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Thermomechanical deformation of a functionally graded composite (FGC) in elevated temperature envi-
ronments is investigated by the meshless local Petrov–Galerkin method. The FGC is modeled as a 2-D
linearly elastic solid which consists of ceramic ZrO2 and alloy Ti-6Al-4V with the volume fraction vary-
ing along a predefined direction. Unlike most investigations performed so far, temperature-dependent
thermophysical and thermomechanical properties are considered for both constituents in this work. The
effective material properties of the FGC are evaluated with the micromechanical models. An FGC hollow
cylinder under an internal temperature change is first studied; the numerical results agree very well with
those computed by the finite element method. The parametric studies with respect to different profiles
of graded FGCs are performed for a clamped-clamped thick beam and a square plate with a central hole,
respectively. It is found that inclusion of temperature dependence for the material properties has a great
impact on thermomechanical response prediction for FGCs in elevated temperature environments.

1. Introduction

Among functionally graded composites (FGCs), those made from ceramics and metals have received
considerable attention in the structural ceramic applications, including gas turbines, hot engine com-
ponents, packaging encapsulants, thermoelectric generators, and human implants, to name a few. The
reasons for receiving such a great attention are two-fold: (1) the ceramic phase provides corrosion, wear
and erosion resistance, possesses higher compressive strength, and can protect the structural components
from severe thermal or biological environments; (2) a microscopically heterogeneous FGC engineered
to a continuous spatial variation by grading the volume fraction of the material constituents can reduce
interfacial stresses in a coated structure, minimize stress concentration or intensity factors, and attenuate
stress waves, etc.

Numerous theoretical studies have been conducted for investigating linearly elastic thermomechanical
response of FGCs. Although analytical approaches provide closed-form solutions [Zimmerman and Lutz
1999; Tarn 2001; Sankar and Tzeng 2002; Vel and Batra 2002; 2003; Ootao and Tanigawa 2004; 2005],
they are limited to simple geometries, certain types of gradation of material properties (for example,
exponential or power law distribution), special types of boundary conditions and loadings. The above
constraints can be relaxed when numerical approaches are applied. In those with finite element methods
[Takahashi et al. 1992; Reddy and Chin 1998; Praveen et al. 1999; Wang and Mai 2005], homogeneous
elements with different effective material properties are often used to model the macro, nonhomogeneous
nature of FGCs. To better treat the nonhomogeneity of the material properties, meshless methods may

Keywords: functionally graded composites, thermomechanics, temperature-dependent material properties, micromechanical
model, meshless local Petrov–Galerkin method.
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provide a more cost-effective approach for computer-aided design tools for FGM materials. One of the
unique features of meshless methods is that only a set of scattered nodes that need not be connected to
form closed polygons is required to model the physical domain. They not only can avoid the numeri-
cal difficulties of mesh entanglement and distortion during high intensity loading interactions as often
encountered in finite element and finite difference analyses, but lend themselves a natural way to treat
initiation and growth of voids/cracks as well. It is not our intention to give an exhaustive review for the
meshless particle methods; interested readers should refer to the literature for details. One of the well-
known meshless methods is the meshless local Petrov–Galerkin (MLPG) method proposed by Atluri and
Zhu [1998]. It is a truly mesh-free approach in terms of both interpolation of variables and integration
of energy because it does not require a background mesh to evaluate various integrals appearing in the
local weak formulation of the problem. Recently, the MLPG method has successfully been employed in
the thermomechanical analysis of FGCs [Qian and Ching 2004; Qian and Batra 2004; 2005; Sladek et al.
2003; 2005; Ching and Yen 2005; Ching and Chen 2006].

Most of the theoretical investigations reported so far have not taken into account the temperature
dependence for the material properties. Therefore, those results in general are only adequate for small
change of temperature in an FGC or the variation of material properties against temperature being in-
significant. To accurately describe thermomechanical behaviors of FGCs, temperature dependence on
the material properties should be considered. To our knowledge, only a few studies have included the
effects of temperature-dependent material properties [Praveen et al. 1999; Wang and Mai 2005; Wang and
Tian 2005]. The first two works examine deformation and stress in a 1-D axisymmetric hollow cylinder,
and the third solves transient heat conduction problems for a 1-D strip. All the effective temperature-
dependent properties used are evaluated using the simple rule of mixture, which does not account for
the interaction between phases, and thus only give rough approximate values for most of the effective
properties. As pointed out by Ching and Chen [2006], the effective material properties evaluated by
different homogenization schemes could lead to significantly different thermomechanical response for
an FGC material. Accordingly, a higher fidelity, micromechanics based model should be employed in
evaluation of the effective material properties.

In this paper, thermomechanical response of a linearly elastic FGC under temperature loading is in-
vestigated by using the MLPG method. The FGCs considered consist of spherical particulates ZrO2 and
alloy matrix Ti-6Al-4V with the volume fraction varying over a predefined direction. For simplicity,
it is modeled as a macro nonhomogeneous, isotropic, 2-D body. To accurately predict their thermo-
mechanical response, both the temperature-dependent thermophysical and thermomechanical properties
of the constituents are employed. The effective material properties of the FGC are evaluated with the
micromechanical models. A hollow FGC cylinder is first studied with the effective material properties
estimated by the rule of mixtures to validate the present MLPG solution with the finite element result
[Wang and Mai 2005]. Then, parametric studies are performed with respect to different profiles of
graded FGCs, for a clamped-clamped thick beam and a square plate with a central hole. The impact of
temperature dependence for the material properties on thermo-mechanical response prediction of FGCs
in elevated temperature environments is investigated.
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2. Governing equations

Consider a 2-D isotropic solid occupying the domain � bounded by the boundary 0 and unstressed at
a reference temperature. In rectangular Cartesian coordinates x = [x1 x2]

T , (where the superscript T
denotes transposition), the governing equations of elastostatics neglecting body forces and steady-state
thermal equilibrium in the absence of internal heat sources are given by

σi j, j = 0 in �, (1)

q j, j = 0 in �, (2)

where σi j and q j are the components of the Cauchy stress tensor and the heat flux vector, respectively. A
comma followed by index j denotes the partial differentiation with respect to coordinate x j of a material
point, and a repeated index implies summation over the range of the index. Equations (1) and (2) are
supplemented with the boundary conditions

ui = ūi on 0u, σi j n j = t̄i on 0t (3)

and
T = T̄ on 0T , q j n j = q̄ on 0q , q j n j = h(T − Ts) on 0h . (4)

In these equations the ui are the displacement components, T is the change of temperature with respect
to a reference state, ūi are the prescribed displacements on 0u and t̄i are the given tractions on 0t where
0u and 0t are the complementary parts of the boundary 0, that is, 0u ∩0t = ∅ and 0u ∪0t = 0. The
thermal conditions include a prescribed temperature T̄ specified on 0T , a given heat flux q̄ imposed on
0q , and a convection heat loss to an ambient temperature Ts occurring on 0h . Likewise, 0T , 0q and 0h

constitute another set of complementary parts of the boundary. h is the coefficient of the convection, and
n j are the components of the unit outward normal to 0.

The constitutive equation for thermal stresses is written in the matrix form

σ =
[
σ11 σ22 σ12

]T
= Dε−βT,

ε is the infinitesimal strain vector

ε =
[
ε11 ε22 γ12

]T
=

[
∂u1
∂x1

∂u2
∂x2

∂u2
∂x1

+
∂u1
∂x2

]T

, (5)

D is the stiffness matrix and β is the stress-temperature matrix. For a linearly elastic, isotropic 2-D solid

D =
Ē

1 − v̄2

1 v̄ 0
v̄ 1 0
0 0 1

2(1−v̄)

 , β = β
[
1 1 0

]T

in which Ē = E/(1−v2), v̄ = v/(1−v), and β = αE/(1−2v) for plane strain with E , v and α denoting
the Young’s modulus, Poisson’s ratio, and coefficient of thermal expansion, respectively, and Ē = E ,
v̄ = v, and β = αE/(1 − v) for plane stress. The Fourier law for heat flux is q j = −κT, j , where κ is
the thermal conductivity. For an FGC material, the material properties E, v, α, κ are functions of x in
general.
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3. The MLPG formulation

3.1. Nodal interpolation. In the MLPG method [Atluri and Zhu 1998] the moving least squares approx-
imation is adopted for forming the basis functions φi (x) for an unknown trial function. Let f h(x) be an
approximation of a scalar function f (x) given by

f h(x)= pT (x)a(x)=

m∑
j=1

p j (x)a j (x), (6)

where p(x1, x2) = [p1(x) p2(x) . . . pm(x)]T is a vector of the complete monomial basis of order m.
For a 2-D problem, p(x1, x2)= [1 x1 x2]

T for m = 3 and p(x1, x2)= [1 x1 x2 x2
1 x1x2 x2

2 ]
T for m = 6.

The m unknown coefficients a j (x) are determined by minimizing a weighted discrete L2 norm given as

J =

n∑
i=1

W (x − xi )
[

pT (xi )a(x)− f̂i
]2
, (7)

where n is the number of points in the neighborhood of point x for which the weight function W (x−xi )>

0, and f̂i refers to the nodal parameter of the function f .
Finding the extremum of J in Equation (7) with respect to a(x) leads to the system of linear equations

A(x)a(x)= B(x) f̂ , (8)

where the matrices A(x) and B(x) and the vector f̂ are

A(x)=

n∑
i=1

W (x − xi ) p(xi ) pT (xi ),

B(x)=
[
W (x − x1) p(x1) W (x − x2) p(x2) . . . W (x − xn) p(xn)

]
,

f̂ =
[

f̂1 f̂2 . . . f̂n
]T
.

Solving a(x) in Equation (8) and substituting it into Equation (6) results in the following relation for the
nodal interpolation

f h(x)=

n∑
i=1

φi (x) f̂i with φi (x)=

m∑
j=1

p j (x)[A−1(x)B(x)] j i ,

where φi (x) is called the basis function of the moving least squares approximation corresponding to
node i . Note that φi (x j ) need not equal the Kronecker delta δi j , and thus f̂i 6= f h(xi ) in general. For the
matrix A to be invertible the number of n points must not be smaller than m, that is, n ≥ m. For m = 3 or
6, Chati and Mukherjee [2000] utilized the moving least squares approximation in their boundary node
method and suggested that 15 ≤ n ≤ 30 gives acceptable results for 2-D elastostatic problems.

In this study, the following Gaussian function is adopted as the weight function:

W (x − xi )=
exp

(
−(di/ci )

2k
)
− exp

(
−(ri/ci )

2k
)

1 − exp
(
−(ri/ci )2k

) for 0 ≤ di ≤ ri ,
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where ci is the distance from node i to its third nearest neighboring node, di is the distance |x − xi |,
and ri is the radius of the circle outside of which W (x − xi ) vanishes, that is, W = 0 when di > ri . We
choose m = 6, k = 1 and ri = 4ci .

3.2. Weak formulation and discretization. This section presents weak (or variational) formulations cor-
responding to the governing equations (1)–(2) and the boundary conditions (3)–(4). The system equations
are obtained by discretizing the weak formulation using the moving least squares method.

Thermoelastic analysis. Let ξ(x)= [ξ1 ξ2]
T be a set of two linearly independent test functions defined

in �. We can obtain a useful relation by taking the inner product of Equation (1) with ξ and of Equation
(3), left, with χξ , integrating the resulting equations over � and 0u , respectively, and adding them. To
simplify it we integrate by parts, use the divergence theorem and impose the natural boundary condition
from Equation (3), right, on 0t , obtaining∫

�

ε̃Tσ d�−

∫
0u

εT Nσ d0−

∫
0t

εT t̄ d0+χ

∫
0u

εT (u − ū) d0 = 0, (9)

where the strain vector ε̃ is obtained from Equation (5) by replacing the displacement components ui

with the test functions ξi and matrix N is given by

N =

[
n1 0 n2

0 n2 n1

]
.

In Equation (9) χ is a penalty parameter. The penalty method is chosen here for imposing the essential
boundary condition in the equations ui = ūi and T = T̄ from (3) and (4), due to the lack of the Kronecker
delta property of the basis functions. Selection of the value of the penalty parameter still remains a
challenge as the parameter cannot be taken “very large” in order to avoid the case of the system matrix
being ill-defined. A suitable range for the value of the penalty parameter suggested by Zhu and Atluri
[1998] is χ = (103

∼ 107) · E .
The most distinguished feature of the MLPG method is that the weak formulation is based on a

local subdomain rather than a global problem domain. Consider that N nodes are in the domain � and
S1, S2, . . . , SN are smooth 2-D closed regions, not necessarily disjointed or having the same shape and
size. Let {φ1, φ2, . . . , φn} and {ψ1, ψ2, . . . , ψn} be two sets of linearly independent functions defined
over a region, say Sα . The unknown trial function u and the test function ξ can respectively be expressed
as

u(x)=

[
u1(x)
u2(x)

]
=

n∑
J=1

8J (x)̂uJ , ξ(x)=

[
ξ1(x)
ξ2(x)

]
=

n∑
I=1

9 I (x)̂ξI , (10)

where 8J = φJ I , 9 I = ψI I with I a 2 × 2 identity matrix and ûJ , ξ̂I are 2 × 1 arrays. Various options
of the test function that lead to different MLPG formulations have been discussed by Atluri [2005]. Here
we equal the test function to the weight function of the moving least squares approximation. Thus, the
strain vectors ε and ε̃ become

ε =

n∑
J=1

B J ûJ , ε̃ =

n∑
I=1

B̃ I ξ̂I , (11)
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where

B J =


∂φJ
∂x1

0

0 ∂φJ
∂x2

∂φJ
∂x2

∂φJ
∂x1

 , B̃ I =


∂ψI
∂x1

0

0 ∂ψI
∂x2

∂ψI
∂x2

∂ψI
∂x1

 .
Replacing the domain � of integration in Equation (9) by Sα, substituting for u, ξ , ε, and ε̃ from

Equations (10) and (11), and requiring that the resulting equations hold for all choices of ξ̂I , one arrives
at the following linear algebraic equations for ûJ :

n∑
J=1

∫
Sα

B̃
T
I DB J ûJ d�−

n∑
J=1

∫
0αu

9T
I SN DB J ûJ d0+

n∑
J=1

χ

∫
0αu

9T
I S8J ûJ d0

=

∫
Sα

B̃
T
I βT d�−

∫
0αu

9T
I SNβT d�+

∫
0αt

9T
I t̄ d0+χ

∫
0αu

9T
I ū d0 (12)

for I = 1, 2, . . . , n, where

S =

[
S1 0
0 S2

]
, Si =

{
1 if ui is prescribed on 0αu,

0 if ui is not prescribed on 0αu .

Symbolically, the simultaneous Equation (12) are written in the matrix form

Kαûα = Fα. (13)

The final system of equations can be obtained by assembling Equation (13) for all the N nodes over the
entire domain.

Nonlinear heat conduction analysis. Let η(x) be another test function defined over �. Following the pro-
cedure in the above thermoelastic analysis yields the weak form associated with the governing Equation
(2) and the boundary conditions given in Equation (4), we get∫

�

(∇Tη)q d�−

∫
0T

ηnT q d0−

∫
0q

ηq̄ d0−

∫
0h

ηh(T − Ts) d0+χ

∫
0T

η(T − T̄ ) d0 = 0, (14)

where q = [q1 q2]
T and n = [n1 n2]

T . With the unknown trial function T and the test function η
expressed in an interpolative form as

T (x)=

n∑
J=1

φJ (x)T̂J , η(x)=

n∑
I=1

ψI (x)̂ηI (15)

one has

∇T =

n∑
J=1

C J T̂J , ∇η =

n∑
I=1

C̃ I η̂I , (16)

where

C J =

∂φJ
∂x1
∂φJ
∂x2

 , C̃ J =

∂ψJ
∂x1

∂ψJ
∂x2

 .
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Substituting for T, η,∇T,∇η from Equations (15) and (16) into Equation (14) for a region Sα and
requiring that the resulting equations hold for every choices of η̂I , we arrive at the following simultaneous
equations for I = 1, 2, . . . , n

n∑
J=1

L I J (T )T̂J =

n∑
J=1

G I , (17)

where

L I J =

∫
Sα

C̃
T
I κC J d�−

∫
0αT

ψ IκnT C J d0+

∫
0αh

hψ Iφ J d0−χ

∫
0αT

ψ Iφ J d0, (18)

G I = −

∫
0αq

ψ I q̄ d0−χ

∫
0αT

ψ I T̄ d0+

∫
0αh

hψ I T̄s d0. (19)

Repeating Equation (17) for all the N nodes in the domain leads to the system of equations for the
temperature field. It should be noted that the first two terms on the right-hand side of Equation (18)
become nonlinear if the thermal conductivity is temperature-dependent. Hence the system of equations
needs to be solved iteratively. The Newton–Raphson method [Cook et al. 1989] is adopted to solve the
system of equations here. The solution is assumed to have converged when the criterion√

N∑
i=1
(T̂ j+1

i − T̂ j
i )

2

/√
N∑

i=1
T̂ j2

i < 10−4, (20)

is met, where the superscript j denotes the iteration number.
To utilize the Gauss quadrature rule to evaluate the domain integral on Sα and the line integrals on

∂Sα in Equations (12), (18) and (19), the region Sα and its boundaries 0αu, 0αt , 0αq , 0αT and 0αh are
mapped onto a [−1, 1] × [−1, 1] square domain and a [−1, 1] straight line, respectively. Using this
approach no shadow cells are needed for the integration.

4. Temperature-dependent material properties and effective moduli

In this study a ceramic ZrO2 is taken as the particulate phase and alloy Ti-6Al-4V as the matrix phase. For
practice the FGC is treated as a macro-nonhomogeneous isotropic material. The temperature-dependent
material properties of the two constituents are given as follows [Tanigawa et al. 1997]:

ZrO2 : E = 132.2 − 50.3 × 10−3T − 31.4 × 10−6T 2 (GPa),

ν = 0.333,

κ = 1.71 + 0.21 × 10−3T + 0.116 × 10−6T 2 (W/mK )

α = 13.31 × 10−6
− 18.9 × 10−9T + 12.7 × 10−12T 2 (1/K ),

(21)

Ti-6Al-4V: E = 122.7 − 0.0565T (GPa),

ν = 0.289 + 32.0 × 0−6T,

κ = 1.1 + 0.017T (W/mK ),

α = 7.43 × 10−6
− 5.56 × 10−9T + 2.69 × 10−12T 2 (1/K ).

(22)
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The Poisson’s ratio ν of ZrO2 is assumed to be constant here since its dependence on temperature may
be weak [Dole and Hunter Jr. 1983]. The first (constant) terms in Equations (21) and (22) are the material
properties at temperature T = 0◦K , which is assumed as the reference state temperature in this work.
At elevated temperatures, for example, T = 1000◦K , the changes of the Young’s modulus, thermal con-
ductivity, and coefficient of thermal expansion are about −61.8%, 19.1%, and −46.6%, respectively, for
ZrO2 and about −46.1%, 1545.5% and −38.6% respectively for Ti-6Al-4V. Due to the nontrivial change
of the material properties, a significant difference of the thermomechanical response prediction can be
expected when the constant properties are used. To delineate the influence of temperature dependence
for the material properties on thermomechanical response of the FGCs, both the temperature-dependent
and constant material properties are incorporated in this paper.

Two homogenization schemes are frequently utilized to evaluate the effective material properties for
composites. One is the rule of mixtures, and the other is the micromechanical model. The former is
simple to use but does not include the effect of interaction between the different constituents. For a
two-phase composite it computes the effective value of a composite material property (P) by

P = Pm Vm + PcVc, (23)

where subscripts m and c are associated with the matrix and particulate phase, respectively; the volume
fractions satisfy Vm +Vc = 1. On the other hand, the latter evaluates the effective properties of a composite
based on elasticity theory by considering the inclusion of particulates or fibers in a matrix phase.

Several micromechanical models have been derived for the effective properties of composite materials
[Christensen 1979]. For a two-phase particulate composite the effective bulk and shear moduli K , µ
derived by Mori and Tanaka [1973] are given as

K − Km

Kc − Km
=

Vc

1 + (1 − Vc)(Kc − Km)/(Km + 4µm/3)
, (24)

µ−µm

µc −µm
=

Vc

1 + (1 − Vc)(µc −µm)/(µm + fm)
, (25)

with fm = µm(9Km + 8µm)/6(Km + 2µm). The effective Young’s modulus and Poisson’s ratio are re-
lated to the bulk and shear moduli by E = 9Kµ/(3K +µ) and ν = (3K − 2µ)/2(3K +µ), respectively.
The effective thermal conductivity κ derived by Hatta and Taya [1985] and the coefficient of thermal
expansion α derived by Rosen and Hashin [1970] are

κ − κm

κc − κm
=

Vc

1 + (1 − Vc)(κc − κm)/3κm
,

α−αm

αc −αm
=

1/K − 1/Km

1/Kc − 1/Km
. (26)

5. Results and discussion

A computer code based on the aforementioned MLPG formulation was developed and used to analyze the
steady-state thermoelastic response of 2-D FGCs in elevated temperature environments. Three examples
are examined: (1) a hollow cylinder under a temperature change at internal surface, (2) a clamped-
clamped thick beam with a temperature change on the top surface, and (3) a square plate with a central
hole subjected to a temperature change either at the hole surface or the outer boundary. The effective
properties of the FGCs are estimated with the rule of mixtures of Equation (23) for the first example for
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comparison with the finite element solution and with the micromechanical models of Equations (24)–(26)
for the other two examples.

5.1. A hollow cylinder under temperature change at internal surface. Here we consider a functionally
graded hollow cylinder with the inner radius of ri = 50 mm and outer radius of ro = 150 mm. Temperature
at the inner surface is suddenly increased to Ti = 1000◦K and then kept constant, while the temperature
on the outer surface is fixed at the reference temperature, that is, To = 0. The volume fraction of ceramic
phase ZrO2 is assumed to have the radial dependence by a power-law function as

Vc = V o
c + (V i

c − V o
c )

(
ro − r
ro − ri

)n

, (27)

where V i
c and V o

c are, respectively, the volume fractions of ZrO2 on the inner and outer surfaces, and n
is the power law index that dictates the volume fraction profile across the thickness of the cylinder. With
the symmetry boundary conditions, a quadrant of the circular cross-section of the cylinder is analyzed
as though it were essentially a 1-D axisymmetric problem. A total of 21 × 40 nodes are equally spaced
along the radial and circumferential directions, respectively. Plane strain condition is assumed. All the
results presented below are normalized by

[r̄ , T̄ , ūr , σ̄θ ] =

[
r
ri
,

T
Ti
,

10ur

(ro − ri )α
0
T i Ti

,
10σθ

E0
T iα

0
T i Ti

]
,

where σθ , E0
T i and α0

T i are the hoop stress, the (constant) Young’s modulus and thermal expansion coef-
ficient of Ti-6Al-4V at T = 0.

Figure 1 shows the through-the-thickness variation of the temperature and hoop stress respectively,
for the case of V i

c = 1, V o
c = 0 and n = 1. Apparently, the present MLPG solution agrees very well with
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Figure 1. Through-the-thickness variations of the normalized (a) temperature change
and (b) hoop stress obtained by the finite element method and MLPG method; effective
material properties are computed by the rule of mixtures with V o

c = 0, V i
c = 1 and n = 1.
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the 1-D axisymmetric finite element result [Wang and Mai 2005], which is obtained with 100 elements.
The FGC in each element is assumed to be homogeneous but different from one another. In the present
analysis 21 nodes are used through the thickness direction. The results computed with the constant
material properties are also included in Figure 1. It can be seen from Figure 1(b) that the resulting hoop
stress is quite different when the temperature dependence on the material properties is excluded. For
example, the dimensionless hoop stress on the inner surface computed with the temperature-dependent
material properties is about −4, and changes to −20 when the properties are assumed to be constant.
The discrepancy found here suggests that the temperature dependence of material properties should not
be ignored in thermomechanical analysis when an FGC is under severe thermal loading.

Figure 2 displays the through-the-thickness variation of the effective Young’s modulus, Poisson’s ratio,
thermal conductivity, and coefficient of thermal expansion for the case of V i

c = 1, V o
c = 0 and n = 1,
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Figure 2. Through-the-thickness variations of effective material properties computed
by the rule of mixtures for the case of V o

c = 0, V i
c = 1 and n = 1: (a) Young’s modulus,

(b) Poisson’s ratio, (c) thermal conductivity; (d) coefficient of thermal expansion.
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Figure 3. Distribution of the normalized (a) temperature change and (b) hoop stress
over the thickness of the cylinder for different values of V i

c with V o
c = 0 and n = 1,

calculated with the temperature-dependent material properties.

normalized by the corresponding constant properties of Ti-6Al-4V. For the case of constant material
properties, all the properties are linear functions of r as dictated by Equation (27). However, the linear
relations no longer exist when the temperature dependence of material properties is taken into account.
Figure 2(a) shows that the effective Young’s modulus monotonically increases from the inner surface
to the outer surface, whereas the trend is opposite when the temperature dependence is neglected. The
normalized values at the inner surface are 0.411 versus 1.08. Neither the thermal conductivity nor the
coefficient of thermal expansion vary monotonically; see Figures 2(c) and 2(d).

Variations of the temperature change and hoop stress are further evidenced in Figure 3 for different
values of V i

c with V o
c = 0 and n = 1, calculated with the temperature-dependent material properties. The

case of V i
c = 0 corresponds to a pure Ti-6Al-4V cylinder. Figure 3(a) shows the temperature decreases

with increase of the ceramic content except for those at the inner and outer surface, where the temperatures
remain constant specified by the boundary conditions. It is also found from Figure 3(b) that the magnitude
of the hoop stress reduces as the ceramic ZrO2 increases in the FGC.

Figure 4 shows the normalized radial displacement at the inner and outer surfaces as a function of n
with V i

c = 1 and V o
c = 0. An increase of the value in n means that the FGC cylinder has more composition

of Ti-6Al-4V. The pure ZrO2 cylinder is the limit case of n = 0. By comparing the results in the two
parts of the figure we can ascertain that the trend of net expansion of the wall thickness with n is opposite
when the temperature dependence of the material properties is neglected. In addition, use of the constant
material properties overestimates the net wall thickness expansion for small n, but underestimates the
expansion for large n.

5.2. A clamped-clamped thick beam with temperature change on top surface. A clamped-clamped
FGC beam of length L = 50 mm and thickness H = 10 mm is subjected to a sinusoidal temperature
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change T = T0 sin(πx1/L) with T0 = 1000◦K , on the top surface; see Figure 5. The bottom surface
and the two edges of the beam are at the reference temperature. The origin of the rectangular Cartesian
coordinates (x1, x2) is located at the left bottom corner of the beam, and the x1-axis is parallel to the
long edges. Plane strain condition is assumed. The volume fraction of the ceramics phase varies over
the beam thickness by a power law function as

Vc = V −

c + (V +

c − V −

c )
( x2

H

)n
, (28)

where V +
c and V −

c are the volume fractions of ZrO2 on the top and the bottom surfaces, respectively,
and n is the power law index. Instead of using the rule of mixtures, the effective material properties are
computed with the micromechanical models described in Section 4.
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1
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Figure 5. An FGC thick beam subjected to a sinusoidal temperature load on the top surface.
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Due to the symmetry to the vertical centroidal plane, the left half of the domain is analyzed with a
uniform mesh of 55 nodes along x1-direction and 25 nodes along the x2-direction, for which the solution
has been tested to be convergent. The physical quantities presented below are normalized by[

x̄1, x̄2, T̄ , ū2, σ̄11, σ̄12
]
=

[
x1

L
,

x2

H
,

T
T0
,

10Hu2

α0
T i T0L2

,
10σ11

E0
T iα

0
T i T0

,
10Lσ12

E0
T iα

0
T i T0 H

]
. (29)

Figure 6 plots the distributions of the effective Young’s modulus, thermal conductivity, and coefficient
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Figure 6. Distributions of normalized effective properties computed with V +
c = 1, V −

c =

0 and n = 2.
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of thermal expansion normalized by the corresponding constants of Ti-6Al-4V. The values of V +
c = 1,

V −
c = 0 and n = 2 were chosen. The left-hand panes of the figure clearly show that, for constant material

properties, the dependence is on x1 only and the maximum value always occurs on the top surface (pure
ZrO2), basically following the volume fraction distribution of ZrO2 described by Equation (28). When
the temperature dependence is included, the overall material properties no longer follow the graded
material pattern; see left side of Figure 6.

Figure 7 shows the influence of temperature dependence of material properties on the deformation,
temperature, and longitudinal stress (σ11) in the beam for V +

c = 1, V −
c = 0 and n = 2. The top row
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c = 0 and n = 2 computed with temperature-dependent material properties and

constant material properties; deformations in (a) and (d) are enlarged by 20 times.
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shows that, when subjected to temperature rise on the top surface, the beam expands, but the amount
of expansion is different between the two cases. Apparently, use of the constant material properties not
only predicts a larger increase for the beam thickness, but a larger deflection as well. This can be seen
by examining the values of α1T and αE1T over the thickness. The impact of the temperature depen-
dence of material properties on the steady-state temperature response is less pronounced; see middle row
of Figure 7. With the temperature dependence, the resulting maximum normalized longitudinal stress,
however, can be decreased by nearly 100%, from −38.0 to −19.9; see bottom row of the figure.

Figure 8 displays the distribution of normalized temperature, transverse displacement, longitudinal
stress, and transverse shear stress over the thickness of the FGC beam for four different values of V +

c
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c = 0 and n = 2, computed with the temperature-

dependent material properties.
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with V −
c = 0 and n = 2. These results are calculated with the temperature-dependent material properties.

Like the results in the previous cylinder case, the temperature change, transverse displacement and the
magnitude of stresses all decrease as V +

c increases.
Figure 9 illustrates the temperature change, transverse displacement, longitudinal stress, and trans-

verse shear stress as functions of the power index n at some points of interest. Again, the significant
differences between the two cases found here reveal the importance of the temperature dependence of
material properties in simulation of thermomechanical response of the FGCs in elevated temperature
environments.

5.3. A square plate with a central hole under temperature change along boundaries. The analysis for
a centrally-holed FGC square plate under the temperature change along boundaries is conducted. The
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edge length of the plate is L = 4 mm and the radius of the hole is ra = 1.5 mm. The origin of the
rectangular Cartesian coordinates (x1, x2) coincides with the center of the hole, and the x1-axis points
to the middle point of the right vertical edge. For convenience, a polar coordinate system (r, θ) is also
set at the center of the hole with θ measured counterclockwise from the positive x1-axis. The volume
fraction of the ceramic is assumed to vary along the radial direction r with

Vc = V −

c + (V +

c − V −

c )

(
r − ra

rd − ra

)n

,

where rd is the radial distance measured from a point on the surface of the hole to the corresponding
point at the outer boundary of the plate and V +

c and V −
c are the volume fractions of ZrO2 at the outer

boundary and the hole surface, respectively. Two temperature loadings are considered: (a) a temperature
rise of T0 = 1000◦K is applied on the outer boundary while the surface of the hole is kept at T = 0, and
(b) a temperature rise of T0 = 1000◦K is applied on the surface of the hole while the outer boundary
is kept at T = 0. Since a ceramic-rich layer usually is in the hotter region, V +

c = 1.0 and V −
c = 0 are

assumed for the loading condition (a) and V +
c = 0 and V −

c = 1.0 for the condition (b). Plane stress
condition is assumed.

Only the first quadrant of the plate is analyzed with the symmetric boundary conditions imposed on
the x1- and x2-axis. A total of 1025 nodes, the effect of which passed the convergence test for the nodal
density, is meshed. The results presented below are normalized as follows

[
x̄1, x̄2, σ̄22, σ̄θ , σ̄e

]
=

[
x1

a
,

x2

a
,

10σ22

E0
T iα

0
T i T0

,
10σθ

E0
T iα

0
T i T0

,
10σe

E0
T iα

0
T i T0

]
.

The normal stress σ̄22 along the x1-axis and the hoop stress σ̄θ around the surface of the hole for
different values of n are presented in Figure 10 for condition (a). As expected, the stress σ22 is in tension
near the hole and in compression near the edge regardless of the value of n. It is clear from the top
row of Figure 10 that for the case of temperature-dependent material properties the magnitude of σ22

increases as n increases; however, the trend is opposite when temperature dependence is excluded. The
tensile stress σ22 in the region near the hole computed with the temperature-dependent material properties
increases as n decreases. A similar conclusion also applies to the hoop stress σθ around the surface of
the hole; see bottom row of the figure. Maximum σθ occurs at θ = 0, ±π/2 and π , while the minimum
occurs at θ = ±π/4 and ±3π/4.

Figure 11 compares the normalized effective stress σ̄e in the plate for n = 2, calculated with and
without the temperature dependence on the material properties. It appears that the peak effective stress
occurs at the intersections between the surface of the hole and the x1- and x2-axis. A comparison of the
values of σ̄e in the two halves of Figure 11 indicates that use of the constant material properties would
underpredict the effective stress for the graded FGC with V +

c = 1.0, V −
c = 0 and n = 2.

For the condition (b) the resulting thermal stresses σ22 and σθ are in an opposite sense from those
for condition (a). Figure 12 exhibits the contour of the normalized effective stress σ̄e in the plate for
n = 2 calculated with and without the temperature dependence on the material properties. The maximum
effective stress is present at the middle points of the outer edges for the case of temperature-dependent
material properties, but at the intersections between the surface of the hole and the x1- and x2-axis for
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Figure 10. Variations of σ22 along the x1-axis and hoop stress along the surface of the
hole for different values of n with V +
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material properties; right: constant material properties. The temperature load is applied
on the outer boundary.

the case of the constant material properties. The difference of the maximum σ̄e calculated with the two
sets of the material properties is much larger for condition (b) than for condition (a).

6. Conclusions

Due to the complex features of material nonhomogeneity in FGC materials and the temperature depen-
dence on material properties it is almost impossible to obtain an exact solution for the thermomechanical
response. In this work we have analyzed the thermomechanical deformation in the 2-D ZrO2 and Ti-6Al-
4V FGCs under elevated temperature loading using the mesh-free MLPG particle method. Both the rule
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of mixtures and the micromechanical models are adopted to evaluate the effective material properties.
Three illustrated examples, including a hollow cylinder, a clamped-clamped thick beam, and a square
plate with a central hole, are presented. The numerical results show that the deformation and thermal
stresses in an FGC computed temperature-dependent material properties are quite different than those
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predicted with the constant material properties. Therefore, analyses that fail to consider the temperature
dependence of material properties could result in a considerable error in thermomechanical response for
an FGC in elevated temperature environments. More importantly, the FGC may not perform as initially
expected if it is graded based on the constant material properties.

To accurately predict the thermomechanical responses for nonhomogeneous FGCs a high fidelity nu-
merical tool is essential. Unlike the finite element method, the MLPG method requires only a set of
nodes for both the interpolation of the trial functions and the integration of the weak forms. Besides,
this method dictates the continuous material properties of FGMs directly to a quadrature point. These
prominent features make the MLPG method well suited in the analysis of functionally graded composite
structures.
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