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A special-purpose, semianalytical solution method for determining the stress and deformation fields in a
thin, laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes
the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval cross-sectional eccen-
tricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and
pure bending. The analysis approach is based on the principle of stationary potential energy and uses
Lagrange multipliers to relax the kinematic admissibility requirements on the displacement represen-
tations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for
the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic
boundary conditions in an indirect manner, which enables the use of a broader set of functions for
representing the displacement fields. Selected results of parametric studies are presented for several
geometric parameters that demonstrate that this analysis approach is a powerful means for developing
design criteria for laminated-composite shells.

1. Introduction

Cutouts in cylindrical shell-type components are unavoidable in the construction of aerospace structures.
This fact is significant because the structural failure of these components usually begins near the cutout
due to high stress concentrations that initiate the formation of cracks. Hence, a cutout can trigger a local
failure at a load level lower than the global failure load of a corresponding shell without a cutout. As a
result, preliminary design sizing of a cylindrical shell with a cutout is often based on the magnitude of the
stress concentrations near the cutout. Therefore, an accurate assessment of the stress concentrations in a
given shell subjected to various types of loading and support conditions is essential to the development of
safe and reliable designs. Moreover, validated special-purpose analysis tools that enable rapid parametric
studies would be very valuable to structural designers and for development of new design criteria and
design concepts.

Several analytical, numerical, and experimental studies have been conducted during the past sixty
years to determine stress distributions in cylindrical shells with a cutout and subjected to various types of
loadings, such as axial tension and compression, torsion, and internal and external pressure. Pioneering
analytical work was conducted by [Lurie 1946; 1947] to investigate the effects of axial tension, internal
pressure, and shell curvature on the stress concentrations around a circular cutout. Many years later,
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Figure 1. Geometry, coordinates systems, and applied edge tractions for an oval cylin-
drical shell with an elliptical cutout and nonuniform wall thickness.

analytical studies were presented by [Lekkerkerker 1966; Van Dyke 1965; Ashmarin 1966; Murthy et al.
1974; Guz et al. 2001; Van Tooren et al. 2002] that further investigated the effects of various factors on the
stress concentrations around a cutout in a cylindrical shell. Similarly, experimental investigations have
been conducted by [Tennyson 1968; Starnes 1972; Pierce and Chou 1973; Zirka and Chernopiskii 2003;
Bull 1982], and numerical studies have been conducted by [Liang et al. 1998; Shnerenko and Godzula
2003; Storozhuk and Chernyshenko 2005]. Hicks [1964] and Ebner and Jung [1972] summarized the
results obtained from several of these studies and provided extensive lists of references related to this
problem. Most of these previous studies are for isotropic cylindrical shells with a circular cutout. Only
a few of these studies, such as those presented by Pierce and Chou [1973] and by Murthy et al. [1974],
address the effects of cutout shape (elliptical cutouts) on the stress concentrations.

Mitigation of high stress concentrations by tailoring shell wall thickness, material orthotropy and
anisotropy, and cutout reinforcement is also an important consideration in the design of aerospace struc-
tures made of lightweight composite materials. Likewise, the potential for using shells of noncircular
cross section are relevant to fuselage-like structures. However, only a few studies have considered these
effects. For example, the influence of variation in wall thickness on the stresses in axially loaded com-
posite cylindrical shells without a cutout has been investigated by [Li et al. 1995]. Although numerous
analyses exist in the literature on the analysis of shells with circular cross sections, only a few include
noncircular cross sections. Sheinman and Firer [1994] provided an analytical investigation of stresses in
laminated cylindrical shells with arbitrary noncircular cross sections. More recently, Hyer and Wolford
[2002] and Hyer et al. [2003] studied the effect of noncircular cross sections on damage initiation and
progressive failure in composite cylinders by employing the finite element method.
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The objective of the present study is to present a special-purpose analysis for a laminated-composite
cylindrical shell with an elliptical cutout that can be used to investigate rapidly and parametrically the
effects of shell curvature, cutout size, shape, and orientation, and ply lay-up on stress-resultant concen-
trations near the cutout. The analysis is applicable to thin-walled cylindrical shells with nonuniform wall
thickness, noncircular (for example, oval) shell cross-section, which are subjected to tension, torsion,
and bending loads as illustrated in Figure 1.

To accomplish this objective, an overview of the analysis is presented first. Next, the boundary value
problem is defined along with the kinematics and stress-strain relations used in the analysis. Then,
the derivation of the equations governing the response and numerical procedure are described. Finally,
selected numerical results for oval and circular cylindrical shells with either circular or elliptical cutouts
and subjected to either tension, torsion, or pure-bending loads are presented.

2. Analysis overview

The analytical approach used herein permits the determination of the pointwise variation of displacement
and stress components. It is based on the principle of stationary potential energy, but utilizes local and
global functions that are not required to satisfy the kinematic boundary conditions directly. Thus, the
choice of local and global functions is not limited by a particular type of kinematic boundary condition.
The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. Both
local and global functions are used, in contrast to the traditional approach, to enhance the robustness
of the analysis method. In particular, the local functions are used to capture rapidly varying stress and
strain gradients and local deformations near a cutout. Toward that goal, Laurent series are used for the
local functions and are expressed in terms of the mapping functions introduced by [Lekhnitskii 1968].
Fourier series are used for the global functions and are used to capture the overall deformation and
stress fields. The kinematic admissibility requirements on the local and global functions are relaxed by
defining the edges of the shell such that they are supported by extensional and rotational springs. Zero-
valued displacement and rotation kinematic boundary conditions are enforced in an indirect manner by
specifying values for the spring stiffnesses that are large compared to the corresponding shell stiffnesses.
This approach effectively yields a prescribed kinematic boundary condition in the limit as the relative
stiffness of the spring becomes much greater than the corresponding shell stiffness. Similarly, values
for the spring stiffnesses can be selected that correspond to a given uniform elastic restraint along an
edge, similar to that provided by an end ring. This capability is important and useful, because in some
test fixtures or actual structures the edge supports may not be stiff enough to simulate a fully clamped
boundary condition, or flexible enough to simulate a simply supported boundary condition.

As suggested by [Li et al. 1995] and [Sheinman and Firer 1994], nonuniform variations in wall thick-
ness of a shell which lead to nonuniform laminate stiffnesses are represented using trigonometric series.
Specifically, nonuniform shell wall thickness is represented in the present study by perturbing the ply
thicknesses with a function that is periodic in either the longitudinal or the circumferential direction.
The variation in wall thickness is accounted for by adjusting the lamina properties, resulting in nonho-
mogeneous in-plane and bending stiffness matrices. The nonuniform shell curvature associated with
a noncircular cross section is represented by using trigonometric series for the coordinates of an oval
cross-section shell reference surface (1958). The aspect ratio, or out-of-roundness, of the cross section is
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represented in the analysis using an eccentricity parameter introduced by [Romano and Kempner 1962]
and later used by [Culberson and Boyd 1971; Chen and Kempner 1976]. This parameter is defined in
the subsequent section, and the aspect ratio, related to the eccentricity parameter, represents the ratio of
the minor axis to the major axis.

In the derivation of the equations governing the response, the total potential energy consists of the
elastic strain energy of the shell, the elastic edge restraints, and the potential energy of the applied loads.
The conditions that may arise from the choice of displacement approximations without any kinematic
restrictions are treated as constraint equations, and the potential energy arising from constraint reac-
tions is invoked into the total potential energy through the use of Lagrange multipliers. The equations
governing the shell response are obtained by enforcing the requirement that the first variation of the
total potential energy vanish. The evaluation of the area integrals appearing in the potential energy are
achieved numerically using a basic quadrature method in conjunction with standard triangulation of the
entire domain, as described by [Shewchuk 1996]. Solutions to the equations governing the response are
obtained using a standard Gaussian elimination procedure, which yields the generalized displacement
coefficients and thus, the stress and strain fields. The accuracy of the analysis depends on the number of
terms used for the functional representation of the displacement fields. As the number of terms increases,
the results converge to the exact solution.

3. Representation of shell geometry

The geometry of a thin-walled, noncircular, cylindrical shell of length L and with an elliptical cutout
located at the shell mid-length is shown in Figure 1. The origin of the global Cartesian coordinate
system, (x, y, z), is located at an end point of the longitudinal axis of the shell. As shown in Figure
1, the x-axis coincides with the longitudinal axis of the shell. The y- and z-coordinates span the cross-
sectional plane. A curvilinear coordinate system is also attached to the mid-surface of the cylindrical
shell. The coordinates of points in the longitudinal, circumferential (tangential), and normal-to-the-
surface (transverse) directions of the shell are denoted by (s1, s2, s3), and the corresponding unit base
vectors are {e1, e2, e3}.

Following [Romano and Kempner 1958], the noncircular cross section of the cylindrical shell is de-
fined as an oval with the coordinates y and z expressed as

y = R0
∑
modd

am(ξ) sin
ms2

R0
, z = R0

∑
modd

bm(ξ) cos
ms2

R0
, (1)

where ξ represents the eccentricity of the oval cross section and R0 is the equivalent radius of a circular
cylindrical shell that has the same circumference as that of the oval cylindrical shell. The circumferential
coordinate, s2, varies between 0 and 2πR0. The derivation of Equation (1) and the explicit forms of the
coefficients am(ξ) and bm(ξ) are given by [Madenci and Barut 2003].

As derived by [Romano and Kempner 1958], the coordinates y and x in Equation (1) can be related
to the radius of curvature of an oval-cross-section cylindrical shell R(s2, ξ) by

R(s2, ξ)=
R0

1 + ξ cos(2s2/R0)
. (2)
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Therefore, ξ = 0 implies no eccentricity and corresponds to a circular cross section with radius R0.
For positive values of the eccentricity parameter ξ , the z-coordinate becomes the major axis and the
y-coordinate becomes the minor axis. For negative values of ξ , the major and minor axes switch to the y-
and z-axes, respectively. The range of values of the eccentricity parameter ξ is bounded by −1< ξ < 1.

As shown in Figure 1, the cylindrical shell contains a cutout. The shape of this cutout is defined
such that if the shell is cut along a generator and flattened into a plane, the cutout becomes an ellipse,
with major and minor axes denoted by a and b, respectively. For simplicity and convenience, the cutout
is referred to herein as an elliptical cutout. Because the domain of the analysis shown in Figure 2
corresponds to a similar flat region, a subsequent mapping of the ellipse to a unit circle is possible,
which enables the use of Laurent series expansions for the local functions. Note that the special case of
a circular cutout is given by a = b.

In the flat analysis domain, the minor and major axes of the ellipse are aligned with a local coordinate
system, (x1, x2), whose origin is located at the center of the cutout and coincides with the origin of the
parameter grid (given by constant values of s1 and s2) that forms the curvilinear coordinates (s1, s2)

on the cylindrical shell mid-surface. The orientation of the elliptical cutout is arbitrary with respect to
the longitudinal shell axis. Hence, the orientation of the local x1-axis (major axis) of the cutout and
the longitudinal s1-axis of the cylindrical shell is denoted by the angle ψ . The elliptical coordinates α
and β, representing a family of confocal ellipses and hyperbolas, respectively, are utilized to obtain the
stress-resultant distribution in the direction tangent to the cutout boundary. The coordinate α is equal to
α0 = tanh−1(b/a) on the particular ellipse that corresponds to the elliptical cutout. The other coordinate,
β, varying from 0 to 2π , is known as the eccentric angle and is related to the (x1, x2) coordinate system
by x1 = a cosβ and x2 = b sinβ. The eccentric angle β is similar to the angle used for polar coordinates.

The symmetrically laminated cylindrical shells considered herein are made of K specially orthotropic
layers, and each layer has an orientation angle, θk , that is defined with respect to the s1-axis. Each layer
also has elastic moduli EL and ET , shear modulus GLT , and Poisson’s ratio νLT , where the subscripts
L and T represent the longitudinal (fiber) and transverse principal material directions, respectively.

Figure 2. Computational domain of a cylindrical shell with an elliptical cutout.
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As for the shell thickness variation, the nonuniform wall thickness of the shell is denoted by h(s1, s2),
and its variation is included by assuming that the thickness of each ply tk varies as a function of the
curvilinear coordinates of the form

tk(s1, s2)= tk0

(
1 − ε1 cos

2πm1s1

L
− ε2 cos

m2s2

R0

)
, (3)

where tk0 denotes the nominal thickness of the kth layer in the laminate, and the parameters (m1,m2) and
(ε1, ε2) respectively denote the wave numbers and the amplitudes of the periodic thickness variation, in
the longitudinal and circumferential directions. While the wall thickness of the shell is allowed to vary
across the shell surface, the aspect ratio of the plies through the thickness is maintained. In other words,
the thickness variation of each ply remains conformable to each other throughout the shell surface. A
periodic thickness variation in the longitudinal direction is obtained by setting ε1 6= 0 and ε2 = 0, and in
the circumferential direction by ε1 = 0 and ε2 6= 0. A shell with uniform thickness tk = tk0 is obtained
by setting ε1 = 0 and ε2 = 0.

4. Boundary conditions and external loads

To facilitate a general imposition of prescribed boundary tractions, displacements, or rotations; the edge
boundary, 0, of the shell is decomposed into 0 = 0(1)+0(2)+0(3). As shown in Figure 1, 0(1) and 0(2)
denote the external edge boundary of the cylindrical shell and 0(3) represents the traction-free internal
edge boundary around the cutout. The unit vector normal to an edge is represented by n. Throughout this
paper, a variable with the superscript * is treated as a known quantity, arising from the externally applied
loads or from prescribed displacements and rotations. Also, the subscripts n, s, and t denote the directions
normal, tangent, and transverse (through-the-thickness) to the boundary, respectively. The details of how
prescribed edge loads and displacements are imposed in the analysis are presented subsequently.

4.1. Prescribed edge loads. External loads are applied to a shell by specifying values for the positive-
valued stress resultants shown in Figure 1. More precisely, the membrane loads applied to the `th bound-
ary segment 0(`) are given by

N11 = t∗

n , N12 = t∗

s , (4)

where N11 and N12 are the axial and shear stress resultants, respectively, defined in the cylindrical coor-
dinate system. Likewise, shell-wall bending loads that are applied to the `th boundary segment are given
by

M11 = −m∗

n, M11,1 + 2M12,2 = t∗

t − 2m∗

s,2, (5)

where M11 and M12 are the pure bending and twisting stress resultants, respectively, defined in the
cylindrical coordinate system. Moreover, the left hand side of the second equation in Equation (5) is the
Kirchhoff shear stress resultant of classical shell theory.

As a matter of convenience, the analysis is formulated to permit in addition the specification of con-
centrated forces and moments that are transmitted to the ends of the shell as if through a rigid end ring,
as shown in Figure 3. At present, the concentrated force P∗

n , and the concentrated axial torque P∗
s are

included in the analysis. The force P∗
n is simulated in the analysis by specifying a uniform distribution of

the axial displacement, with the unknown magnitude 1n , and the torque P∗
s is simulated by specifying
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Figure 3. Application of a concentrated force through a rigid end-ring by using elastic
springs along a shell edge.

a uniform distribution of the tangential displacement, with the unknown magnitude 1s as∫
0(`)

N11d0 = P∗

n ,

∫
0(`)

N12d0 = P∗

s .

The analytical process used to ensure that the magnitudes of 1n and 1s correspond to the specified
values of P∗

n and P∗
s , respectively, is described in the following section and in Appendix A.

4.2. Prescribed edge displacements and rotations. Edge displacements and rotations are applied to a
shell by specifying values for the displacements and rotations shown in Figure 4 that correspond to the
positive-valued stress resultants shown in Figure 1. In particular, the axial and tangential displacements
u∗

n and u∗
s that are applied to the `th boundary segment 0(`) are given by

u1(n · e1)= u∗

n, u2[(e3 × n) · e2] = u∗

s .

Similarly, the transverse displacement u∗

3, and the rotation about an axis tangent to an edge ϑ∗
n which are

applied to the `th boundary segment are defined by

u3 = u∗

t , u3,1(n · e1)= ϑ∗

n .

As mentioned previously, these prescribed displacements are enforced through the use of elastic edge
restraints (springs) to relax kinematic admissibility requirements on the functions that are used to rep-
resent the displacement fields. The uniformly distributed extensional and rotational springs that are
attached to the shell edges in the normal, tangential, and transverse directions and are used to enforce
the kinematic boundary conditions are depicted in Figure 4.

Specifying appropriate stiffness values for the springs results in full or partial restraints along the shell
edges. A zero value of the spring stiffness corresponds to a traction-free edge condition. In contrast, a
value of the spring stiffness that is large compared to the corresponding shell stiffness effectively corre-
sponds to a prescribed zero-valued boundary displacement or rotation. This approach effectively yields a
prescribed kinematic boundary condition in the limit as the relative stiffness of the spring becomes much
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Figure 4. Types of uniformly distributed elastic spring supports that can be prescribed
along the edge of a cylindrical shell.

greater than the corresponding shell stiffness. Similarly, values for the spring stiffness can be selected
that correspond to a specified uniform elastic restraint along an edge, similar to that provided by a rigid
end ring. This capability is important and useful, because in some test fixtures or actual structures the
edge supports may not be stiff enough to simulate a fully clamped boundary condition or flexible enough
to simulate a simply supported boundary condition.

As depicted in Figure 4, the membrane displacements un and us , and the transverse displacement
ut = u3 along the `th boundary segment are restrained by extensional springs with stiffness values of Sn ,
Ss , and St in the directions normal, tangent, and transverse to the boundary, respectively. In addition to
the extensional springs, the edge rotations ϑn and ϑs along the `th boundary segment are restrained by
rotational springs with stiffness values of Jn and Js that correspond to rotation about axes tangent and
normal to the edge, respectively.

Extensional springs in the directions normal and tangent to the shell edge, with stiffness values of
sn and ss , are also used to simulate load introduction through a rigid end ring, as shown in Figure 3.
Specifying values for the spring stiffnesses sn and ss that are relatively large compared to the correspond-
ing shell stiffnesses causes the shell edge to behave as if a rigid end ring is attached, producing the
uniformly distributed displacements with the corresponding magnitudes 1n and 1s . The values for 1n

and 1s that correspond to the specified concentrated loads are determined by using a penalty parameter
approach. This approach causes the difference between the edge displacements of the shell and the
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unknown uniform rigid end ring displacements (un −1n) and (us −1s) to vanish while retaining the
corresponding potential energy of the applied concentrated loads P∗

n and P∗
s .

5. Kinematics and stress-strain relations

The kinematic equations used in the present study are based to a large extent on the assumptions of the
Love–Kirchhoff classical thin-shell theory. Specifically, the axial, circumferential (tangential), and nor-
mal (normal to the mid-surface) displacements of a generic point of the shell are denoted by U1(s1, s2, s3),
U2(s1, s2, s3), and U3(s1, s2, s3), respectively. The corresponding displacements of a generic point of the
shell mid-surface that share the same unit vector normal to the mid-surface are denoted by u1(s1, s2),
u2(s1, s2), and u3(s1, s2), respectively. In classical shell theory, these displacements are related by

U1(si )= u1(s1, s2)− s3β1(s1, s2), U2(si )= u2(s1, s2)− s3β2(s1, s2), U3(si )= u3(s1, s2),

where β1(s1, s2) and β2(s1, s2) are the mid-surface rotations about the s2 and s1 axes, respectively, as

β1(s1, s2)= u3,1(s1, s2), β2(s1, s2)= u3,2(s1, s2)−
1

R(s2)
u2(s1, s2),

in which a subscript after a comma denotes partial differentiation. The corresponding linear membrane-
strain displacement relations and the bending-strain displacement relations are given by

ε =

ε11

ε22

γ12

 =

 u1,1(
u2,2 +

1
R u3

)
(u1,2 + u2,1)

 , κ =

κ11

κ22

κ12

 =

 −u3,11

−
(
u3,22 − ( u2

R ),2
)

−2
(
u3,12 −

1
R u2,1

)
 . (6)

It is important to point out that the expression given for the change in surface twist due to deforma-
tion κ12 is that originally published by [Love 1888; Love 1944] for general shells, in terms of lines
of principal-curvature coordinates, and derived in the book by [Timoshenko and Woinowsky-Krieger
1959] for circular cylindrical shells. As indicated by [Bushnell 1984], the expression for κ12 vanishes
for rigid-body motions in contrast to the corresponding expression presented in Reissner’s version of
Love’s first approximation shell theory [Reissner 1941; Kraus 1967; Naghdi 1962]. Equation (6) and the
more general forms presented by [Bushnell 1984], are sometimes referred to as the Love–Timoshenko
strain-displacement equations. Justification for this terminology is given by [Chaudhuri et al. 1986].

The stress-strain relations used in the present study are those of the classical theory of laminated
plates and shells [Jones 1999], which are based on a linear through-the-thickness distribution of the
strain fields. For a thin, symmetrically laminated cylindrical shell, with variable wall thickness, the
relationship between the membrane and bending stress resultants and the membrane and bending strains
is expressed conveniently in matrix notation by

N = A(s1, s2)ε, M = D(s1, s2)κ . (7)

The membrane and bending stress resultants in Equation (7) are defined as

NT
=

[
N11 N22 N12

]
, MT

=
[
M11 M22 M12

]
. (8)
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It is important to reiterate that when shell wall thickness variations are present, the membrane and bending
stiffness matrices A(s1, s2) and D(s1, s2) are dependent on the curvilinear surface coordinates s1 and s2.

It is convenient here to combine the relations given in Equation (7) into the matrix form

s = Ce, (9)

where s, e, and C are defined as

sT
=

[
NT MT ]

, eT
=

[
εT κT

]
, C = C(s1, s2)=

[
A(s1, s2) 0

0 D(s1, s2)

]
. (10)

6. Equations governing the response

A general analytical approach to obtain the exact solution of the equilibrium equations for a laminated-
composite cylindrical shell with variable curvature is not mathematically tractable. Therefore, a semiana-
lytic variational approach based on the principle of stationary potential energy is used in the present study
to obtain numerical results. Because elastic edge restraints are used as a means to relax the kinematic
admissibility conditions on the assumed displacement functions, and because a rigid end ring capability
is used to impose shell-end force resultants, the potential energy consists of the elastic strain energy of
the shell and the elastic edge restraints and the potential energy of the applied loads. In particular, the
potential energy is expressed symbolically by π(q,1)= U (q)+�(q,1)+ V (q,1), in which U and
� represent the strain energy of the laminate and the elastic edge supports (springs), and V represents
the potential energy due to external boundary loads. Their explicit forms are presented in Appendix
A. The symbol q is the vector of unknown, generalized displacement coefficients, which arises from
the mathematical representation of the mid-surface displacement fields used in the variational solution
process. In particular, the mid-surface displacement fields are given symbolically by u1(q), u2(q), and
u3(q). The symbol 1 represents the vector of unknown edge displacements that arise from prescribing
end loads.

Subjected to the constraint equations that arise from the use of Lagrange multipliers, the equations
governing the shell response are obtained by enforcing the requirement that the first variation of the total
potential energy vanish. As discussed by [McFarland et al. 1972], because the constraint equations are
not functionally dependent on spatial coordinates s1 and s2, the equations governing the response can be
generated by modifying the total potential energy into the form

π∗(q,1,λ)= π(q,1)+ W (q,λ),

in which W is viewed as the potential energy arising from constraint reactions. In particular,

W (q,λ)= λT Gq = 0, (11)

where λ is the unknown vector of Lagrange multipliers and G is the known constraint coefficient matrix.
Substituting the specific expressions for U (q), �(q,1), V (q,1), and W (q,λ) that arise from ap-

proximation of the surface displacement field, and enforcing the requirement that the first variation of
the modified form of the total potential energy to vanish leads to

δπ∗
= δqT [

kqq q + Sqq q − sq11− f ∗
− T∗

+ GT λ
]
+ δ1T [

s111− sT
q1q − P∗

]
+ δλT Gq = 0,
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where the matrix kqq represents the stiffness matrix of the shell and requires evaluation of the correspond-
ing integrand over a doubly connected region (see Appendix A for details). The spring stiffness matrices
Sqq and s11 are associated with the deformation of the shell edges and displacement of the rigid end
ring, respectively. The spring stiffness matrix sq1 captures the coupling between the displacement of
the shell edges and the rigid end ring. The vectors f ∗, T∗, and P∗ arise from the prescribed boundary
displacements, external tractions and moments, and the concentrated forces applied to a rigid end ring,
respectively. For the arbitrary variations (δq, δ1, and δλ), the stationary condition requires that the
following equations must be satisfied:[(

kqq + Sqq
)
q − sq11− f ∗

− T∗
+ GT λ

]
= 0,

[
s111− sT

q1q − P∗
]
= 0, Gq = 0. (12)

It is convenient to express Equation (12) by the single matrix equation

K Q = F, (13)

where K and F represent the overall system stiffness matrix and the overall load vector, respectively.
These matrices have the general expanded form

K =

 K qq −sq1 GT

−sT
q1 s11 0T

G 0 0

 , F =

F∗

P∗

0

 ,

in which K qq = kqq + Sqq , and F∗
= f ∗

+ T∗. The vector of unknowns, Q, that appears in Equation
(13) is defined as QT

=
[
q 1 λ

]
. Solving for the vector of unknowns in Equation (13) yields all the

information needed to obtain a complete variational solution to a specific problem. The accuracy of a
solution depends on the number of terms included in the expressions for the local and global functions
representing the displacement fields and converges to the corresponding exact solution as the number of
terms increases.

6.1. Displacement-field representation. Representation of the mid-surface displacement field is a crit-
ical step in the variational solution to the problem. By relaxing the requirements for kinematic ad-
missibility, the mid-surface displacement fields are represented in the present study by a combination
of rigid-body modes, u Ri , and global and local functions, denoted by ūi and ¯̄ui , respectively, through
ui = u Ri + ūi + ¯̄ui , where the values of the index are given by i = 1, 2, 3. The explicit forms of the
displacement fields can be found in Appendix B. The rigid-body modes account for the overall or global
translation and rotation of the shell, and are selected so that they produce neither membrane strain nor
changes in shell curvature and twist. These terms are included for the completeness of the kinematics
of the cylindrical shell. The presence of appropriate displacement boundary conditions inherently elim-
inates the rigid-body motion. However, for cases where an insufficient number of kinematic boundary
conditions are imposed, these rigid-body terms need to be eliminated, as discussed in detail in Appendix
C. Following the complex variable solution techniques used in the theory of elasticity, the local func-
tions are expressed in terms of robust, uniformly convergent Laurent series (used for doubly connected
regions) to enhance capturing of steep stress gradients and deformations near the cutout. Complete
sets of trigonometric expansions are used primarily to capture the overall global response of the shell.
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Here, completeness means that all the fundamental waveforms needed to construct the typical overall
deformations of a shell are included in the set.

For convenience, the displacement representations are rewritten in matrix form as

ui=1,2 = V T
RiαR + V̄ T

i ci +
¯̄V T

i α, u3 = V T
R3αR + V̄ T

3 c3 +
¯̄V T

3 β. (14)

An even more useful, compact form is given by

ui = V T
i q, (15)

where the vector of unknown displacement coefficients, q, is defined by

qT
=

[
αT

R cT
1 cT

2 cT
3 αT βT ]

. (16)

In Equation (16), the vector αR contains the unknown coefficients for the rigid-body motion of the shell,
and the vectors α and β contain the real and imaginary parts of the unknown coefficients αnm and βnm ,
respectively, that are associated with the local functions. The vectors ci , where i = 1, 2, 3, contain the
real-valued unknown coefficients ci(mm) associated with the global functions. The explicit forms used
herein for the unknown coefficient vectors αR , ci , α, and β that appear in Equation (14) along with the
vector functions V i (and the corresponding subvectors V Ri , V̄ i , and ¯̄V i ) are given in Appendix B.

In addition to the general representation of the shell surface-displacement fields, similar matrix expres-
sions are needed for the displacements and rotations of points on the shell boundary. In the present study,
the boundary displacement vector u0 is introduced that consists of the mid-surface boundary displace-
ments in the directions normal, tangent, and transverse to a shell edge, and the mid-surface rotations about
axes that are normal and tangent to a shell edge. The boundary displacements in the directions normal,
tangent, and transverse to a shell edge are denoted herein by un , us , and ut , respectively. Similarly, the
mid-surface rotations about axes that are tangent and normal to a shell edge are denoted by ϑn and ϑs ,
respectively. In terms of the vector of unknowns defined by Equation (16), the boundary displacements
u0 and rotations are expressed in matrix form by

u0 = Bq, uT
0 =

[
un us ut ϑn

]
. (17)

The matrix B with known coefficients is defined as BT
= [uT

n uT
s uT

t θT
n ] in which the subvectors uT

n ,
uT

s , uT
t , and θT

n are known and defined by

uT
n = (n · e1)V 1, uT

s =
[
(e3 × n) · e2

]
V 2, uT

t = V T
3 , θT

n = (n · e1)V T
3,1.

6.2. Strain- and stress-resultant field representation. After defining the shell mid-surface displacement
field in terms of the generalized coordinate q, the corresponding representation of the strains is obtained
by substituting Equation (15) into the strain-displacement relations given in vector form by Equation (6).
This substitution yields ε = Lεq and κ = Lκq, where the strain-coefficient matrices Lε and Lκ are

Lε =


V T

1,1

V T
2,2 +

1
R V T

3

V T
1,2 + V T

2,1

 , Lκ =


−V T

3,11

−V T
3,22 +

1
R V T

2,2 +
R,2
R2 V T

2

−2V T
3,12 +

2
R V T

2,1

 .
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Next, the representations for ε and κ are substituted into Equation (9) to obtain

e = Lq, LT
=

[
LT
ε LT

κ

]
, (18)

where L is the overall strain-coefficient matrix .
Finally, the corresponding matrix representation of the stress resultants in terms of the generalized

coordinates is obtained by substituting Equation (18) into constitutive Equation (9). The resulting vector
of stress resultants is given by

s = C Lq. (19)

6.3. Constraint equations. In the generalized coordinate representations for u1 and u2, the coefficients
c1(00) and c2(00) associated with the global functions ū1 and ū2 in Equation (B.2) also correspond to
rigid-body translation in the s1 direction and rigid-body rotation about the s1 axis, respectively. These
two redundant rigid-body modes are eliminated by introducing constraint conditions using Lagrange
multipliers. In particular, the unknown Lagrange multipliers λR RB(1) and λR RB(2) are associated with
the redundant rigid-body modes. Also, multivaluedness of the normal direction displacement u3(s1, s2)

that arises from the presence of logarithmic terms in the Laurent series expansion for the local function
must be eliminated. The unknown Lagrange multipliers λSV (r) and λSV (s) are used herein to eliminate
this multivaluedness. Likewise, the rigid-body modes of the cylindrical shell must be eliminated by
the Lagrange multipliers λRB( j) for j = 1, . . . , 6 if the specified kinematic boundary conditions are not
sufficient enough to prevent them. In other words, the nonvanishing rigid-body modes must be eliminated
by introducing constraint conditions prior to the stress analysis to allow the overall system stiffness matrix
K , given in Equation (13), to be nonsingular.

These requirements on the representation of the shell displacement field are enforced by using con-
straint equations that use Lagrange multipliers. These constraint equations are functionally independent,
forming a set of linearly independent equations equal in number to the total number of Lagrange mul-
tipliers. The Lagrange multipliers can be viewed as the reactions needed to enforce the corresponding
constraints. In the present study, all of these constraint conditions are included in the matrix equation
given in Equation (11). The explicit forms of the vector of unknown Lagrange multipliers λ containing
λR RB(1) and λR RB(2), λSV (r), λSV (s) and λRB( j), for j = 1, . . . , 6, and the known coefficient matrix, G,
in Equation (12) are given in Appendix C.

7. Overview of validation studies

A limited series of validation studies were conducted in the present study to determine the accuracy of
results obtained using the analysis method presented herein. Specifically, the studies included circular
and noncircular cylindrical shells with either a circular or an elliptical cutout under uniform tension.
The stress resultants around the circular and elliptical cutout for varying aspect ratios and orientations
in a circular cylinder, as well as the stress concentrations arising from a circular cutout in a noncircular
cylindrical shell were computed. Comparisons of the stress-resultant distributions and magnitudes in the
shells were made with corresponding results obtained using an in-house finite element program developed
earlier by [Madenci and Barut 1994a]. This finite element program has been validated to a large extent
against previously published experimental and numerical results for stress, buckling, and post-buckling
of thin-shell structures [Madenci and Barut 1994b; 1994c]. Therefore, this finite element program is
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expected to serve as a reliable indicator of the accuracy of the analysis methods and results presented
herein. Overall, the comparisons indicate very good agreement (less than 1% difference) between the
corresponding results produced by the two analysis methods. For shells with high aspect ratio cutouts,
differences of approximately 5% were obtained and found to be the result of insufficient mesh refinement
in the finite element models.

8. Selected numerical results

Selected numerical results are presented in this section to demonstrate the utility of the analysis method
presented herein and the potential for its use in developing design technology. These results elucidate the
effects of loading condition, noncircular cross-section geometry, variation in wall thickness, cutout shape,
cutout size, and cutout orientation on the intensity of stress-resultant concentrations near a cutout. Specif-
ically, tension, torsion, and pure-bending loads are considered for [45◦/−45◦/90◦/0◦

2/90◦/−45◦/45◦
]s

quasiisotropic shells with length L = 356 mm and made of graphite-epoxy plies. The nominal ply
thickness is tk0 = 0.14 mm, resulting in the total thickness of the shell given by h = 2.24 mm. The
ply orientation angles are measured with respect to the longitudinal shell axis. The Young’s moduli of
each ply in the longitudinal, fiber direction and in the direction transverse to the fibers are specified as
EL = 135.0 GPa and ET = 13.0 GPa, respectively. The in-plane shear modulus and Poisson’s ratio of
each ply are given by GLT = 6.4 GPa and νLT = 0.38.

The effects of varying the radius of curvature R0 on the stress-resultant concentration along the contour
of a circular cutout with radius a = 25.5 mm are shown in Figure 5 for a circular cylindrical shell subjected
to a uniform axial tension load. Four curves that correspond to values of R0/L = 0.5, 0.75, 1.0, and 1.25
are presented that show the tangential stress resultant Nφφ , normalized by the far-field applied uniform
stress resultant N0, as a function of position around the cutout (indicated by the cutout angle, φ). As
shown in Figure 5, the stress-resultant concentration is a maximum at φ = 90◦ and 270◦ (at the net section
of the shell) for each case and reduces from a maximum value of approximately 4.0 to a minimum value
of 3.4 at the net section as the radius of curvature increases. In addition, the results show that the
Nφφ(a, 90◦) stress-resultant concentration approaches the well-known value of 3.0 for an isotropic plate
as the shell radius increases. Away from the net section, changes in the radius of curvature have a
relatively small effect on the stress-resultant concentration.

The effects of varying the circular cutout radius on the stress-resultant concentration along the contour
of a circular cutout is shown in Figure 6 for a circular cylindrical shell with radius R0 = 381 mm and
subjected to a uniform axial tension load. Five curves that correspond to values of the cutout radius
a = 15, 25.5, 30, 40, and 50 mm are presented that also show the tangential stress resultant Nφφ(a, φ),
normalized by the far-field applied uniform stress resultant N0, as a function of the cutout angle φ. The
results in Figure 6 show that the stress-resultant concentration is a maximum at the net section of the
shell for each case, as expected, and changes significantly from a minimum value of approximately 3.1 to
a maximum value of 5.1 at the net section as the cutout radius increases — an increase of approximately
65%. The results also show that the Nφφ(a, 90◦) stress-resultant concentration approaches the well-
known value of 3.0 for an isotropic plate as the cutout radius decreases. Away from the net section,
changes in the cutout radius have a much smaller effect on the stress-resultant concentration.
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Figure 5. The effect of varying shell radius on the tangential stress resultants around a
circular cutout in a quasiisotropic circular cylindrical shell subjected to a uniform tension
load.

Figure 6. The effect of varying circular-cutout radius on the tangential stress resultants
around a circular cutout in a quasiisotropic circular cylindrical shell subjected to a uni-
form tension load.
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Figure 7. The effect of varying elliptical cutout aspect ratio on the tangential stress
resultants around a cutout in a quasiisotropic cylindrical shell subjected to a uniform
tension load.

The effect of varying the elliptical cutout aspect ratio a/b on the tangential stress-resultant distribution
around the edge of a cutout in a cylindrical shell with radius R0 = 178 mm and subjected to uniform
tension is presented in Figure 7. The orientation of the elliptical cutout is specified by ψ = 0◦. Two
curves that correspond to the locations φ = 0◦ and 90◦ are presented that show the tangential stress
resultant Nββ(α0, β), normalized by the far-field applied uniform stress resultant N0, as a function of the
cutout aspect ratio. As expected, the normalized stress-resultant concentration, Nββ(α0, β)/N0, remains
negative for all aspect ratios at φ = 0◦, consistent with the expected Poisson effect, and the magnitudes
are relatively insignificant at this location. In contrast, large stress-resultant concentrations are indicated
at the net section (φ = 90◦) that diminish from a maximum value of approximately 17.0 for a widthwise,
slot-like cutout with a = 5 mm and b = 30 mm, or a/b = 1/6, to a minimum value of 1.4 for a lengthwise,
slot-like cutout with a = 30 mm and b = 5 mm, or a/b = 6.

The effects of varying the orientation of a high aspect ratio, slot-like elliptical cutout on the stress-
resultant concentration along the cutout contour is shown in Figure 8 for a circular cylindrical shell with
radius R0 = 178 mm and subjected to a uniform axial tension load. The major and minor axes of the
cutout are given by a = 30 mm and b = 5 mm, respectively. The orientation of the elliptical cutout, with
respect to the longitudinal shell axis, is measured by the angle ψ . Three curves that correspond to values
of ψ = 0◦, 45◦, and 90◦ are presented that show the tangential stress resultant at the cutout edge Nββ ,
normalized by the far-field applied uniform stress resultant N0, as a function of the cutout angle φ.

The results in Figure 8 show that the stress-resultant concentration is the least pronounced for the
case of ψ = 0◦. For this case, the cutout major axis is aligned lengthwise with the shell axis and the
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Figure 8. The effect of varying elliptical cutout orientation on the tangential stresses
around the cutout in a quasiisotropic cylindrical shell subjected to a uniform tension
load.

net section of the shell is the largest. The location on the cutout edge defined by φ = 0◦ corresponds
to where the edge of the cutout intersects the major axis. At this location, the edge of the cutout is in
tangential compression (Nββ/N0 = −1.6), consistent with a Poisson effect. The location defined by
φ = 90◦ corresponds to where the edge of the cutout intersects the minor axis, that is, at the net section
of the shell. At this location, the edge of the cutout is in tangential tension (Nββ/N0 = 1.4). Between
approximately φ = 0◦ and 170◦ and between φ = 190◦ and 350◦, the cutout width (and hence net section
width) does not vary greatly. This attribute accounts for the corresponding flat regions in the ψ = 0◦

curve shown in Figure 8.
For the case of ψ = 90◦, the cutout major axis is perpendicular to the shell axis and the net section of

the shell is the smallest. As before, the locations defined by φ = 0◦ and 180◦ correspond to where the
edge of the cutout intersects the major axis, that is, at the net section of the shell. The results in Figure 9
show that the edge of this high aspect ratio cutout has extremely high stress-resultant concentrations at
these locations (Nββ/N0 = 17.0) that have very step gradients. Between approximately φ = 5◦ and 175◦

and between φ = 185◦ and 355◦, the analysis predicts relatively benign variations in the stress-resultant
concentration. The case of ψ = 45◦ exhibits stress-resultant concentrations that are, for the most part,
bounded by the corresponding results for ψ = 0◦ and 90◦. The analysis also predicts very high stress-
resultant concentrations where the cutout edge intersects the major principal cutout axis (Nββ/N0 = 8.2).

The effects of varying the cross-sectional eccentricity (2) of a tension loaded oval shell with a circular
cutout are shown in Figure 9. The results in this figure correspond to the equivalent shell radius R0 =

381 mm and a circular cutout radius given by α = 25.5 mm. Moreover, the tangential stress-resultant
concentration at the shell net section Nφφ(a, 90◦), normalized by the applied load N0, is shown as a
function of the eccentricity parameter for the range of −0.15 ≤ ξ ≤ 0.15. As indicated in the figure,



712 ERKAN OTERKUS, ERDOGAN MADENCI AND MICHAEL P. NEMETH

Figure 9. The effect of shell cross-sectional eccentricity on the stress-resultant concen-
tration in an oval quasiisotropic cylindrical shell with a circular cutout and subjected to
a uniform tension load.

negative and positive values of ξ correspond to cylindrical shells with the largest cross-sectional width,
with parallel and perpendicular orientation, respectively. A value of ξ = 0 corresponds to a circular cross
section and a value of ξ = 0.15 corresponds to a cross-sectional aspect ratio of 0.9.

The results presented in Figure 9 show that the stress-resultant concentration is affected benignly by
the cross-sectional eccentricity. In particular, the stress-resultant concentration increases almost linearly
with increases in the eccentricity parameter from Nφφ(a, 90◦)/N0 = 3.5 to 3.6, which is slightly less
than a 3% variation. This trend is understood by noting that the shells that correspond to negative values
of ξ are flatter near the cutout than those that correspond to positive values of ξ and, as indicated by the
results in Figure 5, are expected to have the lower values for the stress-resultant concentrations.

The effects of longitudinal and circumferential periodic variations in wall thickness on the stress-
resultant concentration at the net section of the circular cylindrical shell with radius R0 = 178 mm,
circular cutout radius a = 25.5 mm, and subjected to uniform axial tension load are shown in Figure 10.
Two monotonically increasing curves that correspond to values of ε1 (with ε2 = 0) and ε2 (with ε1 = 0)
are presented that show the tangential stress resultant Nφφ(a, 90◦), normalized by the far-field applied
uniform stress resultant N0, as a function of thickness-variation amplitudes (3) which range from 0 to
0.2. For the longitudinal thickness variation, the wave numbers used in Equation (3) are m1 = 1 and
m2 = 0. Similarly, for the circumferential thickness variation, the wave numbers used in Equation (3)
are m1 = 0 and m2 = 1.

The results shown in Figure 10 indicate that the stress-resultant concentration at the shell net section
increases as the magnitude of the thickness variation increases, for variations in either the longitudinal or
circumferential direction. The maximum variation in the results is approximately 56%. Furthermore, the
change in the stress-resultant concentration is slightly more pronounced for the circumferential thickness
variation than for the longitudinal thickness variation. These increases are primarily due to a drastic loss
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Figure 10. The effects of longitudinal (ε1 6= 0 and ε2 = 0) and circumferential (ε1 6= 0
and ε2 = 0) wall thickness variations on the tangential stress-resultant concentration
around a circular cutout in a quasiisotropic circular cylindrical shell subjected to a uni-
form tension load.

of bending stiffness near the net section of the shell, as indicated by the wave numbers m1 = 0 and
m2 = 1, where the thickness of the shell near the center of the cutout is smaller.

The effects of varying the radius of curvature R0 on the stress-resultant concentration along the contour
of a circular cutout with radius a = 25.5 mm is shown in Figures 11 and 12 for a circular cylindrical
shell subjected to a uniform torsion load and a pure bending load, respectively. The pure-bending load
corresponds to using t∗

n = M0 cos(π/s2) in Equation (4). Four curves that correspond to values of
R0/L = 0.5, 0.75, 1.0, and 1.25 are presented that show the normalized values of the tangential stress
resultant Nφφ as a function of position around the cutout. In Figure 11, Nφφ is normalized by the far-
field applied uniform shear stress resultant, T0. In Figure 12, Nφφ is normalized by the far-field applied
uniform bending stress resultant, Mo.

The results in Figure 11 indicate that the stress-resultant concentration has identical maximum magni-
tudes at φ = 45◦, 135◦, 225◦, and 315◦ (at the net section of the shell) for each case, which corresponds to
maximum diagonal tension and compression stress resultants associated with the shear stress resultants
near the cutout. The magnitudes of the stress-resultant concentration for these four locations reduce from
a maximum value of 6.8 to a minimum value of 5.1 as the radius of curvature increases (33% variation).
Away from these four locations, changes in the radius of curvature have a smaller effect on the stress-
resultant concentration. The results in Figure 12 indicate that the stress-resultant concentration for the
shell subjected to the pure bending load is quite similar to that presented in Figure 5 for the corresponding
tension loaded shell.



714 ERKAN OTERKUS, ERDOGAN MADENCI AND MICHAEL P. NEMETH

Figure 11. The effect of varying shell radius on the tangential stresses around a circular
cutout in a quasiisotropic circular cylindrical shell subjected to a uniform torsion load.

Figure 12. The effect of varying shell radius on the tangential stresses around a circular
cutout in a quasiisotropic circular cylindrical shell subjected to a pure-bending load.
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Figure 13. Stress resultant distribution near the cutout in a quasiisotropic circular cylin-
drical shell subjected to a pure-bending load.

Specifically, the stress-resultant concentration is a maximum at φ = 90◦ and 270◦ (at the net section of
the shell) for each case and reduces from a maximum value of 4.0 to a minimum value of 3.5 at the net
section as the radius of curvature increases (14% variation). In addition, Nφφ/M0 approaches the well-
known value of three for an isotropic plate as the shell radius increases, and away from the net section,
changes in the radius of curvature have a relatively small effect on the stress-resultant concentration. A
contour plot of Nφφ/M0 near the cutout is shown in Figure 13 for the case of R0/L = 0.5 shown in Figure
12. The extent of the stress concentration at the shell net section (φ = 90◦ and 270◦) is clearly captured by
the analysis method presented herein. The highest stress-resultant concentration is Nφφ(a, 90◦)/M0 = 4,
and it attenuates to the value of 1.01 at a radius of about 80 mm (approximately three times the cutout
radius), measured from the center of the cutout.

9. Concluding remarks

A special-purpose, semianalytical approach based on complex potential functions has been presented that
can be used to efficiently and parametrically investigate the behavior of thin, noncircular cross-section
cylindrical shells made of laminated-composite materials and with a cutout. In particular, the effects of
radius of curvature; elliptical cutout size, aspect ratio, and orientation; oval cross-section eccentricity;
wall-thickness variations; and loading conditions on the stress-resultant concentration near the cutout
have been presented for a quasiisotropic shell subjected to uniform tension, uniform torsion, and pure
bending. In addition, studies that were conducted to validate the analysis method have been described.

A key finding of the results obtained with this analysis method is that the maximum tangential stress-
resultant concentration near a circular cutout in a tension loaded, circular, quasiisotropic shell increases
by approximately 18% as the shell radius-to-length ratio decreases from 1.25 to 0.5. Likewise, increases
in the maximum tangential stress-resultant concentration as large as 65% have been found to occur
with a five-fold increase in cutout radius. Results have also been presented showing that extremely high
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tangential stress-resultant concentrations can occur for high aspect ratio elliptical cutouts whose principal
axes are not aligned with the longitudinal axis of a tension loaded shell.

Additionally, results have been presented showing that tension loaded oval shells with a circular
cutout on one of the flatter sides exhibit slightly lower tangential stress-resultant concentrations than
the corresponding shell with the cutout on one of the more highly curved sides. Results have also been
presented that show that variations in wall thickness in either the longitudinal or circumferential direction
significantly affect the stress concentration, with respect to that for the corresponding shell with a nominal
thickness. The analysis also predicts that a quasiisotropic shell with a circular cutout and subjected to
pure bending that yields the maximum tensile stress resultant at the longitudinal axis of the cutout behaves
similarly to the corresponding tension loaded shell. The corresponding shell subjected to torsion was
found to exhibit the maximum tangential stress-resultant concentrations at locations consistent with the
maximum diagonal tension and compression near the cutout. Overall, the results demonstrate that the
analysis approach is a powerful means for developing design criteria for laminated composite shells.

Appendix A

Strain energy of the shell. Based on classical laminated shell theory, the strain energy of the shell can
be expressed as

U =
1
2

∫
A

sT e d A,

where A is the planform area of the shell mid-surface. Substituting the expressions for the resultant stress
and strains, given in terms of the vector of unknown displacement coefficients, q, by Equations (18) and
(19), leads to

U (q)=
1
2

∫
A

qT (
LT C L

)
q d A.

The matrix L involves the derivatives of the assumed functional displacement representations, and C is
the overall constitutive matrix defined by Equation (10). The expression for the strain energy is rewritten
into the final form used herein as

U (q)=
1
2

qT kqq q, kqq =

∫
A

(
LT C L

)
d A.

The evaluation of this area integral is performed numerically by employing basic quadrature techniques.
In this analysis, the quadrature points are predetermined by employing standard triangulation of the entire
domain as described by [Shewchuk 1996].

Strain energy of elastic restraints. The strain energy of the elastic edge restraints (springs), �, is ex-
pressed as

�=

2∑
`=1

[
1
2

∑
α=n,s,t

∫
0(`)

Sα
(
uα−u∗

α

)2d0+
1
2

∑
α=n,s

∫
0(`)

Jα
(
ϑα−ϑ∗

α

)2d0+
1
2

∑
α=n,s

∫
0(`)

sα
(
uα −1α

)2d0
]
. (A.1)

As depicted in Figure 4, the boundary displacements un , us , and ut along the `th boundary segment are
restrained by extensional springs with the stiffness values Sn , Ss , and St , respectively. Likewise, the
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boundary rotations ϑn and ϑs are restrained by rotational springs with the stiffness values Jn and Js ,
respectively.

To apply concentrated forces along the edge of a shell and introduce edge displacements similar to
those introduced by a rigid end ring or by the loading platens of a testing machine, additional springs are
used to simulate the load introduction effects of a rigid end ring. In particular, rigid end ring loads are
introduced into the shell using extensional springs in the directions normal and tangent to the boundary
with corresponding stiffness values of sn and ss , as shown in Figure 3. By specifying relatively large
values for the spring stiffnesses sn and ss , the laminate edge behaves as if a rigid end ring is attached that
produces the uniform displacements 1n and 1s . In contrast, a relatively small spring stiffness between
the shell edge and the rigid end ring eliminates the presence of a rigid end ring.

The desired form of the elastic-restraint strain energy is obtained in terms of the unknown vector q
by substituting expressions for the boundary displacements and rotations, given collectively by Equation
(17), into Equation (A.1). This step yields

�=

2∑
`=1

[
1
2

∑
α=n,s,t

(
qT S(`)ααq +�

(`) ∗

u(α) − 2qT f (`) ∗

α

)
+

1
2

∑
α=n,s

(
qT J (`)ααq +�

(`) ∗

ϑ(α) − 2qT r(`) ∗

α

)
+

1
2

∑
α=n,s

(
qT s(`)ααq +

∫
0(`)

sα12
αd0− 2qT s(`)α 1α

)]
,

where the matrices S(`)αα and J (`)αα represent the stiffness contribution of the extensional and rotational
springs attached to the `th segment of the boundary. These matrices are defined as

S(`)αα =

∫
0(`)

SαuαuT
α d0, J (`)ββ =

∫
0(`)

JβθβθT
β d0, (α = n, s, t; β = n, s).

The matrix s(`)αα, representing the stiffness of the springs attached to the rigid end ring, is defined as

A − s(`)αα =

∫
0(`)

sαuαuT
α d0, (α = n, s).

The load vectors f (`)∗α and r(`)∗α are associated with the prescribed boundary displacements and rotations

f (`)∗α =

∫
0(`)

Sα u∗

αuαd0, r(`)∗β =

∫
0(`)

Jβ ϑ∗

βθαd0, (α = n, s, t; β = n, s).

The vector s(`)α is associated with the unknown end displacements that correspond to a given concentrated
load, and is defined as

s(`)α =

∫
0(`)

sαuαd0, (α = n, s).

The strain energies in the springs that arise from the known prescribed displacements (u∗
n, u∗

s , u∗
t ) and

rotations (ϑ∗
n , ϑ

∗
s ) are defined as

�
(`)∗
u(α) =

∫
0(`)

Sαu∗2
α d0, �

(`)
ϑ(β)

∗

=

∫
0(`)

Jβϑ∗2
β d0, (α = n, s, t; β = n, s).
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For convenience, the expression for the strain energy in the springs is recast in matrix form as

�(q,1)=
1
2

qT Sqq q +
1
2
1T s111− qT sq11− qT f ∗

+�∗,

in which the matrices Sqq , s11, and sq1 represent the stiffness of the springs associated with the defor-
mation of the laminate, the end displacements, and their coupling, respectively. They are

Sqq =

2∑
`=1

∑
α=n,s,t

S(`)αα +

2∑
`=1

∑
α=n,s

J (`)αα +

2∑
`=1

∑
α=n,s

s(`)αα,

s11 = Diag
[
s(1)n , s(2)n , s(1)s , s(2)s

]
× 2πR0,

sq1 =

[
s(1)n s(2)n s(1)s s(2)s

]
.

The vector of unknown end displacements 1 is defined by 1T
= [1

(1)
n 1

(2)
n 1

(1)
s 1

(2)
s ]. The load vector

arising from all prescribed boundary displacements and rotations f ∗, and the strain energy of all the
springs due to prescribed displacements and rotations are defined as

f ∗
=

1
2

2∑
`=1

∑
α=n,s,t

f ∗(`)
α +

1
2

2∑
`=1

∑
α=n,s

r∗(`)
α , �∗

=
1
2

2∑
`=1

∑
α=n,s,t

�
(`)
u(α)

∗

+
1
2

2∑
`=1

∑
α=n,s

�
(`)
ϑ(α)

∗

.

Potential of external loads. The potential energy of the external tractions (t∗
n , t∗

s , t∗
t ) and moments (m∗

n,m∗
s )

acting along the `th boundary segment, and the concentrated loads (P∗
n , P∗

s ) acting on the rigid end rings,
is given in terms of the corresponding boundary displacements and rotations by

V = −

2∑
`=1

∑
α=n,s,t

∫
0(`)

t∗

αuαd0−

2∑
`=1

∑
α=n,s

∫
0(`)

m∗

αθαd0−

2∑
`=1

∑
α=n,s

P∗

α1α.

Substituting the expressions for the boundary displacements and rotations, given in terms of the vector
q, and combining terms yields V (q,1)= −qT T∗

−1T P∗, where the vector 1, containing the uniform
end-displacements 1n and 1s of the `th boundary segment, is defined by 1T

= [1
(1)
n 1

(2)
n 1

(1)
s 1

(2)
s ].

The load vectors T∗ and P∗ are defined by

T∗T
=

2∑
`=1

∑
α=n,s,t

∫
0(`)

t∗

αuT
α d0+

2∑
`=1

∑
α=n,s

∫
0(`)

θ∗

αθ
T
α d0, P∗T

=

[
P∗(1)

n P∗(2)
n P∗(1)

s P∗(2)
s

]
,

in which P∗(`)
α , with α = n, s, represents the membrane forces applied on the `th boundary segment

through a rigid end ring.
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Appendix B

Rigid-body modes. Following [Madenci and Barut 2003], the rigid-body displacements (u R1, u R2, u R3)
of a cylindrical shell, defined with respect to the curvilinear coordinates, (s1, s2, s3), are

u R1 = α1 −α6 y +α5z,

u R2 = α2 cos θ −α3 sin θ −α4(y sin θ + z cos θ)+α5x sin θ +α6x cos θ,

u R3 = α2 sin θ +α3 cos θ +α4(y cos θ − z sin θ)−α5x cos θ +α6x sin θ, (B.1)

where θ denotes the angle between the radius of curvature at a point on the shell surface and z-axis as
shown in Figure 1.

Global functions. The global functions ūi , that are used to capture the overall deformations away from
the cutout are expressed in terms of a series expansion of orthogonal functions of the form

ūi (s1, s2)=

M∑
m=0

m∑
n=0

ci(mn)Tm(s1)Wn(s2). (B.2)

The symbols ci(mn) are the unknown real-valued coefficients, and Tm(s1) and Wn(s2) are defined as

Tm(s1)=


1, m = 0,

ζ, m = 1,

sin
[
(m−1)

2 (ζ + 1)
]
, m > 1,

Wn(s2(θ))=

{
cos nθ

2 , n even,

sin (n+1)θ
2 , n odd,

(B.3)

in which −1 ≤ ζ ≤ 1 and s1 is related to ζ as s1 = ζ L/2, with L being the length of the cylinder. Note that
Wn is periodical. These particular functions were chosen because they form a complete set of functions
when used with Equation (B.2). Hence, they are desirable for employing in energy based semianalytic
solution techniques such as the total potential energy principle that is used in this study.

Local functions. The local functions are expressed in terms of mapping functions that transform the
contour of an elliptical cutout to a unit circle. These mapping functions are used to permit the use
of Laurent series expansions as local functions, which is desirable because Laurent series are analytic
and uniformly convergent in domains with a circular hole. As a result, the use of mapping functions
significantly reduces the number of terms in the Laurent series that are needed to adequately capture
steep stress and strain gradients and local deformations near a cutout. In accordance with the principle of
minimum potential energy, the local functions are not required to satisfy the traction boundary conditions
at the cutout boundary. Thus, the local functions ¯̄ui are expressed in the form of Laurent series in terms
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of complex functions, as

¯̄ui=1,2 = 2 Re

[
2∑

m=1

u(i=1,2)
m

N∑
n=−N

n 6=0

αnm8
∗

nm(zεm)

]
H(ρ), (B.4)

¯̄u3 = 2 Re

[
2∑

m=1

N∑
n=−N

n 6=0

βnm F∗

nm(zκm)

]
H(ρ), (B.5)

with ρ = (x2
1 + x2

2)
1/2, where the parameter N defines the extent of the complex series. In these series,

αnm and βnm are the unknown complex coefficients that appear in Equations (14)–(16). The auxiliary
function H(ρ) that defines the domain of influence of the local functions is expressed as a polynomial

H(ρ)=

1 − 10
(
ρ
ρo

)3
+ 15

(
ρ
ρo

)4
− 6

(
ρ
ρo

)5
, 0 ≤ ρ ≤ ρo,

0, ρ > ρo,

such that H(ρo)= H ′(ρo)= H ′′(ρo)= 0, where prime marks denote differentiation with respect to the
variable ρ, and the parameter ρo denotes the radius of the region in which the local functions are effective.
The purpose of choosing the auxiliary function is to prevent any possible linear dependency between the
local and global functions and to restrict the influence of the local functions to a limited domain around
the cutout.

The complex functions u(1)m (zεm) and u(2)m (zεm) that appear in Equation (B.4) are defined as

u(1)m (zεm)= cosψpm(zεm)− sinψqm(zεm), u(2)m (zεm)= sinψpm(zεm)+ cosψqm(zεm), (B.6)

where the complex constants pm and qm are given by

pm = a11µ
2
εm + a12 − a16µεm, qm = a12µεm + a22/µεm − a26.

In Equation (B.6), the unknown complex constants µεm are the roots of the characteristic equation asso-
ciated with membrane deformation, that is,

a11µ
4
εm − 2a16µ

3
εm + (2a26 + a66)µ

2
εm − 2a26µεm + a22 = 0, (B.7)

in which the coefficients ai j are the coefficients of the flexibility matrix a, which is the inverse of the
stiffness matrix A defined by Equation (7). Both the flexibility and the stiffness matrices, a and A, are
measured with respect to the local coordinate system (x1, x2). The angle ψ represents the orientation of
the local coordinate system with respect to the global coordinate system, (s1, s2).

The complex potential function 8∗
nm(zεm), appearing in Equation (B.4) is defined as 8∗

nm(zεm)= ξ n
εm,

in which the mapping functions ξεm map a cutout onto a unit circle. The mapping functions for an
elliptical cutout, introduced by [Lekhnitskii 1968], are given by

ξεm =
zεm ±

√
z2
εm − a2 −µ2

εmb2

a − iµ2
εmb

, m = 1, 2, (B.8)
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where zεm = x1 +µεm x2, a and b are the major and minor axes of the elliptical cutout, and i =
√

−1.
The sign of the square root term is chosen so that |ξεm | ≥ 1 (that is, the mapped point is guaranteed to
be on or outside the unit circle).

Inverting the mapping function provides ωεm(ξεm) as

zεm = ωεm(ξεm)= rεmξεm −
sεm
ξεm

,

rεm =
1
2
(a−iµεmb),

sεm =
1
2
(a+iµεmb).

(B.9)

The unknown complex constants µε1 and µε2, and their complex conjugates, that is, µε3 = µ̄ε1 and
µε4 = µ̄ε2, are the roots obtained from the characteristic equation associated with membrane deformation.
The complex potential functions, F∗

nm(zκm) in Equation (B.5) are defined as

F∗

nm(zκm)=


rκm
n+1ξ

n
κm −

sκm
n−1ξ

n−2
κm , |n|> 1,

rκm
2 ξ

2
κm − sκm ln ξκm, n = 1,

rκm ln ξκm +
sκm
2 ξ

−2
κm , n = −1,

(B.10)

in which the expressions for the mapping function ξκm and the constants rκm and sκm have the same form
as the corresponding expressions for ξεm , rεm , and sεm given by Equations (B.8) and (B.9), except that
the subscript ε is replaced by κ . The complex variables zκm are defined by zκm = x1 +µκm x2, in which
the unknown complex constants µκ1 and µκ2 and their conjugates, that is, µκ3 = µ̄κ1 and µκ4 = µ̄κ2, are
the roots obtained from the characteristic equation associated with the bending equilibrium equation

D22µ
4
κm + 4D26µ

3
κm + (2D12 + 4D66)µ

2
κm + 4D16µκm + D11 = 0, (B.11)

where Di j are the components of the bending stiffness matrix D (Equation (7)), which is defined with
respect to the local coordinate system, (x1, x2).

It is important to note that the local functions in Equations (B.4) and (B.5) satisfy the in-plane and bend-
ing equilibrium equations of a homogeneous, flat laminate of uniform thickness, not a cylindrical shell.
Therefore, the roots of the characteristic equations, Equations (B.7) and (B.11), serve as approximations
of their exact values, which are not mathematically tractable. Because the solution procedure is based
on the principle of minimum potential, their exact values are not necessarily required. However, they
capture the stress concentration and local deformation near the cutout in cylindrical shells because these
functions possess the inherent solution characteristics. They satisfy the equilibrium equations exactly as
the radius of curvature approaches infinity and are uniformly convergent in a doubly connected region.
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In the displacement representations defined by Equation (14), the vectors, αR , ci , α, β are defined as

αR
T

=
[
αR1 αR2 αR3 αR4 αR5 αR6

]
,

cT
i =

[
ci(00) ci(10) ci(01) . . . ci(M0) ci((M−1)1) . . . ci(1(M−1)) ci(0M)

]
,

αT
=

[
αT

−N αT
−N+1 . . . αT

−1 αT
1 . . . αT

N−1 αT
N

]
,

βT
=

[
βT

−N βT
−N+1 . . . βT

−1 βT
1 . . . βT

N−1 βT
N
]
,

in which γ T
n = [γ T

n1 γ T
n2], with γ T

nj = [Re(γnj ), Im(γnj )] for γ = α, β.
The vector functions, V i=1,2,3 associated with the unknown generalized coordinates q appearing in

Equation (15) are defined as

V T
1 =

[
V T

R1 V̄ T
1 0̄T 0̄T ¯̄V T

1
¯̄0T

]
,

V T
2 =

[
V T

R2 0̄T V̄ T
2 0̄T ¯̄V T

2
¯̄0T

]
,

V T
3 =

[
V T

R3 0̄T 0̄T V̄ T
3

¯̄0T ¯̄V T
3

]
,

where 0̄T
= [0 . . . 0] of order [(M +1)(M +2)/2] and ¯̄0T

= [0 . . . 0] of order 8N . The vectors associated
with rigid-body motion are

V T
R1 =

[
1 0 0 0 z −y

]
,

V T
R2 =

[
0 dy

ds2

dz
ds2

(
y dz

ds2
− z dy

ds2

)
−x dz

ds2
−x dy

ds2

]
,

V T
R3 =

[
0 −

dz
ds2

dy
ds2

(
y dy

ds2
+ z dz

ds2

)
−x dy

ds2
−x dz

ds2

]
.

Similarly, the vectors associated with the global functions are

V̄ T
i =

[
T0W0 T1W0 T0W1 T2W0 T1W1 T0W2 . . . TM W0 TM−1W1 . . . T1WM−1 T0WM

]
,

in which the expressions for Ti (s1) and Wi (s2) are given by Equation (B.3), and

¯̄V T
i =

[
¯̄V T

i(−N )
¯̄V T

i(−N+1) . . . ¯̄V T
i(−1)

¯̄V T
i(1) . . . ¯̄V T

i(N−1)
¯̄V T

i(N )

]
, i = 1, 2,

¯̄V T
3 =

[
¯̄V T

3(−N )
¯̄V T

3(−N+1) . . . ¯̄V T
3(−1)

¯̄V T
3(1) . . . ¯̄V T

3(N−1)
¯̄V T

3(N )

]
,

with

¯̄V T
i(n) =

[
¯̄V T

i(n1)
¯̄V T

i(n2)

]
, ¯̄V T

i(nj) =

[
2 Re[u(i)j 8

∗

nj ] −2 Im[u(i)j 8
∗

nj ]

]
, (i, j = 1, 2),

¯̄V T
3(n) =

[
¯̄V T

3(n1)
¯̄V T

3(n2)

]
, ¯̄V T

3(nj) =

[
2 Re[F∗

nj ] −2 Im[F∗

nj ]
]
, ( j = 1, 2).
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Appendix C

Constraint equations. The unknown vector of Lagrange multipliers λ, and the known coefficient matrix
G, in Equation (11) are defined by λT

= [λR RB(1) λR RB(2) λSV (r) λSV (s) λRB(1) . . . λRB(6)], and

G =



0T
R gT

R RB(1) 0̄T 0̄T ¯̄0T ¯̄0T

0T
R 0̄T gT

R RB(2) 0̄T ¯̄0T ¯̄0T

0T
R 0̄T 0̄T 0̄T ¯̄0T gT

SV (s)

0T
R 0T

L 0̄T 0̄T ¯̄0T gT
SV (r)

gT
RB(1) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(2) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(3) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(4) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(5) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T

gT
RB(6) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T



,

in which the constant coefficient vectors gR RB(1) and gR RB(2) are associated with redundant rigid-body
modes gSV (r) and gSV (s), with single-valuedness of the radial displacement component, and gRB( j) with
the rigid-body modes introduced by the global functions defined in Equation (B.2). The rigid-body modes
must be eliminated in the absence of a sufficient number of specified kinematic boundary conditions.
These terms, as well as the vectors with zeros, are defined in the following subsections.

Redundant rigid-body modes. The coefficients c1(00) and c2(00) in Equation (B.2) for the global displace-
ment functions produce additional rigid-body translation in the s1 direction and rigid body rotation about
the s1 axis, respectively. Because these rigid-body modes are already represented by αR1 and αR6 in
Equation (B.1), the redundant rigid-body motion arising from the presence of c1(00) and c2(00) must be
eliminated in order to obtain a unique representation of the displacements. These redundant rigid-body
modes are eliminated by using the constraint conditions λR RB(1)c1(00) = 0, λR RB(2)c2(00) = 0 in which the
unknown Lagrange multipliers are denoted by λR RB(1) and λR RB(2). In terms of the vector of unknowns
q, these constraints are rewritten in vector form as

λRB(1)

[
0T

R gT
R RB 0̄T 0̄T ¯̄0T ¯̄0T

]


αR

c1
c2

c3

α

β


= 0, λRB(2)

[
0T

R 0̄T gT
R RB 0̄T ¯̄0T ¯̄0T

]


αR

c1
c2

c3

α

β


= 0,

in which the vectors of zeros, 0T
R , 0̄T

R , and ¯̄0T
R , are defined by 0T

R = [0 0 0 0 0 0], 0̄T
= [0 0 . . . 0] of order

[(M + 1)(M + 2)/2], and ¯̄0T
= [0 0 . . . 0] of order 8N , while the constant coefficient vector, gR R B , is

defined as gT
R RB = [1 0 0 . . . 0] of order [(M + 1)(M + 2)/2].
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Single-valuedness of the radial displacement component. The multivaluedness of the normal displace-
ment component that arises from the presence of logarithmic terms in the local expression for the radial
displacement component in Equation (B.5) must be rendered single-valued in order to obtain a unique
solution. The logarithmic terms associated with complex constants β−1m and β1m , with m = 1, 2, in
Equation (B.10) result in two real constants. Representing the complex variable of the Laurent series
ξm = ρmeiθm , the single-valuedness requirement is enforced as

uz
(
ξm = ρmeiθm

)
− uz

(
ξm = ρmei(θm+2π))

= 0.

Associated with the complex constants β∓1m , with m = 1, 2, in Equation (B.10), this condition yields

2 Re
{ 2∑

m=1

{
F∗

−1m
(
ξm = ρmeiθm

)
−F∗

−1m
(
ξm = ρmei(θm+2π))}β−1m

}
= 0 or Im

2∑
m=1

[rmβ−1m] = 0,

2 Re
{ 2∑

m=1

{
F∗

1m
(
ξm = ρmeiθm

)
−F∗

1m
(
ξm = ρmei(θm+2π))}β1m

}
= 0 or Im

2∑
m=1

[
sκmβ1m

]
= 0.

In order to ensure single-valuedness, these constraints are enforced as

λSV (r) Im
2∑

m=1

[
rκmβ−1m

]
= 0, λSV (s) Im

2∑
m=1

[sκmβ1m] = 0,

in which the unknown Lagrange multipliers are denoted by λSV (r) and λSV (s).
In terms of the vector of unknowns q, these constraint conditions can be recast in matrix form as

λSV (r)

[
0T

R 0̄T 0̄T 0̄T ¯̄0T gT
SV (r)

]


αR

c1

c2

c3

α

β


= 0, λSV (s)

[
0T

R 0̄T 0̄T 0̄T ¯̄0T gT
SV (s)

]


αR

c1

c2

c3

α

β


= 0,

where the constant coefficient vectors gSV (r) and gSV (s) are given by

gT
SV ( j) =

[
gT

SV ( j)(−N ) gT
SV ( j)(−N+1) . . . gT

SV ( j)(−1) gT
SV ( j)(1) . . . gT

SV ( j)(N−1) gT
SV ( j)(N )

]
,

gT
SV (r)(1) =

[
Im[r1] Re[r1] Im[r2] Re[r2]

]
, gT

SV (r)(n 6=1) =
[
0 0 0 0

]
,

gT
SV (s)(1) =

[
Im[s1] Re[s1] Im[s2] Re[s2]

]
, gT

SV (s)(n 6=1) =
[
0 0 0 0

]
,

with −N ≤ n ≤ N .

Rigid-body modes. In the absence of kinematic boundary conditions, the rigid-body modes of the dis-
placement field are eliminated by enforcing the constraint conditions in the form λRB( j)αR( j) = 0, where
j = 1, . . . , 6 and the unknown Lagrange multipliers are denoted by λRB( j). In terms of the vector of



STRESS ANALYSIS OF COMPOSITE CYLINDRICAL SHELLS WITH AN ELLIPTICAL CUTOUT 725

unknowns q, these constraints are rewritten in vector form as

λRB( j)

[
gT

RB( j) 0̄T 0̄T 0̄T ¯̄0T ¯̄0T
]


αR

c1

c2

c3

α

β


= 0,

where the constant coefficient vectors gRB( j) are defined as gT
RB( j) = [δ1 j δ2 j δ3 j δ4 j δ5 j δ6 j ], in which

δi j is the Kronecker delta.
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