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MIRA MITRA AND S. GOPALAKRISHNAN

We study transient wave propagation in a pressure loaded isotropic cylinder under axisymmetric con-
ditions. A 2-D wavelet based spectral finite element (WSFE) is developed to model the cylinder with
radial and axial displacements. The method involves a Daubechies compactly supported scaling function
approximation in the temporal dimension and one spatial (axial direction) dimension. This reduces the
governing partial differential wave equation into a set of variable coefficient ODEs, which are then solved
using Bessel’s function approximation. This spectral method captures the exact inertial distribution and
thus results in large computational savings compared to the conventional finite element (FE) formulation.
In addition, the use of localized basis functions in the present formulation circumvents several serious
limitations of the previous FFT based techniques. Here, the proposed method is used to study radial and
axial wave propagation in cylinders with different configurations. The analysis is performed in both time
and frequency domains. The time domain responses are validated with 2-D FE results.

1. Introduction

Wave propagation analysis in cylindrical structures is of much relevance for its applications to problems
like health monitoring of fluid carrying pipes, excavation casings, and so on [Yin and Yue 2002; El-Raheb
2005]. Recently, with the advent of carbon nanotubes, researchers have been working towards dynamic
and wave propagation analyses [Mahan 2002; Wang et al. 2005] of hollow cylindrical shells resembling
the carbon nanotube configuration.

Wave propagation problems deal with high frequency excitations and the FE modeling is not com-
putationally viable here as the element size has to be comparable to wavelengths, which are very small
at higher frequencies. This results in large system size, and thus alternative numerical schemes [Bao
et al. 1999; Godinho et al. 2003; 2004] are generally developed, which are highly accurate in numerical
differentiation and also computationally efficient. The FFT based Spectral Finite Element (FSFE) [Doyle
1999] is one such technique specially formulated for wave propagation analysis, and it follows the FE
procedure in the transformed frequency domain. In FSFE for 2-D problems, the nodal displacements
are related to the nodal forces through a frequency-wavenumber dependent dynamic stiffness matrix. It
captures the mass distribution accurately and hence makes it possible to derive the exact elemental matrix.
Thus in the absence of discontinuities, a single element is sufficient to model the 2-D structure of any
length but unbounded along one spatial dimension.

The main drawback of FSFE is that it cannot handle waveguides of short lengths. This is because
the periodicity assumption in the time approximation results in wrap-around for smaller time windows,
which totally distorts the response. In addition, for 2-D problems, FSFE are essentially semi-infinite, that
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is, bounded in only one direction. Thus the effect of one spatial boundary cannot be captured and this
is attributed to the global nature of the basis functions of the Fourier series approximation of the spatial
dimension. However, in Wavelet based Spectral Finite Element (WSFE) [Mitra and Gopalakrishnan
2005], use of localized Daubechies [1992] compactly supported wavelets as basis functions removes the
wrap-around problem and can efficiently model undamped structures of finite length. For 2-D problems
WSFE [Mitra and Gopalakrishnan 2006c; 2006b] can accurately model structures of finite dimensions.
This is again due to the use of localized Daubechies scaling functions as the basis for approximation of
spatial dimension.

The governing differential equations for axisymmetric structures have variable coefficients. Thus
the 2-D WSFE formulation for these problems is different from that for WSFE for plates [Mitra and
Gopalakrishnan 2006c; 2006b]. Here, unlike plates, the reduced ODEs obtained after transformations of
the PDEs are variable coefficient equations which have Bessel’s function as their solution. Hence, the
shape functions are obtained in terms of Bessel’s functions. The formulation of the elemental dynamic
stiffness matrix from these shape functions is very similar to that in FE.

As in the case of 2-D FSFE, the frequency dependent wave characteristics corresponding to each
spatial (axial) wavenumber, can be extracted from our WSFE formulation. However, unlike FSFE, the
wavenumbers will be accurate only up to a certain fraction of the Nyquist frequency [Mitra and Gopalakr-
ishnan 2006a]. In addition, here the governing PDE involves variable coefficients as a function of the
radius and hence the spectrum relations are derived for a certain radius following a similar procedure
as for the WSFE method for plates. Thus the frequency dependent spectrum relation obtained for such
axisymmetric problems varies for both axial wavenumbers and the radius.

The paper is organized as follows. Section 2 elaborates the reduction of PDEs to ODEs, Section 3
contains the frequency domain analysis and Section 4 the spectral finite element formulation. Numerical
results for time and frequency domains for different cylinder configurations are presented in Section 5.
The simulated responses are validated with 2-D FE analysis. The paper ends with important conclusions.

2. Reductions of wave equations to ODEs

The steps followed in 2-D WSFE for an axisymmetric cylinder are as follows. Here, first the Daubechies
scaling functions are used for approximation in time and this reduces the governing PDEs with variable co-
efficients into a set of coupled PDEs in spatial dimensions. The wavelet extrapolation technique proposed
by Williams and Amaratunga [1997] is used for adapting wavelets in the finite domain and the imposition
of initial conditions. The coupled transformed PDEs are decoupled through eigenvalue analysis. Though
the eigen analysis involved is time consuming, this can be computed and stored as it is not dependent on
the particular problem. Next, each of these decoupled PDEs are further reduced to a set of coupled ODEs
by using the same Daubechies scaling functions for approximation in the spatial dimension. Unlike the
temporal approximation, here, the scaling function coefficients lying outside the finite domain are not
extrapolated but obtained through periodic extension for unrestrained (free) axial edges. In this paper,
the formulation and examples are presented only for unrestrained axial boundary conditions. However,
other boundary conditions such as fixed-fixed or free-fixed can also be imposed through a restrain matrix
[Mitra and Gopalakrishnan 2006c]. Each set of these ODEs is coupled, and here decoupling can only
be done for unrestrained boundary conditions. As said earlier, these decoupled ODEs have coefficients
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that vary with the radius. Here, the Bessel function solution is used as interpolating functions and the
elemental dynamic stiffness matrix is obtained using these functions. The above mentioned steps are
discussed in detail in the following subsections.

2.1. Governing differential equations. The governing differential equations for a hollow cylindrical
structure are generally written in cylindrical coordinate system (r, θ, z), which denotes the radial, cir-
cumferential and axial directions. The displacement components are u, v and w in the radial, circumfer-
ential and axial directions. For the axisymmetric condition, the circumferential displacement v and the
variations of the other two displacements with respect to θ are not considered in the modeling. Thus the
equations of motion for an axisymmetric isotropic hollow cylinder contain only displacements u, w with
variations along r, z (see Figure 1) and time t , and can be written as

(λ+ 2µ)∇2
01= ρ

∂21

∂t2 ,

c2
d∇

2
01=

∂21

∂t2 , c2
d = (λ+ 2µ)/ρ, (1)

µ∇
2
1fθ = ρ

∂2fθ

∂t2 ,

c2
s ∇

2
1fθ =

∂2fθ

∂t2 , c2
s = µ/ρ, (2)

where ∇
2
n , for subscripts n = 0 and 1, is defined by

∇
2
n ≡

∂2

∂r2 +
1
r
∂

∂r
−

n2

r2 +
∂2

∂z2 .

The variables 1 and fθ are dilation and rotation vectors reduced for axisymmetric motions as

1=
1
r
∂(ru)
∂r

+
∂w

∂z
, fθ =

∂u
∂z

−
∂w

∂r
, (3)
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Figure 1. Axisymmetric element with nodal displacements and forces.
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and λ, µ are the Lamé’s constants and ρ is the mass density. From Equations (3), the displacements can
be written in decoupled form as

∇
2
1 u =

∂1

∂r
+
∂fθ

∂z
, ∇

2
0w =

∂1

∂z
−

1
r
∂(rfθ )

∂r
. (4)

The associated boundary conditions are

σr = λ1+ 2µ
∂u
∂r
, σz = µ

∂u
∂z

+
∂w

∂r
, (5)

where σr and σz are the radial and axial forces acting on the surface of the cylinder along the z direction.

2.2. Daubechies compactly supported wavelets. A concise review of orthogonal basis of Daubechies
wavelets Daubechies 1992 is provided. The wavelets ψ j,k(t) form compactly supported orthonormal
basis for L2(R). The wavelets and the associated scaling functions ϕ j,k(t) are obtained by translation
and dilation of single functions ψ(t) and ϕ(t):

ψ j,k(t)= 2 j/2ψ(2 j t − k), ϕ j,k(t)= 2 j/2ϕ(2 j t − k), j, k ∈ Z.

The scaling functions ϕ(t) are derived from the dilation or scaling equation,

ϕ(t)=

∑
k

akϕ(2t − k),

and the wavelet function ψ(t) is obtained as

ψ(t)=

∑
k

(−1)ka1−kϕ(2t − k).

The ak are the filter coefficients and are fixed for specific wavelet or scaling function basis. For compactly
supported wavelets only a finite number of ak are nonzero. The filter coefficients ak are derived by
imposing certain constraints on the scaling functions which are as follows. (1) The area under scaling
function is normalized to one. (2) The scaling function ϕ(t) and its translates are orthonormal. (3) The
wavelet function ψ(t) has M vanishing moments. The number of vanishing moments M denotes the
order N of the Daubechies wavelet, where N = 2M .

Let Pj ( f )(t) be the approximation of a function f (t) in L2(R) using ϕ j,k(t) as a basis, at a certain
level (resolution) j . Then

Pj ( f )(t)=

∑
k

c j,kϕ j,k(t), k ∈ Z,

where the c j,k are the approximation coefficients.

2.3. Temporal approximation. The first step of formulation of WSFE is the reduction of each of the
two governing differential equations (1) and (2) with variables 4 and fθ , to a set of PDEs in spatial
dimensions by Daubechies scaling function based transformation in time. The procedure has been dis-
cussed earlier in [Mitra and Gopalakrishnan 2005; 2006c] for WSFE formulation for beams and plates,
respectively and is described here in brief for completeness. Let 1(r, z, t) be discretized at n points in
the time window [0, t f ]. Let τ = 0, 1, . . . , n − 1 be the sampling points; then

t = 4t τ,
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where 4t is the time interval between two sampling points. The function 1(r, z, t) can be approximated
by the scaling function ϕ(τ) at an arbitrary scale as

1(r, z, t)=1(r, z, τ )=

∑
k

1k(r, z)ϕ(τ − k), k ∈ Z,

where the 4k(r, z) (written 4k hereafter) are the approximation coefficients at spatial coordinates r and
z and (1) can be written as∑

k

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
1kϕ(τ − k)=

1
4t2

∑
k

1kϕ
′′(τ − k). (6)

Taking the inner product of both sides with the translates of scaling functions ϕ(τ − j), where j =

0, 1, . . . , n − 1 and using their orthogonal properties, we get n simultaneous PDEs:

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
1 j =

1
4t2

j+N−2∑
k= j−N+2

�2
j−k1k, j = 0, 1, . . . , n−1, (7)

where N is the order of the Daubechies wavelet and the �2
j−k are the connection coefficients, defined by

�2
j−k =

∫
ϕ′′(τ − k)ϕ(τ − j) dτ. (8)

Similarly, for the first-order derivative, the �1
j−k are defined by

�1
j−k =

∫
ϕ′(τ − k)ϕ(τ − j) dτ.

For compactly supported wavelets, �1
j−k, �

2
j−k are nonzero only in the interval k = j − N + 2 to k =

j + N − 2. The detail for evaluation of connection coefficients for different derivative orders is given in
[Beylkin 1992].

It can be observed from the PDEs given by (7) that certain coefficients 4 j near the vicinity of the
boundaries ( j = 0 and j = n−1) lie outside the time window [0, t f ] defined by j = 0, 1, . . . , n−1. These
coefficients must be treated properly for finite domain analysis. Here, a wavelet based extrapolation
scheme [Williams and Amaratunga 1997] is implemented for the solution of boundary value problems.
This approach allows treatment of finite length data and uses polynomials to extrapolate the coefficients
lying outside the finite domain either from interior coefficients or initial/boundary values. The method
is particularly suitable for approximation in time, because of the ease of imposing initial values. The
method converts the PDEs (7) to a set of coupled PDEs:

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

) {
1 j

}
= [01

]
2 {
1 j

}
, (9)

where 01 is the first order connection coefficient matrix obtained after using the wavelet extrapolation
technique. It should be mentioned here that though the connection coefficients matrix, 02, for the second
order derivative can be obtained independently, here it is written as [01

]
2 as it helps to impose the
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initial conditions [Mitra and Gopalakrishnan 2005]. These coupled PDEs are decoupled using eigenvalue
analysis, via

01
=858−1,

where 5 is the diagonal eigenvalue matrix and 8 is the eigenvectors matrix of 01. Let the eigenvalues
be iγ j , with i =

√
−1. The decoupled PDEs corresponding to Equations (9) are

c2
d

(
∂2

∂r2 +
1
r
∂

∂r
+
∂2

∂z2

)
1̂ j = −γ 2

j 1̂ j j = 0, 1, . . . , n − 1, (10)

where 1̂ j is

1̂ j =8−11 j .

Following the same steps, the final transformed form of (2) is

c2
s

(
∂2

∂r2 +
1
r
∂

∂r
−

1
r2 +

∂2

∂z2

)
f̂θ j = −γ 2

j f̂θ j j = 0, 1, . . . , n − 1. (11)

Similarly, the transformed form of the decoupled displacement equations (4) and force boundary condi-
tions (5) can be written as

∇
2
1 û j =

∂1̂ j

∂r
+
∂f̂θ j

∂z
, ∇

2
0 ŵ j =

∂1̂ j

∂z
−

1
r
∂(rf̂θ j )

∂r
, (12)

σ̂r j = λ1̂ j + 2µ
∂ û j

∂r
, σ̂z j = µ

∂ û j

∂z
+
∂ŵ j

∂r
, (13)

where σ̂r j and σ̂z j are the transformed forces σr (r, z, t) and σz(r, z, t) respectively.

2.4. Spatial approximation. As stated earlier, the next step involved is to further reduce each of the
transformed and decoupled PDEs given by Equations (10) and (11) for j = 0, 1, . . . , n−1 to a set of
coupled ODEs using the Daubechies scaling function approximation in the axial (z) direction. Similar to
time approximation, the transformed variable 1̂ j is discretized at m points in the spatial window [0, L z],
where L z is the length in z direction. Let ζ = 0, 1, . . . ,m−1 be the sampling points; then

z = 4z ζ,

where 4z is the spatial interval between two sampling points. The function 1̂ j (r, z) can be approximated
by the scaling function ϕ(ζ ) at an arbitrary scale as

1̂ j (r, z)= 1̂ j (r, ζ )=

∑
k

1̂l j (r)ϕ(ζ − l), l ∈ Z,

where the 1̂l j (r, z) (written 1̂l j hereafter) are the approximation coefficients. Thus (10) can be written
as

c2
d

(
d2

dr2 +
1
r

d
dr

)
1̂l jϕ(ζ − l)+ c2

d
1

4z2 1̂l jϕ
′′(ζ − l)= −γ 2

j 1̂l jϕ(ζ − l). (14)
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Taking the inner product on both sides of (14) with the translates of scaling functions ϕ(ζ − i), where
i = 0, 1, . . . ,m − 1 and using their orthogonal properties, we get m simultaneous ODEs:

c2
d

(
d2

dr2 +
1
r

d
dr

)
1̂i j + c2

d
1

4z2

i+N−2∑
l=i−N+2

1̂i j�
2
i−l = −γ 2

j 1̂i j , i = 0, 1, . . . ,m − 1, (15)

where N is the order of the Daubechies wavelet and �2
i−l is the connection coefficient for second order

derivative defined in Equations (8).
It can be seen from the ODEs given by (15), that, similar to time approximation, even here, certain

coefficients 1̂i j near the vicinity of the boundaries (i = 0 and i = m−1) lie outside the spatial window
[0, L z] defined by i = 0, 1, . . . ,m−1. These coefficients must be treated properly for finite domain
analysis. Here, however, unlike in the time approximation, these coefficients are obtained through pe-
riodic extension, but only for free lateral edges, while other boundary conditions can be imposed quite
differently using a restrain matrix [Patton and Marks 1996; Chen et al. 1996]. The unrestrained (free-
free) boundary conditions may also be imposed in a similar way using restrain matrix but it has been seen
from the numerical experiments that the use of a periodic extension gives accurate results. In addition, it
allows decoupling of the ODEs using eigenvalue analysis and thus reduces the computational cost. Here,
after expressing the unknown coefficients lying outside the finite domain in terms of the inner coefficients
considering periodic extension, the ODEs given by (15) can be written as a matrix equation of the form

c2
d

(
d2

dr2 +
1
r

d
dr

)
{1̂i j } + c2

d [31
]
2
{1̂i j } = −γ 2

j {1̂i j }, (16)

where [31
] is the first order connection coefficient matrix obtained after periodic extension, and it is of

the form

[31
] =

1
4Y


�1

0 �1
−1 . . . �

1
−N+2 . . . �

1
N−2 . . . �

1
1

�1
1 �1

0 . . . �1
−N+3 . . . 0 . . . �1

2
...

...
...

...
...

�1
−1 �

1
−2 . . . 0 . . . �1

N−3 . . . �
1
0

 .
The coupled ODEs given by (16) are decoupled using eigenvalue analysis similar to that done in time
approximation as

31
=9ϒ9−1,

where ϒ is the diagonal eigenvalue matrix and 9 is the eigenvectors matrix of 31. It should be mentioned
here that matrix 31 has a circulant form and its eigen parameters are known analytically [Davis 1963].
Let the eigenvalues be iβi , then the decoupled ODEs corresponding to Equations (16) are

c2
d

(
d2

dr2 +
1
r

d
dr

−β2
i

)
1̃i j = −γ 2

j 1̃i j , i = 0, 1, . . . ,m − 1, (17)

where 1̃i j =9−11̂i j . Following similar steps, the final transformed form of (11) is given by

c2
s

(
d2

dr2 +
1
r

d
dr

−
1
r2 −β2

i

)
f̃θ i j = −γ 2

j f̃θ i j . (18)
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Similarly, the decoupled displacement equations (12) and boundary conditions (13) can be written as(
d2

dr2 +
1
r

d
dr

−
1
r2 −β2

i

)
ũi j =

d1̃i j

dr
− iβf̃θ i j , (19)

(
d2

dr2 +
1
r

d
dr

−β2
i

)
w̃i j = −iβi1̃i j −

1
r

d(rf̃θ i j )

dr
, (20)

σ̃ri j = λ1̃i j + 2µ
dũi j

dr
, (21)

σ̃zi j = −iβiµũi j +
dw̃i j

dr
. (22)

The transformed and decoupled ODEs given by (17), (18) and (19)–(22) are used in the next two sections
for frequency domain analysis and spectral finite element formulation.

3. Computation of wavenumbers

For wavenumber computation, the transformed differential equations (17) and (18) in terms of variables
1̃i j and f̃θ i j are to be expressed in terms of transformed displacements ũi j and w̃i j using the relations
given by Equations (3). Here, these transformed ODEs have coefficients that are functions of radius r
unlike the governing equations for plate. That is, the wavenumber can be derived using a homogeneous
assumption at a certain radius r . At a certain radius r , the solutions of the ODEs for ũi j and w̃i j are of
the form

ũi j =

6∑
k=1

ūi j e−ikr , w̃i j =

6∑
k=1

w̄i j e−ikr , (23)

where k is the wavenumber in the radial r direction and ūi j , w̄i j are functions of r . Hereafter, the
subscripts i and j are dropped for simplified notation and all the following equations are valid for j =

0, 1, . . . , n − 1 and i = 0, 1, . . . ,m − 1. By substituting (23) in the transformed ODEs obtained from
Equations (17) and (18), the two polynomial equations in k become(
ic2

dk3
− (2c2

dk2/r)+ i(β2c2
d − c2

d/r − γ 2)k + (−3c2
d/r3

− c2
dβ

2/r + γ 2/r)
)
ū

+
(
−ic2

dβk2
+ (c2

dβ/r)k + (ic2
dβ

3
− iβγ 2)

)
w̄ = 0,(

−ic2
sβk2

+ (−c2
sβ/r)k − i(c2

s /r2
−c2

sβ
2
+γ 2)β

)
ū +

(
−ic2

s k3
+ (c2

s /r)k2
− i(c2

s /r +c2
sβ

2
−γ 2)k

)
w̄= 0.

They can be solved to obtain the wavenumbers k for the spectrum relation, that is, the wavenumber-
frequency relations at a certain radius r and axial wavenumber β. The solution can be performed easily by
posing the problem as a Polynomial Eigenvalue Problem (PEP) similar to that done for FSFE formulation
of a 2-D anisotropic plate in [Chakraborty and Gopalakrishnan 2005]. The PEP for this problem is of
the form

A3k3
+ A2k2

+ A1k + A0 = 0,

where A3, A2, A1 and A0 are 2×2 matrices. It should be restated here that the spectrum relations obtained
from WSFE formulation are accurate up to a certain fraction of the Nyquist frequency fNyq. This fraction
pN depends on the order N of the Daubechies scaling function used [Mitra and Gopalakrishnan 2006a].
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4. Spectral finite element formulation

The degrees of freedom associated with the element formulation are shown in Figure 1. The element
has two degrees of freedom per node, which are ũ and w̃. The two sets of decoupled ODEs given by
Equations (17) and (18) and the displacement relations Equations (19) and (20) are to be solved for ũ and
w̃. The actual solutions u(r, z, t) and w(r, z, t) are obtained using inverse wavelet transform twice for
temporal and spatial (axial) dimensions. For the finite length data, the wavelet transform and its inverse
can be obtained using a transformation matrix given by [Williams and Amaratunga 1994].

Here, the Bessel’s functions are used for the solution of the transformed governing equation given by
Equations (17) and (18). The solutions for 1̃ and f̃θ are obtained as

1̃(r)= C1 J0(ker)+ C2Y0(ker), f̃θ (r)= C3 J1(ksr)+ C4Y1(ksr), (24)

where k2
e = (γ 2/c2

d − β2), k2
s = (γ 2/c2

s − β2) and C1,C2, C3,C4 are constants. Jn and Yn are Bessel’s
functions of first and second kinds.

Substituting (24) in (19), (20) and solving for ũ and ũ gives (see [Heimann and Kolsky 1966])

ũ(r)= −ke
(
C1 J1(ker)+ C2Y1(ker)

)
− iβ

(
C3 J1(ksr)+ C4Y1(ksr)

)
,

w̃(r)= −iβ
(
C1 J0(ker)+ C2Y0(ker)

)
− ks

(
C3 J0(ksr)+ C4Y0(ksr)

)
.

(25)

These solutions provide the interpolating functions for forming the elemental dynamic stiffness ma-
trix. The unknown constants {a} = {C1,C2, C3,C4} can be determined from the transformed nodal
displacements ũ(r), w̃(r) at inner (r = ri ) and outer (r = ro) radii. The nodal displacement vector is
{̃ue

} = {̃u1, w̃1, ũ2, w̃2}, where ũ1 = ũ(ri ), w̃1 = w̃(ri ), ũ2 = ũ(ro) and w̃2 = w̃(ro). Thus we can relate
nodal displacements and unknown constants from Equations (25) as

{̃ue
} = [B]{a}. (26)

Substituting (25) into the transformed force boundary conditions (21) and (22), we obtain

σ̃r (r)=
(
−{(λ+ 2µ)k2

e − λβ2
}J0(ker)+ 2µk2

e J1(ker)/(ker)
)
C1

+
(
−{(λ+ 2µ)k2

e − λβ2
}Y0(ker)+ 2µk2

e Y1(ker)/(ker)
)
C2

+ 2iµksβ
(
J0(ksr)− J1(ksr)/(ksr)

)
C3 + 2iµksβ

(
Y0(ksr)− Y1(ksr)/(ksr)

)
C4

(27)

and

σ̃z(r)= −2iµβke
(
J1(ker)C1 + Y1(ker)

)
−µ(k2

s −β2)
(
J1(ksr)C3 + Y1(ksr)C4

)
. (28)

From these equations, we relate the nodal force vector {Fe
} = {̃σr1, σ̃z1, σ̃r2, σ̃z2} to the constants {a} as

{̃Fe
} = [C]{a}, (29)

where σ̃r1 = σ̃r (ri ), σ̃z1 = σ̃z(ri ), σ̃r2 = σ̃r (ro) and σ̃z2 = σ̃z(ro). Finally, from (26) and (29), a relation
between transformed nodal forces and displacements is obtained:

{̃Fe
} = [C][B]

−1
{̃ue

} = [K̃e
]{̃ue

},
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Figure 2. Aluminum (left) and aluminum-steel (right) hollow cylinders.

where [K̃e
] is the exact elemental dynamic stiffness matrix. These elemental dynamic stiffness matrices

can be assembled in a similar way as in conventional FE to obtain the global stiffness matrix for the
analysis of more complex structures.

5. Numerical experiments

In this section, the developed 2-D WSFE is used to analyze axisymmetric radial and axial wave propaga-
tions in isotropic cylinders due to broadband impulse excitation. First, the simulations are performed for
an aluminum hollow cylinder free at both ends and internal and/or external pressure acting in radial/axial
directions. The cylinder has an inner radius r = ri , outer radius r = ro and the axial length is L z , as
shown in Figure 2, left. The loading conditions are shown in Figure 3. Examples are also presented

Figure 3. Radial (left) and axial (right) internal and external pressure.
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Figure 4. Impulse load in time and frequency (inset) domain.

where instead of uniform pressure, the radial/axial load acting along the axial direction has a pulse-like
spatial (axial) distribution. Next, a more complex structure is considered for analysis, a cylinder made
of a bimaterial, aluminum-steel (Figure 2, right). The material properties adopted for the aluminum and
steel cylinders are: Young’s modulus, Ea = 70 GPa and Es = 200 GPa; mass densities, ρa = 2700 kg/m3

and ρs = 7860 kg/m3; Poisson’s ratio, ν = 0.3.
In all these results, the impulse load applied has unit amplitude and the time duration is 50µs, with a

frequency content 44 kHz. The load is shown in the time and frequency domains in Figure 4.
The 2-D WSFE model is formulated with the Daubechies scaling function of order N = 22 for the

temporal approximations and N = 4 for the spatial one. The time sampling rate 4t = 2µs, unless
otherwise mentioned, while the spatial sampling rate 4z is varied depending on L z . As mentioned
earlier, for the aluminum cylinder, only one 2-D WSFE is used to simulate the responses, independent
of its dimensions. However, for the bimaterial cylinder in Figure 2, right, two elements are required for
modeling, due to the discontinuity present in the problem.

5.1. Wavenumber computation. The spectrum relations for an aluminum hollow cylinder with ri =

0.02 m and ro = 0.03 m at different radii r obtained from the wavenumber computation discussed earlier
are plotted in Figure 5. The three panels of the figure show the real or propagating part of the wavenum-
bers for r = 0.02, 0.025 and 0.03 m. These wavenumbers have significant imaginary parts which imply
that the waves are inhomogeneous in nature, in other words, they attenuate while they propagate. As
the radius is moved from inner to outer radius, the cut-off frequency which is the frequency at which
the wavenumber is zero is also driven outward to a higher frequency. The wavenumbers are plotted
for an axial wavenumber of β = 50 and are obtained with 4t = 4µs (Nyquist frequency of 125 kHz).
However, as mentioned in [Mitra and Gopalakrishnan 2006a], WSFE predicts accurate wavenumbers
only up to a certain fraction pN of the Nyquist frequency fnyq. This fraction depends only on the order
of Daubechies scaling function N , and is approximately equal to 0.6 for N = 22. Thus, in Figure 5, the
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Figure 5. Real parts of wavenumbers at r = ri (top left), r =
1
2(ri + ro) (bottom) and

r = ro (top right).

spectrum relations are plotted only up to 60 kHz, which is less than the allowable frequency range of
fN = pN fNyq = 75 kHz.

5.2. Time domain analysis. Here, first the responses obtained using the formulated element are vali-
dated with 2-D FE analysis. Figure 6 compares the radial velocities for an aluminum cylinder with
ri = 0.05 m, ro = 0.1 m and L z = 2.0 m (see Figure 2, left) with 2-D FE results, showing the radial
velocities at the midpoint (at L z/2 from the free ends) and at inner r = ri and outer radii r = ro respectively.
The applied load is the unit impulse, as shown in Figure 4. It is applied as a uniform pressure Pi (Figure
3, left) in the radial direction along the inner surface (r = ri ). As an example, such internal pressure
can be encountered in fluid carrying pipes and other cylindrical pressure vessels. The 2-D FE results are
obtained using ANSYS 10.0, with a mesh consisting of 10220 four-noded quadrilateral axisymmetric
elements (PLANE42). Newmarks’ scheme with time step 2µs is used for time integration. A further
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Figure 6. Radial velocities at midpoint along the axial direction at r = ri (left) and
r = ro (right), due to internal radial pressure.

refinement of the FE mesh does not give significant difference in results. WSFE for this example is
formulated with N = 22, time interval 4t = 2µs and time window Tw = 512µs. Unlike FSFE, here the
accuracy of the simulation is independent of the time window Tw because the present method is free from
the wrap-around problem. Here Tw is chosen as required for observation. The number of discretization
steps in the axial direction is m = 128 and thus the spatial sampling rate is 4z = 0.0039 m. Here only
one WSFE is used for modeling as it was mentioned earlier, that is in absence of any discontinuities,
only one WSFE is capable of modeling the entire structure irrespective of its dimensions. In the case of
FSFE, the axial dimension is considered to be infinite or unbounded. It can be observed from these plots
that the WSFE results match well with the corresponding 2-D FE results. Similar axial velociy responses
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Figure 7. Axial velocities at midpoint along the axial direction at r = ri (left) and r = ro

(right), due to internal axial pressure.
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Figure 8. Radial (left) and axial (right) velocities at midpoint along the axial direction
due to external radial and axial pressures respectively.

are plotted in Figure 7 under the same loading conditions as before, except that here they are applied in
axial direction (Figure 3, right). The figure shows the axial velocities at r = ri and r = ro at distances
L z/2 from the free ends. Even here, the responses are validated with 2-D FE results and it can be seen
that the responses compare very well. The modeling parameters for WSFE and the FE mesh are kept
the same as in the previous case of radial velocities. Similar radial and axial velocities of the cylinder
described above are plotted in Figure 8. However, here an external pressure Pe is considered instead of
internal pressure as in previous example. This example is done to simulate the loading condition in a
cylindrical excavation casing. The velocities are measured at midpoint at L z/2 from the free end along
the axial (z) direction at both inner r = ri and outer r = ro surfaces. Figure 9 plot similar radial and axial
velocities, with the difference that the loading condition consists of both internal (Pi) and external (Pe)
pressures.

Next, WSFE is used to model a relatively complex structure of bimaterial, aluminum-steel cylinder.
The configuration is shown in Figure 2, right, where the inner cylinder is composed of aluminum and is
surrounded by a concentric steel cylinder. The innermost radius is ri = 0.05 m, the radius of the interface
is rm = 0.09 m and the outermost radius is ro = 0.1 m. The length of the cylinder is L z = 2.0 m and
the impulse load (see (30)) is applied uniformly at the inner surface r = ri as an internal pressure in
the radial/axial directions. As stated earlier, two WSFEs are required to model the structure because
of the presence of discontinuity. WSFE modeling involves m = 64 spatial sampling points. Figure 10
plots the radial and axial velocities measured at the midpoint (L z/2) and r = ri . The responses are also
compared with those of an aluminum cylinder of the same dimensions. The amplitude of the incident
wave for the aluminum cylinder is much more than that of the aluminum-steel cylinder as expected as the
latter has a much higher stiffness. Comparisons are also provided with 2-D FE results for the aluminum-
steel cylinder. The FE mesh and the Newmark’s time integration scheme is the same as in the previous
example. It can be seen that the response matches well with the FE results for both radial and axial wave
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Figure 9. Radial (left) and axial 9right) velocities at midpoint along the axial direction
due to external and internal pressure in the radial and axial directions respectively.
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Figure 10. Radial (left) and axial (right) velocities in bimaterial Al-steel cylinder at mid
point along axial direction at r = ri .

propagations. This numerical experiment is done with the purpose of emphasizing the efficiency of the
proposed technique for modeling rather complex structures.

Next, instead of internal pressure, we apply an impulse load at the outer surface (r = ro), with a
pulse-like distribution along the axial direction, given by

F(z)= e−(z/α)2, (30)

where α is a constant and can be varied to change the pulse width in the z direction. Figure 11 compares
the radial velocities in a hollow aluminum cylinder (with ri = 0.05 m, ro = 0.1 m and L z = 0.5 m: see
Figure 2, left) with 2-D FE results. The unit impulse load shown in Figure 4 is applied in the radial
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Figure 11. Radial velocities at midpoint (left) and quarter-point (right) along axial di-
rection at r = ro.
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Figure 12. Axial velocities at midpoint (left) and quarter-point (right) along axial direc-
tion at r = ro.

direction at r = ro and its distribution along the axial direction is given by (30) with α = 0.05. The
responses are simulated using a single WSFE with m = 64 sampling points in axial direction and thus
spatial sampling rate is 4z = 0.0078 m. The 2-D FE analysis is done with ANSYS 10.0, with 2540,
4-noded quadrilateral axisymmetric elements (PLANE42) mesh. Time integration is performed with
Newmarks scheme with time step 2µs. Figure 11 shows the radial velocities at r = ro, half-way (L z/2)
and a quarter of the way (L z/4) from the free ends. It can be seen that the responses obtained using
the present method compares well with FE simulations. However, the difference between the results
obtained from FE and WSFE simulations is more for the responses measured at the quarter-point and
presented in Figure 11, right. A more refined mesh for FE analysis may give better correlation, but we
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(a) T = 150µs (b) T = 200µs (c) T = 250µs (d) T = 300µs

Figure 13. Snapshots of radial wave velocities. Vertical coordinate: axial direction,
from 0 to 0.5 m; horizontal coordinate: radial direction, from 0.05 to 0.1 m.

have not used it in order to avoid the computational cost and because the comparisons are very good in
all the other cases (Figure 11, left, and Figure 12). The latter figure plots the axial velocities when the
load is applied in the axial direction. Even here, the results matches very well with those obtained from
the FE analysis.

Figure 13 presents the snapshots of the radial velocities presented in Figure 11. Here, the thickness of
the cylinder being more, the radial (and axial) variations of the radial wave velocities can be studied. The
snapshots in Figure 13 are taken at T = 150, 200, 250 and 300µs, the impulse load having been applied
at 100µs with the peak unit amplitude at 125µs (Figure 4). The figure shows the pattern of propagation
of radial waves in both axial and radial directions due to the loading as described before for Figure 11.
Such snapshots help to obtain the wave velocities at any spatial location at a given instance of time. For
example. the snapshot at T = 150µs shows that at this time the incident radial wave has propagated
along the axial direction and also the position of occurrence of maximum velocity can be obtained. At
later times, say, T = 300µs, the profile of wave propagation includes waves resulting from reflections
at the boundaries. Similar interpretations can be given for the other snapshots. Note that the velocities
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(a) T = 150µs (b) T = 200µs (c) T = 250µs (d) T = 300µs

Figure 14. Snapshots of axial wave velocities. Vertical coordinate: axial direction, from
0 to 0.5 m; horizontal coordinate: radial direction, from 0.05 to 0.1 m.

at all the sampling points along the axial direction and at any points on the radial direction R required
for the snapshots are obtained from a single simulation.

Snapshots for axial velocities due to loads applied in the axial direction are plotted in Figure 14. The
loading conditions, structural properties and modeling parameters are as before. Again, snapshots at
T = 150, 200, 250 and 300µs are shown.

6. Conclusions

Here, a 2-D wavelet spectral element is developed for wave propagation analysis in isotropic axisym-
metric cylinders. The conventional FE technique for such transient high frequency dynamics is not
computationally viable and the spectral finite element method provides an efficient alternative. The use
of localized Daubechies compactly supported wavelets as basis functions helps to overcome several im-
portant drawbacks of the prevalent FFT based spectral finite element method while retains the advantages
of computational efficiency, simultaneous time and frequency domains analysis. Firstly, WSFE method
can accurately model finite dimension structures unlike FSFE, which can only model 2-D structures
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unbounded in one direction. Next, WSFE is free from wrap around problems associated with FSFE
due to its periodicity assumption in temporal approximation. Consequently, FSFE, unlike WSFE cannot
handle undamped finite length structures and even in presence of damping, larger time window is needed
to remove distortions arising from wrap-around.

In this paper, radial and axial wave propagations in hollow isotropic cylinders of finite dimensions are
studied in time and frequency domains. The time domain responses are validated with 2-D axisymmetric
FE analysis and good comparison is observed. Next, the the radial and axial distributions of the wave
velocities are studied in cylinder of different configurations. Finally, the wave propagation analysis in a
bimaterial cylinder is performed to show the ease of the proposed modeling technique in modeling more
complicated structures.
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