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A THREE DIMENSIONAL CONTACT MODEL FOR SOIL-PIPE INTERACTION

NELLY PIEDAD RUBIO, DEANE ROEHL AND CELSO ROMANEL

One of the most common causes of collapse of pipelines crossing unstable slopes is the large deformation
induced by landslides. This paper presents a numerical methodology based on the finite element method
for the analysis of buried pipelines considering the nonlinear behavior of the soil-pipe interface. This
problem is inherently complex since it involves the interaction between two different bodies (pipe and
soil), and is affected by many elements such as material nonlinearities, local and global buckling, soil
settlement, pipe upheaval, among others. An important aspect that should be considered in the study
of buried pipes is the mechanical behavior along the interface between the structure and the soil. The
contact problem, which includes both a normal and a tangential constitutive law, is formulated through
a penalty method. The finite element model considers full three-dimensional geometry, elasto-plastic
material behavior and accounts for the presence of large displacements and deformations.

1. Introduction

In Brazil transport of petroleum, gas and oil derivatives between refineries and the port tanking terminals
that collect and export petroleum products is generally made through buried pipelines that cross the
mountain range of Serra do Mar. These mountains run parallel to the Atlantic Coast and stand between
the Brazilian plateau, where most of the largest cities are located, and the lower sea plains.

A major concern during design and performance monitoring of these buried structures is the potential
occurrence of soil movements, usually triggered by heavy rainfalls in areas lacking protective forest
covering or those that have recently experienced changes of landscape caused by excavations, cuts and
embankments due to road constructions, new industrial developments, etc. In cases of pipeline damage
the consequences may be quite severe in terms of economical losses, social and environmental impacts.
For example, the rupture of an expansion gasket during oil pumping in the state of Paraná in 2000
provoked a leakage of more than a million gallons of crude oil, endangering fauna and flora in addition
to interrupting the distribution of potable water to the population of nearby towns.

Many analytical and computational procedures for the investigation of the mechanics of soil-pipe
interaction problems are presented in the literature. The available numerical solutions are generally
based on the finite element method and consider models ranging from simple one-dimensional beam
models [Zhou and Murray 1993; Zhou and Murray 1996; Lim et al. 2001] and two-dimensional analysis
of buried galleries [Katona 1983], to shell models [Selvadurai and Pang 1988]. Numerical models based
on the boundary element model have also been employed [Mandolini et al. 2001]. Moreover, many
different material models have been adopted to represent soil behavior, the most popular of which are
elastic and elasto-plastic models.

Keywords: soil-pipe interaction, frictional contact, penalty method, large deformation.
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In the analysis of the behavior of buried pipes one very important aspect is the consideration of the inter-
face behavior. This problem is inherently complex since it involves the interaction between two different
bodies (pipe and soil) and is affected by many elements such as material nonlinearities, local and global
buckling, soil settlement, pipe upheaval, among others. Various possible modes of deformation must be
taken into account, including the stick and slip modes, for which normal stress remains compressive, as
well as the debonding and rebonding modes, for which normal stress can reach zero. Models for the pipe-
soil interface describe limiting cases such as perfect adhesion [Selvadurai and Pang 1988], elastic and
inelastic springs for both transversal and longitudinal behavior [Zhou and Murray 1993], and continuum
interface elements as in the pioneer works [Katona 1983; Desai et al. 1984]. More realistic continuum
contact models including both normal and longitudinal contact forces models can be generically framed
as optimization models, by which the contact constraints are introduced in the general equations of motion
through a Lagrangian multiplier formulation and solved through mathematical programming algorithms.
A long list of authors who have adopted this strategy includes [Simo et al. 1985; Kwak and Lee 1988;
Lee et al. 1994; Laursen and Simo 1993; Ferreira and Roehl 2001]. Alternatively, the contact conditions
are satisfied empirically through a penalty based formulation. Examples of this type of contact model
are [Bathe and Chaudhary 1985; Peric and Owen 1992; Laursen 2002].

This paper presents a numerical methodology based on the finite element method for the analysis of
buried pipelines considering the nonlinear behavior of the soil-pipe interface. The finite element model
considers full three-dimensional geometry, elasto-plastic material behavior and accounts for the presence
of large displacements and deformations. Both pipe and soil are modeled with hexahedral enhanced
assumed strain elements. The numerical solution procedure is based on an incremental, iterative proce-
dure, forming a sequence of nonlinear incremental problems solved by a Newton–Raphson scheme. The
solution of boundary problems subject to the normal contact restrictions (impenetrability and compressive
normal tractions at contact) and to the friction law (tangential constitutive law) is carried out here with
a penalty formulation, by which the contact restrictions are approximated through an easy-to-implement
procedure. The incremental evolution equations for the contact constitutive model are obtained through
numerical integration with an implicit Euler algorithm. The element stiffness and contact matrices are
obtained in the framework of a consistent linearization of the contact virtual work. Finally, application
of the model to a slowly sliding slope with buried pipe is presented.

2. Continuum governing equations

2.1. Equations of motion. The formulation of the contact problem presented in this work is based on
the work of Laursen and Simo [1993] and is reviewed here for the case of two deformable bodies Bi

for i = 1, 2 in the space <
3 as shown in Figure 1. We assume that the bodies are contact-free in the

corresponding reference configurations �1 and �2 at time t = 0. The subsequent configurations indicated
as φ1

t , φ2
t cause the two bodies to physically come into contact introducing interactive forces. The contact

surfaces are represented by 0(1) and 0(2) , the so-called slave and master surfaces, respectively. The
current surface location is given by γ (i)

= φi
t
(
0(i)

)
. In the initial configuration, material points on 0(1)

and 0(2) are represented by X and Y , respectively; correspondingly, the current configuration is given
by x = ϕ

(1)
t (X) and y = ϕ

(2)
t (Y).
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Figure 1. Body configurations at t = 0 and general t .

Assuming a quasistatic response and considering a description of motion in the reference configuration,
the classical equations of motion for each body i at time t are given by

DIVP (i)
t + f (i)

t = 0 in �(i), P (i)
t n(i)

0 = t(i)t in 0(i)
σ , ϕ

(i)
t = ϕ

(i)
t in 0(i)

ϕ , (1)

where P (i)
t is the first Piola–Kirchhoff stress tensor, f (i)

t is the prescribed body force, n(i)
0 is the outward

normal in the reference configuration, 0σ
(i), 0φ

(i) are, respectively, the parts of ∂�(i) where the tractions
t (i)
t and displacements φ

(i)
t are given, and P (i)

t is assumed to be given by a hyperelastic constitutive law.

2.2. Frictional contact formulation. For a pair of motions φ(1)(·, t), φ(2)(·, t), the impenetrability re-
striction can be formulated for all points X ∈ 0(1) by first identifying a potential contact point Y−(X, t)
on the master surface according to the following closest point projection in the spatial configuration:

Y−(X, t) = arg min
Y∈0

(2)
c

∥∥ϕ(1)(X, t) − ϕ(2)(Y , t)
∥∥.

To formulate the contact conditions, a configuration-dependent differentiable distance function is intro-
duced, which will be constrained to guarantee physical impenetrability.

For a pair X , Y−, a gap function may be defined as g(X, t) = −ν
(
ϕ(1)(X, t) − ϕ(2)(Y−, t)

)
, where

ν is the outward unit normal to the γ (2) at y = φ
(2)
t (Y ) as illustrated in Figure 2. Then, the definition

of g(X, t) is given in terms of the closest point projection of x = φi
t (X) onto the opposing surface γ

(2)
c .

The impenetrability condition is formulated as g(X, t) ≤ 0.
Furthermore, the complementarity conditions are connected to the superficial contact force t (1)(X, t) =

P (1)(X, t)·n0
(1)(X), where P (1)(X, t) is the first Piola–Kirchhoff tensor at X and n0

(1)(X) is the outward
normal at X in the reference configuration. This surface force may therefore be written as

t(1)(X, t) = tN (X, t)ν+ Pν t(1)(X, t), (2)

where Pν t (1) is the projection of t (1) onto the associated tangent plane, and tN (X, t) represents the contact
pressure at X .
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Figure 2. Contact problem and unit outward normal.

The Kuhn–Tucker conditions for normal contact are given by

g(X, t) ≤ 0, tN (X, t) ≥ 0, tN (X, t)g(X, t) = 0, tN (X, t)ġ(X, t) = 0. (3)

The first three conditions reflect the impenetrability constraint, the compressive normal traction constraint,
and the requirement that the pressure is nonzero only when contact takes place, that is, the gap function
g = 0, respectively. The last requirement is the persistency condition used when considering frictional
kinematics.

Once the impenetrability constraint (3)1 induces a geometric structure through the gap function, an
associated convective basis, adequate for definition of the frictional constraints, is necessary. Parameter-
izations for 0(i) and γ (i) are adopted for body 2 (see Figure 3) according to the definition of a series of
time indexed mappings 9

(i)
t : A(i)

→ <
n−1, with 0(i)

=9
(i)
0 (A(i)), γ (i)

=9
(i)
t (A(i)) and 9(i)

t = ϕ
(i)0
t 9

(i)
0 .

The dimension of the contact surface 0(i) is one dimension lower than the number of spatial dimensions
involved in the kinematic description. In the three-dimensional case, one point ξ ∈ A(2) is given by
ξ = (ξ 1, ξ 2). Bases for 0(2) and γ (2) are conveniently defined by partial derivatives with respect to these
variables:

Eα(ξ) =9
(2)
0,α(ξ), eα(ξ) =9

(2)
t,α(ξ) = F(2)

t
(
9

(2)
0 (ξ)

)
Eα(ξ), α = 1, 2.

In the above equations F(2)
t is the gradient deformation corresponding to ϕ(2). Subscript , α represents

derivatives with respect to ξα. For any point X ∈ 0(1), a point Y ∈ 0(2) is assigned such that Y− is
obtained through minimization.

Correlated points y− and ξ− in the spatial and parametric domains, respectively, are defined as

Y 0(X, t) = ψ
(2)
0

(
ξ−(X, t)

)
, y−(X, t) = ψ

(2)
t

(
ξ−(X, t)

)
.

Identification of ξ− with point X depends upon the motions of both bodies. The specific basis for ξ− is

Tα = Eα(ξ−), tα = eα(ξ−), α = 1, 2.

Tangent vectors Tα and tα describe a convective basis at point X relative to 0(2). The normal vector is
defined as v = (t1 × t2)/‖t1 × t2‖.

According to the persistency condition, if ġ(X, t) = 0, the time rate of change of the relative position
vector between x = φ(1) and y− = φ(2)(Y−(X, t), t) must be zero. The evaluation of this time derivative
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Figure 3. Parameterizations for 0(i) and γ (i).

gives an important expression for the material relative velocity of X , namely,

V (1)(X, t) − V (2)
(
Y−(X, t), t

)
= F(2)

t
(
9

(2)
0 (ξ−)

) d
dt

[Y(X, t)].

In the above equation, the left side gives the relative material velocities of X and Y−, thus physically
representing the slip rate of X relative to the adjacent surface γ (2)

= φ(2)(0(2)). The right hand side of
this equation represents the geometry that is used in the definition of frictional evolution law.

VT (X, t) :=
d
dt

[Y−(X, t)] = ξ̇β
−(X, t)Tα.

Mathematically, VT (X, t) represents the relative tangential velocity and, by the assumption of ġ(X, t) = 0
it contains no normal component. It is convenient to express VT in a dual basis. One can define the dual
basis vector, the metrics and the inverse metrics. The spatial counterpart of the material relative velocity
VT (X, t) is obtained through push forward transformation to the spatial frame. It and the frictional
traction are expressed in the dual basis as

vb
T (X, t) = Mαβ ξ̇β

−(X, t)tα, tb
T (X, t) := −Pv t(1)(X, t) := tT α(X, t)tα.

Based on the description of slip velocity and traction, the Coulomb friction model is stated as

8 := ‖tb
T ‖ −µtN ≤ 0, vb

T − ζ
tb

T

‖tb
T ‖

= 0, ζ ≥ 0, 8ζ = 0, (4)

which are the friction law, relative tangential velocity, the irreversibility of slip, and the complementarity
condition. In the above formulation µ is the friction coefficient with hardening effects excluded, tN and tT

are the normal and tangential contact forces, vT is the relative tangential velocity. Frictional traction and
velocity are expressed in dual basis, according to the large deformation theory. More details on the fric-
tional contact formulation can be found in [Laursen and Simo 1993; Laursen 2002; Rubio et al. 2003].

2.3. Formulation of the virtual work of contact. We consider the approximate weak form of the global
equilibrium equations. The test function φ∗ (i)

: �(i) → R3 satisfies the condition φ∗ (i)
= 0 on 0φ

(i).
Restrictions placed upon φ∗ (i) by the contact conditions are not imposed since such limitations are to
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be removed using the penalty regularization introduced above. Multiplying Equations (1) by φ∗ (i) and
integrating by parts over �(i) we obtain the weak form of the equilibrium:

G(i)(ϕ
(i)
t , ϕ∗ (i)) : =

∫
�(i)

P (i)
t · G R AD[ϕ∗ (i)

]d�(i)
−

∫
�(i)

f (i)
t · ϕ∗ (i)d�(i)

−

∫
0

(i)
σ

t(i) · ϕ∗ (i)d0(i)
σ ,

G(i)(ϕ
(i)
t , ϕ∗ (i)) : =

∫
0(i)

t(i)t · ϕ∗ (i)d0(i).

The quantity G(i) is the sum of the internal virtual work and the virtual work of the applied forces and
tractions for body i . The balance of the virtual work of the contact forces acting on 0(i) is

G(ϕt , ϕ
∗) := G(1)(ϕ

(1)
t , ϕ∗ (2)) + G(2)(ϕ

(2)
t , ϕ∗ (2)) =

∫
0(1)

t(1)
t · ϕ∗ (1)d0(1)

+

∫
0(2)

t(2)
t · ϕ∗ (2)d0(2),

where φt is the collection of mappings φ
(1)
t and φ

(2)
t and so is φ∗. The contact contribution of the integral

over 0(1) is

G(ϕt,ϕ
∗) + Gc(ϕt,ϕ

∗) = 0, Gc(ϕt , ϕ
∗) = −

∫
0(1)

t(1)
t (X) ·

{
ϕ∗ (1)(X) − ϕ∗ (2)

[Y(X)]
}
d0(1).

The statement of the contact virtual work is given by

Gc(ϕt , ϕ
∗) = −

∫
0(1)

[
tNv− tTα

τα
]
·

[
ϕ∗ (1)(X) − ϕ∗ (2)(Y(X))

]
d0(1)

=

∫
0(1)

[
tNt δg − tT αt δξ

α
−

]
d0(1).

3. Numerical solution

3.1. Penalty regularization of constraints. The solution of boundary problems subject to restrictions
such as those presented in Equation (2) for normal contact and in Equation (4) for the Coulomb friction
laws is carried out here with a penalty formulation by which the restrictions are approximated through
an easy-to-implement procedure. For normal contact, a normal penalty parameter εN is introduced in
the definition of the constitutive relation of the normal force tN = εN 〈g〉, where 〈·〉 denotes the positive
part of the operand.

By introducing a tangential penalty εT , the regularization for the frictional response is expressed as

8 := ‖tb
T ‖ −µtN ≤ 0, vb

T − ζ
tb

T

‖tb
T ‖

=
1
εT

Lv tb
T , ζ ≥ 0, 8ζ = 0,

where Lv tb
T := ṫTα

tα is the Lie derivative of the tangential force. The above regularization is exact only
in the limit εN → ∞ and εT → ∞, in which case the slip rate ζ tb

T /‖tb
T ‖ equals the relative velocity vb

T .
These relations are easy to incorporate in the virtual work principle and subsequently implement in a finite
element procedure. For frictional problems, the tangential gap function is introduced as gα

T = ξα
n+1 − ξα

n .

3.2. Incremental finite element formulation. The boundary value problem can be solved incrementally
by considering a set of subintervals U N

n=0[tn, tn+1]. The evolution equations for the constitutive model
are obtained through numerical integration. Here we adopt an implicit Euler algorithm. In the framework
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of a consistent linearization, the contact virtual work is defined according to

1Gc(ϕt , ϕ
∗
)
= 1

{ ∫
0

(1)
c

[
tN δg + tTα

· δξα
]
d0

}
=

∫
0

(1)
c

[
1(tN δg) + 1tTα

δξα + tTα
1δξα

]
d0(1), (5)

where tN are contact pressures and tT frictional tractions. The quantity 1(δg) is computed by linearizing
δg, which is the linearized variation of the gap function, δξ is obtained by application of the orthogo-
nality condition of the tangent vectors with the normal vector, and 1(δξ) is obtained by computing the
directional derivative of the orthogonality condition.

For finite element discretization of the domain, the contact virtual work expression in discrete form is

Gc
(
ϕh

t , ϕ∗ h)
=

∫
0(i)h

[
th
Ntδgh

+ th
T δξαh ]d0(1)h

,

where the discrete counterparts of φ(i) and φ∗ (i) are φ(i)h
and φ∗ (i)h

, defined over individual element
surfaces as φe

(i)h
(η) = 6N a(η)φ

(i)
a for a = 1, . . . , ne. The term φa

(i) is the nodal value of φ(i)h
, ne is the

number of nodes per element surface, N a(η) is an isoparametric shape function for three-dimensional
problems. Using the same scheme Xh

e (η) = 6N a(η)Xa .
Solution of the weak form of equilibrium is obtained here with the Newton–Raphson method, which

requires linearization of Equation (5). For numerical integration, the linearized virtual contact work is

1Gc
(
ϕh, ϕ∗ h)

≈

nel∑
j=1

nint∑
k=1

W k j (ηk)
[
1

[
th
N (ηk)δgh(ηk)

]
+ 1th

Tα
(ηk)δξαh

(ηk) + th
Tα

(ηk)1
[
δξαh

(ηk)
]]

,

where nint is the number of integration points on each contact surface element 0(1)h
, W k is the integration

weight factor, δ8k
c is the vector of nodal displacement variations, Rk

c is the residual vector, and the index
k indicates the number of the integration point. The terms δgh(ηk) are the variations of g and the
simplification of the variation δξαh

(ηk) with the corresponding discrete fields. Expression (5) can now
be written as

1Gc
(
ϕh, ϕ∗ h)

=

nel∑
j=1

nint∑
k=1

W k j (ηk)δ8k
c · K k

c18
k
c . (6)

In the above equation K k
c is the contact stiffness matrix. The linearized contact terms 1

[
th
N (ηk)δgh(ηk)

]
and 1

[
δξαh

(ηk)
]

are given by their corresponding discrete components. Vector 18k
c contains the nodal

displacement values uh , which take part at contact. The term 1th
T (ηk) is obtained by a classical plasticity

return algorithm. In the present work a nodal quadrature is employed by the evaluation of Equation (6)
as presented in detail in [Ferreira and Roehl 2001].

The finite element discretization is carried out with eight-node hybrid brick elements based on an
enhanced assumed strain formulation in the framework of large strain J2 plasticity; for details see
[Simo et al. 1985; Roehl and Ramm 1996]. In this case the node-to-surface contact involves five nodes
as illustrated in Figure 4.
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Figure 4. Slave node and master surface.

Accordingly, δ8 contains the displacement variations of the contacting slave node ϕ∗ (1)(X) and those
of the four nodes on finite element on the master surface γ

(2)h

e (ϕ∗ (2)(Y)):

δ8=


ϕ∗ (1)(X)

ϕ∗ (2)(Y 1)

ϕ∗ (2)(Y 2)

ϕ∗ (2)(Y 3)

ϕ∗ (2)(Y 4)

 , 18=


u(1)(X)

u(2)(Y 1)

u(2)(Y 2)

u(2)(Y 3)

u(2)(Y 4)

 .

4. Applications

4.1. Benchmark for soil-structure interface contact. Figure 5 (left) illustrates a long elastic block (that
is, L � H ) loaded in compression at one end and restrained at the other. The block is also restrained
against compression in the x direction by the frictional contact model along its base. No strain is permitted
in either the y or z direction. The block has length L = 10 m with L/H = 10, Young’s modulus
E = 1.0 × 105 kPa, Poisson’s coefficient v = 0.0, and the initial value of applied stress P = 100 kPa.

For this analysis the penalty method was used with normal and tangential penalties equal to εN = 104

and εT = 108, respectively. The Coulomb frictional law at the block-foundation interface has friction
coefficient µ = 0.5. The analysis was executed under loading control conditions. The system was mod-
eled by a finite element mesh consisting of 20 eight-node hexahedral elements; see Figure 5 (right). The
results for the horizontal displacements at the contact interface obtained in this analysis were compared
with the results obtained in the numerical solutions developed for [Hird and Russell 1990] for different
load levels as shown in Figure 6.

4.2. Buried pipeline. Figure 7 shows a buried steel pipe of diameter D0 = 1 m embedded at a depth 2D0

with the following mechanical and geometrical properties: axial stiffness E A = 4.2 × 105 kN, flexural

L=10m

H=1m P

Figure 5. Definition of the long elastic block problem (left). Finite element mesh (right).
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0,00 0,00 0 0 0
1,00 0,43 0,852 1,28 1,7
2,00 0,82 1,63 2,45 3,27
3,00 1,16 2,33 3,49 4,65
4,00 1,49 2,98 4,46 5,95
5,00 1,82 3,65 5,47 7,29
6,00 2,20 4,4 6,6 8,8
7,00 2,65 5,3 7,95 10,6
8,00 3,22 6,43 9,65 12,9
9,00 3,86 7,73 11,6 15,5

10,00 4,72 9,43 14,4 18,8

0,00 0,759747 1,519494 2,279241 3,038988
1,00 0,822214 1,644429 2,466643 3,288858
2,00 0,895875 1,791749 2,687624 3,583498

Horizontal Displacements on the interface
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Figure 6. Horizontal displacements at contact interface; results of CARAT versus
[Hird and Russell 1990].

stiffness E I = 0.1 kN·m2, thickness t = 2 mm, and Poisson’s ratio νp = 0.3. The linear elastic soil layer
has thickness H = 8 m, Young’s modulus E = 2.7×103 kPa, and Poisson’s ratio νs = 0.33. The soil layer
is submitted to a strip load q = 100 kPa, uniformly distributed over a length B = 2 m in the xy-plane;
see Figure 6.

Due to symmetry, only half of the soil-pipe system was modeled by a finite element mesh (Figure 7,
right), consisting of 365 eight-node elements (brick8). The analysis was carried out under the assumption
of plane strain conditions, by preventing axial displacements through the introduction of proper boundary
constraints. The frictional coefficient was considered to be µ = 0.5, and the penalty parameters were
εN = 104 and εT = 108. The analysis was executed under displacement control conditions. Figure 8
shows the horizontal and vertical field displacement of the soil-pipe system according to the frictional
contact formulation.

B=2m

D

5Do5Do

2Do

5Do

Figure 7. Geometry of the soil-pipe system (left). Finite element mesh (right).
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Figure 8. Vertical (left) and horizontal (right) displacement fields according to the fric-
tional contact formulation.

4.3. Soil-pipe interaction: three-dimensional model. In this example the elastic behavior of the soil
is considered with Young’s modulus E = 50.0 MPa and Poisson’s coefficient v = 0.2. The pipeline
assumes an elasto-plastic constitutive model based on the von Mises criteria with isotropic hardening.
The yielding stress and the tangent modulus are Sy = 420 MPa and ET = 75000 MPa, respectively. Pipe
properties are listed in Table 1.

The loading applied to the pipeline consists in an internal pressure equal to 9.0 MPa, transversal load
of 1000.0 N/m, and the overburden (γ = 1.8 KN/m3), according to Table 2.

Due to symmetry, only half of the soil-pipe system is modeled by a finite element mesh (longitudinal
direction), consisting of 622 eight-node hybrid brick elements (Hexa8-E3). Pipeline geometry and the
finite element model are shown in Figure 9. The frictional coefficient is considered to be µ = 0.1 and
the penalty parameters are εN = 102 and εT = 102. The analysis was carried out under load control
conditions. The frictional contact problem formulation simulates the soil-pipe interface behavior.

The internal pressure induces longitudinal stresses in the pipe due to Poisson’s effect; see Figure 10.
These longitudinal stresses arise when the pipe is restricted at its ends and/or by the presence of longitu-
dinal friction. We have verified that the pipe has achieved yielding; see Figure 10.

Parameter Value

Izz (m4) 7.9516531 × 10−5

A (m2) 6.2586416 × 10−3

De (m) 0.325

Di (m) 0.3125

t (m) 0.00625

Table 1. Pipe properties.
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Distance Overburden Additional Load Internal Pressure

0 – 5.0 m X X X

5.0 – 6.5 m X - X

6.5 – 8.0 m - - X

8.0 – 13.0 m - - X

Table 2. Pipeline load.

Figure 9. The pipeline geometry in the yz-plane (left). Finite element mesh: 622 Hexa8-
EAS elements (right).

Figure 10. Longitudinal stresses and von Mises stresses obtained with our model.

5. Conclusion

This work presents a finite element numerical model for the analysis of buried pipes. The solution of
elasto-plastic contact problem includes the presence of large elasto-plastic strains. The contact conditions
are imposed through a penalty formulation that has been proven quite effective in the cases studied, if the
penalty parameters are adequately chosen. For problems in which the contacting bodies present stiffness
of the same order of magnitude the choice of these parameters is not difficult. Large normal contact
forces make the parameter calibration more troublesome.



1512 NELLY PIEDAD RUBIO, DEANE ROEHL AND CELSO ROMANEL

This is not usually the case by pipe-soil systems. An application of the model to the problem of a
buried pipe under close to site conditions illustrates the effectiveness of the soil-pipe interaction model
for more realistic engineering problems.
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