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HYPERSINGULAR INTEGRAL EQUATIONS FOR THE SOLUTION OF
PENNY-SHAPED INTERFACE CRACK PROBLEMS

BAHATTIN KILIC AND ERDOGAN MADENCI

Based on the theory of elasticity, previous analytical solutions concerning a penny-shaped interface crack
employ the derivative of the crack surface opening displacements as the primary unknowns, thus leading
to singular integral equations with Cauchy-type singularity. The solutions to the resulting integral equa-
tions permit only the determination of stress intensity factors and energy release rate, and do not directly
provide crack opening and sliding displacements. However, the crack opening and sliding displacements
are physically more meaningful and readily validated against the finite element analysis predictions
and experimental measurements. Therefore, the present study employs crack opening and sliding as
primary unknowns, rather than their derivatives, and the resulting integral equations include logarithmic-,
Cauchy-, and Hadamard-type singularities. The solution to these singular integral equations permits the
determination of not only the complex stress intensity factors but also the crack opening displacements.

1. Introduction

During fabrication, the presence of dissimilar material interfaces is unavoidable, and they are prone to
imperfections. If the interface is too strong to delaminate, the cracking occurs in the weakest of the
adjoining materials. On the other hand, delamination may initiate along the interface for a sufficiently
weak interface. Based on the concept of fracture mechanics, the singular character of the stresses near
the crack front and the stress intensity factors are important in failure prediction.

Within the realm of the theory of elasticity both for a plane and a penny-shaped crack, there exist
numerous analytical studies addressing the oscillating stress singularity and stress intensity factors at
an interface crack. Extensive discussion on the treatment of an oscillatory singular stress field near the
interface crack was given by Erdogan [1997] and recently by Kilic et al. [2006]. The most common
solution method of integral transformations includes the presence of singular stresses at the crack front
by treating the derivatives of the crack opening displacements as primary unknowns, leading to a system
of Cauchy-type singular integral equations. Solutions to these singular integral equations can be achieved
by techniques developed by Erdogan [1969], Erdogan and Gupta [1971a; 1971b], Miller and Keer [1985],
and Kabir et al. [1998] that yield the stress intensity factors.

Because of the nature of the primary unknowns in the singular integral equations, previous studies
concerning interface cracks concern the calculation of the stress intensity factors or the energy release
rate rather than the crack surface displacements. However, the crack surface displacements are physically
more meaningful and easier to compare against experimental measurements and finite element solutions
that fail to provide accurate stress intensity and energy release rate without resorting to a refined mesh
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or a special crack tip element. Furthermore, this approach is more viable for consideration of three-
dimensional crack problems within the realm of mixed boundary value problems as indicated by Kaya
[1984].

The construction of the solution to the integral equations concerning a plane crack is relatively simpler
than that for a penny-shaped crack, and is discussed in detail by Kilic et al. [2006]. For a penny-shaped in-
terface crack between two dissimilar elastic materials that are semiinfinite in extent, Kassir and Bregman
[1972] constructed the exact solution to the stress intensity factors utilizing analytic functions introduced
by [Mossakovski and Rybka 1964]. This problem also attracted the attention of Erdogan [1965], Willis
[1972], and Lowengrub and Sneddon [1974]. Erdogan [1965] obtained the singular stress field near the
crack front by using the integral representation of displacement components suggested by Harding and
Sneddon [1945] while considering the derivatives of crack surface displacements as primary unknowns
in the derivation of Cauchy-type singular integral equations. However, Willis [1972] constructed the
solution through the use of the Radon transform of the relative displacement of crack surfaces. Adopting
the solution method by Erdogan [1965]. Lowengrub and Sneddon [1974], Keer et al. [1978], and Farris
and Keer [1985] also examined the singular character of stresses of a penny-shaped interface crack.
However, the numerical evaluation of the integrals in these studies is fraught with complete regularization
of the kernels by ignoring the logarithmic singularities and thus the convergence difficulty. Therefore,
logarithmic singularities have to be taken into account in the numerical analysis as suggested by Ozturk
and Erdogan [1996].

Unlike previous studies, the present study considers the crack surface displacements, rather than their
derivatives, as primary unknowns in the singular integral equations. After the regularization of the ker-
nels, the resulting integral equations include logarithmic-, Cauchy-, and Hadamard-type singularities.
Solution to these singular integral equations leads to the determination of not only stress intensity factors
but also crack opening displacements, which are more desirable for experimental comparisons. This
approach also naturally provides the complex stress intensity factors required for the energy release rate
calculation given by Malyshev and Salganik [1965]. Within the context of solution methods available in
the literature, this study for the first time presents an approach for constructing the solution of a singular
integral equation in the presence of the combination of Hadamard, Cauchy, and logarithmic singularities.
Although this approach provides accurate crack opening and sliding displacements, it does not remove
the oscillatory singular stress field near the interface crack.

The description of the geometry and the crack configurations are shown in the next section. The
solution method and the numerical analysis of the singular integral equations with the Hadamard-type
singularity are described in the subsequent sections. The numerical results concern the energy release
rate calculations and the crack surface displacements.

2. Problem statement

As shown in Figure 1, a circular crack with radius a is situated at the interface between two material
layers with thicknesses h1 and h2. The crack lies on the (r, θ) plane of the cylindrical coordinate system
(r, θ, z) whose origin is located at the center of the crack. The regions along the positive and negative z-
directions are S2 and S1, respectively. The material in each region is isotropic, elastic, and homogeneous,
with shear moduli µ1 and µ2, and Poisson’s ratios ν1 and ν2. The bounding surface of region S2 is
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Figure 1. The circular crack geometry between two bonded dissimilar material layers.

traction free and that of S1 is constrained from displacements. The crack surfaces are subjected to an
internal pressure of p0. This configuration was considered previously by Farris and Keer [1985] while
using the derivatives of the crack surface displacements as primary unknowns. It reduces to the case
considered by Goldstein and Vainshelbaum [1976] by allowing h1 to approach infinity.

By invoking the kinematic and stress-strain relations into the equilibrium equations in the absence
of the body forces and time dependence, the displacement equilibrium equations under axisymmetric
conditions for each region can be expressed as
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∂r2 +
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(1)

where κi = 3 − 4νi and ui and wi are the radial and vertical components of the displacement vector,
respectively. The subscript i = 1 represents the substrate and i = 2 the film, as shown in Figure 1. From
the stress-strain relations along with kinematics, the relevant stress components in cylindrical coordinates
under axisymmetric conditions can be expressed as

σi zz =
2µi

1 − 2νi

{
(1 − νi )

∂wi

∂z
+ νi

(
∂ui

∂r
+

ui

r

)}
, σir z = µi

(
∂ui

∂z
+
∂wi

∂r

)
.

Traction free conditions along z = h2 and constrained displacement conditions along z = − h1 require
the imposition of conditions

σ2zz(r, h2)= 0, σ2r z(r, h2)= 0, u1(r,−h1)= 0, w1(r,−h1)= 0, 0 ≤ r <∞. (2)

Along the interface between regions S1 and S2 on the plane of z = 0, the continuity of traction and
displacement components requires the imposition of

σ1zz(r, 0)= σ2zz(r, 0), σ1r z(r, 0)= σ2r z(r, 0), 0 ≤ r <∞, (3)

u1zz(r, 0)= u2zz(r, 0), w1zz(r, 0)= w2zz(r, 0), a ≤ r <∞. (4)
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Finally, the applied tractions on the upper and lower crack surfaces of the z = 0± planes are specified as

σ1zz(r, 0−)= σ2zz(r, 0+)= p(r), σ1r z(r, 0−)= σ2r z(r, 0+)= q(r), 0 ≤ r < a. (5)

The mathematical boundary value problem then reduces to the determination of the crack opening and
sliding displacements, as well as the stress intensity factors and the energy release rate at the crack tip.

3. Solution procedure

The solution procedure involves the use of integral transformation techniques appropriate for mixed
boundary value problems. Utilizing the integral representation of the displacement field suggested by
Harding and Sneddon [1945] the displacement components in each region are represented by

ui (r, z)=

∫
∞

0
dρFi (ρ, z)ρ J1(rρ), wi (r, z)=

∫
∞

0
dρGi (ρ, z)ρ J0(rρ), (6)

where J0 and J1 are the Bessel functions of the first kind with orders 0 and 1, respectively.
Substituting these integral representations into the displacement equilibrium equations, Equation (1),

leads to a coupled system of second-order ordinary differential equations for the auxiliary functions,
Fi (ρ, z) and Gi (ρ, z). Their general solution form can be expressed as[

Fi (ρ, z)
Gi (ρ, z)

]
= Ai1e−ρz

[
1
1

]
+ Ai2e−ρz

[
z

κi
ρ

+ z

]
+ Ai3eρz

[
1

−1

]
+ Ai4eρz

[
z

κi
ρ

− z

]
, (7)

where Ai j (ρ) for i = 1, 2 and j = 1 . . . 4 are the unknown coefficients to be determined from the pre-
scribed boundary conditions given by Equations (2)–(5).

Enforcing the boundary conditions specified by Equations (2) and (3) results in

2ρe−ρh2 A21 + (κ2 + 1 + 2ρh2)e−ρh2 A22 + 2ρeρh2 A23 − (κ2 + 1 − 2ρh2)eρh2 A24 = 0,

2ρe−ρh2 A21 + (κ2 − 1 + 2ρh2)e−ρh2 A22 − 2ρeρh2 A23 + (κ2 − 1 − 2ρh2)eρh2 A24 = 0,

eρh1 A11 − h1eρh1 A12 + e−ρh1 A13 − h1e−ρh1 A14 = 0,

eρh1 A11 + (κ1/ρ− h1)eρh1 A12 − e−ρh1 A13 + (κ1/ρ+ h1)e−ρh1 A14 = 0,

2µ2ρA21 + (1 + κ2)µ2 A22 + 2µ2ρA23 − (1 + κ2)µ2 A24 − 2µ1ρA11 − (1 + κ1)µ1 A12

−2µ1ρA13 + (1 + κ1)µ1 A14 = 0,

2µ2ρA21 + (κ2 − 1)µ2 A22 − 2µ2ρA23 + (κ2 − 1)µ2 A24 − 2µ1ρA11 − (κ1 − 1)µ1 A12

+2µ1ρA13 − (κ1 − 1)µ1 A14 = 0.

(8)

Representing the opening and sliding of the crack surfaces by unknown functions U (r) and W (r) as

u2(r, 0+)− u1(r, 0−)= U (r)H(a − r), w2(r, 0+)−w1(r, 0−)= W (r)H(a − r) (9)

ensures the continuity of the displacement components, Equation (4), along the interface plane of z = 0
and H(ξ) is the Heaviside step function. In lieu of directly imposing the continuity requirement of
the displacement components along the interface to simplify the algebraic manipulations, the auxiliary
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functions g1(r) and g2(r) are introduced in the form

g1(r)=
∂W
∂r

H(a − r), g2(r)=

(∂U
∂r

+
U
r

)
H(a − r), (10)

in which the unknown functions U (r) and W (r) are defined in Equation (9). Their explicit form can be
obtained by substituting Equations (6) and (7) into Equation (10) as

g1(r)=

∫
∞

0
dρρ

[
κ1(A12 + A14)− κ2(A22 + A24)+(A11 − A21 − A13 + A23)ρ

]
J1(ρr),

g2(r)=

∫
∞

0
dρρ2[

−A11 + A21 − A13 + A23
]
J0(ρr).

Inversion of these equations by using the related Hankel transforms results in

G1(ρ)= − ρA21 − κ2 A22 + ρA23 − κ2 A24 + ρA11 + κ1 A12 − ρA13 + κ1 A14,

G2(ρ)= ρA21 + ρA23 − ρA11 − ρA13,
(11)

in which

G1(ρ)=

∫ a

0
dsg1(s)s J1(sρ), G2(ρ)=

∫ a

0
dsg2(s)s J0(sρ). (12)

In matrix form, the combination of all the boundary conditions given by Equations (8) and (11) can
be expressed as

Ca = b, (13)

in which the explicit forms of C, a, and b are given in Appendix A. The unknown coefficients Ai j with
i = 1, 2 and j = 1 . . . 4, contained in vector a can be solved for in terms of the unknown auxiliary
functions G1(ρ) and G2(ρ) contained in vector b in the form

Ai j = Ai j
(
G1(ρ),G2(ρ)

)
. (14)

Although the formulation presented herein only considers boundary conditions of the clamped type on
region S1 and traction free on region S2, it can easily be extended to include different boundary conditions
such as clamped on both regions and traction free on both regions, and their combinations. Imposition of
different types of boundary conditions only requires the modification of the matrix C to reflect changes
in Equation (2).

The remaining unknown functions G1(ρ) and G2(ρ) are determined by enforcing the applied tractions
on the crack surfaces given by Equation (5), resulting in

µ2

∫
∞

0
dρρ

[
(1 + κ2)(A24 − A22)− 2ρ(A21 + A23)

]
J0(ρr)= p(r),

µ2

∫
∞

0
dρρ

[
(1 − κ2)(A24 + A22)− 2ρ(A21 − A23)

]
J1(ρr)= q(r),

(15)

where the stress components are defined in region S2, and Ai j are already determined by Equation (14).
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In order to avoid divergent kernels and to simplify the analysis regarding the asymptotic behavior of
the kernels, both sides of Equation (15) are integrated over r while invoking Equation (12), resulting in

∫ a

0
dssg1(s)

∫
∞

0
dρH11(ρ)J1(ρr)J1(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρH12(ρ)J1(ρr)J0(ρs)

=
1
r

(∫
r

p(λ)λdλ+ c1

)
,∫ a

0
dssg1(s)

∫
∞

0
dρH21(ρ)(1 − J0(ρr))J1(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρH22(ρ)(1 − J0(ρr))J0(ρs)

=

∫
r

q(λ)dλ+ c2,

(16)

in which Hi j (ρ), with i, j = 1, 2, are defined in terms of the coefficients of C−1 in Appendix A, and ci

represents the integration constants. As the integration variable ρ approaches infinity, the kernels Hi j (ρ)

possess the asymptotic behavior

lim
ρ→∞

H11(ρ)= − lim
ρ→∞

H22(ρ)= γ11 =
µ1µ2

(
µ1(1 + κ2)+µ2(1 + κ1)

)
(µ2 + κ2µ1)(µ1 + κ1µ2)

,

lim
ρ→∞

H12(ρ)= − lim
ρ→∞

H21(ρ)= γ12 =
µ1µ2

(
µ1(1 − κ2)−µ2(1 − κ1)

)
(µ2 + κ2µ1)(µ1 + κ1µ2)

.

By considering the asymptotic behavior of kernels, using γ=−γ12/γ11 Equation (16) can be rewritten as

− γ

∫ a

0
dssg2(s)

∫
∞

0
dρ J1(ρr)J0(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρ

H12(ρ)− γ12

γ11
J1(ρr)J0(ρs)

+

∫ a

0
dssg1(s)

∫
∞

0
dρ J1(ρr)J1(ρs)+

∫ a

0
dssg1(s)

∫
∞

0
dρ

H11(ρ)− γ11

γ11
J1(ρr)J1(ρs)

=
1
γ11r

(∫
r

p(λ)λdλ+ C1

)
,

γ

∫ a

0
dssg1(s)

∫
∞

0
dρ(1 − J0(ρr))J1(ρs)+

∫ a

0
dssg1(s)

∫
∞

0
dρ

H21(ρ)+ γ12

γ11
(1 − J0(ρr))J1(ρs)

−

∫ a

0
dssg2(s)

∫
∞

0
dρ(1 − J0(ρr))J0(ρs)+

∫ a

0
dssg2(s)

∫
∞

0
dρ

H22(ρ)+ γ11

γ11
(1 − J0(ρr))J0(ρs)

=
1
γ11

(∫
r
q(λ)dλ+ C2

)
,

(17)

After differentiating these equations term by term with respect to r , application of integration by parts
to replace the unknown functions g1(s) and g2(s) with the unknown functions W (s) and U (s) and the
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use of Equation (A.1) when appropriate leads to

1
π

∫ a

0
ds

W (s)
(s − r)2

+
1

2πr

∫ a

0
ds

W (s)
s − r

−
1

8πr2

∫ a

0
dsW (s) ln |s − r | +

∫ a

0
dsW (s)K11(r, s)

+

∫ a

0
dsU (s)K12(r, s)− γ

U (r)
r

− γ
∂U (r)
∂r

=
1
γ11

p(r), (18)

1
π

∫ a

0
ds

U (s)
(s − r)2

+
1

2πr

∫ a

0
ds

U (s)
s − r

+
3

8πr2

∫ a

0
dsU (s) ln |s − r | +

∫ a

0
dsW (s)K21(r, s)

+

∫ a

0
dsU (s)K22(r, s)+ γ

∂W (r)
∂r

=
1
γ11

q(r), (19)

in which the kernels are defined as

K11(r, s)= m11(r, s)−
1

π(s−r)2
−

1
2πr(s−r)

+
ln |s−r |

8πr2 −s
∫

∞

0
dρ

H11(ρ)−γ11

γ11
ρ2 J0(ρr)J0(ρs),

K12(r, s)= s
∫

∞

0
dρ

H12(ρ)−γ12

γ11
ρ2 J0(ρr)J1(ρs),

K21(r, s)= −s
∫

∞

0
dρ

H21(ρ)+γ12

γ11
ρ2 J1(ρr)J0(ρs),

K22(r, s)= m22(r, s)−
1

π(s−r)2
−

1
2πr(s−r)

−
3 ln |s−r |

8πr2 +s
∫

∞

0
dρ

H22(ρ)+γ11

γ11
ρ2 J1(ρr)J1(ρs),

(20)

where m11(r, s) and m22(r, s) are given in Appendix A. Multiplying Equation (19) by i =
√

−1 and
adding to Equation (18) leads to their combination as

1
π

∫ a

0
ds

f (s)
(s − r)2

+
1

2πr

∫ a

0
ds

f (s)
s − r

+
1

8πr2

∫ a

0
ds f (s) ln |s − r | −

1
4πr2

∫ a

0
ds f ∗(s) ln |s − r |

+

∫ a

0
dsK1(r, s) f (s)+

∫ a

0
dsK2(r, s) f ∗(s)+ i

γ

2r
f (r)− i

γ

2r
f ∗(r)+ iγ

d f (r)
dr

=
p(r)+ iq(r)

γ11
, (21)

where the unknown complex-valued function is f (r)= W (r)+ iU (r), with its complex conjugate rep-
resented by f ∗. The complex-valued kernels K1 and K2 are defined as

K1(r, s)=
1
2

(
K11(r, s)+ K22(r, s)−i

[
K12(r, s)− K21(r, s)

])
,

K2(r, s)=
1
2

(
K11(r, s)− K22(r, s)+i

[
K12(r, s)+ K21(r, s)

])
.

In addition to the presence of Hadamard-, Cauchy-, and logarithmic-type singularities, the dominant
part of the kernels K1(r, s) and K2(r, s) in Equation (21) becomes unbounded as both r and s approach
zero. Kernels of this type are analogous to the generalized Cauchy-type kernels [Erdogan 1978]. The
unknown function f (r) can be defined as

f (r)=
F(r)

(a − r)αrβ
,

in which F(r) is an unknown bounded function. By using the function-theoretic method of Muskhel-
ishvili [1992] and the properties of hypersingular integral equations described by Kaya [1984], Kaya and
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Erdogan [1987], Ioakimidis [1988b; 1988a; 1990], and later by Chan et al. [2003] and Kilic et al. [2006],
the strength of the singularities α and β can be obtained as

α = −
1
2 + iω, β = 0, with ω =

1
2π

ln
(1 − γ

1 + γ

)
.

For an interface crack, the complex stress intensity factor that is equivalent to that of Erdogan and
Gupta [1971a; 1971b] and Kassir and Bregman [1972] can be defined as

k1 + ik2 = lim
r→a

(r − a)−α
∗

2−α(σzz + iσr z),

where α∗ is the complex conjugate of α. This allows the stress intensity factor to be re-expressed as

1

γ11
√

1 − γ 2

(
k1(a)+ ik2(a)

)
= − 2α lim

r→a
(r − a)α(2a)α

∗

f (r)= − 2−2αα
√

aF(a).

In the limiting case of both h1 and h2 approaching infinity, the stress intensity factor for constant
pressure can be expressed analytically using the formula given by Kassir and Bregman [1972] as

k1 + ik2 = 2p0

√
a
π

0(2 − iω)
0(1/2 − iω)

, (22)

in which 0 represents the gamma function. Knowing the stress intensity factors permits the evaluation
of the phase angle, ψ , equivalent to that of Jensen [1998], in the form

tanψ =
Im

(
(k1 + ik2)h−iω

2

)
Re

(
(k1 + ik2)h−iω

2

) .
As introduced by Erdogan and Gupta [1971a; 1971b], the energy release rate can be related to the

stress intensity factors in the form

G =
π

2
(µ1 + κ1µ2)(µ2 + κ2µ1)

µ1µ2
[
(1 + κ1)µ2 + (1 + κ2)µ1

](k2
1 + k2

2).

4. Numerical analysis of integral equations

By introducing r = a(x + 1)/2, s = a(t + 1)/2, for −1 ≤ (x, t) ≤ 1, the integro-differential equation,
Equation (21), is normalized as

2
πa

∫ 1

−1
dt

g(t)
(t − x)2

+
1

2πr

∫ 1

−1
dt

g(t)
t − x

+
a

16πr2

∫ 1

−1
dtg(t) ln |t − x | −

a
8πr2

∫ 1

−1
dt f ∗(t) ln |t − x |

+

∫ 1

−1
dt M1(x, t)g(t)+

∫ 1

−1
dt M2(x, t)g∗(t)+ i

γ

2r
g(x)− i

γ

2r
g∗(x)+ i

2γ
a

dg(x)
dx

=
p(r)+ iq(r)

γ11
, (23)

where g(x)= f (a(x + 1)/2) and M1 and M2 are defined as
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M1(x, t)=
1
2

(
M11(x, t)+ M22(x, t)− i

a
2

[
K12(r, s)− K21(r, s)

])
,

M2(x, t)=
1
2

(
M11(x, t)− M22(x, t)+ i

a
2

[
K12(r, s)+ K21(r, s)

])
,

where

M11(x, t)=
a
2

m11(r, s)−
2

πa(t−x)2
−

1
2πr(t−x)

+
a ln |t−x |

16πr2 −
as
2

∫
∞

0
dρ

H11(ρ)−γ11

γ11
ρ2 J0(ρr)J0(ρs),

M22(x, t)=
a
2

m22(r, s)−
2

πa(t−x)2
−

1
2πr(t−x)

−
3a ln |t−x |

16πr2 +
as
2

∫
∞

0
dρ

H22(ρ)+γ11

γ11
ρ2 J1(ρr)J1(ρs).

Furthermore, the normalized unknown function g(x) can be rewritten as

g(x)=
G(x)
(1 − x)α

, (24)

where the unknown auxiliary function G(x) is bounded.
The kernels M1(x, t) and M2(x, t) appearing in Equation (23) involve the computation of infinite

integrals. These integrals are evaluated by using the modified form of Filon’s numerical scheme in
order to account for the oscillations arising from the Bessel functions of the first kind. This integration
algorithm is outlined in Appendix B. The complexity of the kernels in Equation (23) requires that the
singular integral equations be solved numerically. The solution procedure involves the reduction of the
integro-differential equations with Hadamard-, Cauchy-, and logarithmic-type singularities to a system
of linear algebraic equations using the collocation technique introduced by Miller and Keer [1985] and
later extended by Quan [1991] to include the generalized Cauchy kernel, and by Kabir et al. [1998] to
include Hadamard- and logarithmic-type singularities.

In this technique, the quadrature interval [−1, 1] is partitioned into a series of subintervals. The
integration points, tk , at the ends and midpoint of each subinterval are shown in Figure 2. The collocation
points xn are defined at the midpoint of two consecutive integration points.

The unknown function G(t) in Equation (24) is approximated over each subinterval t2k−1 ≤ t ≤ t2k+1,
for k = 1, . . . , N , by quadratic Lagrange interpolation polynomials, which are given as

G(t)≈

[
(t − t2k)

2

h2
k

−
(t − t2k)

hk

]
G2k−1

2
+

[
1 −

(t − t2k)
2

h2
k

]
G2k +

[
(t − t2k)

2

h2
k

+
(t − t2k)

hk

]
G2k+1

2
,

where Gk = G(tk) and hk = (t2k+1 − t2k−1)/2.

t
1
=-1 t

2
t

3

x
1

x
2

t
2k-1

t
2k

t
2 +1k

x
2 -1k

x
2k

x
2 -1N

x
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2N-1

t
2N

t
2 +1

=1
N

2h
k

Figure 2. Discretization of the quadrature interval.
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Approximation of the unknown function G(x) permits the discretization of Equation (23) as

2N+1∑
m=1

[
2
πa
wH

m (xn)Gm +
1

2πrn
wC

m(xn)Gm +
a

16πr2
n
wL

m(xn)Gm −
a

8πr2
n
wL∗

m (xn)G∗

m + M1(xn, tm)vmGm

+ M1(xn, tm)v∗

mG∗

m

]
+

3∑
j=1

[
i

γ

2rn(1 − xn)α

(
B j G I+ j − B j G∗

I+ j
)
+ i

2γ
a(1 − xn)1+α

B j G I+ j

]

+ i
2γ

a(1 − xn)α

M∑
j=1

D j (hn)GL+ j =
1
γ11
(p(xn)+ iq(xn)), (25)

where N is the number of subintervals for the unknown function G(x) and rn = a(xn + 1)/2. The singular
weight functions, wH

m (x), w
C
m(x), w

L
m(x), and vm , as well as I and B j , are given by Kabir et al. [1998]

and L and D j are defined by Kilic et al. [2006]. The variable with a superscript * denotes its complex
conjugate.

Because this discretization results in a number of unknowns Gm , which are one more than the number
of equations, an additional constraint equation becomes necessary in order to achieve a unique solution
to Equation (25). However, the nature of this solution method does not yield any additional constraint
equations based on the physics of the problem. Therefore, the necessary equation is introduced in an
artificial way in order to achieve a unique solution, as suggested by Kabir et al. [1998] and Kilic et al.
[2006]. It is obtained by multiplying the integro-differential equation given by (23) by r2(1 − x2)3/2

and integrating over x between −1 and 1. After changing the order of integrations, performing the
appropriate algebraic manipulations leads to the normal and discretized forms

∫ 1

−1
dt K1c(t)g(t)+ K2c(t)g∗(t)= g̃,

2N+1∑
m=1

K1c(tm)vmGm + K2c(tm)v∗

mG∗

m = g̃.

The details of the algebraic manipulations, as well as the definitions of g̃, K1c(t), and K2c(t), are given
in Appendix C.

Furthermore, the examination of the kernels reveals that they approach zero as t → −1 (s → 0) for
x 6= −1 (r 6= 0). Therefore, G1 = G(−1) disappears as t → −1, for x 6= −1, making the first column
equal to zero in the construction of the algebraic equations formed by Equation (25); thus leading to a
singular coefficient matrix. To make the system of equations nonsingular, the first row of the coefficient
matrix is replaced by imposing the conditions of zero radial displacement and zero slope of transverse
displacement at the center of the crack, that is,

Im[g(t = − 1)] = 0, Re
[
∂g(t = − 1)

∂t

]
= 0.

The discrete form of the singular integral equation and constraint equation can be cast into the form
AnmGm = gm for m, n = 1, . . . , 2N +1, where the unknown vector has form GT

=
{
G1,G2, . . . ,G2N+1

}
.
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N k1 k2

3 0.630 −0.0929
5 0.634 −0.0979
10 0.635 −0.0992
20 0.635 −0.0995
30 0.635 −0.0996

Table 1. Convergence of stress intensity factors.

5. Numerical results

To establish the number of subintervals associated with the unknown functions, the problem of a penny-
shaped crack at the interface of two semiinfinite dissimilar materials under unit pressure is considered.
Material properties are the same as those given by Kassir and Bregman [1972], and Young’s modulus
and Poisson’s ratio have numerical values of 3 × 107 psi and 0.3 for the material at the upper half and 107

psi and 0.22 for material at the lower half. The analytical solution using Equation (22) can be computed
as k1 + ik2 = 0.635 − 0.0996i . The convergence of the stress intensity factors as a function of number
of integration points is presented in Table 1. As demonstrated in this table, the numerical technique
used in this study gives 3-digit accuracy, as compared to analytical solution using only 30 integration
points. Therefore, in the solution of the integral equations, the number of subintervals associated with
the unknown function is chosen to be 100. The material properties used in this analysis are the same as
those given by Farris and Keer [1985] and Wan et al. [2003], and their values are presented in Table 2. In
this table, the aluminum layer of 7075-T6 Al represents the rigid substrate, and the polymeric materials
represent the film.

The validity of the results of the present analysis was established by comparing the crack opening and
sliding displacements with the finite element predictions. Finite element analysis was conducted using
PLANE42 elements of the commercially available package ANSYS®. The PLANE42 element can be
used as an axisymmetric element with four nodes, having two degrees of freedom at each node. In the
finite element discretization, the radius of the material layer is 20 times that of the crack radius in order
to represent infinite length in radial direction. The finite element mesh has 50 equally spaced nodes in
the radial direction along the crack surface. The elements surrounding the crack tip are of traditional
elements without special treatment of the singularity at the crack tip.

Material Modulus (MPa) Poisson’s Ratio

7075-T6 Al Alloy 7.1705 × 104 0.33
Polymeric Material 4.0 × 103 0.35

Solithane 113 3.447 0.499
PMMA 2.758 0.495

Table 2. Mechanical properties of materials.
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Figure 3. Crack opening (top) and sliding (bottom) displacement between 7075-T6 Al
substrate and polymeric film for h2/h1 = 1.

In the validation of the present analysis against the finite element predictions, the film thickness is
taken to be equal to that of the substrate, h2/h1 = 1, and the crack length is equal to that of the thin
film thickness, h2/a = 1. As shown in Figure 3, predictions of the present analysis are in remarkable
agreement with the finite element results. To capture the effects of thin film thickness on the fracture
parameters, the ratio of thin film thickness to crack radius h2/a is varied ranging from 0.4 to 4.
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Figure 4. Opening (top) and sliding (bottom) mode stress intensity factor for a crack
between 7075-T6 Al substrate and polymeric film for h2/h1 = 1.

As observed in Figures 4–5, the energy release rate and stress intensity factors for the opening and
sliding modes increase as the ratio of h2/a decreases. The complex stress intensity factor approaches the
limiting value given by Kassir and Bregman [1972] as the ratio of h2/a increases. The central deflection
as a function of the ratio h2/a is shown in Figure 6.
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Figure 5. Energy release rate at a crack front between 7075-T6 Al substrate and poly-
meric film for h2/h1 = 1.
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Figure 6. Central deflection of a crack between 7075-T6 Al substrate and polymeric
film for h2/h1 = 1.
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Figure 7. Crack opening (top) and sliding (bottom) displacement between Solithane
113 and PMMA material layers.

If the adhesive between the two material layers has a comparable modulus, it should be explicitly
included in the analysis. The present analysis can be used to model such a material system. To illus-
trate this capability, the adherend material PMMA is attached to a rigid substrate using the adhesive
material Solithane 113. The results are presented for four different adherend-to-adhesive thickness ratios
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Figure 8. Opening (top) and sliding (bottom) mode stress intensity factor for a crack
between Solithane 113 and PMMA material layers.

of h2/h1 = 1 and 4 by an increment of 1. The crack opening and sliding displacements are shown in
Figure 7. The stress intensity factors and energy release rate increase as h1/a decreases for h2/h1 = 1, as
presented in Figures 8–9. However, for h2/h1 = 4, the stress intensity factor for the opening mode and
energy release rate have a minimum at h1/a ≈ 0.75, as also pointed out by Farris and Keer [1985], but the
stress intensity factor for the sliding mode increases as h1/a decreases. Similar behavior is observed for
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Figure 9. Energy release rate at a crack front between Solithane 113 and PMMA mate-
rial layers.
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Figure 10. Central deflection of a crack between Solithane 113 and PMMA material layers.
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h2/h1 = 2 and h2/h1 = 3. As the h1/a ratio increases, the complex stress intensity factor approaches that
given by Kassir and Bregman [1972]. The crack opening displacements at the center are also presented
in Figure 10.

6. Conclusions

By using the linear theory of elasticity and applying the appropriate mixed boundary conditions, the
interface penny-shaped crack problem is reduced to a boundary-value problem. The formulation of this
boundary-value problem leads to a singular integral equation of the Hadamard-, Cauchy-, and logarithmic-
type, which is solved numerically to directly obtain the crack opening and sliding displacements, as well
as the stress intensity factors and energy release rate. Numerical results are validated by comparing
against the crack opening and sliding displacements obtained from the finite element analysis. The
limiting value of the complex stress intensity factor for which both the substrate and film thicknesses
approach infinity is also in agreement with the analytical benchmark solution. The present analysis can
be used to investigate the interface toughness between not only the film and rigid substrate but also the
film and adhesive, which have comparable magnitudes of elastic moduli. Within the context of solution
methods available in the literature, this study, for the first time, presents an approach for constructing
the solution of a singular integral equation in the presence of a combination of Hadamard, Cauchy, and
logarithmic singularities.

Appendix A

The matrix C in Equation (13) is given by

−ρ −κ2 ρ −κ2 ρ κ1 −ρ κ1

ρ 0 ρ 0 −ρ 0 −ρ 0

2µ2ρ (1+κ2)µ2 2µ2ρ −(1+κ2)µ2 −2µ1ρ −(1+κ1)µ1 −2µ1ρ (1+κ1)µ1

2µ2ρ (κ2−1)µ2 −2µ2ρ (κ2−1)µ2 −2µ1ρ −(κ1−1)µ1 2µ1ρ −(κ1−1)µ1

0 0 0 0 eρh1 −h1eρh1 e−ρh1 −h1e−ρh1

0 0 0 0 eρh1
(
κ1

ρ
−h1

)
eρh1 −e−ρh1

(
κ1

ρ
+h1

)
e−ρh1

2ρe−ρh2 (κ2+1+2ρh2)e−ρh2 2ρeρh2 −(κ2+1−2ρh2)eρh2 0 0 0 0

2ρe−ρh2 (κ2−1+2ρh2)e−ρh2 −2ρeρh2 (κ2−1−2ρh2)eρh2 0 0 0 0



.

The vectors a and b, also from Equation (11), are given by aT
= [A21 A22 A23 A24 A11 A12 A13 A14], and

bT
= [G1(ρ) G2(ρ) 0 0 0 0 0 0], where superscript T represents the transpose. The kernels appearing

in infinite integrals in Equation (16) are expressed as

H11(ρ)= µ2
[
(1 + κ2)(B41 − B21)− 2ρ(B11 + B31)

]
,

H12(ρ)= µ2
[
(1 + κ2)(B42 − B22)− 2ρ(B12 + B32)

]
,

H21(ρ)= µ2
[
(1 − κ2)(B41 + B21)− 2ρ(B11 − B31)

]
,

H22(ρ)= µ2
[
(1 − κ2)(B42 + B22)− 2ρ(B12 − B32)

]
,
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where the coefficients Bi j = C−1
i j .

The closed-form evaluation of certain integrals that are used in Equations (17)–(19) are∫
∞

0
dρ J1(ρr)J1(ρs)=

2
π

{
1
s [K (s/r)− E(s/r)], s < r,
1
r [K (r/s)− E(r/s)], s > r,∫

∞

0
dρ J0(ρr)J0(ρs)=

2
π

{
1
r K (s/r), s < r,
1
s K (r/s), s > r,

s
∫

∞

0
dρρ Jm(ρr)Jm(ρs)= δ(r − s),

(A.1)

where δ(r) is the Dirac delta function. The complete elliptic integrals of the first and second kind, K
and E , respectively, are defined by

K (m)=

∫ π/2

0

dθ√
1 − m2 sin2 θ

, E(m)=

∫ π/2

0
dθ

√
1 − m2 sin2 θ, (A.2)

where −1 ≤ m ≤ 1. The functions m11(r, s) and m22(r, s) appearing in Equation (20) are defined as

m11(r, s)=


2s

(
2r2 E(s/r)+(s2

−r2)K (s/r)
)

πr(s2−r2)2
, s < r,

4s2 E(r/s)−2(s2
−r2)K (r/s)

π(s2−r2)2
, s > r,

m22(r, s)=


2
(
(s2

+r2)E(s/r)+(s2
−r2)K (s/r)

)
π(s2−r2)2

, s < r,
2s

(
(s2

+r2)E(r/s)−(s2
−r2)K (r/s)

)
πr(s2−r2)2

, s > r,

in which K and E are the complete first and second kind elliptic integrals, respectively, and their explicit
forms are given by Equation (A.2).

Appendix B

The approximate evaluation of the integrals of type I (r, s, t; a, b)=
∫ b

a dx f (x)χ1(r x)χ2(sx)χ3(t x), in
which χi , with i = 1, 2, 3, are functions that possibly have oscillatory behavior (for example, Bessel
functions) and f (x) being smooth in the interval [a, b] can be achieved by

I (r, s, t; a, b)=

N∑
j=1

I j (r, s, t; x2 j−1, x2 j+1), (B.1)

in which N is the number of subintervals in the interval [a, b]. Although it is not necessary for the
subintervals to have the same abscissa, the subinterval lengths are taken as equal for simplicity, leading
to equal integration intervals x2 j−1 − x2 j+1 = (b − a)/N . I j is defined as

I j (r, s, t; x2 j−1, x2 j+1)=

∫ x2 j+1

x2 j−1

dx f (x)χ1(r x)χ2(sx)χ3(t x). (B.2)

Over the subinterval [x2 j−1, x2 j+1], this integral can be approximated as I j (r, s, t; x2 j−1, x2 j+1) =

w2 j−1 f (x2 j−1)+w2 j f (x2 j )+w2 j+1 f (x2 j+1), where w2 j−1, w2 j , and w2 j+1 are the integration weights.
They are determined by assuming a quadratic variation of the product of the functions χi , with i = 1, 2, 3,
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in the interval [x2 j−1, x2 j+1] with n = 0, 1, 2 such that∫ x2 j+1

x2 j−1

dxxnχ1(r x)χ2(sx)χ3(t x)= xn
2 j−1w2 j−1 + xn

2 jw2 j + xn
2 j+1w2 j+1 = Rn. (B.3)

In matrix form, these equations are rewritten as 1 1 1
x2 j−1 x2 j x2 j+1

x2
2 j−1 x2

2 j x2
2 j+1

 w2 j−1

w2 j

w2 j+1

 =

R0

R1

R2

 , (B.4)

from which the weights are computed after the evaluation of the expressions for Rn(r, s, t; x2 j−1, x2 j+1).
This is achieved by defining the variable x = az + x2 j , with a = (x2 j+1 − x2 j−1)/2, and by approximating
the functions χi , with i = 1, 2, 3, in the integrals in Equation (B.2) using the Chebyshev polynomials of
the first kind as

χi (p(az + x2 j ))=

Mi∑
m=0

bm Tm(z), with p ∈ {r, s, t}, (B.5)

in which Mi , with i = 1, 2, 3, is the highest degree of Chebyshev polynomial used in the approximation
and the coefficients are given by

bm =
c

Mi

(
χi (p(az0 + x2 j ))+ (−1)mχi (p(azMi + x2 j ))+ 2

Mi −1∑
k=1

χi (p(azk + x2 j )) cos
mkπ
Mi

)
,

in which zk = cos(kπ/Mi ), c = 1 for m = 1, . . . ,Mi − 1 and c = 1/2 for m = 0,Mi . Substitution from
Equation (B.5) into Equation (B.3) with n = 0, 1, 2 results in

Rn = a
M1∑
p=0

M2∑
r=0

M3∑
s=0

b1pb2r b3s

∫ 1

−1
dz(az + x2 j )

nTp(z)Tr (z)Ts(z),

This expression permits the explicit evaluation of Rn with the identities [Balkan 1995]∫ 1

−1
dzTp(z)Tr (z)Ts(z)= F(p, r, s, 1),∫ 1

−1
dzzTp(z)Tr (z)Ts(z)=

F(p, r, s, 2)
2

,∫ 1

−1
dzz2Tp(z)Tr (z)Ts(z)=

F(p, r, s, 3)+ F(p, r, s, 1)
4

,

in which

F(p, r, s, n)=
1
2

(
s+n

(s+n)2−(p+r)2
+

n−s
(n−s)2−(p+r)2

+
s+n

(s+n)2−(p−r)2
+

n−s
(n−s)2−(p−r)2

)
for p + r + s + n = odd, and zero otherwise.

Substituting for Rn and numerically inverting the system of Equation (B.4) leads to the integration
weights. Finally, the approximate value of the integrals is calculated from Equation (B.1). The accuracy
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of the integration algorithm is demonstrated by considering the infinite integral I =
∫

∞

0 dx xe−x2
J 2

0 (x),
with the exact solution of I = e−1/2 I0(1/2)/2 = 0.3225176352245750, in which I0 is the modified Bessel
function of the second kind. Its numerical evaluation, with N = 100 and Mi = 8, with i = 1, 2, 3, for
a = 0 and b = 10, and letting f (x)= 1, χ1(x)= xe−x2

and χ2(x)= χ3(x)= J0(x), leads to a value of
0.3225176352245752.

Appendix C

The numerical scheme used to solve a hypersingular integral equation requires an additional constraint
equation to achieve a unique solution. However, the nature of the problem does not provide any con-
straint conditions, as opposed to formulations of the Cauchy type. Furthermore, Equation (23) has a
unique solution without any additional constraint equation. Thus, a constraint equation is introduced by
multiplying Equation (23), with r2(1 − x2)3/2, and integrating over x as

2
πa

∫ 1

−1
dtg(t)

∫ 1

−1
dx

r2(1 − x2)3/2

(t − x)2
+

1
2π

∫ 1

−1
dtg(t)

∫ 1

−1
dx

r(1 − x2)3/2

t − x

+
a

16π

∫ 1

−1
dtg(t)

∫ 1

−1
dx ln |t − x |(1 − x2)3/2 −

a
8π

∫ 1

−1
dt f ∗(t)

∫ 1

−1
dx ln |t − x |(1 − x2)3/2

+

∫ 1

−1
dtg(t)

∫ 1

−1
dx M1(x, t)r2(1 − x2)3/2 +

∫ 1

−1
dtg∗(t)

∫ 1

−1
dx M2(x, t)r2(1 − x2)3/2

+ i
γ

2

∫ 1

−1
dxg(x)r(1 − x2)3/2 − i

γ

2

∫ 1

−1
dxg∗(x)r(1 − x2)3/2

+ i
2γ
a

∫ 1

−1
dx

dg(x)
dx

r2(1 − x2)3/2 =

∫ 1

−1
dx

p(r)+ iq(r)
γ11

r2(1 − x2)3/2. (C.1)

This equation can be further simplified by using the results for the definite integrals of Hadamard and
Cauchy types given by Kaya [1984], and the definite integrals of logarithmic type as

∫ 1

−1
dt

tn
√

1 − t2

(t − x)2
=

n+1∑
k=1

kbk xk−1,

∫ 1

−1
dt

tn
√

1 − t2

t − x
=

n+1∑
k=0

bk xk,

1
π

∫ 1

−1
dt

√
1 − t2 ln |t − x | =

x2

2
−

1
4
(1 + 2 ln 2),

1
π

∫ 1

−1
dtt2

√
1 − t2 ln |t − x | =

x4

4
−

x2

4
+

1
32
(1 − 4 ln 2),

where

bk =

√
π

2
0((n − k)/2)

0((n − k + 3)/2)
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for n − k = odd, and zero otherwise. Finally, this equation can be put into the concise form∫ 1

−1
dt K1c(t)g(t)+K2c(t)g∗(t)= g̃,

K1c(t)=
a

512

(
−3(83+ln 16)−1728t−552t2

+2176t3
+1400t4)

+i 3
4aγ (1+t)

(
−1+2t+3t2) √

1−t2+

∫ 1

−1
dx M1(x, t)r2 (

1−x2)3/2
,

K2c(t)=
a

256

(
3(3+log 16)+8t2(−3+t2)

)
−i

aγ
4
(1+t)(1−t2)3/2+

∫ 1

−1
dx M2(x, t)r2(1−x2)3/2,

g̃ =

∫ 1

−1
dx

p(r)+iq(r)
γ11

r2(1−x2)3/2.

(C.2)

Note that the multiplying factor, r2(1 − x2)3/2 is used because it permits simplification of Equation
(C.1) by using known definite integrals, which leads to the accurate evaluation of constraint equation.
Integration by parts is used to remove the derivative of the unknown function. Integrals appearing in
Equation (C.2) can be evaluated accurately using Chebyshev polynomials of second kind [Abramowitz
and Stegun 1964].
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