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If you can’t demonstrate it with balloons, it’s probably not important anyway.

Stephen A. Wainwright, quoted in [Vogel 2003].

Morphogenesis of plant, fungal, and bacterial cells depends heavily on surface mechanics and in particu-
lar on the stiff wall that surrounds these cells. In this paper, we show that tubular rubber balloons offer a
useful physical model of tip growth morphogenesis. In particular, the balloons reproduce accurately the
inhomogeneity and anisotropy of surface expansion observed during tip growth. Comparison between
the two systems has led to a simple model of tip growth that assumes linear constitutive relations with
inhomogeneous material properties. The strain rate profile predicted by the model is a surprisingly good
fit to the data given the model’s simplicity. We suggest that a meridional gradient of compliance or
extensibility is the key mechanical feature that explains the similar strain rate profiles in tip-growing
cells across broad taxonomic groups as well as in rubber balloon analogs.

1. Introduction

Cells come in a variety of shapes that are often finely adapted to fulfill specific functions. A familiar
example is the human red blood cell whose flexible biconcave geometry allows it to squeeze through
narrow capillaries. The morphogenetic mechanisms that control the development of shape appear to be
quite diverse [Harold 1990] and few are particularly well understood.

In bacteria, fungi, and plants, cell shape is to a large extent determined by the stiff extracellular matrix
or cell wall surrounding the cell. The cell wall is a thin layer of polysaccharides and proteins assembled
outside the plasma membrane. The architecture of cell walls can vary greatly although it typically takes
the form of a fiber-reinforced composite where fibrils of cellulose (in plants) provide stiffness to the wall
while an amorphous matrix of pectins helps maintain the cohesion between the different wall components.

This paper focuses on one important mode of cell morphogenesis called tip growth. The shape of tip-
growing cells is characterized by a long cylinder capped by a prolate dome (Figure 1). Kinematics studies
using cell surface markers have established that wall expansion is limited to the tip of the cell [Reinhardt
1892; Hejnowicz et al. 1977; Shaw et al. 2000; Dumais et al. 2004]. Expansion at the tip is maintained by
two complementary processes: the addition of cell surface material and the mechanical deformation of
the cell surface into the characteristic cylindrical shape. Vesicle exocytosis and polysaccharide synthesis
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Figure 1. Tip growth morphogenesis of a lily pollen tube.

at the plasma membrane provide the material necessary to expand the surface. However, secretion of
building material does not expand the cell surface unless the material is subsequently deformed and
integrated into the preexisting extracellular matrix. This step requires mechanical work provided by the
internal hydrostatic pressure of the cell.

Although models of tip growth are available, few have attempted an explicit comparison with the
kinematics of these cells. The goal of this paper is to introduce a simple mechanical model that reproduces
the key features of tip growth morphogenesis.

2. The kinematics of tip growth

Over a period of minutes or hours, the elongation of tip-growing cells is surprisingly steady both in
terms of geometry and the rate of elongation, as shown in Figure 1 [Shaw et al. 2000]. Kinematics
studies of tip growth have been performed using time-lapse imaging of marked cells [Castle 1958; Chen
1973; Hejnowicz et al. 1977; Shaw et al. 2000; Dumais et al. 2004]; see Figures 2 and 3. Given the
axisymmetric geometry of these cells, two variables are sufficient to describe the entire morphogenetic
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Figure 2. Key geometrical variables for the description of tip growth.
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Figure 3. Growth kinematics of a Medicago truncatula root hair. (A) The cell outline
captured at a 3 min time interval. The displacement of five surface markers is shown
(circles). The dotted lines indicate trajectories that are normal to the cell surface. (B)
The meridional curvature of the cell. (C) The meridional velocity of material points.
Modified from [Dumais et al. 2004].

process. The cell geometry is given by the meridional curvature (κs) (Figure 3B) while the rates of
surface expansion can be derived from the meridional velocity (v) of material points with respect to the
pole of the cell (Figure 3C). Given these variables, the strain rates are defined as [Hejnowicz et al. 1977;
Dumais et al. 2004]:

ε̇s =
d
ds

ds
dt

=
dv

ds
, ε̇θ =

1
r

dr
dt

=
1
r

dr
ds

v, (1)

where the variables are illustrated in Figure 2.
Studies of cellular tip growth have revealed two fundamental features of wall expansion: surface

expansion is inhomogeneous and anisotropic (Figure 4). The inhomogeneity is seen in the sharp decline
of the strain rates from a maximal value near the pole of the cell to zero on the side of the cell. Surface
expansion also shows a characteristic anisotropy with meridional anisotropy (ε̇s > ε̇θ ) within two to three
microns of the pole and extensive circumferential anisotropy (ε̇θ > ε̇s) on the flanks of the tip (Figure 4).

The strain profile observed in root hairs is similar to those reported for other tip-growing cells including
the Chara rhizoid [Hejnowicz et al. 1977], the Nitella rhizoid [Chen 1973], and the sporangiophore
of Phycomyces [Castle 1958]. Since these systems include representatives of fungi, plants and algae,
that differ greatly in wall chemistry and cell biology, one is tempted to attribute the similarities in the
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Figure 4. Strain rate profile for the cell shown in Figure 3. A slight meridional
anisotropy (ε̇s > ε̇θ ) near the pole is followed by long shoulders of circumferential
anisotropy (ε̇θ > ε̇s). For comparison, the isotropic strain solution for the same geometry
is shown (dotted line). Modified from [Dumais et al. 2004].

kinematics of these cells to some broadly shared processes. Therefore, the first question to ask is whether
the observed strain rate profile is a geometrical requirement for all tip-growing cells. Although geometry
certainly constrains kinematics, the statement above cannot be generally true since there is an infinite
number of strain rate profiles that are compatible with the geometry of the system.

A comparison with the profile corresponding to an isotropic deformation of the surface reveals what
is unique about the observed strain rate pattern. Setting the two equations in (1) equal to one another
leads to the differential equation

1
v

dv

ds
=

1
r

dr
ds

,

which has as a general solution v(s) =
vc
rc

r(s), where vc is the tip velocity and rc is the radius of the
cylindrical region of the cell. The isotropic strain rates associated with this velocity profile are: ε̇i

=

ε̇s = ε̇θ =
vc
rc

dr
ds . The solution is shown in Figure 4 alongside the measured strain rates. Strain isotropy, in

itself, is not a good model for the observed strain rates. However, three kinematic constraints can help
explain some of the features of the observed strain rates:

(i) rotational symmetry requires that ε̇s(0) = ε̇θ (0);

(ii) the area under the ε̇s curve and the isotropic strain rate solution must be equal since it is set by the
velocity of the tip, i.e.

∫
∞

0 ε̇sds =
∫

∞

0 ε̇i ds = vc;

(iii) the circumferential strain rate is asymptotic to the isotropic solution near the base of the dome, i.e.,

ε̇θ =
v

r
dr
ds

'
vc

rc

dr
ds

= ε̇i , for r → rc.

Given these constraints, the main differences between the observed strain rates and the isotropic solu-
tion can be encapsulated into one observation: tip-growing cells show relatively more surface expansion
near the pole than what is predicted by the isotropic solution. Since ε̇s exceeds ε̇i near the pole, it must
drop below ε̇i away from the pole so that the second constraint is fulfilled. This feature explains the sharp
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decline in ε̇s observed in Figure 4. The circumferential anisotropy is also predicted since while ε̇s < ε̇i

on the flanks of the tip, the third constraint requires that ε̇θ → ε̇i at that location. Therefore, high strain
rate (relative to the isotropic solution) near the pole of the cell implies circumferential anisotropy on the
flanks of the dome. A similar argument was made by Green and King [1966], who demonstrated the
validity of their result using locally reinforced rubber membranes. These statements will be made more
precise when we discuss our model in Section 4, but first we look at the kinematics of rubber balloons
from which the model was inspired.

3. Analysis of rubber balloon expansion

D’Arcy W. Thompson [1942] is widely credited for popularizing the idea that many seemingly complex
biological phenomena, including cell morphogenesis, are governed by simple geometrical and physical
principles. It is in this spirit that Hejnowicz et al. [1977] drew a parallel between tip growth morphogen-
esis and the growth of cylindrical rubber balloons. These balloons undergo an instability [Chater and
Hutchinson 1984] whereby two cylindrical solutions can coexist at the given internal pressure, as shown
in Figure 5. Inflation of the balloon pushes forward the zone of transition between these two cylindrical
solutions. According to Hejnowicz and coworkers, the migration of the front is analogous to tip growth.
The small-radius tail that precedes the front is regarded as a source of new material on which the large-
radius solution feeds during growth. The narrow tail could well be pushed inside the inflating balloon
to become an “internal” source of material as in tip growth. An analysis of the deformation process in
rubber balloons shows that the parallels go beyond the simple geometrical analogy.

3.1. Experimental setup. We used an experimental configuration similar to that of Kyriakides and Chang
[1991] to follow the steady-state growth of cylindrical rubber balloons (Qualatex 160Q) under constant

A

B

Figure 5. (A) Snapshot of the inflated balloon with its fiducial points. (B) Propagation
of the growth front during inflation. The velocity of the material entering the front is
V = 2.55 mm/s assuming that the front is fixed in space. The velocity of the material
that exits the front is vc = λmax

s V = 3.74 × 2.55 mm/s = 9.54 mm/sec, where λmax
s is the

maximal meridional stretch.
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Figure 6. Diagram of the experimental setup for the rubber balloon deformation under
constant internal pressure.

internal pressure P of 24.3 kPa, measured with an OMEGA PX26-005GV pressure transducer (Figure 6).
To get a uniform and straight advance of the growth front, the balloon was maintained under slight axial
tension by pulling with a mass M ' 20 g. The axial stress in the elastic membrane associated with this
tension was approximately 50 kPa, which is negligible compared to the membrane stresses imposed by
the internal pressure (210 kPa < Pr/h < 21 MPa). Time-lapse sequences were recorded at 10 frames per
second with a PIXELINK PL-A781 camera. The meridional curvature was measured using the outline of
the balloon and the stretches were computed by tracking the position of fiducial points applied to one side
of the balloon (Figure 5). All further analyses were done in Matlab 7.3 and assumed an axisymmetric
geometry. These data provide the information to characterize the kinematics of the balloon.

3.2. Kinematics. As the rubber balloon deforms under the internal pressure, the growth front pushes
forward, delimiting two cylindrical regions in which the radii of the balloon are rmin = 2.32 mm and
rmax = 11.2 mm, respectively. The undeformed radius (i.e. at P = 0) is R = 2.12 mm. The separation
of the fiducial points was on average d S ' 1 mm before stretching and reached a maximum of 3.7 mm
in the deformed region. The undeformed thickness of the membrane was H = 0.27 mm.

The kinematics of the balloon is formulated in terms of stretches. The meridional, circumferential and
normal stretches are ratios of length elements before and after the deformation:

λs = ds/d S, λθ = r/R, λn = h/H,

where capital letters stand for undeformed lengths. These stretches are generally not completely inde-
pendent. For an incompressible material, we have λsλθλn = 1 or, alternatively, λn = (λθλs)

−1.
The meridional curvature is κs = dϕ/ds, where ϕ is the angle between the normal to the surface and

the axis of the balloon (Figure 2). The meridional curvature defines two regions (Figure 7A). A core
region within 7 mm of the axis shows negative curvature. It corresponds to the source of material for the
advance of the front. An outer region extends from a distance of 7 mm onwards. In our analogy with tip
growth morphogenesis, this region stands for the deforming cell surface and is thus of special interest.

Using the balloon outline and the position of fiducial points, we computed the stretches of the elastic
membrane (Figure 7B). The maximal circumferential stretch is λθ = 5.63 while the maximal meridional
stretch is λs = 3.74. For comparison with tip-growing cells, we need to define strain rates for the elastic
deformation of the membrane. The velocity of material points, assuming that the front is fixed in space
while material flows through it, is given by v(s) = λs(s)V , where V is the velocity at which underformed
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Figure 7. (A) Meridional curvature κs as a function of arc length s. The shaded area
delimits the core region (κs < 0) corresponding to the “source” of material and an outer
region (κs > 0) analogous to the dome of tip-growing cells. (B) Meridional and cir-
cumferential stretches as a function of arc length. The maximum circumferential and
meridional stretches are λθ = 5.63, λs = 3.74 respectively. (C) Meridional and circum-
ferential strain rates as a function of arc length.



1164 ROBERTO BERNAL, ENRIQUE R. ROJAS AND JACQUES DUMAIS

Kinematic 
Relations

Strains

(   )

Constitutive  
Relations

Geometry

(   ,   )

 Stresses

(   )

Force
Equilibrium

Material properties

Pressure (   )

ε

P δκ

σ

h
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material feeds into the front. Accordingly, the strain rates are

ε̇s =
d
ds

v =
dλs

ds
V, ε̇θ =

1
r

dr
dt

=
R
r

d(r/R)

ds
ds
d S

d S
dt

=
λs

λθ

dλθ

ds
V . (2)

The measured strain rates show substantial variation (Figure 7C). In the polar region, the two strain
rates increase rapidly to a near maximal value as the material is about the exit this region. In the outer
region, the strain rates decline gradually. The strain rate anisotropy first favors meridional stretching
followed by long shoulders where circumferential stretching dominates. The similarities with the strain
rates reported for plant cells is striking. In particular, the strain rate anisotropy and inhomogeneity follow
the same trends and are mapped to the same regions in the two systems.

4. A model of tip growth

The similarities between cellular tip growth and the balloon analog prompted us to look for a simple
model that could be applied to both systems. Given the sharp differences between the material properties
of rubber (nonlinear elasticity) and plant cell walls (viscoplasticity), we postulate that the strain rate
profile does not depend strongly on the details of the constitutive behavior. Our focus therefore is on
features that are known to be shared between rubber balloons and tip-growing cells. The two systems
are thin pressurized shells whose material properties are spatially varying.

The mechanics of thin shells is well understood particularly those with axisymmetric geometry [Flügge
1973]. A set of three fundamental relations connect the stresses σ , the strains ε, and geometrical variables
such as the curvature κ of the surface and the shell thickness h; see Figure 8. The kinematic relations
are already encapsulated in Equations (1) and (2). Equations are also needed for the balance of forces
between the membrane stresses and the internal pressure. The wall stresses are given by

σs =
P

2hκθ

, σθ =
P

2hκθ

(
2 −

κs

κθ

)
, (3)

[Steele 2000; Dumais et al. 2006], where P is the internal hydrostatic pressure, h is the wall thickness,
and κs and κθ are the meridional and circumferential curvatures. Note that the normal stress, σn ∼ P ,
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is much smaller than the plane stresses, σs and σθ . We can therefore neglect the normal stress in the
following treatment.

Next we must select a constitutive model to relate the strains and stresses. Several constitutive models
have been suggested for the plant cell wall (see [Dumais et al. 2006], for instance) and rubber elasticity
(see [Ogden 1972; Treloar et al. 1976], for example). These models are very different except in the limit
of small deformation where a linear set of equations can be applied to most materials. We therefore
adopt a simple linear constitutive model:(

εs(s)
εθ (s)

)
= α(s)

(
1 −ν

−ν 1

) (
σs(s)
σθ (s)

)
, (4)

where α(s) is a spatially varying elastic compliance and ν is a fixed Poisson’s ratio. In this model, the
complexity of the material’s response to stress is encapsulated in the compliance α rather than in a more
complex functional form for the model. One important advantage of this model is that it can be solved
analytically for a given tip geometry.

Substituting for the strains and stresses in Equation (4) yields

εs =
ds
d S

− 1 = α

(
P

2hκθ

− ν
P

2hκθ

(
2 −

κs

κθ

))
,

εθ =
r
R

− 1 = α

(
P

2hκθ

(
2 −

κs

κθ

)
− ν

P
2hκθ

)
.

(5)

Dividing the first equation by the second and rearranging, we get

ds =

(( r
R

− 1
) (1 − 2ν)κθ + νκs

(2 − ν)κθ − κs
+ 1

)
d S. (6)

Finally, dividing both sides of this equation by dt , we get

v(s) =

(( r
R

− 1
) (1 − 2ν)κθ + νκs

(2 − ν)κθ − κs
+ 1

)
V = λs V =

λs

λmax
s

vc. (7)

From (7) it is possible to determine the velocity profile based solely on the shell geometry (r(s) or
κs(s)) and two parameters, the Poisson’s ratio (ν) and a characteristic velocity (V or vc). vc is the velocity
of the front with respect to the deformed region. We adopt this parameter since it has a natural parallel
with the velocity for tip growth. The Poisson’s ratio of rubber is close to 0.5 for small deformations but
for strains above one it quickly drops to 0.3 [Vincent 1990]. Since the balloon strains go beyond a value
of 4, we use ν = 0.3.

Using the values for ν and vc in (7) and substituting into (2) allows us to predict the strain rates for
the balloon (Figure 9A). A comparison with the measured strain rates (Figure 7C) reveals that the model
is surprisingly accurate despite its simplicity. In particular, the model captures the switch in strain rate
anisotropy as well as the magnitude of the maximal strain rates.

The constitutive model can be modified easily to account for tip growth. Since the wall material
deforms irreversibly, we must now relate stresses with strain rates rather than strains. Equations (5) then
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Figure 9. Predicted strain rates for the rubber balloon (A) and root hair (B) using the
isotropic model.

become

ε̇s =
dv

ds
= α

(
P

2hκθ

− ν
P

2hκθ

(
2 −

κs

κθ

))
, (8)

ε̇θ =
1
r

dr
ds

v = α

(
P

2hκθ

(
2 −

κs

κθ

)
− ν

P
2hκθ

)
. (9)

Here α can be interpreted as an extensibility (inverse viscosity). Dividing the first equation by the second
and rearranging gives

1
v

dv

ds
=

1
r

dr
ds

(1 − 2ν)κθ + νκs

(2 − ν)κθ − κs
(10)

This differential equation for v, with boundary condition v(0) = 0, has for solution

v(s) = γ r(s) exp
(∫ s

0 G(s) ds
)
, G(s) =

1
r

dr
ds

(1 + ν)(κs − κθ )

(2 − ν)κθ − κs
, (11)

where γ is a constant set by the geometry and elongation rate of the tip. We used this equation and
ν = 0.3 to predict the strain rates for tip growth (Figure 9B). Again, the predicted strain rates are very
similar to the observed strain rates (Figure 4). It is surprising that a model that does not include material
anisotropy can nonetheless account for strain rate anisotropy so accurately. We must conclude that the
observed anisotropy in the strain rates results from a similar anisotropy in the membrane stresses.

Finally, we computed the material property α(s) predicted by the model (Figure 10). This parameter
represents a compliance for the rubber material or an extensibility for the cell wall. Given the simplicity
of the model, it is unlikely that α represents a true material property. We interpret it more generally as the
responsiveness of the system to the internal pressure. The parameter α maps out the polar zone that serves
as a source of material (dα/ds > 0) and the flanks of the tip, where the material is actively stretched
and therefore stiffening (dα/ds < 0). The similarity between the balloon analog and tip-growing cells
is again quite remarkable.
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5. Conclusions

The similar pattern of surface expansion in tip-growing cells and rubber balloons calls for an explanation.
The first explanation to consider is whether there is only a limited set of strain patterns that can maintain
tip growth; that is, shared kinematics constraints could explain the similarities. As indicated above,
and illustrated in Figure 4, very different strain patterns are compatible with a given tip geometry and
elongation velocity. Therefore, kinematics alone is not a sufficient explanation for the similar expansion
pattern. Tip-growing cells and rubber balloons must share features at a more fundamental level. We
propose that the presence of a source of soft material in the polar region is one likely common feature. In
the balloon, the rapid stiffening of the material as it is stretched can explain the characteristic geometry
of the growing front. Strain stiffening has also been proposed for tip growth morphogenesis [Green and
King 1966]. The stiff cellulose microfibrils that make up a large volume fraction of plant cell walls are
synthesized in the polar region presumably in a relaxed state. As the tip surface deforms, the fibrils
would be progressively put under tension thus increasing rapidly the stiffness of the wall. Clearly, plant
cell expansion is not an elastic phenomenon but the presence of long cellulose microfibrils in the wall
means that the cell possesses some memory of past deformation.

The main conclusion of this work is that many aspects of cell morphogenesis, despite their complex
biological underpinning, may still be explained via relatively simple physical principles. For the case
of tip growth morphogenesis, we have shown that a simple constitutive model with isotropic material
properties is sufficient to explain the observed strain rate anisotropy. We postulate that strain stiffening
of the wall’s molecular fabric accounts for the meridional variation of the wall extensibility.
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