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ASYMPTOTIC HOMOGENIZATION MODEL FOR THREE-DIMENSIONAL
NETWORK REINFORCED COMPOSITE STRUCTURES

KRISHNA S. CHALLAGULLA, ANASTASIS GEORGIADES AND ALEXANDER L. KALAMKAROV

The method of asymptotic homogenization is used to develop a comprehensive micromechanical model
pertaining to three-dimensional composite structures with an embedded periodic network of isotropic
reinforcements, the spatial arrangement of which renders the behavior of the given structures macroscop-
ically anisotropic. The model developed in this paper allows the transformation of the original boundary
value problem into a simpler one that is characterized by some effective elastic coefficients. These coeffi-
cients are calculated from a so-called unit cell or periodicity problem, and are shown to depend solely on
the geometric and material characteristics of the unit cell and are completely independent of the global
formulation of the boundary-value problem. As such, the effective elastic coefficients are universal in
nature and can be used to study a wide variety of boundary value problems. The model is illustrated
by means of several examples of a practical importance and it is shown that the effective properties of
a given composite structure can be tailored to satisfy the requirements of a particular application by
changing certain geometric parameters such as the size or relative orientation of the reinforcements. For
the special case in which the reinforcements form only a two-dimensional (in-plane) network, the results
converge to those of previous models obtained either by means of asymptotic homogenization or by
stress-strain relationships in the reinforcements.

1. Introduction

Recent trends have seen the integration of composite materials into new engineering platforms where
they replace or strategically compliment other traditional structural materials. Presently, composites can
be found in a wide range of applications ranging from sporting and recreational goods, to large-scale
structures in the mechanical, aerospace, transportation and civil engineering fields. The continued incor-
poration of composite materials into new applications can be facilitated if their macroscopic behavior
can be predicted at the design stage. To meet this objective, comprehensive micromechanical models
must be developed. The effectiveness of such models largely depends on the acknowledgment of the
fact that composites have to be approached from two different angles; microscopic and macroscopic.
The microscopic view-point addresses the unique behavior and individual characteristics of the various
constituents such as the reinforcing fibers and the matrix material, whereas the macroscopic perspective
treats the overall composite structure as a single entity. A successful micromechanical model is one
which takes both the local and the global aspects of the composite into consideration; it is sophisticated
enough to consider the geometrical orientation and mechanical interaction of the various constituents at
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the local level, but not too convoluted to be readily amenable to analytic and numerical treatments at the
macroscopic stress/strain level.

The problem of micromechanical modeling of composites made up of inclusions embedded in a ma-
trix has been the subject of investigation for many years. Among the earlier models developed were
the composite spheres model [Hashin 1962] pertinent to macroscopically isotropic composites, and the
composite cylinders model proposed by Hashin and Rosen [1964]. In the former model, the inclusions
are treated as spherical particles of radius a embedded in a region of matrix of radius b. The absolute
size of the particles is allowed to vary, but the ratio of a/b is kept constant. The model was used to
estimate the shear and bulk moduli of macroscopically isotropic composites. For the macroscopically
anisotropic (in particular, transversely isotropic) composite material, the composite cylinders model treats
the reinforcing fibers as cylindrical inclusions of radius a associated with a region of matrix of radius b.
As with the composite spheres model, the absolute size of the reinforcements is allowed to vary in order
to cover all the available continuous material, but the ratio a/b is kept constant.

Other early work includes the self-consistent scheme [Hill 1965; Budiansky 1965] where a composite
is modeled by rigid inclusions embedded in an incompressible matrix, and the Hashin and Shtrikman
model [Hashin and Shtrikman 1963a; 1963b]. In their work, Hashin and Shtrikman employed a vari-
ational approach to determine upper and lower limits for the effective elastic properties [Hashin and
Shtrikman 1963a] as well as electric and thermal conductivities [Hashin and Shtrikman 1963b] of mul-
tiphase materials (with quasiisotropic global characteristics). It was discovered that the upper and lower
bounds were close to one another (thus representing a reasonably accurate estimate of the properties of
the multiphase material) when the properties of the individual constituents were of comparable magni-
tude. Later on, Milton [1981; 1982] obtained higher-order bounds for the elastic, electromagnetic, and
transport properties of two-component composites. Eshelby [1957] studied the case of an ellipsoidal
inclusion or inhomogeneity within an infinite matrix and showed that knowing the uniform strain inside
the inclusion or homogeneity is sufficient to determine such quantities as the strain fields both near and
far from the inclusion/inhomogeneity, the total strain energy in the matrix, etc. Hill [1963] studied the
problem of two isotropic media forming perfect bond and having arbitrary volume fractions. Irrespective
of the geometry of either component, Hill obtained a complete solution for the special case when these
components have equal rigidities but different compressibilities. Russel [1973] studied the problem of
slender elastic illusions (of arbitrary cross-section) embedded in a preferred direction within an infinite
elastic medium strained uniformly at infinity. His model permitted the calculation of the longitudinal
tensile modulus and Poisson’s ratio, as well as the bulk modulus of the composite. The author then
applied the model to the special case of slender spheroidal inclusions. In the same work, Russel also
examined the effect of the inclusion’s volume fraction on the elastic properties of the composite. Other
work can be found, among others, in [Mori and Tanaka 1973; Sendeckyj 1974; Christensen 1990].

More recently, Drugan and Willis [1996] used the Hashin–Shtrikman variational principle general-
ized by the second author for random microstructures to derive constitutive equations for two-phase
composites of arbitrary isotropy; Kalamkarov and Liu [1998] developed a multiphase fiber-matrix com-
posite material model using a work conjugate approach to derive a so-called mesostructure; Zeman and
Šejnoha [2001] used the finite element method to determine effective elastic coefficients of graphite
epoxy composites having a random distribution of fibers in a transverse plane section of the composite
by extracting an approximate periodicity from the fiber distribution.
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Phenomena occurring in composite materials can often be described by means of partial differential
equations which are characterized by two vastly different scales: a microscopic scale which reflects the
periodicity of the regular composite and a macroscopic scale which is a manifestation of the global for-
mulation of the boundary value problem. The microscopic scale is of the same order of magnitude as the
size or spacing of the reinforcements, whereas the macroscopic scale has an order of magnitude similar
to a characteristic dimension of the composite structure. The coupling of these two scales in the original
problem renders the solution of the pertinent differential equations a very difficult task. To overcome
this difficulty, the method of asymptotic homogenization can be used to decouple the microscopic and
the macroscopic variations, so that each can be solved independently or sequentially. The mathematical
framework of asymptotic homogenization can be found in [Bensoussan et al. 1978; Sanchez-Palencia
1980; Kalamkarov 1992; Cioranescu and Donato 1999; Cioranescu and Paulin 1999] and others. In
recent years, asymptotic homogenization methods have been used to analyze periodic composite and
smart structures, see, for example, the pioneering work of Duvaut [1976] on inhomogeneous plates;
Caillerie [1984] applied a two-scale formalism directly to the three-dimensional problem of a thin non-
homogeneous layer. Accordingly, Caillerie introduced two sets of rapid coordinates. One of these, in the
tangential directions, is associated with rapid periodic oscillations in the composite properties. The other
is associated with the small thickness of the layer and takes into consideration that there is no periodicity
in this transverse direction; Kohn and Vogelius [1984], Kohn and Vogelius [1985] adopted this approach
in their study of the pure bending of a thin, linearly elastic homogeneous plate; Guedes and Kikuchi
[1990] used a finite element approach to compute effective elastic properties (including error estimates)
of composite materials. In his monograph, Kalamkarov [1992], studied a wide variety of elastic and
thermoelastic boundary-value problems using the asymptotic homogenization and derived expressions
for the effective properties of different structures such as laminated and reinforced plates and shells,
infinite cylinders with wavy surfaces, etc; Kalamkarov and Kolpakov [2001] used asymptotic homoge-
nization techniques to derive effective elastic and piezoelectric coefficients for a smart plate; Kalamkarov
and Georgiades [2002] applied the asymptotic homogenization method to general 3-dimensional smart
composites with nonhomogeneous boundary conditions (which generate boundary-layer like solutions)
and obtained effective elastic, piezoelectric, thermal expansion and hygroscopic expansion coefficients.
The same authors, Kalamkarov and Georgiades [2004] and Georgiades and Kalamkarov [2004], obtained
effective elastic, piezoelectric and thermal expansion coefficients pertinent to wafer- and rib-reinforced
smart plates; Georgiades et al. [2006] obtained effective coefficients for thin smart network-reinforced
plates.

The present paper develops a novel asymptotic homogenization model for three-dimensional network
reinforced composite structures; see Figure 1. In this model, the composite structure is made of periodi-
cally arranged unit cells and different elements of unit cell can be made of different materials.

The rest of the paper is organized as follows. The basic problem formulation and model development
is presented in Section 2. Section 3 derives the general model for three-dimensional network reinforced
composite structures and Section 4 uses it to analyze and discuss various examples. Finally Section 5
concludes the paper.
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2. Homogenization model for three-dimensional structures

2.1. General model. Consider a general composite structure representing an inhomogeneous solid occu-
pying domain G with boundary ∂G that contains a large number of periodically arranged reinforcements
as shown in Figure 2.

The elastic deformation of this structure can be described by means of the following set of equations:

∂σ ε
i j

∂x j
= fi in G, uε(x) = 0 on ∂G, (1)

where,

σ ε
i j

(
x,

x
ε

)
= Ci jkl

( x
ε

)
eε

kl

(
x,

x
ε

)
(2)

eε
i j

(
x,

x
ε

)
=

1
2

[ ∂ui

∂x j

(
x,

x
ε

)
+

∂u j

∂xi

(
x,

x
ε

)]
. (3)

Here, Ci jkl is the tensor of elastic coefficients, ekl is the strain tensor and u is the displacement field.
Finally, fi represent body forces. The elastic coefficients satisfy the familiar symmetry relationships
Ci jkl = C j ikl = Ckli j and we assume that they also satisfy the strong convexity relation Ci jklχi jχkl >

0 for any 3 × 3 real matrix χi j . It is also assumed in Equation (2) that the Ci jkl coefficients are all
periodic with a unit cell Y of characteristic dimension ε. It is assumed that ε is made nondimensional by
dividing length of unit cell by a certain characteristic dimension of the overall structure. Furthermore,
it is assumed that the other two dimensions of the unit cell are of the same order of magnitude as the
length. Consequently, the periodic composite structure in Figure 2 is seen to be made up of a large
number of unit-cells periodically arranged within the domain G. Let us also note at this point that if the
boundary conditions in Equation (1) were made nonhomogeneous, then the resulting field expansions
(displacement, strain, etc) would be characterized by boundary-layer type solutions [Kalamkarov and
Georgiades 2002]. However, the effective coefficients would not be affected in any way. Thus, for
simplicity, homogeneous displacement boundary conditions are chosen here.

Figure 1. Three-dimensional network reinforced composite structure.
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Figure 2. Three-dimensional composite structure with its periodicity (unit) cell.

2.2. Asymptotic expansion, governing equation, and unit cell problem. Kalamkarov and Georgiades
[2002] develops the asymptotic homogenization model for the three-dimensional smart composite struc-
tures. In this section, only a brief overview of the steps involved in the development of the model are
given in so far as it represents the starting point of our current work. The first step is to define the
so-called fast or microscopic variables, as well as new rules of differentiation according to

yi =
xi

ε
,

∂

∂xi
→

∂

∂xi
+

1
ε

∂

∂yi
. (4)

The introduction of these variables transforms the boundary value problem, by separating variables xi

and yi , and corresponding stress field in Equations (1) and (2) into

∂σ ε
i j

∂x j
+

1
ε

∂σ ε
i j

∂y j
= fi in G, uε

= 0 on ∂G, (5)

σ ε
i j (x, y) = Ci jkl( y)

∂uk

∂xl
(x, y). (6)

The displacement and stress fields are subsequently expressed as infinite power series in terms of the
small parameter ε:

uε(x, y) = u(0)(x, y) + εu(1)(x, y) + ε2u(2)(x, y) + · · · ,

σ ε
i j (x, y) = σ

(0)
i j (x, y) + εσ

(1)
i j (x, y) + ε2σ

(2)
i j (x, y) + · · · . (7)

Here all functions in y are periodic with the unit cell Y (see Figure 2). By substituting Equations (4)
and (6) into Equation (5) while considering at the same time the periodicity of u(i) in y j one can readily
show that u(0) is independent of the microscopic variable y. Subsequently, by substituting Equation (7)
into Equation (5) and equating like powers of ε one obtains a sequence of differential equations the first
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two of which are

∂σ
(0)
i j

∂y j
= 0, (8)

∂σ
(1)
i j

∂y j
+

∂σ
(0)
i j

∂x j
= fi , (9)

where,

σ
(0)
i j = Ci jkl

(
∂u(0)

k

∂xl
+

∂u(1)
k

∂yl

)
, (10)

σ
(1)
i j = Ci jkl

(
∂u(1)

k

∂xl
+

∂u(2)
k

∂yl

)
. (11)

Combination of Equations (8) and (10) yields the following expression:

∂

∂y j

(
Ci jkl

∂u(1)
k (x, y)
∂yl

)
= −

∂Ci jkl( y)
∂y j

∂u(0)
k (x)

∂xl
. (12)

The separation of variables on the right-hand-side of Equation (12) allows to write down the solution as

u(1)
n (x, y) = Vn(x) +

∂u(0)
k (x)

∂xl
N kl

n ( y), (13)

where functions N kl
m are periodic in y and satisfy

∂

∂y j

(
Ci jmn( y)

∂ N kl
m ( y)
∂yn

)
= −

∂Ci jkl

∂y j
. (14)

It is seen that Equation (14) depends entirely on the fast variable y and is thus solved on the domain Y
of the unit cell remembering at the same time the periodicity of Ci jkl, N kl

m in yi . Consequently, Equation
(14) is appropriately referred to as the unit-cell problem.

The next important step in the model development is the homogenization process. This is achieved
by first substituting Equation (13) into Equation (10) and combining the result with Equation (9). The
resulting expression is finally integrated over the domain Y of the unit cell (with volume |Y |) remembering
to treat xi as a parameter as far as integration with respect to y is concerned. This gives

1
|Y |

∫
Y

∂σ
(1)
i j (x, y)
∂y j

dv+C̃i jkl
∂2u(0)

k (x)

∂x j∂xl
= fi ,

where we have defined C̃i jkl as the effective or homogenized elastic coefficients

C̃i jkl =
1

|Y |

∫
Y

(
Ci jkl( y) + Ci jmn( y)

∂ N kl
m

∂yn

)
dv. (15)

One observes that the effective coefficients are free from the periodicity complications that characterize
their actual rapidly varying material counterparts, Ci jkl , and as such, are more amenable to analytical
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and numerical treatment. The effective coefficients shown above are universal in nature and can be used
to study a wide variety of boundary value problems associated with a given composite structure.

3. Three-dimensional network reinforced composite structures

For the problem at hand, we turn our attention to a general macroscopically anisotropic three-dimensional
composite structure reinforced with N families of reinforcements or bars, see, for example, Figure 1,
where a particular case of 3 families of reinforcements is shown. The members of each family are made
of generally different isotropic materials and are oriented at angles φn

1 , φn
2 , φn

3 , for n = 1, 2, . . . , N , with
the y1, y2, y3 axes respectively. Furthermore, they are assumed to be much stiffer than the surrounding
matrix so that we are justified in neglecting the contribution of the latter in the ensuing analysis. For
the particular case of framework or lattice network structures the surrounding matrix is absent and this
is modeled by assuming zero matrix rigidity. The nature of the network structure of Figure 1 is such
that it would be more efficient if we first considered a simpler type of unit cell made of only a single
reinforcement as shown in Figure 3. Having solved this, the effective elastic coefficients of more general
structures with several families of reinforcements can readily be determined by superposition of solution
for each of them found separately. In doing so, we accept of course the error incurred at the regions of
intersection between the reinforcements, but this error is highly localized and will not add significantly
to the integral over the unit cell. A mathematical justification for this kind of argument in the form of the
so-called principle of the split homogenized operator has been provided by Bakhvalov and Panasenko
[1984]. In order to calculate the effective coefficients for the simpler structure of Figure 3, one must first
solve the unit cell problem Equation (14) and then apply the formula in Equation (15).

3.1. Problem formulation. We begin the problem formulation for the structure of Figure 3 by introduc-
ing the following notation:

bkl
i j = Ci jmn( y)

∂ N kl
m ( y)
∂yn

+ Ci jkl . (16)

Y1

Y2

Y3

Figure 3. Unit cell of composite network reinforced with a single reinforcement family.
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With this definition in mind, the unit cell problem of Equation (14) becomes ∂{bkl
i j }/∂y j = 0.

Because of the multiconstituent nature of the network structures under consideration, it is prudent to
also consider the interfacial conditions that exist between the matrix and the reinforcements. The first
such condition is a direct consequence of the continuity of the N kl

m (y) functions and may be stated as:

N kl
n (r)

∣∣
s = N kl

n (m)
∣∣
s . (17)

Furthermore, continuity of the displacement field leads to:

bkl
i j n j (r)

∣∣
s = bkl

i j n j (m)
∣∣
s . (18)

In Equations (17) and (18) the suffixes s, r, m stand for interface, reinforcement and matrix, respectively.
n j are the components of the unit normal vector to the interface. As mentioned earlier on, we will further
assume that the structure of interest is made of high modulus reinforcements and “soft” matrix. As such,
we may take bkl

i j (m) ≈ 0 and thus, condition in Equation (18) becomes bkl
i j n j (r)

∣∣
s = 0.

In summary, the final problem that must be solved in conjunction with Equation (17) for the three-
dimensional network structure reinforced with a single family of isotropic bars is:

∂

∂y j

{
bkl

i j
}

= 0, bkl
i j n j (r)

∣∣
s = 0. (19)

3.2. Coordinate transformation. Before proceeding to the solution of the unit cell problem given in
Equation (19) we perform a coordinate transformation of the microscopic coordinates {y1, y2, y3} onto
{η1, η2, η3} as shown in Figure 4. The coordinate transformation is carried out in such a way that the η1

coordinate axis coincides with the direction of the reinforcement and η2, η3 are perpendicular to it.
Thus, derivatives transform according to

∂

∂yi
= q j i

∂

∂η j
,

where qi j are the components of the matrix of direction cosines characterizing the axis rotation.

Y1

Y2

Y3

η 3

η�1
η2

Figure 4. Unit cell in original and rotated macroscopic coordinates.
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With this choice of coordinate system, it is evident that problems in Equation (19) will be independent
of η1 and will only depend on η2 and η3. Consequently, derivatives with respect to η1 in the pertinent
differential equations vanish and the analysis of the problem is simplified.

3.3. Determination of elastic coefficients. With reference to Figure 4 we begin by rewriting Equation
(19) in terms of the ηi coordinates to get

bkl
i j = Ci jmnqpn

∂ N kl
m

∂ηp
+ Ci jkl, (20)

bkl
i j q2i n′

2 + bkl
i j q3i n′

3

∣∣
s = 0. (21)

Here n′

i represent the components of the unit normal vector expressed in terms of the new coordinates.
Expanding Equation (20) remembering at the same time the independence of the problem on η1 gives:

bkl
i j = Ci jkl + Ci jm1q21

∂ N kl
m

∂η2
+ Ci jm2q22

∂ N kl
m

∂η2
+ Ci jm3q23

∂ N kl
m

∂η2

+ Ci jm1q31
∂ N kl

m

∂η3
+ Ci jm2q32

∂ N kl
m

∂η3
+ Ci jm3q33

∂ N kl
m

∂η3
. (22)

It is possible to solve the system of Equations (20) and (21) by assuming a linear variation of the N kl
i

functions in η2 and η3, that is,

N kl
1 = λ1η2 + λ2η3, N kl

2 = λ3η2 + λ4η3, N kl
3 = λ5η2 + λ6η3, (23)

where λi are constants to be determined from the boundary conditions. It should be noted that the values
of the constants λi are different for the different combinations of the suffixes k, l in Equation (23) and
in the sequel. From Equations (22) and (23), the elastic bkl

i j coefficients may be written as follows

bkl
11 = C11kl + C11q21λ1 + C11q31λ2 + C12q22λ3 + C12q32λ4 + C13q23λ5 + C13q33λ6,

bkl
22 = C22kl + C12q21λ1 + C12q31λ2 + C22q22λ3 + C22q32λ4 + C23q23λ5 + C23q33λ6,

bkl
33 = C33kl + C13q21λ1 + C13q31λ2 + C23q22λ3 + C23q32λ4 + C33q23λ5 + C33q33λ6,

bkl
23 = C23kl + C44q23λ3 + C44q33λ4 + C44q22λ5 + C44q32λ6,

bkl
13 = C13kl + C55q23λ1 + C55q33λ2 + C55q21λ5 + C55q31λ6,

bkl
12 = C12kl + C66q22λ1 + C66q32λ2 + C66q21λ3 + C66q31λ4.

(24)

Here Ci j are the elastic coefficients of the isotropic reinforcements in the contracted notation (see, for
example, [Reddy 1997]). Substituting Equation (24) in Equation (21) and letting j take on the values 1,
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2, 3 results in 6 linear algebraic equations in λi for i = 1, 2, . . . , 6

A1λ1 + A2λ2 + A3λ3 + A4λ4 + A5λ5 + A6λ6 + A7 = 0,

A8λ1 + A9λ2 + A10λ3 + A11λ4 + A12λ5 + A13λ6 + A14 = 0,

A15λ1 + A16λ2 + A17λ3 + A18λ4 + A19λ5 + A20λ6 + A21 = 0,

A22λ1 + A23λ2 + A24λ3 + A25λ4 + A26λ5 + A27λ6 + A28 = 0,

A29λ1 + A30λ2 + A31λ3 + A32λ4 + A33λ5 + A34λ6 + A35 = 0,

A36λ1 + A37λ2 + A38λ3 + A39λ4 + A40λ5 + A41λ6 + A42 = 0,

(25)

where Ai are constants which depend on the direction of the reinforcement as well as its mechanical
properties. The explicit expressions for these constants are given in Appendix A. Once the system of
Equation (25) is solved, the determined λi coefficients are substituted back into Equation (24) to solve for
the bkl

i j coefficients. In turn, these are used to calculate the effective elastic coefficients of the structure of
Figure 3 by integrating over the volume of the unit cell as explained below in Section 3.4. Before closing
this section, it would not be amiss to mention that if Equation (23) were assumed to be polynomials of
a higher order, then after following the procedure outlined here and comparing terms of equal powers of
η2 and n3, all of the terms would vanish except the linear ones.

3.4. Effective elastic coefficients. The effective elastic coefficients of the network composite structure
of Figure 3 are obtained by means of the rule of homogenization in Equation (15), which, on account of
notation in Equation (16) becomes

C̃i jkl =
1

|Y |

∫
Y

bkl
i j dv.

Assuming that the length (within unit cell), cross-sectional area of the reinforcement and volume of the
unit cell in coordinates y1, y2, y3 are L , A, V , respectively, then the effective elastic coefficients are,

C̃i jkl =
AL
V

bkl
i j = V f bkl

i j ,

where bkl
i j is constant and V f is the volume fraction of the reinforcement within the unit cell. It can be

proved that the effective elastic coefficients C̃i jkl satisfy the same symmetry and convexity relationships
as their actual material counterparts Ci jkl [Bakhvalov and Panasenko 1984].

For network structures with more than a single family of reinforcements, the effective coefficients
can be determined by superposition ignoring stress concentration and other local complications at the
regions of intersections. For example, for a network composite structure with N families of isotropic
reinforcements, the effective elastic coefficients will be given by

C̃i jkl =

N∑
n=1

V (n)
f b(n)kl

i j , (26)

where the superscript (n) represents the n-th reinforcement family.
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4. Examples of network structures

Let us now apply above developed general theory to the analysis of some examples of practical impor-
tance.

Example 1 (Convergence of model for the case of 2D composite network). For the purposes of the first
example, we will verify the validity of our model for the case of 2D network structures whereby the
reinforcements lie entirely in the Y2-Y3 plane. Figure 5 shows the pertinent unit cell for such a structure.

Solving Equation (25) for λi and substituting the results into Equation (24) gives the following ex-
pressions for the all nonzero elastic coefficients:

b11
11 = E cos4 θ, b12

11 = E cos3 θ sin θ, b22
11 = b12

12 = E cos2 θ sin2 θ,

b12
22 = E cos θ sin3 θ, b22

22 = E sin4 θ, bkl
i j = bi j

kl ,

while the effective coefficients of the composite structure are

C̃11 =
AL
V

E cos4 θ, C̃22 =
AL
V

E sin4 θ, C̃12 = C̃66 =
AL
V

E cos2 θ sin2 θ,

C̃16 =
AL
V

E cos3 θ sin θ, C̃26 =
AL
V

E cos θ sin3 θ, C̃i j = C̃ j i .

where we have denoted by E Young’s modulus of the reinforcing material. These results are the same as
those earlier obtained by Kalamkarov [1992] who developed an asymptotic homogenization model for
a thin network-reinforced composite shell and Pshenichnov [1982] who used a different approach based
on stress-strain relationships in the reinforcements.

θ

Y1

Y2

Y3

Figure 5. Unit cell for (2D) structure with reinforcements in the Y1-Y2 plane.

Example 2. The second example pertains to the cubic structure of Figure 6. This composite structure
has three families of reinforcements, each family oriented along one of the coordinate axes.
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Noting that qi j = δi j , where δi j is the Kronecker symbol, the values of λi for the reinforcement in the
Y1 direction are readily obtained from Equation (25) to be as follows

λ1 =
−C12kl

C66
, λ2 =

−C13kl

C55
, λ3 =

C33C22kl − C23C33kl

C23
2
− C22C33

,

λ4 + λ5 =
−C23kl

C44
, λ6 =

C22C33kl − C23C22kl

C23
2
− C22C33

.

It is observed here that because the transformation tensor q equals the second-order identity sensor, the
number of equations is reduced from 6 to 5 and the unknowns λ4 and λ5 occur everywhere as the linear
combination of λ4 +λ5. The same result will occur with reinforcements oriented entirely along either the
Y2 or the Y3 directions. In both of these cases, a pair of the unknown λi occurs as a linear combination
and the number of equations is reduced to 5 (with correspondingly 5 unknowns). From Equation (24)
the bkl

i j coefficients are given by

bkl
11 = C11kl +

[C12C33 − C13C23]C22kl + [C13C22 − C12C23]C33kl

C2
23 − C22C33

.

After substituting expressions for elastic coefficients we obtain

b11
11 = E, b22

11 = b33
11 = b23

11 = b13
11 = b12

11 = 0, bkl
22 = bkl

33 = bkl
23 = bkl

13 = bkl
12 = 0. (27)

Repeating the procedure for the reinforcement in the Y2 direction yields b22
22 = E with the remaining

coefficients equal to zero, and for the reinforcement in the Y3 direction the only nonzero coefficient is
b33

33 = E .
We are now ready to compute the effective elastic coefficients of the cubic network structures shown

in Figure 6. Let the length (within unit cell) and cross-sectional area of the i-th reinforcement in the Yi

direction be L i and Ai respectively (in coordinates y1, y2, y3). Also let us assume that Ei is the Young’s
modulus of the reinforcement in the Yi direction. Then, for a unit cell of volume V , the corresponding
volume fraction vi is given by vi = Ai L i/V . Thus, from Equations (26) and (27) the nonzero effective
elastic coefficients for the composite network structure of Figure 6 are

C̃11 =
A1L1

V
E(1) = v1 E(1), C̃22 =

A2L2

V
E(2) = v2 E(2), C̃33 =

A3L3

V
E(3) = v3 E(3), (28)

Y1 

Y3 

Y2 

Figure 6. Cubic network structure with reinforcements in Y1, Y2, Y3 directions.
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where E(i) is the young’s modulus of the i-th reinforcement. In the case where the reinforcements have
the same material properties (namely Young’s modulus E) the expressions in Equation (28) become

C̃11 =
A1

V
E = v1 E, C̃22 =

A2

V
E = v2 E, C̃33 =

A3

V
E = v3 E .

It is observed that all the off-diagonal terms in the stiffness matrix are zero. This is partly because the
reinforcements in a particular direction have no effect on the stiffness of the structure in the directions
perpendicular to it and partly due to the fact that the matrix stiffness is neglected in this model.

Example 3. This example pertains to a composite network structure with a conical arrangement of
isotropic reinforcements. In this example (to be referred to as structure S1) the unit cell is made of three
reinforcements oriented as shown in Figure 7. The expressions for the effective coefficients are readily
determined from Equations (24)–(26). Although the expressions are too lengthy to be reproduced here,
some of these coefficients will be presented graphically in the next section.

Spatial arrangement of reinforcements 

as viewed from the top 

Y1 

Y2 

Figure 7. Unit cell for composite network structure with conical arrangement of
isotropic reinforcements (structure S1).

Example 4. In this example let us consider a general unit cell (S2) as shown in Figure 8. The general
unit cell consists of three reinforcements two of which span from different corners of the unit cell to the
diametrically opposite ones and the third reinforcement is oriented from the middle of the bottom edge
to the middle of the top edge on the opposite face.

The effective coefficients for this structure are calculated as for the ones in the previous examples.
The resulting expressions are too lengthy to be reproduced here. However as an illustration some of the
effective coefficients are plotted vs. the height of the unit-cell in the following section.

4.1. Plots of effective properties and discussion. The mathematical model and methodology presented
in Sections 3.1–3.4 can be used in analysis and design to tailor the effective elastic coefficients of any
three-dimensional composite network structure by changing the material, number, orientation and/or
cross-sectional area and material selection of the reinforcements. In this section typical effective coeffi-
cients will be computed and plotted. For illustration purposes, we will assume that the reinforcements
have a Young’s modulus and Poisson’s ratio equal to 200 GPa and 0.3, respectively.
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Y3 

Y2 

Y1 

1 

1 

h 

Figure 8. Structure S2.

We will begin with the plot of some of the effective coefficients for the structure shown in Figure 7.
The effective coefficients will be plotted vs. the total volume fraction of the reinforcements within the
unit cell. As expected, the effective coefficients increase with an increase in the overall reinforcement
volume fraction, see for example Figures 9 and 10.

It would also be of interest to plot the variation of some of the effective coefficients of structure S1 with
the angle of inclination of the reinforcements to the Y3 axis. As this angle increases, the reinforcements
are oriented progressively closer to the Y1 and Y2 axis and the stiffness in these directions is expected to
increase. Indeed a reference to Figures 11 and 12 shows precisely that. On the contrary, (see Figure 13)
at the same time as the stiffness in the Y1 and Y2 directions increases the corresponding value in the Y3

direction decreases because the reinforcements are oriented further away from the Y3 axis.

Total Reinforcement Volume Fraction 

  MPaC
~

11

Figure 9. Plot of C̃11 vs. reinforcement volume fraction for structure S1.
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  MPaC
~

55

Total Reinforcement Volume Fraction 

Figure 10. Plot of C̃55 vs. reinforcement volume fraction for structure S1.

 

  MPaC
~

11

0.045 0.06 0.03 

Angle (degrees) of inclination of reinforcements with Y3 axis 

volume fraction of reinforcements 

Figure 11. Plot of the C̃11 effective coefficient vs. inclination of reinforcements with
the Y3 axis pertaining to structure S1 for reinforcement volume fractions equal to 0.03,
0.045, and 0.06.

 0.03 0.045 0.06 

Angle (degrees) of inclination of reinforcements with Y3 axis 

  MPaC
~

22

Figure 12. Plot of the C̃22 effective coefficient vs. inclination of reinforcements with
the Y3 axis pertaining to structure S1 for reinforcement volume fractions equal to 0.03,
0.045, and 0.06.
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 0.03 0.045 0.06 

Angle (degrees) of inclination of reinforcements with Y3 axis 

MPa 33C
~

Figure 13. Plot of the C̃33 effective coefficient vs. inclination of reinforcements with
the Y3 axis pertaining to structure S1 for reinforcement volume fractions equal to 0.03,
0.045, and 0.06.

We now turn our attention to the S2 composite structure (Figure 8) and plot some of the effective
coefficients by varying the relative height of the unit cell (height divided by length) but keeping the other
dimensions as well as the cross-sectional area of the reinforcements constant. It is noted that as the
relative height of the unit cell is varied, the lengths and orientations of reinforcements change.

Figure 14 shows a plot of effective coefficients C̃11, C̃22, C̃33, and C̃55 vs. the relative height of the unit
cell. As the relative height of the unit-cell increases, the volume fraction of the reinforcements decreases
and at the same time the reinforcements are oriented closer to the Y3 axis and further away from Y1, and
Y2 axis. Both of these effects contribute to the stiffness in the Y1, and Y2 direction decreasing. However,
C̃33 increases because the increase in stiffness due to a smaller angle of inclination with the Y3 axis
dominates the decrease in stiffness due to the reinforcements volume fraction decreasing.

MPa 

Relative Height of Unit Cell 

11C
~

22C
~

33C
~

55C
~

Figure 14. Plot of C̃11, C̃22, C̃33, and C̃55 effective coefficient vs. relative height of the
unit cell for S2 structure shown in Figure 8.
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Finally, we are interested to compare a typical effective coefficient of structures S1 and S2 by varying
the volume fraction. We vary the volume fraction of structure S1 by varying the reinforcement cross-
sectional area and of structure S2 by varying the relative height of the unit cell. From Figure 15 we see
that C̃33 for S1 increases as the volume fraction increases, as expected for larger diameter reinforcements.
However, pertinent to structure S2, increasing the volume fraction of the reinforcements is tantamount to
decreasing the relative height of the unit cell. This has the effect of increasing the deviation of the rein-
forcements from the Y3 axis which dominates the increase in the overall reinforcement volume fraction.
Consequently, the net effect is that a decrease in the relative height of the unit cell produces a reduction
(in a nonlinear fashion) in the stiffness of the composite structure in the Y3 direction. Thus, under these
circumstances, beyond a certain volume fraction, S1 is stiffer in the Y3 direction. Of course these trends
can be easily changed. For example, if the volume fraction of the reinforcements of S2 is changed
by keeping all dimensions of unit cell constant (that is, direction cosines pertinent to reinforcements
unchanged) and changing their cross-sectional area, then a higher volume fraction would increase C̃33,
and the relative stiffness between the two structures would be different than that depicted in Figure 15.
What is important is to realize that the model allows for complete flexibility in designing a structure with
desirable mechanical and geometrical characteristics.

Total Reinforcement Volume Fraction 

33

~
C MPa

S1 S2

Figure 15. Plot of C̃33 vs. total volume fraction for structures S1 (Figure 7) and S2

(Figure 8).

5. Conclusions

A comprehensive three-dimensional micromechanical model pertaining to globally anisotropic periodic
composite structures reinforced with a spatial network of isotropic reinforcements is developed. The
model, which is developed using the asymptotic homogenization technique, transforms the original
boundary value problem into a simpler one that is characterized by some effective elastic coefficients. The
effective coefficients are shown to depend only on the pertinent geometric and material characteristics
of the periodicity cell and are therefore independent of the global formulation of the problem.

The derived model is illustrated by means of different composite structures with cubic or conical
configurations of reinforcements. The usefulness of this work lies in the fact that the model can be used
to tailor the effective coefficients of any three-dimensional composite structure to meet the requirements
of a particular application by changing such geometric or other parameters as the material, number,
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cross-sectional dimensions, and relative angular orientation of the reinforcements. In the particular case
in which the reinforcements form only a two-dimensional (planar) network, the results are shown to con-
verge to previous models developed by Kalamkarov [1992] who also used the asymptotic homogenization
technique and Pshenichnov [1982] who used stress-strain relationships in the reinforcements.

Appendix A

A1 = q21
2C11 + q22

2C66 + q23
2C55, A2 = q21q31C11 + q22q32C66 + q23q33C55,

A3 = q21q22C12 + q21q22C66, A4 = q21q32C12 + q22q31C66,

A5 = q21q23C13 + q21q23C55, A6 = q21q33C13 + q23q31C55,

A7 = q21C11kl + q22C12kl + q23C13kl, A8 = q21q31C11 + q22q32C66 + q23q33C55,

A9 = q31
2C11 + q32

2C66 + q33
2C55, A10 = q31q22C12 + q21q32C66,

A11 = q31q32C12 + q32q31C66, A12 = q31q23C13 + q21q33C55,

A13 = q31q33C13 + q33q31C55, A14 = q31C11kl + q32C12kl + q33C13kl,

A15 = q21q22C66 + q21q22C12, A16 = q21q32C66 + q22q31C12,

A17 = q21
2C66 + q22

2C22 + q23
2C44, A18 = q21q31C66 + q22q32C22 + q23q33C44,

A19 = q22q23C23 + q22q23C44, A20 = q22q33C23 + q23q32C44,

A21 = q21C12kl + q22C22kl + q23C23kl, A22 = q31q22C66 + q21q32C12,

A23 = q31q32C66 + q32q31C12, A24 = q21q31C66 + q22q32C22 + q23q33C44,

A25 = q31
2C66 + q32

2C22 + q33
2C44, A26 = q32q23C23 + q22q33C44,

A27 = q32q33C23 + q33q32C44, A28 = q31C12kl + q32C22kl + q33C23kl,

A29 = q21q23C55 + q21q23C13, A30 = q21q33C55 + q23q31C13,

A31 = q22q23C44 + q22q23C23, A32 = q22q33C44 + q23q32C23,

A33 = q21
2C55 + q22

2C44 + q23
2C33, A34 = q21q31C55 + q22q32C44 + q23q33C33,

A35 = q21C13kl + q22C23kl + q23C33kl, A36 = q31q23C55 + q21q33C13,

A37 = q31q33C55 + q33q31C13, A38 = q23q32C44 + q22q33C23,

A39 = q32q33C44 + q33q32C23, A40 = q21q31C55 + q22q32C44 + q23q33C33,

A41 = q31
2C55 + q32

2C44 + q33
2C33, A42 = q31C13kl + q32C23kl + q33C33kl .
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