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A NEW VARIABLE DAMPING SEMIACTIVE DEVICE FOR SEISMIC RESPONSE
REDUCTION OF CIVIL STRUCTURES

ORLANDO CUNDUMI AND LUIS E SUÁREZ

A semiactive mechanism, called a VDSA (variable damping semiactive device), is proposed to reduce
the seismic response of structures. It is composed of two fixed-orifice viscous fluid dampers installed in
the form of a V whose top ends are attached to a floor and their lower ends to a collar that moves along
a vertical rod. By varying the VDSA position one obtains an optimal instantaneous damping added to
the structure. The position of the moving end is calculated with an algorithm based on a variation of
the instantaneous optimal control theory which includes a generalized LQR (linear quadratic regulator)
scheme. This modified algorithm, referred to as Qv, is based on the minimization of a performance index
J quadratic in the state vector, the control force vector, and an absolute velocity vector. Two variants
of the algorithm are used to present numerical simulations of the controlled seismic response of a single
and a MDOF (multi-degree-of-freedom) structure.

1. Introduction

Civil engineering structures are typically designed to rely on their strength and ductility to withstand
the large forces imposed on them by strong earthquakes. A number of modern mechanical devices have
been proposed in the last two decades to reduce the structural response. They are known collectively as
protective devices and they include added viscoelastic dampers, viscous fluid dampers, frictional dampers,
tuned-mass dampers, and base isolation systems. The devices themselves and their design methodology
are referred to as passive control systems. At the highest level of sophistication for seismic protection are
the so called active control systems. Although these devices provide in theory the uppermost response
reduction, they also required a large amount of energy to operate and their robustness and reliability are
questionable.

In between these passive and active systems are the semiactive devices which, as the name indicates,
combine the features of the former two protective systems. The force (and thus the energy) required to
operate a semiactive device is much less than for an active system. To calculate the control forces that
operate the passive devices, it is necessary to know the response of the structure by measuring it with
sensors. A proper numerical algorithm processes this information and calculates how the properties of
the (formerly) passive device should be modified.

Semiactive control systems have only recently been considered for applications to large civil structures.
We believe that the application of these systems to civil engineering structures was first reported by
Hrovat et al. [1983]. Several devices that can deliver changeable variable damping such as variable
orifice dampers [Symans and Constantinou 1997; Kurata et al. 1999; Kurata et al. 2000] and hydraulics
dampers [Kawashima et al. 1992; Patten et al. 1993; Sack et al. 1994; Patten et al. 1996] have been
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proposed. Variable stiffness devices have also been proposed by Kobori et al. [1993], Nagarajaiah and
Mate [1998], and Gluck et al. [2000]. Furthermore, numerous algorithms have been developed for
selecting the appropriate damping coefficient [Yang et al. 1987; Soong 1990; Sadeck and Mohraz 1998;
Cundumi 2005; Cundumi and Suárez 2006b]. The list of references is meant only to provide a few
relevant examples; a comprehensive review of these systems is beyond the scope of this discussion.

The present paper describes the implementation of a VDSA device. In contrast to semiactive dampers
described in the technical literature, the damper coefficient c is not controlled by modifying the size of
an orifice in the piston, but by changing the position of the damper. The required damping coefficient is
calculated by means of two instantaneous optimal control algorithms: the (closed-loop control and the
closed-open-loop control). It is shown that both algorithms are effective in reducing the response. The
damping coefficient c(t) during the response can be adjusted between an upper limit cmax and a lower
value cmin.

This paper contains in detail the formulation and the results of a paper presented at the 9th Pan
American Congress of Applied Mechanics, in Mérida, Mexico [Cundumi and Suárez 2006a].

2. The modified algorithm Qv

It is well known that the equations of motion of a structure modeled as a MDOF system and subjected
to a base acceleration ẍg(t) at all its supports are given by

[M]n×n{ẍ(t)} + [C]n×n{ẋ(t)} + [K ]n×n{x(t)} = − [M]n×n{E}ẍg(t), (1)

where [M], [C] and [K ] are the mass, damping and stiffness matrix, respectively, the vectors {ẍ(t)},
{ẋ(t)} and {x(t)} contain the relative (with respect to the foundation) acceleration, velocity and displace-
ment of each dynamic degree of freedom of the structure, {E} is the vector of influence coefficients, and
n is the number of degrees of freedom. If all the degrees of freedom of the structural model coincide
with the direction of the applied ground motion, then the vector {E} is simply a vector with ones {I }.

If the structure is outfitted with r semiactive dampers, the previous equations of motion must be
changed as follows:

[M]n×n{ẍ(t)} + [C]n×n{ẋ(t)} + [K ]n×n{x(t)} = − [M]n×n{E}ẍg(t) + [D]n×r {u(t)}. (2)

The matrix [D] defines the locations of the controllers, r is the number of controllers and {u(t)} is the
r -dimensional control force vector. The location of the controllers (or the VDSA devices in our case) will
be determined via a trial and error process by trying to maximize the effect of the devices. No attempt
is made to determine the optimal position of the devices in an analytical way.

To solve the system of equations of motion, Equation (2), by transforming them into a set of uncoupled
equations, it is convenient to change into a system of 2n first order differential equations. In Linear
System Theory this method is referred to as the state-space representation. Introducing the following
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response vector and matrices,

{z(t)} =

{
{x(t)}
{ẋ(t)}

}
, [A] =

[
0 I

−M−1K −M−1C

]
,

[B] =

[ 0
M−1 D

]
, [H ] =

[ 0
−E

]
.

Equation (2) can be written in the form:

{ż(t)}2n×1 = [A]2n×2n{z(t)} + [B]2n×2r {u(t)} + [H ]2n×1 ẍg(t).

To define the variation of the control forces in {u(t)} one needs to select a control algorithm. In this
study, two algorithms (closed-loop control and closed-open-loop control) have been developed based on
the instantaneous optimal control theory. They are referred to here as the modified algorithms Qv. As
usual, this type of algorithm is based on the minimization of a performance index J quadratic in the state
vector {z(t)} and in the control force {u(t)}. However, in the modified algorithm a quadratic form of the
absolute velocity {ẋa(t)} is added to J . A penalty on the state vector is imposed through a matrix Q, on
the control vector through a matrix R and on the absolute velocity vector through a matrix Qv. Q and
Qv are two symmetric positive semidefinite weighting matrices of size 2n × 2n and n × n, respectively,
and R is an r × r positive definite weighting matrix. The performance index takes the form:

J =

t f∫
0

[
{z(t)}T

[ Q]{z(t)} + {ẋa(t)}T
[ Qv]{ẋa(t)} + {u(t)}T

[R]{u(t)}
]
dt,

where t f is the duration of excitation. Usually the excitation is not included in the definition of perfor-
mance indices. However, it was found that for a semiactive device with variable damping such as the
one presented in this work, including the excitation in the definition of J through the absolute velocity
has a beneficial effect on the effectiveness of the device.

The absolute velocity vector is computed as

{ẋa(t)} = [Av]n×2n{z(t)} + {Sv}n×1 ẋg(t),

where [Av] = [0 | I ], {Sv} = {1}, [I ] is an n × n identity matrix, {1} is a vector of 1’s of length n, and
ẋg(t) is the ground velocity.

The procedure to define the control and response vectors in the modified algorithm Qv can be found
in [Cundumi 2005]. Here only the final results are reported.

For the closed-loop control case, the variables {u(t)} and {z(t)} can be obtained as follows:

{u(t)} = −
1t
2

[R]
−1

[B]
T [

[A2]{z(t)} + [A3]ẋg(t)
]
,

{z(t)}=
[
[I ]+

1t2

4
[B][R]

−1
[B]

T
[A2]

]−1[
[T ]{d(t−1t)}−

1t2

4
[B][R]

−1
[B]

T
[A3]ẋg(t)+

1t
2

[H ]ẍg(t)
]
,

where 1t is the constant time step, [A2] = [Q]+[Av]
T
[Qv][Av], [A3] = [Av]

T
[Qv][Sv] and {d(t − 1t)}

contains the displacement x and the velocity ẋ at time t − 1t .
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For the closed-open-loop control case, {u(t)} and {z(t)} are calculated with the following equations:

{u(t)} =
1t
4

[R]
−1

[B]
T [

[P]{z(t)} + {p(t)}
]
, (3)

{z(t)}=
[
[I ]−

1t2

8
[B][R]

−1
[B]

T
[P]

]−1[
[T ]{d(t−1t)}+

1t2

8
[B][R]

−1
[B]

T
{p(t)}+

1t
2

[H ]ẍg(t)
]
.

(4)
In Equations (3) and (4), [P] is the Riccati matrix and {p(t)} represents the open-loop control.

[P] = −
[
[Q] + 2[Av]

T
[Qv][Av]

][
[I ] +

1t2

8
[Q][B][R]

−1
[B]

T
]−1

{p(t)} = −

[
1t2

8
[Q][B][R]

−1
[B]

T
+ [I ]

]−1[
[Q]

[
[T ]{d(t − 1t)} +

1t
2

[H ]ẍg(t)
]

+ 2[Av]
T
[Qv]{Sv}ẋg(t)

]
. (5)

3. Equations of motion of SDOF structures controlled with the VDSA device

The system considered is shown schematically in Figure 1. It consists of a single degree of freedom
structure (SDOF) with the proposed variable damping system installed. The dampers have fixed-constant
damping coefficient CoA and CoB . The structure consists of a mass m distributed at the roof level, a
massless frame that provides stiffness k to the system, and the natural (inherent) damping of the structure
is represented by a damper with constant Cs . This coefficient can be defined as 2ξmωn where ξ is the
inherent (original) damping ratio and ωn is the natural frequency of the SDOF system. This model may be
considered as an idealization of a one-story structure. In reality, each structural member (column, beam)
of the structure contributes to the inertial (mass), elastic (stiffness), and energy dissipation (damping)

Figure 1. Single degree of freedom model of a structure with a VDSA device.
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properties of the structure. In the idealized system, however, these properties are concentrated in three
separate, pure components: a lumped mass, a linear spring, and a linear viscous damper.

To move the common lower end of the two dampers one needs to use an actuator, for instance a
hydraulic actuator with fast reaction. The information required to determine the movement of the VDSA
device includes the relative displacement and velocity of the mass m and the ground velocity ẋg(t).

Figure 2 displays the velocities that govern the forces produced by the dampers: ẋ(t) is the relative
velocity of the floor and ẇ(t) is the velocity of the bottom end of the dampers. As shown in the Figure
2, the damping force is proportional to the difference between the components of the velocities ẋ(t) and
ẇ(t) along the axis of the dampers A and B of the VDSA device.

Using Figures 1 and 2, it can be shown that the equation of motion for the SDOF structure subjected
to the horizontal component of an earthquake-induced ground acceleration is

mẍ(t) +
(
Cs + (CoA + CoB ) cos2 θ(t)

)
ẋ(t) + kx(t) = − mẍg(t) +

1
2
(CoA − CoB ) sin 2θ(t)ẇ(t), (6)

where

cos2 θ(t) =
a2

a2 + [H − w(t)]2 , sin 2θ(t) =
2a[H − w(t)]

a2 + [H − w(t)]2 , a =
L
2

,

and a, H , and L are the dimensions shown in Figure 1.
For a structure with two dampers in a fixed position, the second term in the right hand side of the

equation of motion, Equation (6), vanishes. This term arises due to the component of the velocity of
the lower end of the dampers in the direction of the axis of the device. Rewriting Equation (6) in a
space-state representation leads to{

ż1(t)
ż2(t)

}
=

[
0 1

−m−1k −m−1
(
Cs + (CoA + CoB ) cos2 θ(t)

)] {
z1(t)
z2(t)

}
+

[
0

1
2 m−1(CoA − CoB ) sin 2θ(t)

]
ẇ(t) +

[ 0
−1

]
ẍg(t),

where z1(t) = x(t) and z2(t) = ẋ(t).

Figure 2. End velocities of the VDSA device installed in an SDOF structure.
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These state-space equations can be solved by decoupling them with the complex eigenvectors of the
matrix in the right hand side, provided that the displacement w(t) of the bottom support of the dampers
is known. The term w(t) is determined by using one of the two modified algorithms Qv described in
the previous section.

For practical reasons, the position w(t) of the common joint of the VDSA device (which governs
the damping provided to the structure), must be bounded between two limiting values wmin and wmax.
Thus the effective instantaneous damping in the structure can be represented by a dashpot with a variable
coefficient given by

C(t) =


Cs + (CoA + CoB ) a2

a2+[H−wmin]2 , for w(t) < wmin,

Cs + (CoA + CoB ) a2

a2+[H−w(t)]2 , for wmin < w(t) < wmax,

Cs + (CoA + CoB ) a2

a2+[H−wmax]2 , for w(t) > wmax.

(7)

4. Equations of motion of MDOF structures controlled with the VDSA device

The application of the VDSA device to MDOF systems is similar to the SDOF case. When the VDSA
device is installed between the i th and i +1th building floors (and above the first level), the damping force
generated by the VDSA device is related to the velocities ẋi (t), ẋi+1(t) and ẇ(t) as shown in Figure 3.

The equation of motion for a MDOF system with the device installed between the i th and (i + 1)th
floor is

[M]{ẍ(t)} +
(
[Cs] + [C1] + [C2]

)
{ẋ(t)} + [K ]{x(t)} = − [M]{r}ẍg(t) − {D}ẇ(t). (8)

Figure 3. End velocities of the VDSA device installed between two floors of an MDOF building.
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The matrices [C1] and [C2] and the vector {D} are defined in terms of three vectors with only one or
two nonzero elements. The vectors {e1}, {e2} and {e3}, with length n, are:

{e1}
T

= [0, 0, . . . , 0, 1, 0, . . . , 0] with 1 at column i + 1

{e2}
T

= [0, 0, . . . , 0, −1, 0, . . . , 0] with −1 at column i

{e3}
T

= [0, 0, . . . , 0, −1, 1, . . . , 0] with −1 at column i, 1 at column i + 1. (9)

Using the three vectors in Equation (9), the matrices [C1] and [C2] and the vector {D} can be written
as:

[C1] =
(
CoA + CoB

)
cos2 θ(t){e1}{e3}

T ,

[C2] =
(
CoA + CoB

)
cos2 θ(t){e2}{e1}

T ,

{D} =
1
2
(CoA − CoB ) sin 2θ(t){e1}.

(10)

Substituting Equation (10) into Equation (8) and solving for {ẍ(t)} leads to

{ẍ(t)} = − [M]
−1(

[Cs] + [C1] + [C2]
)
{ẋ(t)} − [M]

−1
[K ]{x(t)} − [M]

−1
{D}ẇ(t) − {r}ẍg(t). (11)

Defining four matrices [Ac], [Bc], [Dc], and [Ec] as follows

[Ac] = − [[M]
−1

[K ]],

[Bc] = −
[
[M]

−1([Cs] + [C1] + [C2])
]
,

[Dc] = − [[M]
−1

{D}],

[Ec] = [{r}],

and introducing the components of a state vector{z1(t)} = {x(t)}, {z2(t)} = {ẋ(t)}, Equation (11) can be
written as:

{ż2(t)} = [Ac]{z1(t)} + [Bc]{z2(t)} + [Dc]ẇ(t) − [Ec]ẋg(t). (12)

To obtain the equations of motion in the state-space form, Equation (12) is supplemented with the
following identity:

{ż1(t)} = {z2(t)}. (13)

Equation (12) and Equation (13) can now be combined into the following equation of motion in the
state-space: {

ż1(t)
ż2(t)

}
=

[
[Oc] [Ic]

[Ac] [Bc]

] {
z1(t)
z2(t)

}
+

[
[Oc]

[Dc]

]
ẇ(t) −

[
[Oc]

[Ec]

]
{ẋg(t)}.

The vertical position of the lower end of the VDSA device w(t) required in each instant of time, along
with the damping coefficient for the coupled system, can be computed with Equation (7) using one of
the two modified algorithms Qv.

5. Numerical examples

Two examples are presented in this paper to illustrate the effectiveness of the VDSA device in reducing
the seismic response: an SDOF system and an MDOF structure. The response obtained by applying the
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Figure 4. Left: relative displacement of the SDOF system due to the El Centro record
for uncontrolled versus VDSA; right: fixed damper versus VDSA (closed-loop control).

closed-loop control modified algorithm Qv and the closed-open-loop control modified algorithm Qv are
compared against the response of the uncontrolled structures. In addition, the response of the structures
fitted with passive dampers is included in the comparisons. The structures are subjected to the horizontal
component of three different earthquakes. First, the record of the well-known El Centro earthquake in the
Imperial Valley, California on May 18, 1940, is considered. This record had a peak ground acceleration
(PGA) of 0.348 g. Next, the record of the San Fernando, California earthquake of February 9, 1971, with
a PGA of 1.007 g is used. Finally, the record of the Friuli, Italy earthquake of May 6, 1976, with a PGA
of 0.4788 g is applied to the structures. The accelerations are sampled at equal time intervals of 0.02 sec.

Example 1. The first example is a SDOF frame with a weight of 13,630 kip and natural period of 0.20 sec.
The damping coefficient of the dampers A and B of the VDSA device were 20 kip·sec/in and 10 kip·sec/in,
respectively. The results obtained are compared with those of the uncontrolled structure with a damping
ratio of 5%. The weighting matrix Q is selected as [I ] × 102, where [I ] is the identity matrix. The
matrices Qv and R become scalars with values equal to 101 and 10−4, respectively. The original damping
ratio of the structure in which the VDSA system was installed was taken to be 2%. For this case of
passive damping, the damping ratio was set equal to 30%, and the damping coefficient of the dampers is
40 kip·sec/in.

The response of the SDOF system to the base acceleration of the El Centro earthquake is presented first.
Figure 4 shows a comparison of the relative displacement time histories for the uncontrolled structure
(left), the structure with fixed dampers, and the structure controlled with the VDSA device (right). Only
the first twenty-seven seconds of the response are shown. Figure 5 (left) presents the total shear force at
the base of the structure as a function of time for the uncontrolled structure and the structure controlled
with the VDSA device. The time variation of the position of the lower end of the VDSA device, w(t),
is presented in Figure 5 (right). In this case the graph shows the variation of the position of the device
for the full duration of the earthquake excitation.

It can be noticed from Figure 5 (right) that the displacement w(t) of the lower end of the VDSA
device needs to change quite rapidly, actually in fractions of a second. This may pose a problem if a
hydraulic actuator is used to push or pull the VDSA device because it may require an actuator with very
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Figure 5. Left: uncontrolled versus VDSA-controlled base shear of the SDOF system.
Right: variation of the position of the VDSA device for the El Centro record (closed-loop
control).

high performance characteristics. In any case, for future work, and before an experimental verification of
the proposed protective system is undertaken, one would ideally include a model of a nonideal actuator
to study its effect on the response reduction.

The fact that the VDSA device continues to move even when the excitation diminishes (Figure 5
(right)) may be intriguing at first sight. The reason for this behavior is that both control algorithms try to
minimize the response even if its magnitude is not large. In other words, during the strong motion part
of the ground acceleration the semiactive control system reduces the response of the structure by about
the same degree than during the final phase of the excitation. In theory, to avoid this behavior one could
use in the definition of the performance index weighting matrices that vary with time. However, this
will considerably increase the required computational time which may, in turn, create other problems
due to the time lag between the response measurement and the actuator engagement. The effect on the

Figure 6. Relative displacement of the SDOF system for the San Fernando record for
(left) uncontrolled versus VDSA, and (right) fixed damper versus VDSA (closed-loop
control).
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Figure 7. Left: uncontrolled versus VDSA-controlled base shear of the SDOF system.
Right: variation of the position of the VDSA device for the San Fernando record (closed-
loop control).

structure of the feature portrayed in Figure 5 (right) during low intensity seismic motions should be
studied experimentally.

The previous response calculations were repeated with the San Fernando record. The responses com-
pared are those obtained with the original (uncontrolled) structure, with fixed dampers and with the
VDSA device. Figure 6 shows the time variation of the displacements for the three conditions whereas
Figure 7 (left) displays the base shear time histories. The first forty-two seconds of the response is shown.
Figure 7 (right) shows the variation of the height of the lower end of the device w(t) for the San Fernando
earthquake. Similar observations to those made for the El Centro earthquake can also be repeated here
regarding the nature of the time variation of w(t).

Figure 8. Relative displacement of the SDOF system for the Friuli record for (left)
uncontrolled versus VDSA, and (right) fixed damper versus VDSA (closed-loop con-
trol).
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Displacement Total base shear
Earthquake Uncont. Fixed damper VDSA Uncont. Damper Fixed VDSA

[in] [in] [in] [kip] [kip] [kip]
El Centro 0.2536 0.2049 0.0630 8828.0 7133.1 2192.1

San Fernando 0.7219 0.7072 0.1848 25132.0 24620.0 6435.3
Friuli 0.3315 0.3019 0.0696 11540.0 10509.0 2424.3

Table 1. Maximum response of the SDOF structure without control and with a passive
and semiactive system (closed-loop control).

The next set of results corresponds to the 1976 Friuli accelerogram. Again, the responses compared are
the relative displacement of the mass, and the sum of the shear forces in the columns, in both uncontrolled
and controlled mode with fixed dampers and with the VDSA device. The results are presented in Figure
8 and 9 (left) for the first twenty seconds of the response. Figure 9 (right), shows the variation of the
position of the VDSA device.

Table 1 shows a summary of the maximum responses obtained for the SDOF structure of Section 5
when the closed-loop modified algorithm Qv was used. Table 2 is similar to Table 1 but displays the con-
trolled response using the closed-open-loop control algorithm. Both tables demonstrate the advantages
of using the VDSA device. In addition, the tables show that both the closed-loop and closed-open-loop
control modified algorithms Qv provide almost the same results. The fact that both algorithms yielded
similar results coincides with the results observed in the area of active structural control whenever the
closed-loop and closed-open loop control formulations are used.

Example 2. A six-story building was selected to show, via a numerical simulation, the implementation
of the VDSA device and to illustrate its effectiveness in reducing the seismic response of a MDOF
structure. For simplicity, the structure is modeled as a shear building with one DOF per floor (the lateral

Figure 9. Left: uncontrolled versus VDSA-controlled base shear of the SDOF system.
Right: variation of the position of the VDSA device for the Friuli record (closed-loop
control).
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Displacement Total base shear
Earthquake Uncont. Fixed damper VDSA Uncont. Fixed damper VDSA

[in] [in] [in] [kip] [kip] [kip]
El Centro 0.2536 0.2049 0.0616 8828.0 7133.1 2144.5

San Fernando 0.7219 0.7072 0.1816 25132.0 24620.0 6322.2
Friuli 0.3315 0.3019 0.0678 11540.0 10509.0 2361.6

Table 2. Maximum response of the SDOF structure without control and with a passive
and semiactive system (closed-open-loop control).

displacement). The total lateral stiffness coefficients of the columns are ki = 5, 315 kip/in and the floor
weights are Wi = 2, 205 kip. The damping ratio of the uncontrolled structure is assumed to be 5% for all
the modes. For the case where the dampers are installed in a fixed position, the damping ratio provided
by them is selected to be 30% for the first mode. The damping coefficients of the dampers of the VDSA
device are 25 kip·sec/in and 10 kip·sec/in for the dampers A and B, respectively. The results obtained
are compared with those obtained for the uncontrolled structure and also with the response calculated
with fixed dampers. In the latter case three configurations, identified as I, II and III, were considered.
Each corresponds to increasing number of fixed dampers: in case I, a single damper was installed at
the first floor; in case II three dampers were placed on the three lower floors and in case III a damper
was installed at each of the six floors. The VDSA device was assumed to be installed in the fourth floor.
This position was found to be the best one by a simple trial and error process. For closed-loop and
closed-open-loop control algorithms Qv the weighting matrices Q and Qv were selected as [I ]× 104

and [I ] × 102, respectively, where [I ] is an identity matrix. Matrix R is, in this case, a scalar with a
value equal to 10−1.

The first result for the MDOF structure is the response to the ground acceleration due to the 1940
El Centro earthquake. The relative displacements computed for the uncontrolled structure are compared
with a similar response quantity but for the structure controlled with the VDSA device. The time trace of

Figure 10. Relative displacements of the 6-story building for the El Centro record, (left)
first floor, and (right) top floor — uncontrolled versus VDSA (closed-loop control).
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Figure 11. Left: maximum floor displacements for all cases. Right: variation of the
position of the VDSA device — El Centro record (closed-loop control).

the relative displacements of the first and six floors are presented in Figure 10 (left and right, respectively).
The maximum relative displacements in the six floors for all the cases considered are shown in Figure
11 (left). There are five cases considered: the original structure, the structure with a single VDSA device
in the fourth floor, and the three fixed damper configurations I, II and III, previously described. Clearly,
the response reduction achieved by the VDSA system is remarkable, even when compared to the case
in which all floors are provided with viscous dampers at the maximum practical range. The variation of
the control device position for the El Centro record is presented in Figure 11 (right).

The previous analyses were repeated for the San Fernando ground motion. Figure 12 displays the time
variation of the displacement response for the first and top floor of the original structure and controlled
with the VDSA device. The next set of results displayed in Figure 13 is the maximum relative displace-
ments of the six floors for all cases studied (left) and the vertical position of the lower end of the device
(right).

Figure 12. Relative displacements of the 6-story building for the San Fernando record,
(left) first floor, and (right) top floor — uncontrolled versus VDSA (closed-loop control).
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Figure 13. Left: maximum floor displacements for all cases. Right: variation of the
position of the VDSA — San Fernando record (closed-loop control).

The last set of results corresponds to the response of the 6-story building subjected to the acceleration
of the Friuli earthquake. Only the first twenty seconds of the response is shown. Figure 14 displays
the relative displacement time histories of the structure in uncontrolled mode (left) and controlled mode
(right) with the variable dampers for the first and top floor. Figure 15 shows the maximum relative
displacements of the six floors for the five cases analyzed (left) and the variation of the position of the
VDSA device (right).

Here also the maximum responses obtained using the closed-loop and closed-open-loop control al-
gorithms were practically the same. Only small differences in the form that varies the position of the
VDSA device were found [Cundumi 2005].

A summary of the response of the structure in three conditions: a) uncontrolled, b) fitted with fixed
(passive) dampers using the configurations I, II and III, and c) controlled with the proposed semiactive
device, are compared in Tables 3–5. These tables present the maximum relative displacement for all
floors when the El Centro, San Fernando, and Friuli ground motions were applied at the base. It can be

Figure 14. Relative displacements of the 6-story building for the Friuli record, (left)
first floor, and (right) top floor — uncontrolled versus VDSA (closed-loop control).
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Figure 15. Left: maximum floor displacements for all cases. Right: variation of the
position of the VDSA — Friuli record (closed-loop control).

noticed that the VDSA device is effective in reducing the relative displacements and shear forces. The
results presented in this paper correspond to the VDSA device installed in the fourth floor where the best
response reduction was obtained. However, although it is not presented here, comparable reductions were
obtained with the VDSA device positioned in other floors. As expected, the best results obtained with
passive control were for case III in which the dampers were installed in all six floors of the building. In this
passive case the fixed dampers were assigned a damping coefficient equal to the maximum recommended
practical limit. The reduction in the maximum displacements of the building with the VDSA device
compared to the passive control (case III) ranges from 50–80%. When the maximum displacement
reduction achieved with the proposed system is compared with the original structure, the decrease in the
top floor response varies from 88–93%.

Finally, the effectiveness in the response reduction in MDOF structures with the VDSA device con-
trolled by the modified closed-loop and closed-open-loop control algorithm Qv was observed to be the
same. In other words, in terms of performance, there was no advantage in using one methodology over
the other.

Displacement
Floor Uncont. Fixed damper Case I Fixed damper Case II Fixed damper Case III VDSA

[in] [in] [in] [in] [in]
6th 2.939 2.894 2.732 1.529 0.352
5th 2.786 2.742 2.586 1.448 0.252
4th 2.483 2.443 2.301 1.296 0.141
3rd 2.036 2.000 1.881 1.069 0.273
2nd 1.454 1.427 1.340 0.769 0.320
1st 0.762 0.747 0.700 0.405 0.215

Table 3. Maximum displacements of the 6-story building without control and with a
passive and semiactive system for the El Centro record (closed-loop control).
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Displacement
Floor Uncont. Fixed damper Case I Fixed damper Case II Fixed damper Case III VDSA

[in] [in] [in] [in] [in]
6th 7.528 7.321 6.650 3.731 1.178
5th 7.066 6.873 6.244 3.485 0.800
4th 6.185 6.018 5.467 3.035 0.519
3rd 4.957 4.823 4.380 2.432 0.585
2nd 3.463 3.371 3.057 1.715 0.701
1st 1.785 1.738 1.575 0.897 0.519

Table 4. Maximum displacements of the 6-story building without control and with a
passive and semiactive system for the San Fernando record (closed-loop control).

Displacement
Floor Uncont. Fixed damper Case I Fixed damper Case II Fixed damper Case III VDSA

[in] [in] [in] [in] [in]
6th 5.951 5.689 4.877 1.850 0.428
5th 5.617 5.369 4.602 1.759 0.271
4th 4.960 4.741 4.063 1.579 0.132
3rd 4.010 3.832 3.283 1.307 0.210
2nd 2.813 2.688 2.304 0.946 0.269
1st 1.452 1.383 1.184 0.505 0.186

Table 5. Maximum displacements of the 6-story building without control and with a
passive and semiactive system for the Friuli record (closed-loop control).

6. Conclusions

The results presented in Tables 1 and 2 for the SDOF structure, selected as the first example, indicate that
the maximum relative displacements due to the El Centro, San Fernando, and Friuli accelerograms were
reduced by 75.2%, 74.4%, and 79.0%, respectively, compared to the case when the structure had its origi-
nal 5% damping ratio. The results were obtained by using the modified closed-loop control algorithm Qv.
When the modified closed-open-loop control algorithm Qv was used to define the position of the VDSA
device, the reductions were 75.7%, 74.8% and 79.6%, that is, practically the same. When compared to
the case in which the SDOF system was fitted with fixed dampers, the peak relative displacements were
reduced by 19.2%, 2.0%, and 8.9% for the El Centro, San Fernando, and Friuli earthquakes.

In another example a 6-story shear building was used to numerically examine the performance of the
proposed semiactive dampers. The maximum relative displacements of all floors for the three seismic
records were presented in Table 3, 4 and 5, respectively. The reductions obtained with the VDSA device
in the top floor displacements were 88.0% (for El Centro), 84.4% (for San Fernando) and 92.8% (for
Friuli). Both algorithms led to the same results. To compare the effectiveness of the VDSA device
with viscous dampers in a fixed position, three configurations were selected for the latter case. The



A NEW VARIABLE DAMPING SEMIACTIVE DEVICE FOR SEISMIC RESPONSE REDUCTION 1655

best results were observed when the structure had passive dampers installed in all floors (a configuration
identified as Case III). In this case the reduction in the peak displacement at the top floor was 48%,
50.4%, and 68.9% for the El Centro, San Fernando and Friuli accelerograms. The reduction in the
displacements of the lower floors is not as dramatic as in the top floor. However, the proposed device
was capable of achieving a notable decrease even for the lowest floor. For example, the reductions in the
peak displacements of the first floor obtained with the VDSA device were 71.3%, 70.9%, and 87.2% for
El Centro, San Fernando and Friuli record, respectively. These percentages should be compared with the
46.8%, 49.8%, and 65.2% reduction obtained by installing fixed dampers in all the floors.

The objective of this paper was to introduce the concept of a novel variable damping device in which
the damping provided to the structure can be changed by varying the orientation of two dampers with
constant coefficients. A preliminary verification of the performance of the proposed device was done via
numerical simulations. However, it is recognized that there are still many issues that need to be studied
analytically and even more importantly, experimentally. For instance, the actuator was assumed to be
ideal, that is, no actuator dynamics were included in the simulations. The final corroboration of the
concept must be done through a thorough experimental program.
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