

k=1 sin θk

N∑
k=1

sin θk H(ϕ − ϕk)

)
× 100(%), (3)

where H(ϕ) is the Heaviside step function. F(ϕ) with sin θk as weight shows the cumulative percentage
of the number of branches.

The cumulative azimuthal distribution defined above is calculated for all five samples. The results are
shown in Figure 4. It can be seen that the cumulative distribution is almost exactly a straight line with
gradient of 100/180. No sample seems to have any distinct characteristics. Thus, we conclude that the
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Figure 5. Cumulative zenithal distributions of branch orientations and their fitting curve
given by Equation (5).

structure of the obtained random packings is isotropic in the horizontal x − y plane in terms of the branch
orientations.

Next, we examine the cumulative zenithal distribution of branch orientations. Similarly to the cumu-
lative azimuthal distribution, θk should be replaced by θk − π/2 if it is in (π/2, π]. We rearrange the
branches in ascending order of azimuthal angles in the range of (0, π/2]. Since the circle made by θ = θk

on a sphere of unite radius is 2π sin θk in circumference, the cumulative frequency of branches per unit
area of the sphere F(θ) is defined by

F(θ) =

(
1∑N

k=1
1

sin θk

N∑
k=1

H(θ − θk)

sin θk

)
× 100(%). (4)

The cumulative frequency is calculated and shown in Figure 5 for all samples. From this figure, it can
be seen that the cumulative frequency distribution is not linear at all. Since the frequency distribution
of branches is an odd function both about θ = 0◦ and θ = 90◦, we can express the distribution by the
Fourier series of sin 2mθ . If we take into account only the first four terms, the distribution is

F(θ) = a0θ +

3∑
m=1

am

2m
sin 2mθ,

a0 = 63.043, a1 = −7.4308, a2 = −38.522, a3 = 7.5564,

(5)
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Figure 6. Zenithal distributions of branch orientations obtained from fitting curve, given
by Equation (6).

where the four coefficients am have been determined by the least square method. The fitting curve of
Equation (5) is drawn by a solid line in Figure 5; it cannot be distinguished from the original five curves,
which reveals that the fitting is complete.

Differentiating Equation (5) with respect to θ , we obtain

d F(θ)

dθ
=

3∑
m=0

am cos 2mθ. (6)

This equation shows the zenithal distribution of branches itself and its curve is drawn in Figure 6. It is
seen that the maximum frequency exists between 50◦ and 60◦ while the minimal is at θ = 0◦. By setting
the derivative of Equation (6) to zero, d2 F(θ)/dθ2

= 0, it is found that the frequency distribution has its
peak at θ = 50.1◦. This peak position is correct because the present evaluation is more precise than that
given by Kato et al. [2002]; their peak position θ = 45◦ was too rough.

From the arguments so far in this subsection, we can conclude that the packing structures are trans-
versely isotropic, indicating the effect of gravity. This conclusion comes from the viewpoint of branch
orientations.

4. Evaluation of spring constants of a sintered pair of balloons

4.1. Model of finite element. In the sintering of the balloon aggregate, necks are created around contact
points of the balloons by mass diffusion; the necks grow up with sintering time. However, we do not
simulate it, because we do not need to know its whole process, but need only to obtain the geometry of
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Figure 7. Geometry of a sintered (mass-added) balloon.

sintered state of aggregates. In order to represent the sintered geometry around the point of contact of
paired balloons, we add around it some mass of the same substance as that of the balloons; the added
volume is that bounded by the two contact balloons and a torus touching both of them, as shown in
Figure 7. The geometry made by adding some mass is not exactly the same as that of real sintered
balloon particles, but at least the shape of the void space in the mass-added spherical aggregate is much
more similar to the real one than the infinitely long needle shape [Kurashige et al. 1992], which was
assumed when the self-consistent models [Wu 1966; Berryman 1981] were applied. In Figure 7, D and
d are the outer and inner diameters of the balloon, respectively. This added geometry was also used in
[Sanders and Gibson 2003b; Sanders and Gibson 2003a].

The added volume per contact point can be calculated by simple geometrical consideration as

Vadd =
π

4

(1 − cos 2

cos 2

)2{
1 −

(π

2
− 2

)
tan 2

}
× D3, (7)

where 2 is the angle depicted in Figure 7. We will adopt the angle 2 as a parameter of sintering degree;
we call it a sintering degree angle. In [Sanders and Gibson 2003b; Sanders and Gibson 2003a], this is
called a bond angle.

4.2. Results of FEM analysis. The spring has six degrees of freedom: one for elongation and torsion,
and two for bending and shearing. The spring constants are defined in the same manner as in the con-
ventional structural analysis. Consider an hour glass shape of the two sintered half balloons shown in
Figure 7. Fix its one end and give some generalized displacement on the other end; then we calculate the
corresponding generalized forces, which provide the required spring constants. As a function of sintering
degree angle 2, we can obtain Kex and Mt x for axial elongation ux = 1 × 10−5 D and torsional angle
θr = 1 × 10−2, respectively; Kbx and Mbz for bending angle and Ksy and Msz for lateral displacement.
With respect to these notations, K and M correspond to the associated force and moment (or torque); the
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first subscript represents the deformation modes, while the second one describes displacement direction or
rotation axis. Notice that Ksz = Ksy , Msy = Msz and Kbz = Kby because of the geometrical axisymmetry.

We employ triangular ring elements. Numbers of nodes and elements are 2640 and 4949, respectively,
for the thickest-walled balloons, while the thinnest-walled model contains 9989 nodes and 18545 ele-
ments. The numbers of nodes and elements are enough to evaluate the spring constants, as has been
checked for the case of the smallest sintering angle by varying these numbers.

The FEM calculations have been carried out setting the Poisson’s ratio of the balloon material to 0.25.
It is reported in [Sanders and Gibson 2003b] that varying the Poisson’s ratio has a negligible effect on
the overall response.

All the spring constants normalized by Young’s modulus of the balloon substance Es versus the sin-
tering degree angle 2 are given in Figures 8a to 8f for various inner/outer diameter ratios d/D ranging
from 0.0 — 0.9 with their increment being 0.1. Figures 8a and 8b show Kex for the axial elongation
and Mt x for the torsion, respectively. Figures 8c and 8d depict Kbx and Mbz for the bending. Shown in
Figures 8e and 8f are Ksy and Msz for the lateral displacement with no gradient at the end, respectively.
For all inner/outer ratios, these spring constants monotonically increase with the sintering angle, seeming
to converge to zero with vanishing angle. Notice that Kbx = Msz because of the reciprocal relation. We
confirmed that these spring constants numerically satisfy this relation (see Figures 8c and 8f).

These spring constants will be used to evaluate the macroscopic, effective or overall elastic moduli
of the aggregate in the next section. Since the average coordination number for the random packing
constructed is approximately 6.02, and very near to 6 for the regular simple cubic packings, we will
simulate the tensile and shear tests up to the range of 2 = 45◦ in the next section. The lower limit is set
to 3◦.

5. Macroscopic material properties

5.1. Simulation method. Now, we will do tensile and shear tests of a random network of springs, with
rigid hinges, of six degrees of freedom with the estimated spring constants. The random network is a
mechanical model of sintered balloons. The model might be satisfactory if deformation of each hourglass-
shaped spring is concentrated around its neck or near the sintered portion. This concentrated deformation
for all springs would account for the overall deformation of the sintered aggregate. To confirm this is the
case, we calculate strain energy density within the balloon pair from the above FEM analysis. The results
are shown in Figure 9 for the case of a rather thin and well sintered balloon, d/D = 0.9 and 2 = 30◦.
From this figure, it is seen that the high density region is near the sintered portion. Although the results
are not illustrated here, the strain energy density obtained by the further FEM calculation depicts that the
deformation occurs only around the neck even in the case of a thin neck, e.g., 2 = 5◦, independently of
the balloon wall thickness. This argument reveals that both ends of the hourglass-shaped spring, which
are far from the neck or sintered portion, is little deformed and plays a roll of the rigid hinge.

Since it was found that more spheres are in contact with others around the direction of θ = 50.1◦

from the vertical line, the porous media modeled by the random networks are expected to be transversely
isotropic in their elastic moduli. So, we carry out both the three different tensile tests and shear tests
of the networks. From the tensile tests, we obtain the macroscopic Young’s moduli E∗

x , E∗
y and E∗

z and



MACROSCOPIC ELASTIC PROPERTIES OF RANDOMLY PACKED BALLOONS 541

Sintering Degree Angle (deg)

S
p
ri

n
g

 C
o
n
st

an
t 
K

ex
/E

s

d/D
(a)

d/D

Sintering Degree Angle (deg)

S
p
ri

n
g
 C

o
n
st

an
t 
M

tx
/E

s

(b)

d/D

Sintering Degree Angle (deg)

S
p
ri

n
g
 C

o
n

st
an

t 
K
b
x
/E

s

(c)
d/D

Sintering Degree Angle (deg)

S
p
ri

n
g
 C

o
n
st

an
t 
M
b
z/
E

s
(d)

d/D

S
p
ri

n
g
 C

o
n

st
an

t 
K

sy
/E

s

Sintering Degree Angle (deg)

(e)
d/D

S
p
ri

n
g
 C

o
n

st
an

t 
M

sz
/E

s

Sintering Degree Angle (deg)

(f)

Figure 8. Spring constants versus sintering degree angle for (a) elongation; (b) torsion;
(c) & (d) bending; and (e) & (f) shearing.
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(a) (b)

Figure 9. Distribution of strain energy density for (a) elongation and (b) torsion.

Poisson’s ratios νxy, νxz, νyx , νyz, νzx , νzy according to their definition. Furthermore, we obtain Gxy , Gxz

and G yz from the shear tests.
We use a program for the 3D structural analysis, which is borrowed from a textbook [Beaufait et al.

1970], to simulate both of the tests.

5.2. Numerical results. Figures 10 and 11 respectively show macroscopic Young’s moduli and shear
moduli versus the total porosity in the sintered state; it should be noted that this porosity accounts for
the hollow space of all the balloons as well, and that the added volume around all necks by sintering
is subtracted from the whole void space. Although we have calculated all these moduli for all samples,
we will present only graphs for sample 1, because we can see little difference among the samples for all
diameter ratios. In all the figures, the ordinate presents their macroscopic Young’s moduli E∗ or shear
moduli G∗ normalized by Young’s modulus of the balloon substance Es ; d/D is adopted as a geometrical
parameter.

Figure 10 shows the porosity dependence of Young’s moduli E∗
x /Es , while Figure 11 shows G∗

xy/Es .
Comparing the results in Figure 10 with those in the figure for E∗

z omitted for brevity, we find that the
value of E∗

z is roughly 20% larger than E∗
x over the entire region of porosity for all diameter ratios. This

can be understood from the following facts: all springs lying in the direction of around 50.1◦ from the
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Figure 11. Shear moduli in isotropy plane versus porosity.
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Figure 12. Three independent Poisson’s ratios versus porosity: (a) νxy , (b) νxz and
(c) νzx , for d/D ranging from 0.0 — 0.9

vertical line support forces in the z direction, while only some parts of them lying around the x − z plane
support forces in the x direction but some parts of them lying around the y − z plane do not. Similarly,
G∗

xy shown in Figure 11 is larger than G∗
xz , not shown, by more than approximately 30% over the whole

range of porosity. Furthermore, we can numerically confirm, although not shown, that E∗
x = E∗

y and
G∗

xz = G∗
yz . These observations show again that the packing structure of the simulation is of transverse

isotropy.
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Next, we examine dependence of the elastic moduli on the degree of sintering and the diameter ratio;
each marker on an individual curve in both the figures corresponds to the sintering degree angle ranging
from 3◦ to 45◦ at the interval of 3◦; and progress toward the right on the curve makes the sintering degree
low. For each constant diameter ratio, the smaller the degree of sintering is, the smaller the elastic moduli.
Increases in the diameter ratio lower the curves as a whole, especially so for the higher degree of sintering.
They also shift the curves toward higher porosity as a whole, because the balloon wall becomes thinner.
The elastic moduli are little affected by the ratio if the ratio is smaller or for the thicker balloon wall. The
elastic moduli lowers rapidly if the diameter ratio is larger than 0.5. The elastic modulus of the aggregate
of hollow spheres with d/D = 0.9 is approximately a quarter of that of solid spheres. All these things
are valid for all the figures, including the omitted. This is also true for Young’s moduli E∗

y and for shear
moduli G∗

yz , as confirmed by further calculation.
It should be added that both Young’s and shear moduli go to zero as the sintering angle tends to zero

for all the diameter ratios even for a finite value of the porosity; the porosity depends on the diameter
ratio as well as on the sintering angle and packing structures.

In the above, we have mentioned that Young’s modulus E∗
z and shear modulus G∗

xz are larger than
E∗

x and G∗
xy by 20% and 30%, respectively. These moduli, however, depend on the diameter ratio and

sintering angle in a very complicated manner, so the degree of anisotropy cannot be described by a
simple multiplication factor. Therefore, it may be important for practical purposes to express all the
elastic moduli in terms of a simple—that is, polynomial—expression of the two geometrical parameters
d/D and 2. The expressions are determined by the conventional least square method as follows:

E∗
x

Es
=

(
4.24 × 10−3

+ 2.91 × 10−3 d
D

− 7.45 × 10−3
( d

D

)2
)

2

+

(
−5.42 × 10−6

− 2.57 × 10−5 d
D

+ 3.43 × 10−5
( d

D

)2
)

22, (8)

E∗
z

Es
=

(
5.28 × 10−3

+ 6.64 × 10−3 d
D

− 9.27 × 10−3
( d

D

)2
)

2

+

(
−1.16 × 10−5

− 3.42 × 10−5 d
D

+ 4.96 × 10−5
( d

D

)2
)

22, (9)

G∗
xy

Es
=

(
1.82 × 10−3

+ 1.27 × 10−3 d
D

− 3.16 × 10−3
( d

D

)2
)

2

+

(
−4.17 × 10−6

− 1.15 × 10−5 d
D

+ 1.6 × 10−5
( d

D

)2
)

22, (10)

G∗
xz

Es
=

(
2.25 × 10−3

+ 1.44 × 10−3 d
D

− 3.9 × 10−3
( d

D

)2
)

2

+

(
−2.07 × 10−6

− 1.33 × 10−5 d
D

+ 1.75 × 10−5
( d

D

)2
)

22. (11)
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All the equations are valid for 0.0 ≤ d/D ≤ 0.9 and 3◦
≤ 2 ≤ 45◦ to within 8.5%.

Now, we will move on to discuss Poisson’s ratio. The topic is a little more complicated than that of
the Young’s and shear moduli.

Figures 12a — c show the behavior of Poisson’s ratios, νxy , νxz , νzx , respectively, against the total
porosity for various inner/outer diameter ratios d/D ranging from 0.0 — 0.9 with their increment being
0.1; νxy means Poisson’s ratio in the isotropy plane; νxz denotes the contraction ratio in the z axis under
uniaxial tension in the x direction, while νzx the one in the x axis under z tension. The estimation of all
Poisson’s ratios here are based on the described definitions; in other words, not on some relations among
other elastic moduli estimated.

The macroscopic Poisson’s ratio obtained is smaller than that of the balloon substance ν = 0.25 with
exceptional cases of νzx , for very small porosity and small diameter ratios. It seems to be a general
tendency that Poisson’s ratio of porous materials is smaller than that of the original material. Few papers
report on this topic but Sanders and Gibson [2003a] give much smaller Poisson’s ratios for the BCC and
FCC packings than the original one.

In Figure 12, it can be seen that the dependence of Poisson’s ratios on porosity is similar to that of
Young’s and shear moduli. The ratios decrease with decreasing sintering degree angle for each diameter
ratio. They are little affected by the diameter ratio if it is smaller (or for the thicker balloon wall), more
precisely for d/D < 0.4. The Poisson’s ratios decrease rapidly if the diameter ratio is larger than 0.5.
Poisson’s ratio νxy in the isotropy plane is the smallest, while νzx is the largest; νxz lies between them.

It is interesting that all Poisson’s ratios sharply ascend with an approach of porosity to the nonsintered
state. This is supported by the similar ascent for the solid sphere aggregates obtained by Kato et al.
[2002], but it may be true on condition that these results are sufficient in their accuracy in the limit.

We have already given the formulae to estimate the four elastic moduli. The final modulus of five
independent moduli for transversely isotropic media, if we select νzx , can be expressed in terms of d/D
and 2 as follows:

νzx =

(
1.38 × 10−1

+ 3.19 × 10−3
( d

D

)2.2
− 5.41 × 10−1

( d
D

)5.2
)

20.1

+

(
8.1 × 10−3

− 2.16 × 10−3
( d

D

)1.2
+ 1.18 × 10−1

( d
D

)6.8
)

20.5. (12)

The equation describes the results for 0.0 ≤ d/D ≤ 0.9 and 9◦
≤ 2 ≤ 45◦ to within 10% in all cases.

Note that the lower limit of the sintering degree is 9◦ to avoid the rapid ascent in the ratio in approaching
the nonsintered state; the relative error is larger for the degree smaller than that. More important, the
expression given by Equation (12) is not a polynomial of d/D and 2, because the dependence of the
ratio on these parameters is too complicated to express by means of a polynomial.

For the transverse isotropy in elasticity, the reciprocal relations

νxz

E∗
x

=
νzx

E∗
z
,

νyz

E∗
y

=
νzy

E∗
z

(13)
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Figure 13. Relative Young’s modulus in [100] for SC packing calculated by present
method versus sintering degree angle together with that of [Sanders and Gibson 2003b].

must be fulfilled. Poisson’s ratio νxz can be determined from the first relation. In addition, νyz = νxz and
νzy = νzx . We have confirmed that the present results almost satisfy these relations.

Poisson’s ratio νxy can be expressed in terms of E∗
x and G∗

xy as

νxy =
E∗

x

2G∗
xy

− 1. (14)

However, Poisson’s ratios νxy calculated by Equation (14) differ considerably from the simulated ones. If
G∗

xy deviates by ±5% in Equation (14), the νxy varies by as much as 30%. Thus, we cannot use Equation
(14) to determine Poisson’s ratio νxy . Instead, it can be obtained from the following expression in terms
of d/D and 2 in a manner similar to that of Equation (12):

νxy =

(
7.96 × 10−2

− 2.24 × 10−1
( d

D

)1.9
+ 3.48 × 10−1

( d
D

)2.5
)

20.4

+

(
−1.01 × 10−2

− 5.2 × 10−2
( d

D

)1.9
+ 7.68 × 10−2

( d
D

)2.5
)

20.8. (15)

The equation describes the results for 0.0 ≤ d/D ≤ 0.9 and 9◦
≤ 2 ≤ 45◦ to within 10% in all cases.

We have determined the in-plane shear modulus G∗
xy from the shear tests. However, we can calculate

G∗
xy from only the tensile test using Equation (14). So we estimate G∗

xy from Equation (14). The results
fit those from the shear test to within ±5%.



548 ISAO TAGUCHI AND MICHIO KURASHIGE

d/D

S
p

ec
if

ic
 M

ac
ro

sc
o
p

ic
 Y

o
u

n
g
's

 M
o

d
u

lu
s 

((
E
*

x
/E

s)
/(
1
-Φ
))

Porosity  Φ

Figure 14. Specific Young’s moduli in isotropy plane versus porosity for d/D ranging
from 0.9 — 0.95.

6. Discussion

6.1. Validity of the proposed simulation method. We have simulated the elastic properties of randomly
packed sintered balloons using the three-step simulation method. Here, we will confirm validity of the
present method by applying it to the simple cubic packing.

[Sanders and Gibson 2003b] evaluated the mechanical properties of simple cubic packed hollow-
sphere foams by the FEM analysis of a unit cell with the periodic boundary conditions. We calculate the
relative Young’s and shear moduli for the same SC packings by the present method. Figure 13 compares
the relative Young’s modulus for the SC packing calculated by the present method with that obtained
from the formula given by [Sanders and Gibson 2003b]. A good agreement is seen between them for a
wider range of the sintering degree angle, although Sanders and Gibson pointed out that their formula is
applicable to the range from 10◦ to 40◦.

6.2. Better design; larger specific moduli. One of the advantageous properties of the sintered balloon
compacts is a high specific modulus. To consider the better design of compacts, we examine a specific
relative modulus, which is defined as the relative effective modulus divided by the relative effective
density of a sintered aggregate, where the term relative means the quantity divided by that of the original
balloon material. In what follows, this term will be omitted in almost all cases. We have calculated the
specific Young’s and shear moduli for a wide range of the diameter ratios, but will not show all of them.
In Figures 14 and 15, we will show the specific moduli only for the case of the diameter ratio larger than
0.9, because commercially available balloons have rather thin walls. Both figures illustrate the moduli
in the isotropy plane.
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Figure 15. Specific shear moduli in isotropy plane versus porosity for d/D ranging
from 0.9 — 0.95.
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Figure 16. Optimum sintering degree angle plotted as a function of inner/outer diameter
ratio for random and SC packings.
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In the first place, we have to point out that the curves of the specific moduli against the porosity have
a peak both for Young’s and shear moduli in the isotropy plane. This is also true for those out of the
plane.

It seems that there is a complicated mechanism behind the peak occurrence. Let us consider the case
of Young’s modulus, so that it may be enough to refer to only Figure 14 and, in addition, Figure 10 for
comparison. See the curve of d/D = 0.9 in the latter figure; it can be seen that the modulus gradually
slows down with increase in porosity for the smaller porosity range and rapidly falls down for the larger
porosity, approaching the point contact state; the gradual slow-down is caused by deformation of upper
and lower thin shell parts around a neck and this deformation is not strongly affected by the sintering
degree, while the sharp falling is due to the concentrated deformation near a contact point because of
the less sintered state. On the other hand, because the balloon thickness is constant on the given curve,
decrease in the porosity implies increase in the sintering degree. This increase makes the specific density
rise; dividing the modulus depicted in Figure 10 by this increased specific density leads to the smaller
specific modulus shown in Figure 14.

In many cases, the largest specific modulus is the optimum porous material with respect to rigidity.
Figure 16 shows the optimum sintering angle for the Young’s modulus, in the z direction, of sintered
random packings, plotted as a function of the diameter ratio together with that given for the SC regular
packings by [Sanders and Gibson 2003b]. It is seen that the optimum angle of the random packings
higher than that of SC. It should be added that the Young’s and shear modulus (the latter is not shown)
in the isotropy plane have almost the same optimum sintering angle and the same thing is true for the
moduli out of the plane (not shown).

In the material design, therefore, we must select the best sintering condition from this result.

6.3. Negative Poisson’s ratios. Here, we will back to Figures 12a — 12c. Scrutinizing the figures, we
find that the Poisson’s ratios are negative in the case of very thin balloon wall and very low sintering
degree. Because of this interesting characteristic, we have calculated the Poisson’s ratios for the case of
d/D = 0.8 or more in detail and shown them in Figures 17a — 17c.

The negative Poisson’s ratio implies that the uniaxial tensile (compressive) load applied on a body
will lead to its expansion (contraction) in the direction orthogonal to the applied load.

A foam with negative Poisson’s ratio was first fabricated by Lakes [1987]. In general, typical mi-
crostructures of foams with negative Poisson’s ratio are of three types: inverted re-entrant cell shape
[Lakes 1987; Friis et al. 1988], solid particles attached to each other by elastic strips [Lakes 1991;
Prall and Lakes 1997] and nodes, connected by tensile springs, constrained by hinged inextensible rods
[Evans and Caddock 1989]. However, the slightly sintered random balloon aggregates have none of such
structures as mentioned just in the above.

Using the discrete element method for a random granular material, Bathurst and Rothenburg [1988]
and Alzebdeh and Ostoja-Starzewski [1999] showed that effective Poisson’s ratio for an aggregate of
two-dimensional irregular particles is negative in some cases even when the individual Poisson’s ratios
of particles are positive. Bathurst and Rothenburg [1988] examined negative Poisson’s ratio behavior by
varying the ratio of a normal stiffness and shear stiffness between particles. They found that the Poisson’s
ratio is negative when the shear stiffness is higher than the normal stiffness.
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Figure 17. Three independent Poisson’s ratios versus porosity: (a) νxy , (b) νxz and
(c) νzx , for d/D ranging from 0.8 — 0.95.

Following their discussion, we pick up only the shear stiffness Ksy and normal stiffness Kex of a
connected balloon pair from the six spring constants calculated in the above FEM analysis. For a solid
sphere of d/D = 0.0, if the sintering degree angle varies down from 45◦ to 3◦ (this descending degree
means the shift of the markers toward the right or higher porosity on each curve in Figure 12), their ratio
Ksy/Kex changes from 0.2 to 0.37, whereas, for a thinner balloon of d/D = 0.9, the ratio changes from
0.5 to 2.1. A rough estimate of the variation of the Poisson’s ratio against that of the stiffness ratio shows
that the Poisson’s ratios are negative when Ksy/Kex is greater than 2. More precisely, this critical value
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slightly differs from each other for the three independent Poisson’s ratios; remember that we have the
three distinct ratios because the sintered aggregates under consideration are transversely isotropic.

6.4. Comparison with SC packing. Finally, we compare the Young’s modulus of the present random
loose (RL) packing with that of the regular packing. Here, we select the SC packing from among regular
packings, because the average coordination number for the random packing constructed is approximately
6 and very near to that for the regular SC packings, whose coordination number is exactly 6. It should
be mentioned here that the present RL packing is of axial symmetry with the five independent elastic
moduli while the SC packing is of cubic symmetry with the three.

In Figure 18, the Young’s moduli, E∗
x and E∗

z , of the RL packing are plotted versus the sintering
degree in the case of d/D = 0.9. Also shown in the figure are the Young’s moduli in the [1 0 0], [1 1 0]

and [1 1 1] directions for the SC packing for the same d/D; these moduli are calculated by using the
standard transformations of elastic moduli from the three compliances, S11, S12 and S44, in the form of
the fitting formula given by [Sanders and Gibson 2003b].

A good agreement is seen between the Young’s modulus of the random packing in the z direction and
that of the SC in the [1 0 0] direction only when 2 < 20◦. However, for 2 > 20◦, the latter is greater
than the former; the difference between them increases with increasing sintering degree angle. For the
sintering degree angle 2 = 30◦ and diameter ratio d/D = 0.9, the relative Young’s modulus is 38%
greater in the [1 0 0] direction of SC than in the z direction for the RL packing. For the same sintering
degree angle and diameter ratio, the relative Young’s modulus in the [1 1 0] and [1 1 1] directions of SC
are 1.86 and 2.11 times that in the z direction for the RL packing.

Figure 19 shows the Young’s modulus versus porosity for both the RL and SC packings when we have
d/D = 0.9 and 0.95. For each diameter ratio, the Young’s modulus of RL packing is much smaller than
that of the regular SC stacking, although the difference between them is rather small when the sintering
degree angle is about 20◦. It can be concluded that, although the average coordination number for the
random packing constructed is very near to that for the regular SC packings, the macroscopic properties
of the RL packing are significantly different from those of the packing in elasticity and anisotropy.

7. Conclusions

We have evaluated the macroscopic elastic properties of the sintered, randomly packed balloons for
various degrees of sintering and for a wide range of the balloon wall thickness. The conclusions are
summarized below:

(1) The packing structure in the vertical direction is different from that in other directions. Branches lie
more frequently around the direction of 50.1◦ from the vertical line than other directions, whereas
they are uniformly distributed about the vertical line. The packings constructed by the present
method are of transverse isotropy; in other words, the structure is affected by gravity.

(2) The elastic moduli are little affected by the diameter ratio for thicker balloons whose ratio is less
than about 0.4, while the properties of thinner balloons are very sensitive to the ratio; they rapidly
decline with decreasing wall thickness of the balloons.

(3) The moduli are larger in the direction of gravity than in the horizontal one, as expected for the
gravity-affected packing structures.
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Figure 19. Relative Young’s modulus plotted against porosity for random loose packing
and SC packing for d/D = 0.9 and 0.95.
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(4) The specific elastic moduli are found to have a peak when the balloons have a diameter ratio larger
than about 0.9.

(5) The Poisson’s ratios are slightly negative in the case of very thin balloon walls and very low sintering
degree.

(6) The macroscopic properties of the RL packing are significantly different from those of the SC
packing in elasticity and anisotropy, although the both packings have almost the same coordination
number.
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