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ELECTROELASTIC INTENSIFICATION AND DOMAIN SWITCHING NEAR A
PLANE STRAIN CRACK IN A RECTANGULAR PIEZOELECTRIC MATERIAL

YASUHIDE SHINDO, FUMIO NARITA AND FUMITOSHI SAITO

We study the effects of crack face boundary conditions and localized polarization switching on the
piezoelectric fracture. This paper consists of two parts. In the first part, the electroelastic problem
of an infinite piezoelectric material with a crack is formulated by means of integral transforms, and
the exact solution is obtained. The electroelastic fields are expressed in closed form. The fracture
mechanics parameters, such as energy release rate, are obtained for the permeable, impermeable and
open crack models. In the second part, finite element analysis is carried out to study the crack behavior
in a rectangular piezoelectric material by introducing a model for polarization switching in local areas
of electroelastic field concentrations. A nonlinear behavior induced by localized polarization switching
is observed between the fracture mechanics parameters and applied electric field.

1. Introduction

The fracture behavior of piezoelectric materials has received much attention in recent years. In the
theoretical studies of the piezoelectric crack problems, there are two commonly used electrical boundary
conditions across the crack face: (1) the permeable crack model and (2) the impermeable crack model.
Theoretical analyses on cracked piezoelectric ceramics indicated that a negative energy release rate is
produced for the impermeable crack model [Narita et al. 2003]. Furthermore, some experimental results
show that the fracture loads are increased or decreased depending on the mechanical loading conditions
(applied load or applied displacement) and direction of electric fields [Park and Sun 1995; Shindo et al.
2002; Narita et al. 2003; Shindo et al. 2005]. These experimentally observed phenomena contradict the
results of the calculations using energy release rate for the impermeable crack model. Recently, some
researchers [Xu and Rajapakse 2001; Wang and Mai 2003; Landis 2004; McMeeking 2004] used the open
piezoelectric crack model [Hao and Shen 1994] and discussed the effect of electric fields on the fracture
mechanics parameters such as energy release rate. Although the impermeable and open crack models
may provide mathematical solutions of piezoelectric cracks, there is still a great deal of uncertainty in
searching for fracture design parameters characterizing the electric failure.

The nonlinear effect caused by the polarization switching may affect the piezoelectric fracture behavior
[Fu and Zhang 2000; Shindo et al. 2003]. In this investigation, the effects of crack face boundary
conditions and localized polarization switching near the crack tip on the piezoelectric fracture mechanics
parameters are studied by analyzing the plane strain electroelastic problem of a piezoelectric material
with a crack. First, the crack problem of an infinite piezoelectric material is formulated by means of
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Figure 1. A rectangular piezoelectric material with a crack.

integral transforms and the solutions are obtained exactly. Electroelastic fields and energy release rate
based on permeable, impermeable and open crack models are compared. Secondly, a finite element
method incorporating the polarization switching mechanism is used to calculate the energy release rate
in a rectangular piezoelectric material. The numerical results illustrate that the impermeable and open
crack models can lead to significant errors regarding the effect of electric fields on piezoelectric crack
propagation.

2. Statement of the problem and basic equations

A rectangular piezoelectric material of length 2l and width 2h contains a central crack of length 2a, as
shown in Figure 1. A set of Cartesian coordinates {x, y, z} is attached to the center of the crack normal
to the z-axis. The piezoelectric material has symmetry properties of hexagonal crystal of 6 mm class
with respect to the x, y, z-axes, and is under a state of plane strain. The material is loaded by mechanical
displacement u0 with the electric field in the z-direction of the poling axis. Due to the symmetry of the
problem, only the first quadrant with appropriate boundary conditions needs to be analyzed.

The constitutive equations can be written as

σxx = c11ux,x+c13uz,z−e31 Ez, σzx = c44(ux,z+uz,x)−e15 Ex , σzz = c13ux,x+c33uz,z−e33 Ez, (1)

Dx = e15(ux,z+uz,x)+ε11 Ex , Dz = e31ux,x+e33uz,z+ε33 Ez. (2)

Here σxx , σzz, σxz = σzx are the components of stress tensor, Dx and Dz are the components of electric
displacement vector, ux and uz are the components of displacement vector, Ex and Ez are the components
of electric field intensity vector; c11, c13, c33, c44 are the elastic stiffness constants measured in a constant
electric field, ε11, ε33 are the dielectric permittivities measured at constant strain, and e15, e31, e33 are the
piezoelectric constants. A comma implies partial differentiation with respect to the coordinates. The
electric field components are related to the electric potential φ(x, z) via Ex = −φ,x and Ez = −φ,z . The
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governing equations can be written as

c11ux,xx + c44ux,zz + (c13 + c44)uz,xz + (e31 + e15)φ,xz = 0,

c44uz,xx + c33uz,zz + (c13 + c44)ux,xz + e15φ,xx + e33φ,zz = 0,

(e31 + e15)ux,xz + e15uz,xx + e33uz,zz − ε11φ,xx − ε33φ,zz = 0.

(3)

In a vacuum, the constitutive equations (2) and the governing equation (3)3 become

Dx = ε0 Ex , Dz = ε0 Ez, φ,xx + φ,zz = 0, (4)

where ε0= 8.85 × 10−12 C/Vm is the electric permittivity of the vacuum.
The crack face boundary and the loading conditions can be expressed in the form

σzx(x, 0) = 0 (0 ≤ x ≤ h), σzz(x, 0) = 0 (0 ≤ x < a), uz(x, 0) = 0 (a ≤ x ≤ h) (5)

Ex(x, 0) = Ec
x(x, 0) (0 ≤ x < a), φ(x, 0) = 0 (a ≤ x ≤ h), (6)

Dz(x, 0) = Dc
z (x, 0) (0 ≤ x < a), (7)

uz(x, l) = u0, (0 ≤ x ≤ h), φ(x, l) = φ0 (0 ≤ x ≤ h). (8)

where φ0 is an applied electric potential and the superscript c stands for the electric field quantity in the
void inside the crack. The electric potential is zero on the symmetry planes inside the crack and ahead
of the crack, so the boundary conditions (6) reduce to φ(x, 0) = 0 for 0 ≤ x ≤ h. Equations (6) and (7)
are the permeable boundary conditions.

Applying the loading conditions (8), the stress σzz for the uncracked piezoelectric material is

σzz(x, z) = σ0 − e1 E0, σ0 =

(
c33 −

c2
13

c11

)
u0

l
, E0 = −

φ0

l
, e1 = e33 −

(
c13

c11

)
e31. (9)

The stress at z = l for the uncracked piezoelectric material is denoted by σl = σ0 − e1 E0. Note that σ0 is
the stress for a closed-circuit condition with the potential forced to remain zero (grounded) and depends
only on the displacement at the edge z = l. When a uniform displacement u0 is applied and fixed at z = l,
the stress σ0 will be uniform. On the other hand, when the stress σl is applied and fixed at z = l, σl is
left unchanged and the displacement u0 depends on E0.

3. Cracked infinite piezoelectric material

In this section we consider the problem of an infinite piezoelectric material with a crack for l → ∞

and h → ∞. The material is under applied uniform strain ε0 and electric field E0 at infinity. The
stress at infinity is denoted by σl = σ0 − e1 E0, and Equation (9)2 can be rewritten in terms of ε0 as
σ0 =

(
c33 − c2

13/c11
)
ε0. Fourier transforms are used to reduce the mixed boundary value problem to a

pair of dual integral equations. The integral equations then can be solved exactly; see Appendix A. The
energy release rate G for the permeable crack model may be expressed as

G =
1

2F2

(
− F

3∑
j=1

d j

γ j
+

3∑
k=1

hkdk

3∑
j=1

b j d j

γ j

)
K 2

I , (10)
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where the stress intensity factor KI is defined as KI = limx→a+[2π(x − a)]1/2σzz(x, 0). The stress
intensity factor under applied strain and applied stress is given by, respectively,

KI =

{(
c33 −

c2
13

c11

)
ε0 − e1 E0

}
(πa)1/2, KI = σl(πa)1/2. (11)

Energy release rates for the impermeable and open crack models are discussed in Appendices B and C,
respectively.

4. Cracked rectangular piezoelectric material

In this section the finite element computer program ANSYS is selected for the analysis of the con-
figuration considered here. A nonlinear finite element model incorporating the polarization switching
mechanisms with the energy release rate calculations is developed. Two criteria are used for this purpose:
work done switching criterion, and internal energy density switching criterion.

The first criterion requires that a polarization switches when the combined electrical and mechanical
work exceeds a critical value [Hwang et al. 1995]

σxx1εxx + σzz1εzz + 2σzx1εzx + Ex1Px + Ez1Pz = 2Ps Ec, (12)

where 1εxx , 1εzz, 1εzx are the changes in the spontaneous strain γ s, 1Px , 1Pz are the changes in the
spontaneous polarization Ps, and Ec is a coercive electric field. It is assumed that elastic and dielectric
constants of the piezoelectric materials remain unchanged after 180◦ or 90◦ polarization switching occurs
and only piezoelectric constants vary with switching. It is also assumed that for 90◦ switching there are
two allowable directions of the poling in the coordinate system: in the positive and negative x-direction.
The changes in spontaneous strains and polarizations for 180◦ switching can be expressed as

1εxx = 1εzz = 1εzx = 0, 1Px = 0, 1Pz = −2Ps.

For 90◦ switching in the xz plane, we have

1εxx = γ s, 1εzz = −γ s, 1εzx = 0, 1Px = ±Ps, 1Pz = −Ps.

The polarization switching criterion based on internal energy density is defined as [Sun and Achuthan
2004]

U = Uc, (13)

where U is the internal energy density and Uc is its critical value corresponding to the switching mode.
The internal energy density associated with 180◦ and 90◦ switching, respectively, is

U =
1
2 Dz Ez, U =

1
2(σxxεxx + σzzεzz + 2σzxεzx + Dx Ex).

We assume that the critical value of internal energy density takes the form Uc =
1
2εT

33(Ec)
2, where εT

33 is
the dielectric permittivity at constant stress.

Due to polarization switching, piezoelectric materials are often nonhomogeneous. The piezoelectric
properties vary from one location to the other, and the variations are either continuous or discontinuous.
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The energy release rate G can be obtained from the following crack tip integral [Shindo et al. 2005]:

G =

( ∫
00

−

∫
0p

){
Hnx − (σxx ux,x + σzx uz,x)nx − (σzx ux,x + σzzuz,x)nz + Dx Ex nx + Dz Ex nz

}
d0,

where 00 is a small contour closing a crack tip, 0p is a path embracing that part of phase boundary which
is enclosed by 00, and nx , nz are the components of the outer unit normal vector. The electrical enthalpy
density H is

H(ux , uz, Ex , Ez) =
1
2

(
c11u2

x,x + c33u2
z,z + 2c13ux,x uz,z + c44(ux,z + uz,x)

2)
−

[
1
2

(
ε11 E2

x + ε33 E2
z
)
+ e15(ux,z + uz,x)Ex + (e31ux,x + e33uz,z)Ez

]
.

Each element consists of many grains, and each grain is modeled as a uniformly polarized cell that
contains a single domain. The model neglects the domain wall effects and interaction among different
domains. In reality these effects matter, but the assumption does not affect the general conclusions drawn.
The polarization of each grain initially aligns as closely as possible to the z-direction. Polarization
switching is defined for each element in the material. The displacement u0 and electric potential φ0 are
applied at the edge 0 ≤ x ≤ h, z = l, and the electroelastic fields of each element are computed from
the finite element analysis. The switching criterion (12) or (13) is checked for every element to see
if switching will occur. After all possible polarization switches have occurred, the piezoelectric tensor
of each element is rotated to the new polarization direction. The electroelastic fields are recalculated,
and the process is repeated until the solution converges. The macroscopic response of the material is
determined by the finite element model, which is an aggregate of elements. The spontaneous polarization
Ps and strain γ s are assigned representative values of 0.3 C/m2 and 0.004, respectively. Our previous
experiments [Yoshida et al. 2003; Shindo et al. 2004; Narita et al. 2005] verified the accuracy of the above
scheme, and showed that the results obtained are of general applicability. After polarization switching
is predicted, J-integral paths are selected, which do not pass exactly through the singular point.

The calculations of the electroelastic fields and energy release rate for the open crack model are more
complicated than for the permeable and impermeable crack models. The open crack model calculations
start with φ = 0 on the crack surface [McMeeking 1999]. The crack opening displacement and charge
density on the crack surface are estimated, and the resulting potential difference is applied to the crack
surface. The electroelastic fields are again solved leading to new crack opening displacement and charge
density on the crack surface. If this is accomplished, then the potential difference is applied once more
to the crack surface. Such a procedure is repeated until the evolution of the objective solutions shows no
improvements.

5. Numerical results and discussion

Numerical calculations have been carried out for commercially available piezoelectric ceramics C-91
(Fuji Ceramics, Japan). The material properties of C-91 are listed in Table 1, and the coercive electric
field Ec is approximately 0.35 MV/m. Figure 2a shows the crack opening displacement uz(x, 0+) from
the theoretical solutions for an infinite C-91 (l, h → ∞) with a crack of length 2a = 2 mm under ε0 =

5 × 10−5 and E0 = 0. The results for the permeable, open and impermeable crack models are shown
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Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(×1010 N/m2) (C/m2) (×10−10 C/V m)

c11 c12 c13 c33 c44 e31 e33 e15 ε11 ε33

12.0 7.7 7.7 11.4 2.4 −17.3 21.2 20.2 226 235

Table 1. Material properties of C-91.

(a) (b)

(c) (d)

Figure 2. (a) Displacement uz(x, 0+); (b) electric potential φ(x, 0+); (c) normal com-
ponent of electric displacement Dz(x, 0+); and (d) tangential component of electric field
Ex(x, 0+) along the upper crack surface for an infinite piezoelectric material C-91 under
uniform strain. Here l, h → ∞, a = 1 mm, ε0 = 5 × 10−5 and E0 = 0. The permeable
model is represented by the solid line, open by the dot-dashed line, and the impermeable
by the dashed line.
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for comparison purposes. Little difference among three piezoelectric crack models is observed. The rest
of Figure 2 shows the electric potential φ(x, 0+), normal component of electric displacement Dz(x, 0+)

and tangential component of electric field Ex(x, 0+) along the upper crack surface. There are differences
among the crack models. It is noted that the open and impermeable crack models reduce the continuity
of the tangential components of the electric field across the crack surface.

Figure 3a presents the crack opening displacement uz(0, 0+) at the center of the crack versus electric
field E0 from the finite element analysis without the polarization switching effect. The rectangular
piezoelectric material C-91 with a crack of length 2a = 2 mm has a length 2l = 20 mm and width
2h = 20 mm, and is under applied displacement u0 = 0.5 µm corresponding to the uniform strain
5 × 10−5 for the uncracked material. For comparison, the results for the infinite piezoelectric material
(l, h → ∞, ε0 = 5 × 10−5) obtained from the theoretical analysis are included. The results for the finite
element analysis agree with the theoretical analysis data. Figure 3b shows similar results for the normal
component of electric displacement Dz(0, 0+).

Figure 4a shows the dependence of the energy release rate G on E0. The results for the infinite
piezoelectric material obtained from the theoretical analysis are also shown. The energy release rates are
lower for positive electric fields and higher for negative electric fields under applied displacement. In the
impermeable case, a negative energy release rate is produced. The energy release rate for the permeable
crack in the infinite piezoelectric material under applied stress is independent of the electric field (not
shown). Figure 4b shows the similar results under u0 = 1 µm with ε0 = 10−4. A negative energy release
rate is also produced for the open crack model. The parameters for the impermeable and open crack
models have questionable physical significance.

(a) (b)

Figure 3. (a) Crack center displacement uz(0, 0+) and (b) normal component of electric
displacement Dz(0, 0+) versus electric field E0 for rectangular piezoelectric material C-
91 under applied displacement for finite element analysis data l = h = 10 mm, whereas
the theoretical prediction is made with l, h → ∞. a = 1 mm, ε0 = 5 × 10−5, and
u0 = 0.5 µm. The permeable theory is represented by the solid line and data with open
circles, open by the dot-dashed line and triangles, and the impermeable by the dashed
line and solid circles.
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(a) (b)
Figure 4. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied displacement. For finite element analysis data l = h =

10 mm, whereas the theoretical prediction is made with l, h → ∞; also a = 1 mm. (a)
ε0 = 5 × 10−5 and u0 = 0.5 µm, (b) ε0 = 10−4 and u0 = 1 µm. For legend, see Figure 3.

Figure 5 displays the variation of G with electric field E0 for the permeable crack model from the finite
element analysis with and without the polarization switching effect. For the polarization switching effect,
the predictions by the criteria based on work (12) and energy density (13) are shown. The rectangular
piezoelectric material C-91 (2l = 5 mm, 2h = 5 mm) with a crack (2a = 2 mm) is under applied displace-
ment u0 = 0.125 µm corresponding to the uniform strain 5 × 10−5 for the uncracked material. Positive
electric fields decrease the values of G, while negative electric fields have an opposite effect. A monoton-
ically increasing negative E0 causes polarization switching. The value of electric field associated with
the switching is −0.25 MV/m for the work-based criterion, while it is approximately −0.17 MV/m for

Figure 5. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied displacement in the permeable model. l = h = 2.5 mm,
a = 1 mm, and u0 = 0.125 µm. Thin line gives prediction without polarization switching;
the dashed line gives work-based and thick line gives energy density-based switching
effect.
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the criterion based on the energy density. When the negative E0 increases further, G with the polarization
switching effect becomes larger than that without the switching effect. After E0 reaches about −0.325
(−0.305) MV/m, polarization switching in a local region, based on the work (energy density), leads to
an unexpected decrease in G for the permeable crack. Our previous experimental study [Shindo et al.
2003] showed a significant nonlinearity in the fracture load due to polarization switching. The nonlinear
effect caused by polarization switching may affect the piezoelectric crack behavior.

Figure 6 shows the 180◦ and 90◦ switching zones near the permeable crack tip in the rectangular
piezoelectric material C-91 (2l = 5 mm, 2h = 5 mm, 2a = 2 mm) under u0 = 0.125 µm for various
values of E0. Predictions resulting from different criteria are presented. The size of the 180◦ (90◦)
switching zone behind (ahead of) the crack tip increases at first when the negative E0 is increased, and
the difference between energy release rate results with and without switching effect becomes larger at a
higher negative E0. As the negative E0 continues increasing, the area of the 180◦ switching zone grows
ahead of the crack tip. Unexpected decrease in G is attributed to 180◦ switching ahead of the crack tip.
In the impermeable case, the region ahead of the crack tip is found to undergo 180◦ switching due to the
large negative electric field, and the region behind the crack tip has 90◦ switching because of the large
intensified electric field Ex [Kalyanam and Sun 2005].

The applied displacement may enhance the polarization switching depending on its magnitude. The
critical value of the electric field associated with the polarization switching decreases (relative to u0 =

Figure 6. Polarization switching zone induced by displacement u0 = 0.125 µm and
electric field E0 of (a, d) −0.25, (b, e) −0.30, (c, f) −0.32 MV/m based on different
criteria: (a–c) work and (d–f) energy density.
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Figure 7. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied displacement in the permeable model. l = h = 2.5 mm,
a = 1 mm, and u0 = 0.5 µm. For legend, see Figure 5.

0.125 µm) when u0 = 0.5 µm is applied, as shown in Figure 7. After E0 reaches about −0.21 (−0.15)
MV/m, the G with the switching effect, based on the work (energy density), deviates from the curve
without the switching effect. This is due to the 180◦ switching behind the crack tip; see Figure 8. As

Figure 8. Polarization switching zone induced by displacement u0 = 0.5 µm and elec-
tric field E0 of (a, d) −0.10, (b, e) −0.20, (c, f) −0.30 MV/m based on different criteria:
(a–c) work; (d–f) energy density.
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Figure 9. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied stress in the permeable model. l = h = 2.5 mm and a = 1 mm.
We present results for σl = 22.8 and 5.70 MPa. For legend, see Figure 5.

E0 reaches about −0.32 (−0.30) MV/m, G falls. In the experimental data [Sun and Park 2000], crack
length deviated from the linear function of the electric field for the case of a larger load, especially for
negative electric fields. By including the polarization switching effect of the energy release rate, the
observed nonlinear dependence of piezoelectric crack behavior on the electric field is explained.

Figure 9 shows the energy release rate G versus electric field E0 under applied stress. The rectangular
piezoelectric material C-91 (2l = 5 mm, 2h = 5 mm) with a permeable crack (2a = 2 mm) is subjected to
the stress σl = 22.8 MPa, corresponding to the uniform strain 2×10−4 for the uncracked material without
the electric field. We also present data for σl = 5.70 MPa. The results for positive E0 under applied stress
are different from those under applied displacement, and the energy release rate for the permeable crack
in the rectangular piezoelectric material is independent of the positive E0. The behavior of the energy
release rate for negative E0 is complicated because of the polarization switching phenomena.

6. Conclusions

Theoretical and finite element analyses are presented for the cracked piezoelectric materials under tension.
Based on the results of this study, the following conclusions may be inferred:

(1) Piezoelectric crack face boundary conditions strongly affect the electric field effect characteristics
of the electromechanical behavior and fracture mechanics parameters such as energy release rate.

(2) The energy release rate criteria for the open and impermeable crack models led to negative values
which are unphysical. The energy release rate for the permeable crack always remains positive.

(3) For the permeable crack in the rectangular piezoelectric material, the positive electric field decreases
the energy release rate under applied displacement. If the negative electric field is applied, localized
polarization switching occurs due to electroelastic field concentrations near the crack tip, and the
switching causes a sudden change in the energy release rate under applied displacement or stress.
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(4) The higher mechanical loading level decreases the critical value of the electric field associated with
the polarization switching, and the localized 180◦ switching ahead of the crack tip can significantly
influence the energy release rate.

Appendix A

We consider an infinite piezoelectric material with a permeable crack under applied strain ε0 and electric
field E0. The crack face boundary and loading conditions become

σzx(x, 0) = 0 (0 ≤ x < ∞), σzz(x, 0) = 0 (0 ≤ x < a), uz(x, 0) = 0 (a ≤ x < ∞), (A.1)

Ex(x, 0) = Ec
x(x, 0) (0 ≤ x < a), φ(x, 0) = 0 (a ≤ x < ∞), (A.2)

Dz(x, 0) = Dc
z (x, 0) (0 ≤ x < a), (A.3)

εzz(x, z) = ε0 (0 ≤ x < ∞, z → ∞), Ez(x, z) = E0 (0 ≤ x < ∞, z → ∞). (A.4)

Fourier transform is applied to Equations (3) and the results satisfying the loading conditions (A.4) are

ux(x, z) =
2
π

3∑
j=1

∫
∞

0
a j A j (α) exp(−γ jαz) sin(αx)dα +

(
c13

c2
13 − c33c11

(σl + e1 E0) +
e31

c11
E0

)
x,

uz(x, z) =
2
π

3∑
j=1

∫
∞

0

1
γ j

A j (α) exp(−γ jαz) cos(αx)dα +
c11

c33c11 − c2
13

(σl + e1 E0)z,

φ(x, z) = −
2
π

3∑
j=1

∫
∞

0

b j

γ j
A j (α) exp(−γ jαz) cos(αx)dα − E0z,

(A.5)

where A j (α) are the unknowns to be solved for, a j and b j stand for expressions

a j =
(e31 + e15)(c33γ

2
j − c44) − (c13 + c44)(e33γ

2
j − e15)

(c44γ
2
j − c11)(e33γ

2
j − e15) + (c13 + c44)(e31 + e15)γ

2
j
, b j =

(c44γ
2
j − c11)a j + (c13 + c44)

e31 + e15
,

and γ 2
j are the roots of the characteristic equation a0γ

6
+ b0γ

4
+ c0γ

2
+ d0 = 0 with

a0 = c44(c33ε33 + e2
33), d0 = −c11(c44ε11 + e2

15),

b0 = −2c44e15e33 − c11e2
33 − c33(c44ε11 + c11ε33) + ε33(c13 + c44)

2

+ 2e33(c13 + c44)(e31 + e15) − c2
44ε33 − c33(e31 + e15)

2,

c0 = 2c11e15e33 + c44e2
15 + c11(c33ε11 + c44ε33) − ε11(c13 + c44)

2

− 2e15(c13 + c44)(e31 + e15) + c2
44ε11 + c44(e31 + e15)

2.

Application of the Fourier transform to Equation (4)3 yields

φc
=

2
π

∫
∞

0
C(α) sinh(αz) cos(αx)dα, (0 ≤ x < a),

where C(α) is also unknown.



ELECTROELASTIC INTENSIFICATION AND DOMAIN SWITCHING NEAR A PLANE STRAIN CRACK 1537

By applying the crack face boundary conditions of Equations (A.1) and (A.2), the unknowns A j (α)

are related to the stress σl via

A j (α) = −
π

2
d j

F
a J1(aα)

α
σl,

where J1( ) is the order one Bessel function of the first kind and F =
∑3

j=1 g j d j with

d1 = γ1(b2 f3 − b3 f2), d2 = γ2(b3 f1 − b1 f3), d3 = γ3(b1 f2 − b2 f1),

f j = c44(a jγ
2
j + 1) − e15b j , g j = c13a j − c33 + e33b j .

The displacement uz and electric potential φ on the crack surface are given by

uz(x, 0) = −
b
F

σl(a2
− x2)1/2, φ(x, 0) = 0, b = b1( f2 − f3) + b2( f3 − f1) + b3( f1 − f2).

The tangential component of electric field Ex and the normal component of electric displacement Dz on
the crack surface are

Ex(x, 0) = 0, Dz(x, 0) = Dl −
σl

F

3∑
j=1

h j d j ,

Dl =
e31c13 − e33c11

c2
13 − c33c11

σ0 +

(
e2

31

c11
+ ε33

)
E0, h j = e31a j − e33 − ε33b j .

The displacement component uz and electric potential φ near the crack tip can be written as

uz = −
KI

F

(
r
π

)1/2 3∑
j=1

d j

γ j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

− cos θ
]1/2

,

φ =
KI

F

(
r
π

)1/2 3∑
j=1

b j d j

γ j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

− cos θ
]1/2

,

(A.6)

where the polar coordinates r and θ are defined by r = [(x − a)2
+ z2

]
1/2, θ = tan−1 z/(x − a). The

singular parts of the stress σzz and electric displacement Dz in the neighborhood of the crack tip are

σzz =
KI

2F(πr)1/2

3∑
j=1

g j d j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

+ cos θ

cos2 θ + γ 2
j sin2 θ

]1/2

,

Dz =
KI

2F(πr)1/2

3∑
j=1

h j d j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

+ cos θ

cos2 θ + γ 2
j sin2 θ

]1/2

.

(A.7)

By using the concept of crack closure energy and the asymptotic behavior of electroelastic fields near
the crack tip illustrated in Equations (A.6) and (A.7), the energy release rate G in Equation (10) for the
permeable crack model can be obtained.
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Appendix B

A solution procedure for the impermeable crack model in the infinite piezoelectric material is outlined
here. The crack face electric boundary condition for the impermeable crack model is

Dz(x, 0) = 0 (0 ≤ x < a), φ(x, 0) = 0 (a ≤ x < ∞). (B.8)

The unknowns A j (α) in Equations (A.5) can be found using the same approach as in the permeable case.
By applying the crack face boundary conditions of Equations (A.1) and (B.8), the unknowns A j (α) are
related to σl and Dl as follows:

f1

γ1
A1(α) +

f2

γ2
A2(α) +

f3

γ3
A3(α) = 0,

1
γ1

A1(α) +
1
γ2

A2(α) +
1
γ3

A3(α) = −
π

2F ′

a
α

J1(aα)(F22σl − F12 Dl),

b1

γ1
A1(α) +

b2

γ2
A2(α) +

b3

γ3
A3(α) =

π

2F ′

a
α

J1(aα)(F21σl − F11 Dl).

where

F11 =
1
b

3∑
j=1

g j d j , F12 =
1
b

3∑
j=1

g j l j , F21 =
1
b

3∑
j=1

h j d j , F22 =
1
b

3∑
j=1

h j l j ,

F
′

= F11 F22 − F12 F21, l1 = γ1( f2 − f3), l2 = γ2( f3 − f1), l3 = γ3( f1 − f2).

The displacement uz , electric potential φ, tangential component of electric field Ex and normal compo-
nent of electric displacement Dz on the crack surface are given by

uz(x, 0) = −
F22σl − F12 Dl

F ′

(
a2

− x2)1/2
, φ(x, 0) = −

F21σl − F11 Dl

F ′

(
a2

− x2)1/2
,

Ex(x, 0) = −
F21σl − F11 Dl

F ′

x(
a2 − x2

)1/2 , Dz(x, 0) = 0.

The energy release rate GI for the impermeable crack model is

GI
= −

1
2F ′2

[(
F ′

3∑
j=1

s j

γ j
−

3∑
k=1

hksk

3∑
j=1

b j s j

γ j

)
K 2

I

+

( 3∑
k=1

hk tk
3∑

j=1

b j s j

γ j
+

3∑
k=1

hksk

3∑
j=1

b j t j

γ j
− F ′

3∑
j=1

t j

γ j

)
KIKD −

( 3∑
k=1

hk tk
3∑

j=1

b j t j

γ j

)
K 2

D

]
, (B.9)

where s j = d j F22−l j F21 and t j = d j F12−l j F11. In Equation (B.9) the stress and the electric displacement
intensity factors are given by, respectively,

KI = lim
x→a+

[2π(x − a)]1/2σzz(x, 0) = σl(πa)1/2, KD = lim
x→a+

[2π(x − a)]1/2 Dz(x, 0) = Dl(πa)1/2.
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Appendix C

The solutions for the open crack model in the infinite piezoelectric material can be derived as follows.
The crack face electric boundary condition for the open crack model becomes

D+

z = D−

z (0 ≤ x < a), D+

z (u+

z −u−

z ) = ε0(φ
−

−φ+) (0 ≤ x < a), φ(x, 0) = 0 (a ≤ x < ∞).

(C.10)
where the superscripts + and − denote the upper and lower crack surfaces, respectively. By applying the
crack face boundary conditions of Equations (A.1) and (C.10), the unknowns A j (α) in Equations (A.5)
are related to σl and Dl as follows:

f1

γ1
A1(α) +

f2

γ2
A2(α) +

f3

γ3
A3(α) = 0,

1
γ1

A1(α) +
1
γ2

A2(α) +
1
γ3

A3(α) = −
π

2F ′

a
α

J1(aα)
(
F22σl + F12(D0 − Dl)

)
,

b1

γ1
A1(α) +

b2

γ2
A2(α) +

b3

γ3
A3(α) =

π

2F ′

a
α

J1(aα)
(
F21σl + F11(D0 − Dl)

)
,

where

D0 = −ε0
F21σl + F11(D0 − Dl)

F22σl + F12(D0 − Dl)
.

If ε0 = 0, D0 is equal to zero. When ε0 becomes very large, the expression for D0 above shows that
D0 → Dl − (F21/F11)σl .

The displacement, electric potential, tangential component of electric field and normal component of
electric displacement on the crack surface are

uz(x, 0) = −
F22σl + F12(D0 − Dl)

F ′

(
a2

− x2)1/2
, φ(x, 0) = −

F21σl + F11(D0 − Dl)

F ′

(
a2

− x2)1/2
,

Ex(x, 0) = −
F21σl + F11(D0 − Dl)

F ′

x(
a2 − x2

)1/2 , Dz(x, 0) = D0.

Energy release rate GO for the open crack model is given by (B.9) with KD = (Dl − D0)(πa)1/2.
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