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A SURFACE CRACK IN A GRADED COATING BONDED TO A HOMOGENEOUS
SUBSTRATE UNDER GENERAL LOADING CONDITIONS

SAMI EL-BORGI, RADHI ABDELMOULA, SERKAN DAG AND NIZAR LAJNEF

The elastostatic problem of a surface crack in a graded coating bonded to a homogeneous substrate
under general loading conditions is considered. The coating is graded along the thickness direction and
modeled as a nonhomogeneous medium with an isotropic stress-strain law. The problem is solved under
the assumption of plane strain or generalized plane stress conditions. The crack surfaces are subjected to
arbitrary loadings which give rise to mixed fracture modes which can be uncoupled due to the fact that
the crack axis is parallel to the material gradient. Therefore, the opening and sliding mode problems may
be formulated separately. For each problem, the solution of the composite medium may be determined
by obtaining the solution of the homogeneous substrate and that of the graded layer. The latter solution
may be expressed as the sum of two solutions, namely an infinite graded medium with a crack and a
graded strip without a crack. The resulting mixed-boundary value problem is reduced to a set of two
uncoupled singular integral equations which are solved numerically using Jacobi polynomials. The main
objective of the paper is to study the effect of the layer thickness and nonhomogeneity parameter on
the crack tip mixed-mode stress intensity factors for the purpose of gaining better understanding on the
behavior of graded coatings.

1. Introduction

In high-temperature applications the potential of using homogeneous materials appears to be limited
and in recent years the new trends in material design seem to be toward coating the main load-bearing
component by a heat-resistive layer, generally a ceramic. Because of the relatively high mismatch in
thermal expansion coefficients, the resulting bonded structure is generally subjected to very high residual
and thermal stresses. As a result, the composite medium becomes vulnerable to cracking, debonding and
spallation [Erdogan 1995].

The materials research community has recently been exploring the possibility of using new concepts
in coating design, such as Functionally Graded Materials (FGMs), as an alternative to the conventional
homogeneous coatings. These can be at least two-phase inhomogeneous particulate composites synthe-
sized in such a way that the volume fractions of the constituent materials, such as ceramic and metal,
vary continuously along a spatial direction to give a predetermined composition profile resulting in a
relatively smooth variation of the mechanical properties. FGMs appear to promise attractive applications
in a wide variety of wear coating and thermal shielding problems such as gears, cams, cutting tools, high
temperature chambers, furnace liners, turbines, microelectronics and space structures [Holt et al. 1992].
FGM structures can also be made through physical vapor deposition techniques such as those described in
[Chen et al. 2002c; 2002b], which produce nanolayers having properties varying with depth. In designing
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components involving FGMs, an important aspect of the problem is the question of mechanical failure,
specifically the fracture failure [Lanutti 1994]. Fatigue and fracture characterization of materials and
related analysis require the solution of certain standard crack problems.

Most of the crack problems solved over the past two decades on nonhomogeneous materials [Dhali-
wal and Singh 1978; Delale and Erdogan 1983; Erdogan 1985; Ozturk and Erdogan 1993] provide the
basis for the fracture mechanics research on FGMs which are essentially nonhomogeneous materials.
In [Erdogan 1995] a brief discussion is given on the application of elementary concepts of fracture
mechanics in nonhomogeneous materials and a number of typical problem areas are identified which
relate to the fracture of FGMs. An important problem is the nature of stress singularities near the tip of a
crack embedded in a nonhomogeneous medium. Konda and Erdogan [1994] and Jin and Noda [1994a]
showed that such a crack has the standard square-root singularity in addition to others encountered in a
homogeneous medium provided the material property model is continuous and piecewise differentiable.

A number of crack problems in FGMs were solved accounting only for mechanical loading or thermal
loading or a combination of both. The crack can be either an internal crack parallel to the free surface or
perpendicular to it. A particular case of a crack perpendicular to the free surface is the edge crack which
is also called the surface crack. Noda and Jin [1993] studied the internal crack problem for an infinite
FGM medium subjected to a steady-state heat flux over the crack surfaces by assuming continuously
varying thermal properties. The same problem was extended by El-Borgi et al. [2004a] by considering
a steady-state heat flux applied away from the crack region, by modeling the crack faces as partially
insulated and by accounting for crack-closure effects. The case of an internal fully insulated crack
parallel to the boundary of a semi-infinite graded medium subject to a steady-state heat flux applied at
the free surface was studied in [Jin and Noda 1993]. This problem was later extended to the case of
transient heat flux in [Jin and Noda 1994c]. Lee and Erdogan [1998a] studied the problem of interface
cracking in FGM coatings under steady-state heat flow. Chen and Erdogan [1996] studied the problem
of a graded coating on homogeneous substrate with an interface crack subjected to mechanically induced
crack surface tractions. El-Borgi et al. [2003] extended this problem by considering both thermal and
mechanical loads and accounting for crack-closure effects. In [El-Borgi et al. 2004b] we considered the
problem of a graded coating bonded to a substrate subjected to a Hertzian contact pressure and with an
internal crack embedded in the coating, and in [El-Borgi et al. 2000] the mixed-mode crack parallel to
the boundary of an infinite strip, with the elastic modulus varying exponentially in an arbitrary direction.
Long and Delale [2005] solved the more general problem of an arbitrarily oriented crack in a graded
layer bonded to a homogeneous half-plane.

Jin and Noda [1994b] considered the problem of a surface crack in a semi-infinite nonhomogeneous
medium subject to a steady-state heat flux. Erdogan and Wu [1997] considered a graded strip with a
surface crack, perpendicular to the boundaries and parallel to the material gradient, subjected to me-
chanical crack surface tractions. The same problem was also solved in [Erdogan and Wu 1996] by
considering thermal loads. Dag et al. [1999] and Kadioglu et al. [1998] studied a similar problem with
the graded layer attached to an elastic foundation with a crack subjected, respectively, to thermal and
mechanical loads. Yildirim and Erdogan [2004] considered an axisymmetric surface crack problem for
thermal barrier coatings under a uniform temperature change. Guo et al. [2004a] investigated the mode
I surface crack problem for an orthotropic graded strip. A similar problem was also solved in [Chen
et al. 2002a] by considering a transient loading. Guo et al. [2004b] considered the mode I problem of
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a graded coating bonded to homogeneous substrate with a crack perpendicular to the coating’s surface
subjected to a transient load. Dag and Erdogan [2002] solved the problem of a surface crack in a graded
semi-infinite medium under general loading conditions in which they proposed a method to uncouple the
opening and sliding modes.

The practical use of FGMs is in the form of coating applications. On the other hand, the manufacturing
of FGMs may lead to inherent surface flaws which may give rise to surface cracks that can eventually
propagate to the component. Therefore, the present work consists of a surface crack located in an isotropic
graded coating bonded to homogeneous substrate subjected to general loading conditions. This study is
an extension of [Dag and Erdogan 2002] in the sense that problem geometry consists of a graded coating
bonded to a substrate rather than a graded half-plane. The main objective of the paper is to study the
effect of the coating thickness and material nonhomogeneity on the crack tip stress intensity factors for
the purpose of further understanding the behavior and design of graded materials.

2. Problem description and governing equations

As shown in Figure 1, the problem under consideration consists of an infinitely long graded coating
of thickness h, bonded to a homogeneous semi-infinite medium. The graded coating contains an edge
crack of length d along the x-axis. For the graded coating, the material gradient is oriented along the
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Figure 1. Geometry and loading of the composite medium.
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x-direction. The Poisson’s ratio ν is assumed to be a constant because the effect of its variation on the
crack-tip stress intensity factors was shown in [Erdogan and Wu 1996; 1997] to be negligible and is
equal to the same value as that of the homogeneous substrate. On the other hand, the shear modulus
in the FGM layer µ1 depends on the x-coordinate only and is modeled by an exponential function as
expressed by

µ1 = µ0 exp(βx), (1a)

where µ0 is the value of the shear modulus in the coating along the free surface x = 0 and β is the
nonhomogeneity parameter controlling the variation of the shear modulus in the graded coating.

For the homogeneous substrate, the shear modulus µ2 is a constant and is equal to the value of the
FGM coating shear modulus at the interface

µ2 = µ0 exp(βh). (1b)

The loading consists of arbitrary crack surface tractions (ie, normal and shear tractions) which can
be expressed in terms of the external mechanical loads. The problem under consideration is similar to
the graded half-plane surface crack problem studied in [Dag and Erdogan 2002]. In both problems, the
material gradient in the graded medium and the crack orientation are both along the x-direction. As
a result, a normal loading and a shear loading on the crack faces do not induce, respectively, mode II
and mode I stress intensity factors. Therefore, the opening and sliding mode problems turn out to be
uncoupled and may be formulated separately, as indicated in the work just cited.

The equations of the plane problem for nonhomogeneous isotropic elastic solids are the equilibrium
equations

∂σxx

∂x
+
∂σxy

∂y
= 0,

∂σxy

∂x
+
∂σyy

∂y
= 0, (2)

(ignoring body forces), the strain-displacement relationships

εxy =
1
2

(∂u
∂y

+
∂v

∂x

)
, εxx =

∂u
∂x
, εyy =

∂v

∂y
, (3)

and the linear elastic stress-strain law

σxx =
µ j

κ−1

(
(1+κ)εxx + (3−κ)εyy

)
, σxy = 2µ jεxy, σyy =

µ j

κ−1

(
(3−κ)εxx + (1+κ)εyy

)
, (4)

where j = 1, 2 and κ = 3 − 4ν for plane strain, κ = (3−ν)/(1+ν) for generalized plane stress.
Substituting Equations (3) into (4), inserting the resulting expressions into (2) and using (1a) and (1b),

we obtain the equations of plane elasticity

(κ+1)
∂2u
∂x2 + (κ−1)

∂2u
∂y2 + 2

∂2v

∂x∂y
+β(κ+1)

∂u
∂x

+β(3−κ)
∂v

∂y
= 0, 0 ≤ x < h,

(κ−1)
∂2v

∂x2 + (κ+1)
∂2v

∂y2 + 2
∂2u
∂x∂y

+β(κ−1)
∂v

∂x
+β(κ−1)

∂u
∂y

= 0, 0 ≤ x < h,

(5)

together with

(κ+1)
∂2u
∂x2 + (κ−1)

∂2u
∂y2 + 2

∂2v

∂x∂y
= 0 and (κ−1)

∂2v

∂x2 + (κ+1)
∂2v

∂y2 + 2
∂2u
∂x∂y

= 0, x ≥ h.
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For both crack mode problems (I and II), these plane elasticity equations are subject to the appropriate
boundary conditions, detailed in the next two sections. The main unknowns of interest in these mixed-
boundary value problems are the so-called density functions chosen for convenience as the derivatives of
the relative crack opening displacements. Because of symmetry, these density functions can be chosen
as

f1(x)=
4µ0

κ+1
∂

∂x
v(x, 0+), f2(x)=

4µ0

κ+1
∂

∂x
u(x, 0+). (6)

3. Solution of the opening mode problem

For the opening mode problem, the solution of the composite medium may be determined by obtaining
the solution in the graded layer and that in the homogeneous substrate. The graded layer solution may
be expressed as the sum of two solutions, namely an infinite graded medium with a crack along the x-
direction and a graded strip without a crack [Erdogan and Wu 1996; Dag and Erdogan 2002; Bogy 1975].
For the cracked infinite graded medium, the plane elasticity Equations (5) are solved using standard
Fourier transforms with respect to the x-coordinate. Furthermore, taking advantage of the problem
symmetry and considering that the displacements need to be bounded as y goes to ∞, the solution for
the half-plane y ≥ 0 is given by

ui+
1 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Ck(λ)emk yei xλdλ, y ≥ 0,

vi+
1 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Ck(λ)si
k(λ)e

mk yei xλdλ, y ≥ 0,

(7)

where the subscript 1 stands for the opening mode problem, the superscript i indicates the cracked infinite
medium, the superscript + stands for the half-plane y ≥ 0, and Ck(λ), k = 3, 4, are unknown functions.
Moreover, si

k(λ), k = 3, 4 are known functions given by

si
k(λ)= −

(κ−1)m2
k + (κ+1)(iλβ − λ2)

(2iλ+β(3−κ))mk
(k = 3, 4), (8)

and the mk are the roots of the characteristic polynomial

m4
−
(
2(λ2

− iλβ)+ δ2)m2
+ (λ2

− iλβ
)2

= 0, (9)

which are given by

m1,2 =
1
2

(
∓δ+

√
δ2 + 4λ2 − 4iλβ

)
, Re m1,2 ≥ 0, (10a)

m3,4 =
1
2

(
∓ δ−

√
δ2 + 4λ2 − 4iλβ

)
, Re m3,4 ≤ 0, (10b)

where we have set δ =
√
(3−κ)/(κ+1) β.

Substituting (7) into (3) and the result into (4) yields the stress field σ i+
xx1(x, y), σ i+

yy1(x, y) and
σ i+

xy1(x, y) in the infinite graded medium:
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σ i+
xx1(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
xx1,k(λ)Ck(λ)emk yei xλdλ, y ≥ 0, (11a)

σ i+
yy1(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
yy1,k(λ)Ck(λ)emk yei xλdλ, y ≥ 0, (11b)

σ i+
xy1(x, y)=

µ1

2π

∫
+∞

−∞

4∑
k=3

pi
xy1,k(λ)Ck(λ)emk yei xλdλ, y ≥ 0, (11c)

where the Ck(λ) (k = 3, 4) are unknown functions, the roots mk (k = 3, 4) are given by (10b), and

pi
xx1,k(λ)= (iλ)(1+κ)+ (3−κ)mksi

k,

pi
yy1,k(λ)= (iλ)(3−κ)+ (1+κ)mksi

k (k = 3, 4),

pi
xy1,k(λ)= mk + (iλ)si

k (k = 1, . . . , 4).

We now consider the graded strip without a crack. By symmetry, the displacement along the x-axis is
an even function, while the displacement along the y-axis is an odd function. Hence, the displacements
u and v may be expressed using the cosine and sine transforms with respect to y as follows:

us
1(x, y)=

∫
+∞

0

4∑
k=1

Ekenk x cos(yα) dα, vs
1(x, y)=

∫
+∞

0

4∑
k=1

Ekss
k enk x sin(yα) dα, (12)

in which the superscript s indicates the uncracked graded strip, the Ek(λ), k = 1, 2, 3, 4, are unknown
functions, the ss

k(λ) are known functions given by

ss
k(λ)= −

(κ+1)n2
k +β(κ+1)nk − (κ−1)α2

2αnk +β(3−κ)α
k = 1, . . . , 4 (13)

and the nk are the roots of the characteristic polynomial

n4
+ 2βn3

+ (β2
− 2α2)n2

− 2βα2n + (α4
+α2δ2)= 0, (14)

which are given by

n1,2 =
1
2

(
−β −

√
β2 + 4α2 ± 4iαδ

)
, Re n1,2 ≤ 0,

n3,4 =
1
2

(
−β +

√
β2 + 4α2 ± 4iαδ

)
, Re n3,4 ≥ 0.

(15)

Substituting Equations (12) into (3) and the result into (4) yields the stress field in the uncracked
graded strip:

σ s
xx1(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

ps
xx1,k(α)Ekenk x cos(yα) dα, (16a)

σ s
yy1(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

ps
yy1,k(α)Ekenk x cos(yα) dα, (16b)
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σ s
xy1(x, y)= µ1

∫
+∞

0

4∑
k=1

ps
xy1,k(α)Ekenk x sin(yα) dα, (16c)

where Ek(λ) (k = 1, 2, 3, 4) are unknown functions, the roots nk , k = 1, . . . , 4, are given by (15) and

ps
xx1,k(α)= (1+κ)nk + (3−κ)αss

k ,

ps
xy1,k(α)= −α+ ss

k nk, (k = 1, . . . , 4),

ps
yy1,k(α)= (3−κ)nk + (1+κ)αss

k , (k = 1, . . . , 4).

By superposing the two sets of solutions obtained from the cracked infinite graded medium and the
uncracked graded strip, the solution of the cracked graded strip can be established as follows:

u+

1 (x, y)= ui+
1 (x, y)+ us

1(x, y), v+

1 (x, y)= vi+
1 (x, y)+ vs

1(x, y), y ≥ 0,

σ+

kl1(x, y)= σ i+
kl1(x, y)+ σ s

kl1(x, y), k, l = x, y, y ≥ 0,
(17)

where ui+
1 (x, y) and vi+

1 (x, y) are given by (7), us
1(x, y) and vs

1(x, y) are given by (12), σ i+
kl1(x, y) is

given by (11) and σ s
kl1(x, y) is given by (16).

Considering that the displacements need to be bounded as x goes to ∞, the displacement solution of
the homogeneous substrate can be obtained in a similar manner as the uncracked graded strip:

uh
1(x, y)=

∫
+∞

0
(C5 + C7x)e−αx cos(yα) dα, (18a)

vh
1 (x, y)=

∫
+∞

0

((
C5 − C7

κ

α

)
+ C7x

)
e−αx sin(yα) dα, (18b)

where C5 and C7 are unknown functions.
Substituting (18) into (3) and the result into (4) yields the stress field in the uncracked graded strip:

σ h
xx1(x, y)=

µ2

κ−1

∫
+∞

0

(
ph

xx1,1(α)C5 + ph
xx1,2(α)C7 + ph

xx1,1(α)C7x
)
e−αx cos(yα) dα, (19a)

σ h
yy1(x, y)=

µ2

κ−1

∫
+∞

0

(
ph

yy1,1(α)C5 + ph
yy1,2(α)C7 + ph

yy1,1(α)C7x
)
e−αx cos(yα) dα, (19b)

σ h
xy1(x, y)= µ2

∫
+∞

0

(
ph

xy1,1(α)C5 + ph
xy1,2(α)C7 + ph

xy1,1(α)C7x
)
e−αx sin(yα) dα, (19c)

where C5 and C7 are unknown functions and

ph
xx1,1(α)= 2(1 − κ)α, ph

xx1,2(α)= (κ−1)2,

ph
yy1,1(α)= −2(1 − κ)α, ph

yy1,2(α)= 3 − 2κ − κ2,

ph
xy1,1(α)= −2α, ph

xy1,2(α)= 1+κ.

The solution is expressed in terms of the 9 unknown functions C3,C4 from (7), C5,C7 from (18),
E1, . . . , E4 from (12), and the density function f1(x), to be determined from the 9 boundary conditions

σxy1(x, 0+)= 0, x > 0, (20)
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σxx1(x, y)= 0,
σxy1(x, y)= 0,

}
x = 0, y <∞, (21)

σxx1(h+, y)= σxx1(h−, y),
σxy1(h+, y)= σxy1(h−, y),

}
y <∞, (22)

u1(h+, y)= u1(h−, y),
v1(h+, y)= v1(h−, y),

}
y <∞, (23)

v1(x, 0+)= 0, d < x <∞, (24)

σyy1(x, 0+)= −p(x), 0< x < d. (25)

Equation (20) indicates that the shear stress is zero in the plane of symmetry. Equations (21) show that
no tractions are applied at the top surface of the coating. Equations (22) and (23) describe the continuity
conditions of the stress and displacement fields along the interface x = h. Equation (24) indicates the
y-component of the displacement along the plane y = 0 is zero outside the crack because of symmetry.
Equation (25) describes the applied normal crack surface traction which can be expressed in terms of
external general loads. It should be pointed out that the regularity conditions which state that the stresses
and displacements need to be bounded at x → ∞ were already incorporated in the solution given by
Equations (18) and (19a)–(19c).

Applying the boundary conditions (20) and (24) allows expressing the unknown functions C3 and C4

in terms of the density function f1:

C3 =
κ+1
4µ0

i
λ

−pi
xy1,4

si
3 pi

xy1,4 − si
4 pi

xy1,3

∫ d

0
f1(t)e−iλt dt, C4 =

κ+1
4µ0

i
λ

pi
xy1,3

si
3 pi

xy1,4 − si
4 pi

xy1,3

∫ d

0
f1(t)e−iλt dt .

Applying the boundary conditions (21)–(23) yields the linear system of equations

ps
xx1,1 ps

xx1,2 ps
xx1,3 ps

xx1,4 0 0

−ps
xy1,1 −ps

xy1,2 −ps
xy1,3 −ps

xy1,4 0 0

ps
xx1,1en1h ps

xx1,2en2h ps
xx1,3en3h ps

xx1,4en4h
−ph

xx1,1e−αh
−(ph

xx1,2+hph
xx1,1)e

−αh

−ps
xy1,1en1h

−ps
xy1,2en2h

−ps
xy1,3en3h

−ps
xy1,4en4h ph

xy1,1e−αh (ph
xy1,2+hph

xx1,1)e
−αh

en1h en2h en3h en4h
−e−αh

−he−αh

−ss
1en1h

−ss
2en2h

−ss
3en3h

−ss
4en4h e−αh (h−

κ
α
)e−αh





E1

E2

E3

E4

C5

C7



=



F R
1

F R
2

F R
3

F R
4

F R
5

F R
6



,

where we have defined

F R
j =

κ+1
4π2µ0

∫ d

0
f1(t)R j (α, t) dt ( j = 1, . . . , 6),
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the R j (α, t) ( j = 1, . . . , 6) being integrals evaluated using the residue theorem [Kreyszig 1999]; their
values are

R j (α, t)= L j

(
H1 j sin

Bt
2

+ H2 j cos
Bt
2

)
( j = 1, 2),

R j (α, t)= L j

(
H1 j sin

B(h − t)
2

+ H2 j cos
B(h − t)

2

)
( j = 3, . . . , 6),

where L j , Hi j , and B are functions of α, β and κ .
This system of equations can be analytically inverted, leading to the expressions of the unknown

functions C5,C7, E1, E2, E3, E4 in terms of the density function f1:

E1 = Q
∫ d

0
S1(α, t) f1(t) dt,

E2 = Q
∫ d

0
S2(α, t) f1(t) dt,

E3 = Q
∫ d

0
S3(α, t) f1(t) dt,

E4 = Q
∫ d

0
S4(α, t) f1(t) dt,

C5 = Q
∫ d

0
S5(α, t) f1(t) dt,

C7 = Q
∫ d

0
S6(α, t) f1(t) dt,

where Q = (κ+1)/(4π2µ0) and, for j = 1, . . . , 6,

S j (α, t)=
D1 j

D
R1(α, t)−

D2 j

D
R2(α, t)+

D3 j

D
R3(α, t)−

D4 j

D
R4(α, t)+

D5 j

D
R5(α, t)−

D6 j

D
R6(α, t).

4. Solution of the sliding mode problem

Similarly to the opening mode problem, the solution of the composite medium for the sliding mode
problem may be determined by obtaining the solution in the graded layer and that in the homogeneous
substrate with the exception that y = 0 is a plane of antisymmetry. The layer solution may be expressed
as the sum of two solutions, namely an infinite graded medium with a crack and a graded strip without
a crack [Erdogan and Wu 1996; Dag and Erdogan 2002; Bogy 1975]. By superposing the two sets of
solutions, the displacement and stress field solutions of the y ≥ 0 cracked graded strip can be established
as follows:

u+

2 (x, y)= ui+
2 (x, y)+ us

2(x, y), v+

2 (x, y)= vi+
2 (x, y)+ vs

2(x, y), y ≥ 0,

σ+

kl2(x, y)= σ i+
kl2(x, y)+ σ s

kl2(x, y), k, l = x, y, y ≥ 0,
(26)

where the subscript 2 stands for the sliding mode problem, the superscript i and s indicate, respectively,
the cracked infinite medium and the strip, the superscript + stands for the half-plane y ≥ 0, ui+

2 (x, y)
and vi+

2 (x, y) are given by Equations (A-1a), (A-1b) in the Appendix, us
2(x, y) and vs

2(x, y) are given
by (A-2a), (A-2b) and σ i+

kl2(x, y) and σ s
kl2(x, y)(k, l = x, y) are, respectively, given by (A-1c)–(A-1e)

and (A-2c)–(A-2e).
The solution in the homogeneous half-plane can be obtained by considering the plane y = 0 as a plane

of antisymmetry and that it needs to be bounded as x goes to ∞. The solution is given by (A-3). As
in the opening mode problem, the sliding mode problem contains nine unknowns: D3, D4 from (A-1),
D5, D7 from (A-3), F1, . . . , F4 from (A-2), and f2, which can be determined from the nine boundary
conditions

σyy2(x, 0+)= 0, x > 0, (27)
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σxx2(x, y)= 0,
σxy2(x, y)= 0,

}
x = 0, y <∞, (28)

σxx2(h+, y)= σxx2(h−, y),
σxy2(h+, y)= σxy2(h−, y),

}
y <∞, (29)

u2(h+, y)= u2(h−, y),
v2(h+, y)= v2(h−, y),

}
y <∞, (30)

v1(x, 0+)= 0,
u2(x, 0+)= 0,

}
d < x <∞, (31)

σxy2(x, 0+)= −q(x), 0< x < d. (32)

Applying the boundary conditions (27) and (31) allows us to express the unknown functions D3 and
D4 in terms of the density function f2, as shown in Equations (A-4a), (A-4b). Applying the boundary
conditions (28)–(30) yields the linear system in A.5. This system of equations can be analytically inverted,
leading to expressions for the unknown functions D5, D7, F1, F2, F3, F4 in terms of the density function
f2; these are given in A.6.

5. Singular integral equations

Based on the solutions obtained in Sections 3 and 4 for the opening and sliding mode problems, we can
apply the boundary conditions (25) and (32), obtaining the dual uncoupled integral equations∫ d

0
(K11(x, t)+ K12(x, t)) f1(t) dt = −p(x), 0< x < d, (33a)∫ d

0
(K21(x, t)+ K22(x, t)) f2(t) dt = −q(x), 0< x < d, (33b)

where the kernels K11(x, t) and K12(x, t) representing the infinite graded medium and the graded strip
for the opening mode problem are given by

K11(x, t)=
κ+1

4π(κ−1)
eβx lim

y→0+

(∫
+∞

0
M0(λ, y) cos(λ(x − t)) dλ+

∫
+∞

0
N0(λ, y) sin(λ(x − t)) dλ

)
,

K12(x, t)=
κ+1

4π2(κ−1)
eβx lim

y→0+

∫
+∞

0

4∑
k=1

ps
yy1,k(α)Sk(α, t)enk x cos(yα) dα,

where M0(λ, y)= S0(λ, y)+ S0(−λ, y) and N0(λ, y)= i (S0(λ, y)− S0(−λ, y)) with

S0(λ, y)=
i

2λ

( pi
yy1,4 pi

xy1,3em4 y
− pi

yy1,3 pi
xy1,4em3 y

si
3 pi

xy1,4 − si
4 pi

xy1,3

)
,
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and the corresponding kernels K21(x, t) and K22(x, t) for the sliding mode problem are given by

K21(x, t)=
κ+1
4π

eβx lim
y→0+

(∫
+∞

0
M ′

0(λ, y) cos(λ(x − t)) dλ+

∫
+∞

0
N ′

0(λ, y) sin(λ(x − t)) dλ
)

K22(x, t)=
κ+1
4π2 eβx

(
lim

y→0+

∫
+∞

0

4∑
k=1

qs
xy2,k(α)S

′

k(α, t)enk x cos(yα) dα

)
,

where M ′

0(λ, y) and N ′

0(λ, y) are given analogously in terms of

S′

0(λ, y)=
i

2λ

(q i
xy2,4q i

yy2,3em4 y
− q i

xy2,3q i
yy2,4em3 y

q i
yy2,4 − q i

yy2,3

)
.

The singular nature of the integral equations above and that of the solutions f1 and f2 may be de-
termined by studying the asymptotic behavior of the integrands found in the expressions of K11(x, t),
K12(x, t), K21(x, t) and K22(x, t). After a very lengthy analysis, the singular integral equations above
become ∫ d

0

(
1

π(t − x)
+ hs

1(x, t)+ h f
1 (x, t)

)
f1(t) dt = −e−βx p(x), 0< x < d,

∫ d

0

(
1

π(t − x)
+ hs

2(x, t)+ h f
2 (x, t)

)
f2(t) dt = −e−βxq(x), 0< x < d,

(34)

where h f
1 (x, t) and h f

2 (x, t) are bounded Fredholm kernels and hs
1(x, t) and hs

2(x, t) are generalized
Cauchy kernels of order 1/t that become unbounded as the arguments x and t tend to the end point zero
simultaneously. The Cauchy kernels are of the form

hs
1(x, t)=

(κ+1)eβ(t−x)/2

2(κ−1)

(
2h∗

2

(t + x)3
+

h∗

1

(t + x)2
+

h0

(t + x)
+

c∗

1

(2h − t − x)2
+

c0

(2h − t − x)

)
,

hs
2(x, t)=

(κ+1)eβ(t−x)/2

2

(
2m∗

2

(t + x)3
+

m∗

1

(t + x)2
+

m0

(t + x)
+

l∗1
(2h − t − x)2

+
l0

(2h − t − x)

)
,

where each of the coefficients h0, h∗

1, h∗

2, c0, c∗

1 , m0, m∗

1, m∗

2, l0 and l∗1 is a lengthy function of κ , β, x
and t .

From these singular integral equations, we conclude there is no singularity at the crack mouth, while
the standard square-root or Cauchy singularity, 1/(t−x), is retained at the crack tip, in addition to other
singularities contained in the generalized Cauchy kernels. The solution of these equations is expressed
as follows, where f̃1(t) and f̃2(t) are unknown bounded functions (see [Erdogan et al. 1973]):

f1(t)= (d − t)−1/2 f̃1(t), f2(t)= (d − t)−1/2 f̃2(t), 0< t < d, (35)

The limits of the generalized Cauchy kernels are the same as for homogeneous materials [Erdogan
and Wu 1997], namely

lim
β→0

hs
1(x, t)= lim

β→0
hs

2(x, t)=
1
π

(
1

t + x
+

2t
(t + x)2

−
4t2

(t + x)3

)
, 0< (t, x) < d. (36)
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6. Solution of the singular integral equations

We have the following normalizations for the singular integral equations (34):

t =
1
2 d(r + 1), x =

1
2 d(s + 1), 0< (t, x) < d, −1< (r, s) < 1,

f1(t)= f̄1(r), f2(t)= f̄2(r), 0< t < d, −1< r < 1,

hs
1(x, t)= h̄s

1(s, r), hs
2(x, t)= h̄s

2(s, r), 0< (x, t) < d, −1< (s, r) < 1,

h f
1 (x, t)= h̄ f

1 (s, r), h f
2 (x, t)= h̄ f

2 (s, r), 0< (x, t) < d, −1< (s, r) < 1,

p(x)= p̄(s), q(x)= q̄(s), 0< x < d, −1< s < 1.

Hence the equations become∫ 1

−1

(
1

π(r − s)
+ h̄s

1(s, r)+ h̄ f
1 (s, r)

)
f̄1(r) dr = −e−β(d/2)(s+1) p̄(s), −1< s < 1,

∫ 1

−1

(
1

π(r − s)
+ h̄s

2(s, r)+ h̄ f
2 (s, r)

)
f̄2(r) dr = −e−β(d/2)(s+1)q̄(s), −1< s < 1.

(37)

It was shown in [Erdogan et al. 1973] that the solution of these equations may be expressed as f̄i (r)=

w(r)ψi (r), i = 1, 2, where w(r)= 1/
√

1 − r is the weight function associated with the Jacobi polynomial
P (−1/2,0)

n (r) and ψi (r), (i = 1, 2) are continuous and bounded function in the interval [−1, 1] which may
be expressed as convergent series of Jacobi polynomials. Hence the solutions of (37) become

f̄1(r)=
1

√
1 − r

∞∑
n=0

A1n P (−1/2,0)
n (r), f̄2(r)=

1
√

1 − r

∞∑
n=0

A2n P (−1/2,0)
n (r), −1< r < 1. (38)

Substituting this into (37), truncating the series at N and regularizing the singular terms, the above
integral equations reduce to a system of linear algebraic equations in the 2(N+1) unknowns A1n and
A2n:

N∑
n=0

(
−
0(−1/2)0(n + 1)
√

2π0(n + 1/2)
F
(
n + 1,−n + 1/2; 3/2; (1 − s)/2

)
+ M1(s)

)
A1n

= −e(−βd(1+s)/2) p(d(1 + s)/2), −1< s < 1, (36a)
N∑

n=0

(
−
0(−1/2)0(n + 1)
√

2π0(n + 1/2)
F
(
n + 1,−n + 1/2; 3/2; (1 − s)/2

)
+ M2(s)

)
A2n

= −e(−βd(1+s)/2)q(d(1 + s)/2), −1< s < 1, (36b)

where 0 is the gamma function, F is the hypergeometric function and M1, M2 are given by

Mk(s)=

∫ 1

−1
(1 − r)−1/2 Hk(s, r)P (−1/2,0)

n (r) dr (k = 1, 2),

with

Hk(s, r)=
d
2

(
hs

k

(d
2

s +
d
2
,

d
2

r +
d
2

)
+ h f

k

(d
2

s +
d
2
,

d
2

r +
d
2

))
.
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Equations (36) are solved numerically using a suitable collocation technique [Erdogan and Wu 1996].
Once the 2(N + 1) unknowns coefficients A1n and A2n are obtained, the mixed-mode crack tip stress
intensity factors may be estimated as follows:

k1 = lim
x→d+0

√
2(x − d)σyy(x, 0)= −eβd

√
d

N∑
n=0

A1n P (−1/2,0)
n (1),

k2 = lim
x→d+0

√
2(x − d)σxy(x, 0)= −eβd

√
d

N∑
n=0

A2n P (−1/2,0)
n (1).

(40)

7. Results and discussion

Table 1 gives the thermomechanical properties of actual functionally graded materials studied in [Zhao
et al. 2004; Jin and Paulino 2001; Shodja and Ghahremaninejad 2006; Shao 2005; Ma and Wang 2003;
Ching and Yen 2005; Lee and Erdogan 1998b]. The tabulated FGMs are made of two constituents, such
as ceramic Al2O3 and titanium carbide (TiC), or Rene 41 and zirconia. It is clear from this table that the
thermomechanical properties, such as the elastic modulus, the thermal expansion coefficient and the heat
conductivity, can be proportional (decreasing or increasing) or nonproportional from one face to the other
face of the graded layer. For example, for a Rene 41 and zirconia FGM, the ratio of the elastic moduli,

components reference ν E E1/E2 α α1/α2 k k1/k2

ceramic Al2O3 [Zhao et al. 2004]
0.26 380

< 1
8.5

> 1
40.37

> 1
titanium carbide 0.19 450 7.6 24.28
silicon carbide

[Jin and Paulino 2001]
0.20 400

= 1
4.0

< 1
60

> 1
titanium carbide 0.20 400 7.0 20
titanium nickel 0.20 600

> 1
8.08

< 1
22

< 1
aluminum alloy

[Shodja and
Ghahremaninejad 2006] 0.33 70 23.05 190

titanium nickel 0.20 600
> 1

8.08
< 1

22
< 1

carbon steel
[Shodja and
Ghahremaninejad 2006] 0.30 207 12.36 40

mullite
[Shao 2005]

0.27 225
< 1

4.8
≈ 1

5.9
< 1

molybednum 0.30 330 4.9 138
zirconia

[Ma and Wang 2003]
0.3 151

> 1
9.97

< 1
2.09

< 1
aluminum 0.3 70 22.86 204
silicon carbide

[Ching and Yen 2005]
0.17 427

> 1
4.3

< 1
65

< 1
aluminum 0.3 70 23.4 233
Rene 41

[Lee and Erdogan 1998b]
0.3 219.7

> 1
16.7

> 1
25.51

> 1
zirconia 0.3 151 10 2.09

Table 1. Thermomechanical properties of various types of functionally graded materials.
Legend: ν, Poisson’s ratio; E , elastic modulus, in GPa; α, thermal expansion coefficient,
in 10−6K−1, k, thermal conductivity, in 103W@(mK)−1. Subscript 1 corresponds to the
top-row material in each pair and subscript 2 to bottom row.
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k1/(σnd1/2)

p(x)= σ0 p(x)= σ1(x/d) p(x)= σ2(x/d)2 p(x)= σ3(x/d)3

βd lit. cur. lit. cur. lit. cur. lit. cur.

−3.0 4.4345 4.4481 1.9324 1.9375 1.2148 1.2176 0.8897 0.8916
−2.0 3.1238 3.1254 1.4495 1.4501 0.9525 0.9528 0.7209 0.7211
−1.0 1.9846 1.9853 1.0196 1.0199 0.7152 0.7154 0.5663 0.5664
−0.5 1.4988 1.4991 0.8317 0.8318 0.6099 0.6099 0.4970 0.4970
10−4 1.1215 1.1215 0.6828 0.6828 0.5255 0.5255 0.4410 0.4410
0.5 1.0225 1.0225 0.6439 0.6439 0.5035 0.5035 0.4264 0.4264
1.0 0.9930 0.9931 0.6328 0.6328 0.4947 0.4974 0.4225 0.4225
2.0 0.9807 0.9806 0.6289 0.6289 0.4956 0.4956 0.4215 0.4215
3.0 09884 0.9885 0.6329 0.6329 0.4981 0.4982 0.4233 0.4234

k2/(τnd1/2)

p(x)= τ0 p(x)= τ1(x/d) p(x)= τ2(x/d)2 p(x)= τ3(x/d)3

βd lit. cur. lit. cur. lit. cur. lit. cur.

−3.0 1.6704 1.6708 0.9273 0.9276 0.6738 0.6739 0.5437 0.5438
−2.0 1.4765 1.4767 0.8398 0.8399 0.6202 0.6202 0.5063 0.5063
−1.0 1.2825 1.2824 0.7534 0.7534 0.5678 0.5677 0.4700 0.4700
−0.5 1.1940 1.1939 0.7144 0.7144 0.5443 0.5443 0.4539 0.4539
10−4 1.1215 1.1216 0.6829 0.6829 0.5255 0.5255 0.4410 0.4410
0.5 1.0727 1.0727 0.6620 0.6620 0.5132 0.5132 0.4327 0.4327
1.0 1.0429 1.0428 0.6497 0.6497 0.5062 0.5062 0.4280 0.4280
2.0 1.0164 1.0165 0.6397 0.6397 0.5008 0.5008 0.4245 0.4246
3.0 1.0128 1.0127 0.6394 0.6394 0.5011 0.5011 0.4249 0.4250

Table 2. Normalized mode I (top) and mode II (bottom) stress intensity factors for a
graded half-plane: comparison of results from [Dag and Erdogan 2002] (columns labeled
“lit.”) with those obtained in the current study.

the ratio of the thermal expansion coefficients and the ratio of the heat conductivity are all greater than
one. For a titanium nickel (TiNi) and aluminum alloy FGM, the ratio of the elastic moduli is greater
than one while the ratio of the thermal expansion coefficients and the ratio of the heat conductivity are
both less than one. For a ceramic Al2O3 and titanium carbide FGM, the ratio of the elastic moduli is less
than one while the ratio of the thermal expansion coefficients and the ratio of the heat conductivity are
both greater than one. Since this study is limited only to variations of the elastic modulus, we, therefore,
consider two cases of FGM coatings, a stiff graded layer with βd < 0 and a compliant graded layer with
βd > 0, which correspond, respectively, to a ratio of the elastic moduli greater than and less than 1.

Furthermore, for the problem considered, if the coating thickness tends to infinity (h → ∞), the
configuration of the problem tends toward a graded half-plane, with the effect of the homogeneous
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Figure 2. Effect of the nonhomogeneity parameter βd on the normalized mode I (left)
and mode (II) stress intensity factors under plane strain and various distributions of crack
surface tractions σn or τn , n = 0, 1, 2, 3. In each case, ν = 0.25 and h/d = 2.

substrate almost negligible. As mentioned in the introduction, this crack problem was solved in [Dag
and Erdogan 2002]. We see in Table 2 that the results obtained here are in agreement with those published
in that work; the tables give the normalized mode I and II stress intensity factors for an edge crack in a
graded half-plane, assuming different values of the nonhomogeneity parameter βd, various polynomial
forms of crack surface tractions, plane strain conditions, a Poisson’s ratio ν = 0.25 and a large value of
the coating thickness h (h/d = 50).

When |βd| approaches zero, the composite medium becomes a homogeneous elastic half-plane. The
closed-form solution for the stress intensity factor for a surface crack subject to a uniform normal traction
p(x)= σ0 was obtained in [Koiter 1965] in terms of an infinite integral as

k1

σ0
√

d
=

√
2(B + 1)

√
π A

, log A = −
1
π

∫
∞

0

1
1 +α2 log

(
α sinh(πα)

√
B2 +α2 (cosh(πα)− 2α2 − 1)

)
dα, (41)

where B is an arbitrary real constant greater than 1 and the result is independent of the choice of B.
The numerical evaluation of (41), performed in [Kaya and Erdogan 1987], shows that k1/(σ0

√
d)=

1.12152226, which is the result obtained in Table 2 (top) for βd = 0.0001.
Figure 2 illustrates the effect of the nonhomogeneity parameter βd [in µ1 = µ0 exp(βx)] on the mode

I and II crack tip stress intensity factors (SIF) for the case of constant p(x)= σ0, linear p(x)= σ1(x/d),
quadratic p(x) = σ2(x/d)2 and cubic p(x) = σ3(x/d)3 crack surface normal tractions. The results
were calculated for plane strain conditions, a Poisson’s ratio ν = 0.25 and a coating thickness h/d = 2.
Increasing the value of the nonhomogeneity parameter βd from −3 to 3 results in a decrease in both mode
I and mode II stress intensity factors. In addition, k1 and k2 are much more sensitive to the variations in
βd for βd < 0 (that is, compliant graded coating) than for βd > 0 (stiff graded coating).
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Figure 3. Effect of coating thickness h/d and stiffness parameter βd on the normal-
ized mode I stress intensity factor under various distributions of crack surface normal
tractions, ν = 0.25, plane strain, (a) constant normal traction p(x) = σ0, (b) linear
normal traction p(x) = σ1(x/d), (c) quadratic normal traction p(x) = σ2(x/d)2, (d)
cubic normal traction p(x)= σ3(x/d)3; σn (n = 0, 1, 2, 3), τn (n = 0, 1, 2, 3).

Figures 3 and 4 illustrate the effect of varying the coating thickness h/d ( = 2, 4, 10) and the stiffness
parameter βd ( = −3, . . . , 3) on the normalized mode I and mode II stress intensity factor under various
distributions of crack surface normal tractions. The results were calculated for plane strain conditions, a
Poisson’s ratio ν = 0.25. It can be seen from Figure 3 that k1 is sensitive to the variations of the coating
thickness h/d for βd < 0 and tends to be insensitive for βd > 0. Furthermore, for negative values of
βd, the value of k1 tends to increase when the coating thickness is increased. In addition, the rate of
change of k1 with respect to βd for βd < 0 becomes more important for increasing values of the coating
thickness. Moreover, increasing h/d from 2 to 10 indicates that the crack-tip is located more and more
in the stiffer side of the coating, and, therefore, the increase of k1 can be compensated somewhat by a
larger fracture toughness which decreases for a compliant graded coating (βd < 0). On the other hand,
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Figure 4. Effect of coating thickness h/d and stiffness parameterβd on the normalized
mode II stress intensity factor under various distributions of crack surface shear tractions,
ν = 0.25, plane strain, (a) constant shear traction q(x) = τ0, (b) linear shear traction
q(x) = τ1(x/d), (c) quadratic shear traction q(x) = τ2(x/d)2, (d) cubic shear traction
q(x)= τ3(x/d)3.

Figure 4 indicates that the mode II stress intensity factor is relatively insensitive to the variations of the
coating thickness h/d. In other words, further increase of h/d from 4 to 10 does not seem to affect the
values of k2.

Figure 5 shows some sample results for the normalized normal and tangential crack opening displace-
ments, v∗(x)= v(x, 0+)−v(x, 0−) and u∗(x)= u(x, 0+)−u(x, 0−), obtained by applying, respectively,
constant normal and shear tractions. The results were calculated for plane strain conditions, a Poisson’s
ratio ν = 0.25 and a coating thickness h/d = 2. It may be observed that as βd increases, the crack
opening displacements decrease. Furthermore, the influence of βd on the crack opening displacement is
more significant for a compliant graded layer (βd < 0) than for a stiff graded layer (βd > 0). The crack
opening displacements for the homogeneous medium (βd = 0.0001) is bracketed by the results obtained
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Figure 5. Normal (left) and tangential (right) crack opening displacement under con-
stant normal traction p(x) = σ0 (left) or constant shear traction q(x) = τ0 (right). In
both cases, ν = 0.25 and h/d = 2.

for βd < 0 and βd > 0. In addition, for βd < 0, crack opening displacements under mode I loading
(that is, normal crack surface tractions) is greater than that under mode II loading (shear crack surface
tractions).
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Appendix: Mode II problem expressions

A.1. Expressions of displacements and stresses in the infinite graded medium (half-plane y ≥ 0).

ui+
2 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Dkemk yei xλdλ, y ≥ 0, (A-1a)

vi+
2 (x, y)=

1
2π

∫
+∞

−∞

4∑
k=3

Dksi
kemk yei xλdλ, y ≥ 0, (A-1b)

σ i+
xx2(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
xx1,k(λ)Dkemk yei xλdλ, y ≥ 0, (A-1c)
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σ i+
yy2(x, y)=

µ1

2π(κ−1)

∫
+∞

−∞

4∑
k=3

pi
yy1,k(λ)Dkemk yei xλdλ, y ≥ 0, (A-1d)

σ i+
xy2(x, y)=

µ1

2π

∫
+∞

−∞

4∑
k=3

pi
xy1,k(λ)Dkemk yei xλdλ, y ≥ 0, (A-1e)

where Dk(λ), (k = 3, 4) are unknowns functions, the roots mk (k = 3, 4) are given by (10b), the known
function si

k(λ) is given by (8) and pi
xx1,k(λ), pi

yy1,k(λ) and pi
xy1,k(λ) are known functions given by the

equations following (11).

A.2. Expressions of displacements and stresses in the graded strip.

us
2(x, y)=

∫
+∞

0

4∑
k=1

Fkenk x sin(yα) dα, (A-2a)

vs
2(x, y)=

∫
+∞

0

4∑
k=1

Fkr s
k enk x cos(yα) dα, (A-2b)

σ s
xx2(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

qs
xx2,k(α)Fkenk x sin(yα) dα, (A-2c)

σ s
yy2(x, y)=

µ1

κ−1

∫
+∞

0

4∑
k=1

qs
yy2,k(α)Fkenk x sin(yα) dα, (A-2d)

σ s
xy2(x, y)= µ1

∫
+∞

0

4∑
k=1

qs
xy2,k(α)Fkenk x cos(yα) dα, (A-2e)

where Fk(λ) (k = 1, 2, 3, 4), are unknown functions, the roots nk , k = 1, . . . , 4, are given by (15), the
known functions r s

k (λ), (k = 1, 2, 3, 4), are such that r s
k (λ)= −ss

k(λ) in which ss
k(λ) is given by (13) and

qs
xx2,k(α), qs

yy2,k(α) and qs
xy2,k(α) are known functions given by

qs
xx2,k(α)= (1+κ)nk − (3−κ)αr s

k ,

qs
xy2,k(α)= α+ r s

k nk, (k = 1, . . . , 4),

qs
yy2,k(α)= (3−κ)nk − (1+κ)αr s

k , (k = 1, . . . , 4).

A.3. Expressions of displacements and stresses in the homogeneous substrate.

uh
2(x, y)=

∫
+∞

0
(D5 + D7x)e−αx sin(yα) dα, (A-3a)

vh
2 (x, y)=

∫
+∞

0

(
D5 + D7

κ

α
− D7x

)
e−αx cos(yα) dα, (A-3b)

σ h
xx2(x, y)=

µ2

κ−1

∫
+∞

0

(
qh

xx2,1 D5 + qh
xx2,2 D7 + qh

xx2,1 D7x
)
e−αx sin(yα) dα, (A-3c)
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σ h
yy2(x, y)=

µ2

κ−1

∫
+∞

0

(
qh

yy2,1 D5 + qh
yy2,2 D7 + qh

yy2,1 D7x
)
e−αx sin(yα) dα, (A-3d)

σ h
xy2(x, y)= µ2

∫
+∞

0

(
qh

xy2,1 D5 + qh
xy2,2 D7 + qh

xy2,1 D7x
)
e−αx cos(yα) dα, (A-3e)

where D5 and D7 are unknown functions and qh
xx2,1, qh

xx2,2, qh
yy2,1, qh

yy2,2, qh
xy2,1 and qh

xy2,2 are known
functions given by

qh
xx2,1(λ)= 2(1 − κ)α, qh

xx2,2(λ)= (κ−1)2,

qh
yy2,1(λ)= −2(1 − κ)α, qh

yy2,2(λ)= 3 − 2κ − κ2,

qh
xy2,1(λ)= 2α, qh

xy2,2(λ)= −(1+κ).

A.4. Expressions of D3 and D4 in terms of the density function f2.

D3 =
κ+1
4µ0

i
λ

(−q i
yy2,4)

q i
yy2,4 − q i

yy2,3

∫ d

0
f2(t)e−iλt dt, (A-4a)

D4 =
κ+1
4µ0

i
λ

q i
yy2,3

q i
yy2,4 − q i

yy2,3

∫ d

0
f2(t)e−iλt dt . (A-4b)

A.5. Linear system of equations obtained after applying boundary conditions (28)–(30).

−qs
xx2,1 −qs

xx2,2 −qs
xx2,3 −qs

xx2,4 0 0

qs
xy2,1 qs

xy2,2 qs
xy2,3 qs

xy2,4 0 0

−qs
xx2,1en1h

−qs
xx2,2en2h

−qs
xx2,3en3h

−qs
xx2,4en4h qh

xx2,1e−αh (qh
xx2,2 + hqh

xx2,1)e
−αh

qs
xy2,1en1h qs

xy2,2en2h qs
xy2,3en3h qs

xy2,4en4h
−qh

xy2,1e−αh
−(qh

xy2,2 + hqh
xx2,1)e

−αh

−en1h
−en2h

−en3h
−en4h e−αh he−αh

r s
1en1h r s

2en2h r s
3en3h r s

4en4h e−αh (h −
κ
α
)e−αh





F1

F2

F3

F4

D5

D7



=



G R
1

G R
2

G R
3

G R
4

G R
5

G R
6



,

where we have defined

G R
j =

κ+1
4π2µ0

∫ d

0
f2(t)R′

j (α, t) dt ( j = 1, . . . , 6),

the R′

j (α, t) ( j = 1, . . . , 6) being integrals evaluated using the residue theorem in a similar manner as
the integrals R j for the mode I problem.

A.6. Expressions of D5, D7, F1, F2, F3 and F4 in terms of the density function f2.

F1 = Q
∫ d

0
S′

1(α, t) f2(t) dt,

F2 = Q
∫ d

0
S′

2(α, t) f2(t) dt,

F3 = Q
∫ d

0
S′

3(α, t) f2(t) dt,

F4 = Q
∫ d

0
S′

4(α, t) f2(t) dt,

D5 = Q
∫ d

0
S′

5(α, t) f2(t) dt,

D7 = Q
∫ d

0
S′

6(α, t) f2(t) dt,
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in which Q = (κ+1)/(4π2µ0) and, for j = 1, . . . , 6,

S′

j (α, t)=
H1 j

H
R′

1(α, t)−
H2 j

H
R′

2(α, t)+
H3 j

H
R′

3(α, t)−
H4 j

H
R′

4(α, t)+
H5 j

H
R′

5(α, t)−
H6 j

H
R′

6(α, t).
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