
Journal of Mechanics of Materials and Structures

Volume 2, Nº 8 October 2007

(Continued inside back cover)

JournalofM
echanics

ofM
aterials

and
S

tructures
2007

Vol.2,N
º

8

Journal of

Mechanics of
Materials and Structures

Special issue

Ninth Pan American Congress
of Applied Mechanics

Volume 2, Nº 8 October 2007

mathematical sciences publishers



JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES

http://www.jomms.org

EDITOR-IN-CHIEF Charles R. Steele

ASSOCIATE EDITOR Marie-Louise Steele
Division of Mechanics and Computation
Stanford University
Stanford, CA 94305
USA

BOARD OF EDITORS

D. BIGONI University of Trento, Italy
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PREFACE

JEFFREY W. EISCHEN AND GUILLERMO MONSIVAIS

The aim of the sponsors of the 9th Pan American Congress of Applied Mechanics (PACAM IX) was to
promote progress in the broad field of mechanics by (1) exposing mature engineers and scientists, as well
as advanced graduate students, to new research findings, techniques, and problems, and (2) providing
opportunities for personal interactions through formal presentations and informal conversations. The
meetings are traditionally held every two years in a Latin American venue, at a time when few other con-
ferences are scheduled. The previous Congresses were held in Rio de Janeiro, Brazil (1989); Valparaı́so,
Chile (1991); São Paulo, Brazil (1993); Buenos Aires, Argentina (1995); San Juan, Puerto Rico (1997);
Rio de Janeiro, Brazil (1999); Temuco, Chile (2002); and Havana, Cuba (2004).

PACAM IX was held at the Fiesta Americana Hotel in Mérida, Mexico, from January 2–6, 2006,
and was cosponsored by the American Academy of Mechanics; the US National Science Foundation;
the Air Force Office of Scientific Research; Universidad Nacional Autónoma de México’s Instituto de
Ingenierı́a, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Centro de Ciencias
Fı́sicas, Coordinación de la Investigación Cientı́fica, Facultad de Ingenierı́a, Instituto de Fı́sica; and
Universidad Autónoma de Yucatán’s Facultad de Ingenierı́a, Facultad de Matemáticas; and CINVESTAV,
Mérida, Yucatán. Approximately 75 attendees from 20 countries enjoyed a very productive and collegial
meeting in Mérida.

Following the PACAM IX meeting the organizers invited authors of selected talks to submit full-length
articles on the matter of their presentation. These papers were then subjected to the normal peer review
and editorial process of the Journal of Mechanics of Materials and Structures. This special issue is the
collection of the accepted papers.

Finally, we thank the Editor-in-Chief and Associate Editor of JoMMS, Charles and Marie-Louise
Steele, for giving us the great opportunity to organize this special issue. We thank the contributing
authors for their excellent papers and also the anonymous reviewers, who helped immensely in shaping
this special issue.
July 2007
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OPTIMIZATION OF A SATELLITE WITH COMPOSITE MATERIALS

JORGE A. C. AMBRÓSIO, MARIA AUGUSTA NETO AND ROGÉRIO PEREIRA LEAL

The design of complex flexible multibody systems for industrial applications requires not only the use of
powerful methodologies for the system analysis, but also the ability to analyze potential designs and to
decide on the merits of each one of them. This paper presents a methodology using optimization proce-
dures to find the optimal layouts of fiber composite structure components in multibody systems. The goal
of the optimization process is to minimize structural deformation and to fulfill a set of multidisciplinary
constraints. These methodologies rely on the efficient and accurate calculation of the system sensitivities
to support the optimization algorithms. In this work a general formulation for the computation of the
first order analytic sensitivities based on the direct differentiation method is used. The direct method for
sensitivity calculation is obtained by direct differentiation of the equations defining the response of the
structure with respect to the design variables. The equations of motion and the sensitivities of the flexible
multibody system are solved simultaneously and, therefore, the accelerations and velocities of the system,
and the sensitivities of the accelerations and velocities, are integrated in time using a multistep multiorder
integration algorithm. Different models for the flexible components of the system, using beam and plate
elements, are also considered. Finally, the methodology proposed here is applied to the optimization
of the unfolding of a complex satellite made of composite plates and beams. The ply orientations of
lamination are the continuous design variables. The potential difficulties in the optimization of composite
flexible multibody systems are highlighted in the discussion of the results obtained.

1. Introduction

Modeling refers to the tools used in the construction of models of individual and coupled components
of technical systems. The simplest models for multibody systems assume rigid body components while
more complex models require the description of the components’ flexibility. The finite element-based
strategies used to represent the components’ flexibility in multibody systems is a well accepted and
widely used method. For systems in which the bodies are made of standard materials, there is a wide
variety of finite elements that may be used, but when bodies are made of composite materials, the model
flexibility often necessitates expensive finite element models with an inherent growth in complexity.
Models of systems involving multibody dynamics methodologies also require a complete knowledge of
the arrangement of the system components, which is achieved by the definition of kinematic joints, the
introduction of models for external forces and the incorporation of the equilibrium equations of other
disciplines [Heckmann et al. 2005; Møller et al. 2005; Bottasso et al. 2006]. Regardless of each particular
type of joint used, the mathematical description of the restrictions involving only rigid bodies are the
simplest to obtain. The presence of flexible bodies tends to increase the complexity of the description,
and methods for simplifying the description are required [Lehner and Eberhard 2006; Hardeman et al.

Keywords: flexible multibody dynamics, sensitivity analysis, automatic differentiation, large rotations, floating frame.
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2006]. However, the concept of virtual bodies provides a general framework for developing general
kinematic joints for flexible multibody systems with minimal effort [Ambrósio 2003].

Analyses of rigid mechanical systems are the simplest and the least expensive, regardless of model.
Flexible systems, in which the bodies only experience small elastic deformations, have higher compu-
tational costs. For these systems it is common to use mode component synthesis to reduce the number
of generalized elastic coordinates and, consequently, the equations of motion are written in terms of
modal coordinates [Nikravesh and Lin 2005; Gonçalves and Ambrósio 2005; Lehner and Eberhard 2006].
However, when the system components experience nonlinear deformations, the use of reduction methods
is not possible, in general, and the finite element nodal coordinates are the generalized coordinates used
[Ambrósio 1996; Dmitrochenko et al. 2006; Gerstmayr and Schöberl 2006; Vetyukov et al. 2006]. Fur-
thermore, the analysis of these systems is more complex and, usually, computationally more expensive
than the analysis of flexible systems with bodies that experience linear deformations.

In terms of the optimization complexity, the most complex and expensive problems are global or
integer optimization problems with a large number of design variables. The simplest and cheapest prob-
lems to solve are continuous local problems with a small number of design variables [Venkataraman
and Haftka 1999; Venkataraman and Haftka 2002]. Stochastic optimization algorithms, like simulated
annealing methods or genetic algorithms, offer a way to perform global optimization, but they usually
require several hundreds or even thousands of expensive simulation runs [He and Mcphee 2005; Kübler
et al. 2005]. Eberhard and co-workers used a stochastic evolution strategy in combination with parallel
computing in order to reduce the computation times while maintaining the inherent robustness [Eberhard
et al. 2003]. Deterministic optimization algorithms, on the other hand, have a tendency to reach local
minima, not necessarily the global optimum [Eberhard et al. 1999]. When supported by efficient cal-
culation of the system sensitivities, these deterministic optimization algorithms often converge rapidly
towards a local minimum with smaller computation times than other optimization approaches.

In this work, a general approach for sensitivity analysis of rigid-flexible multibody systems with
composite materials based on the automatic differentiation method is used. The direct differentiation of
the system equations of motion is obtained by the ADIFOR program [Bischof et al. 1992]. The dynamic
equations and the time derivatives of the sensitivities are all integrated at the same time, thus the control
of the time integration errors becomes more effective. The simultaneous integration of the equations
is even more important when a variable step size or variable order integration algorithm is used, as is
generally the case in multibody dynamic systems.

The optimization of the multibody composite components is performed by taking the ply orientations
of lamination as continuous design variables. The multibody dynamic and sensitivities analysis code is
linked with general optimization algorithms included in the package DOT/DOC [Vanderplaats 1992].

2. The multibody analysis methodology

2.1. Multibody equations of motion. The location of a rigid body is defined by the position of a body-
fixed reference frame, ξηζ , and its orientation with respect to an inertial frame, XY Z , as shown in
Figure 1. The position and the orientation of the rigid body i is defined by the translation coordinates
r i and the rotational coordinates pi . These coordinates are grouped in the vector qri = [rT

i pT
i ]

T . The
coordinate vector of the complete flexible system is designated by q = [qT

r u′T
]
T , which is composed
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Figure 1. Flexible body with its body fixed coordinate system.

of the coordinate vector of the individual bodies and the elastic coordinates of the flexible bodies u′

i ,
generally the nodal coordinates of the finite element mesh measured with respect to the body-fixed coor-
dinate system or the modal coordinates when a mode component synthesis method is used to represent
the deformation of the flexible body.

For a multibody system, a set of constraint equations associated to the kinematic joints that restrict
the relative motion between the bodies is defined as [Ambrósio and Gonçalves 2001]:

8(q, t)≡ 0, (1)

where t refers to the kinematic constraints that depend on time. The constraints equations are added to
the equilibrium equations using Lagrange multipliers

Mq̈ +8T
q λ= g + s − K q, (2)

where M is the system mass matrix, K is the extended stiffness matrix of the system, g is a vector of
external applied forces and s is the vector of the forces that depend on the square of the system velocities.
Equation (2) includes n unknown accelerations and m unknown Lagrange multipliers associated with the
algebraic constraint equations, but it only has n equations. The second time derivatives of the constraint
equations provide the extra set of m equations necessary to support the solution of Equation (2). These
acceleration constraint equations are

8̈(q̈, q̇, q, t)≡8q q̈ − γ = 0. (3)

Therefore, the complete system of equations that needs to be solved for a flexible multibody system is
given by [Ambrósio and Gonçalves 2001] Mr Mr f 8T

qr

M f r M f f 8
T
q f

8qr 8q f 0




q̈r

ü′

λ

=


gr

g f

γ

−


sr

s f

0

−


0

K f f u′

0

 , (4)
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where K f f is the standard finite element stiffness matrix. The Jacobian matrix8T
q and the right-hand-side

vector γ of Equations (3) and (4) depend on the type of kinematic constraints used. The system equation
matrix shows a large number of null elements and submatrix blocks of fixed size. The Markowitz sparse
matrix solver is employed here to solve the system of equations defined by Equation (4) [Duff et al. 1986;
Ambrósio 2003; Liu et al. 2007].

The equations of motion for the flexible multibody systems represented by (4) require a large number
of coordinates to describe complex models. However, using component mode synthesis, the flexible
body is described by a sum of selected modes of vibration as

u′
= Xw, (5)

where vector w represents the contributions of the vibration modes towards the nodal displacements and
X is the modal matrix. Due to the reference conditions, the modes of vibration used here are constrained
modes and due to the assumption of linear elastic deformations the modal matrix is invariant. The reduced
equations of motion for the flexible body are [Ambrósio and Gonçalves 2001] Mr Mr f X 8T

qr

XT M f r I XT8T
q f

8qr 8q f X 0




q̈r

ẅ

λ

=


gr

XT g f

γ

−


sr

XT s f

0

−


0

3w

0

 , (6)

where 3 is a diagonal matrix with the squares of the natural frequencies associated with the modes of
vibration selected. The number of elastic coordinates in Equation (6) is equal to the number of vibration
modes selected. For a more detailed discussion on the selection of the modes used, the interested reader
is referred to [Cavin and Dusto 1977; Yoo and Haug 1986; Pereira and Proença 1991].

2.2. Flexible bodies made of composite materials. In this work the composite finite element used for
the study of laminated plates is based on the Mindlin–Reissner plate theory, where only C◦ continuity is
required for the approximation of the kinematic variables. At the element level and in local coordinates,
the element stiffness matrix is given by [Neto et al. 2004]

K (e)
f f =

1∫
0

1−η∫
0

 BT
m Dm Bm BT

m Dmb Bb 0

BT
b Dbm Bm BT

b Db Bb 0

0 0 BT
s Ds Bs


(e)

|J |dξdη (7)

which in a more compact form is written as

K (e)
f f =

1∫
0

1−η∫
0

(BT DB)(e)|J |dξdη. (8)

The strain-displacement matrix is denoted by B while D is the elasticity matrix and |J | is the determi-
nant of the Jacobian matrix. The subscripts m, b and s stand for membrane, bending and shear. Because
each layer may have different properties, the elasticity matrix D is evaluated as a summation carried
out over the thickness of all the layers. Therefore, equivalent single layer theories produce equivalent
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stiffness matrices as weighted averages of the individual layer stiffness through the thickness. These
matrices are dependent on each layer orientation, and are given by

(Dm, Db, Dmb, Ds)=

n∑
k=1

(Dm, Db, Dmb, Ds)k

=

n∑
k=1

(
C1

3×3 H1,C1
3×3 H2,C1

3×3 H3,C2
2×2 H

)
k

(9)

with

Hn =

hl∫
hl−1

(
xn−1

3

)
dz =

1
n
(hn

l+1 − hn
l ), (10)

where hi is defined in Figure 2. The axis x3 is positive upward from the mid-plane of the plate. The Lth
layer is located between the points x3 = hl and x3 = hl+1 in the direction of the thickness.

At the element level and in local coordinates, the consistent mass matrix is given by

M(e)
f f =

1∫
0

1−η∫
0

ρ(e)(ST mS)(e)|J |dξdη, (11)

where m is a matrix that contains the inertial terms, and ρ represents the specific mass of the element.
Before the mass matrix given by Equation (11), is used in what follows, a procedure to obtain a diagonal
mass matrix is applied [Cook 1987].

The description of some of the flexible bodies of the multibody systems requires the use of composite
plates, discretized by triangular finite elements. The finite element is based in the theory described and
has six degrees of freedom per node: u◦

1, u◦

2, u◦

3, φ1, φ2 and φ3. In the finite element mesh of some of the
flexible bodies of the system composite beam elements are also used. For the sake of conciseness, none
of these elements is described here, but for details on the formulations of the different composite finite
elements, the interested reader is referred to [Neto et al. 2004].

1 

 

3x

2x

1x

kk

L

1x

3x

2h

2h

1lh
�

lh

 
 

Figure 2. Coordinate system and layer numbering used for a typical laminated plate.
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3. Sensitivity analysis of the multibody system

The optimization algorithms used in this work require not only the evaluation of the functional values
of the behavior functions but also their sensitivities with respect to the design variables. The calculation
of these sensitivities can be carried out analytically or numerically. In this work only the analytical
sensitivities are obtained by using automatic differentiation.

3.1. Sensitivity of the equation of motion. For a rigid-flexible multibody system, the equations of mo-
tion in terms of modal coordinates are given by Equation (6). The sensitivities of the system accelerations
and Lagrange multipliers with respect to the design variables are obtained by differentiating Equation
(6) with respect to the design variables b: Mr Mr f X 8T

qr

XT M f r I XT8T
q f

8qr 8q f X 0




q̈rb

ẅb

λb

=


Qb

Rb

γ b

 , (12)

where (·)b denotes the sensitivity of quantity (·) with respect to b. The sensitivities of the right-hand-side
of the equation Qb, Rb and γb are

Qb =
∂

∂qr

(
gr − Sr − Mr q̈r − Mr f Xẅ−8T

qr
λ
)
qrb

+
∂

∂ q̇r
(gr − Sr )q̇rb

+
∂

∂ẇ
(gr − Sr )ẇb

+
∂

∂w

(
gr − Sr − Mr q̈r − Mr f Xẅ−8T

qr
λ
)
wb +

∂

∂b
(
gr − Sr − Mr q̈r − Mr f Xẅ−8T

qr
λ
)
; (13)

Rb =
∂

∂qr

(
XT g f − XT S f − XT K f f Xw− XT M f r q̈r − XT M f f Xẅ− XT8T

q f
λ
)

qrb

+
∂

∂w

(
XT g f − XT S f − XT K f f Xw− XT M f r q̈r − XT M f f Xẅ− XT8T

q f
λ
)
wb

+
∂

∂b

(
XT g f − XT S f − XT K f f Xw− XT M f r q̈r − XT M f f Xẅ− XT8T

q f
λ
)

+
∂

∂ q̇r

(
XT g f − XT S f

)
q̇rb

+
∂

∂ẇ

(
XT g f − XT S f

)
ẇb; (14)

γ b =
∂

∂qr

(
γ −8qr q̈r −8q f Xẅ

)
qrb

+
∂

∂w

(
γ −8qr q̈r −8q f Xẅ

)
wb

+
∂

∂b
(
γ −8qr q̈r −8q f Xẅ

)
+
∂γ

∂ q̇r
q̇rb

+
∂γ

∂ẇ
ẇb. (15)

After solving the linear system of Equations (12) to obtain the sensitivities q̈rb
, ẅb and λb the state

variables’ sensitivities are obtained by direct integration of q̇rb
, ẇb, q̈rb

and ẅb. The process is started
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with the initial conditions given by: 

qrb
(t0)= q0

rb
,

wb(t0)= w0
b,

q̇rb
(t0)= q̇0

rb
,

ẇb(t0)= ẇ0
b.

(16)

Generally, the initial conditions for the sensitivities expressed in Equation (16) are assumed to be null.
Note also that the leading matrix of (6) is equal to the leading matrix of Equation (12). Generally, the
factorized matrix used to obtain the solution of the equation of motion does not have to be calculated
again when the sensitivities system of equations need to be solved. However, because an automatic
differentiation tool is used [Bischof et al. 1996], the subroutine that computes the solution of the system
equations of motion is differentiated in order to obtain the sensitivity of the solution vector. The differ-
entiated version of the subroutine is not only used to compute the sensitivities solution vector, but also
to evaluate the derivative of the algorithm by which the solution is computed. The system accelerations
(q̈r , ẅ) and the sensitivity solution vector of Equation (6), (q̈rb

, ẅb), are obtained simultaneously.
Due to the coordinate reduction, which uses component mode synthesis, the nodal displacements of

the flexible body are described by Equation (5). The sensitivity of the nodal displacement is obtained by
computing the derivative of this equation with respect the design variables written as

du′

db
=
∂X
∂b
w+ X

∂w

∂b
= X bw+ Xwb, (17)

where Xb are the sensitivities of the eigenmodes. The relation expressed in Equation (17) transforms
the modal sensitivities to nodal sensitivities. Haftka and Gürdal [1992] suggests evaluating this trans-
formation by the fixed-mode approach, in which the derivatives of vibration modes are neglected, or
by the updated-mode approach, where the derivatives of vibration modes are accounted for. The fixed-
mode approach is computationally less expensive but the updated-mode approach can occasionally be
more accurate. The right-hand side of Equation (12) also depends on the sensitivities of the eigenmodes.
Therefore, the same approach is used in the computation of the derivatives of the modal forces and in
the derivatives of the modal stiffness matrix. The modal stiffness matrix derivative is computed in the
updated-mode approach by

∂

∂b
(XT K f f X)=

∂XT

∂b
K f f X + XT ∂K f f

∂b
X + XT K f f

∂X
∂b
, (18)

while in the fixed-mode approach, it is obtained as

∂

∂b
(XT K f f X)= XT ∂K f f

∂b
X . (19)

The computation of the sensitivities of the eigenmodes is done using the Nelson scheme in the case
of distinct eigenvalues. However, when repeated eigenvalues are a possibility, Ojavo’s method is used
[Dailey 1989].
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3.2. Derivative of the element stiffness matrix. In this work, the design variables used for the laminate
optimization problem are the fiber angles of each lamina that make up the laminate, denoted by vector θ .
Therefore, the derivative of the stiffness matrix of the composite flexible body with respect to the layers’
orientations has to be accounted for. At the element level, in local coordinates, the stiffness matrix is
given by Equation (8). In this equation, only the matrix D depends on the design variables. Thus, the
sensitivity of this equation is given by

∂K (e)
f f

∂b
=

1∫
0

1−η∫
0

(
BT ∂D

∂b
B
)(e)

|J |dξdη. (20)

The elasticity matrix D depends on the submatrices Dm , Db, Dmb and Ds , which are defined by
Equation (9). The partial derivative of Equation (9) with respect to the design variables vector is

(Dm, Db, Dmb, Ds)b=
( n∑

k=1

(Dm, Db, Dmb, Ds)k

)
b

=

n∑
k=1

(
C1

3×3b H1,C1
3×3b H2,C1

3×3b H3,C1
2×2b H

)
k (21)

with (
Cb
)

k =

(
∂T T

∂b
C̄T + T T ∂ C̄

∂b
T + T T C̄

∂T
∂b

)
k
. (22)

In Equation (22) (C̄b)k is the sensitivity of the material matrix of elastic coefficients for the layer k
expressed in the local body frame, and (∂T/∂b)k is the sensitivity of the transformation matrix relative
to the design variables. Matrix T represents the transformation between the local body frame and the
material coordinate systems for layer k. The element mass matrix does not depend on the design variables
therefore the partial derivative of this matrix with respect the design variables is null.

4. Optimization criteria

The different optimization problems in multibody systems lead, in general, to different criteria functions
and design constraints. The objective functions most widely used in multibody problems are of one of
two types: maximum or minimum values and the integral type. Consider a general multibody response
defined by function f0(b, z,λ, t), which is dependent on time and on the state and design variables.
In multibody systems, all the terms present in the equations of motion may be functions of the design
parameters. In a compact form the problem objective functions are given by Chang and Nikravesh [1985]:

9i =9i (b, z,λ, t), i = 0, . . . , n, (23)

where the state vector z includes the coordinates, velocities and accelerations. The variables of the state
vector may depend on time and on the design variables. Therefore, the dependency of the state variables
on the design variables and time is explicitly written as

z(b, t)=
(
q(b, t), q̇(b, t), q̈(b, t)

)
. (24)
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The dependencies of the state variables on the design variables are explicitly taken into account by the
automatic differentiation tool that uses the chain rule to calculate the sensitivities.

4.1. Mini-max optimization problem. The min-max optimization problem, for the time interval between
ti and te is stated as

minimize 9max
0 = max f0(b, z,λ, t), ti ≤ t ≤ te, (25)

where the problem consists in the minimization of the maximum value of a specific function during a
given time interval. The use of the maximum value of a time dependent function response as the objective
function makes it a more difficult problem to solve. This type of objective function may appear, for
instance, when the minimization of the maximum value of acceleration or force in a given point of a
body is required during dynamic analysis. In this optimization problem two situations can occur:

(1) The instant in which the function is at the maximum value is unique and perfectly defined. In this
case, during the optimization process the instant tm is not dependent on the design variables, and
therefore the objective function (25) can be replaced by a simpler objective function as

minimize 9max
0 = max f0

(
b, z(tm),λ(tm)

)
. (26)

(2) The instant in which the function is at the maximum value, varies during the optimization process.
One form of dealing with this problem is to introduce an extra design variable and make the objective
function equal to the value of that variable [Haftka and Gürdal 1992; Kim and Choi 1996]:

minimize 90 = bn+1 (27)

with the additional time-dependent constraint

9n+1 = f0(b, z,λ, t)− bn+1 ≤ 0, ti ≤ t ≤ te. (28)

The constraint given by Equation (28), when added to the total number of constraints ensures, that the
dynamic response is below the maximum value defined by the auxiliary variable bn+1. This approach
poses some difficulties for the search direction in the optimization algorithm and can lead to small steps
in the line search method, or even to a stall of the process. To overcome these difficulties, Kim and Choi
[1996] proposed to handle directly the maximum value point only in the optimization process.

4.2. Minimization of an integral type criteria. The integral type objective function may be used to
represent mean values of the response over time, accumulated values, or other special criteria. For a
response f0(b, z,λ, t) of the dynamic system, the objective function is [Eberhard et al. 2003]

90 = G0(b, zte ,λte , te)+

te∫
ti

f0(b, z,λ, t)dt, (29)

where f0(b, z,λ, t) depends on the dynamic behavior during the complete time interval [ti , te], while G0

considers only the final state. This type of objective function is most common in vehicle design. Comfort
or injury criteria are defined by integral type functions and often are used in the optimization process.
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4.3. Time-dependent constraints. Mathematical programming algorithms generally cannot deal with
parametric constraints such as

9i = fi
(
b, z(t),λ(t), t

)
≤ c, ti ≤ t ≤ te, (30)

or even with constraints such as the one described by Equation (28). Such constraints have to be refor-
mulated to remove their time dependency. During the simulation the function value can only be obtained
for discrete time points. The most straightforward way to remove the time dependency of the original
constraint is to discretize the time interval into time points. Then, the original constraint represented by
Equation (30) is replaced by ntp constraints written as [Haug and Arora 1979]:

9i = fi
(
b, z(tk),λ(tk), tk

)
≤ c, k = 1, . . . , ntp. (31)

The distribution of the time points has to be sufficiently dense to avoid large constraint violations
between two adjacent time points [Hsieh and Arora 1984]. Thus, discretizing time-dependent constraints
can significantly increase the number of constraints, and thereby the cost of optimization [Haftka and
Gürdal 1992]. In order to reduce the number of constraints, a first alternative consists of replacing the
original constraints by an equivalent integrated constraint, which averages the severity of the constraint
over the time interval. Hsieh and Arora [1984] showed that from an optimization theory point of view,
the constraints described by Equation (30) and equivalent integral constraints are different. In fact, an
equivalent integral constraint represents the behavior of the time dependent constraint fi (b, z(t),λ(t), t)
on the complete time domain by a single value 9e

i , leading to a loss of information. As a consequence,
equivalent constraints tend to blur the design trends [Haftka and Gürdal 1992]. Hsieh and Arora [1984]
and Grandhi et al. [1986] propose an alternative procedure that consists of exchanging the initial con-
straint given by (30) for a set of constraints of the type of Equation (31), in which ntp is replaced by nctp,
with nctp < ntp being nctp the number of critical time points. These critical points are related with the
existence of local maxima or minima of the function.

5. Optimization algorithms

In dynamic problems the evaluation of the system dynamic behavior requires the numerical integration
of the equation of motion. The time dependency of this system makes these optimization problems more
complex and requires that special techniques be used in the solution process. Both deterministic and
stochastic optimization methods can be applied. Eberhard et al. [2003] has successfully used a stochastic
evolution strategy in combination with a parallel computing environment to reduce computation time.
However, in this work the Modified Method of Feasible Directions is used, which is a deterministic
optimization method implemented in the DOT optimization routines library [Vanderplaats 1992]. In
order to calculate the gradients, the direct differentiation method is used, the sensitivities being obtained
by the automatic differentiation program ADIFOR [Bischof et al. 1996].

6. Optimization of a satellite unfolding process

The proposed methodology is demonstrated through the optimization of a complex multibody system
made of composite material. The technical system modeled within this application consists in the un-
folding process of a satellite antenna, the Synthetic Aperture Radar (SAR) antenna, which is a part of
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Figure 3. The SAR antenna in the (a) folded and (b) unfolded configurations.

the European research satellite ERS-1. The model of this antenna has been the object of different studies
in several studies in multibody dynamics being first proposed by Hiller [1983] and Anantharaman and
Hiller [1991].

6.1. Description of the SAR antenna. The folding antenna shown in Figure 3 is achieved through a
relatively complex spatial mechanism. Both the solar array and the SAR antenna of the ERS-1 satellite
have the same configuration and share the same kinematic features. During transportation the antenna
and the solar array are folded, as shown in Figure 3a, in order to occupy as small a space as possible.
After unfolding, the mechanical components take the configuration represented in Figure 3b.

The SAR antenna consists of two identical subsystems, each with three coupled planar four-bar links
that unfold two panels on each side. The central panel is attached to the main body of the satellite. Each
unfolding system has two degrees of freedom, driven individually by actuators located in the joints A
and B, shown in Figure 4.

The unfolding process consists of two phases, schematically represented in Figure 5. In the first phase
the panel 3 is rolled out, about an axis normal to the main body, by a rotational spring-damper-actuator
in joint A, while the panel 2 is held down by locking joints D and E, as shown in Figure 5a. The second
phase begins with joint A locked, the panels 2 and 3 being swung out to the final position by a rotational
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1.994 m

1.3 m

a) b)

Actuator (1)

Actuator (2)

A

B
C

D, E

Panel 3 (B3)

Panel 2 (B2)

Panel 1 (B1)

 
(a) (b)

Figure 4. The SAR antenna: (a) one half unfolded state; (b) folded antenna.
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Figure 5. Unfolding process of the SAR antenna: (a) first phase; (b) second phase.

spring-damped-actuator in joint B, as observed in Figure 5b. The second half of the antenna, which has
been omitted in Figures 4 and 5, is unfolded in the same way as the first half shown here. When the
complete antenna is deployed all five panels are aligned in the final configuration.

The model used for one half of the folding antenna, schematically depicted Figure 6, is composed
of 12 bodies (B1 a B12), 16 spherical joints (S1 a S16) and 3 revolute joints (R1, R2, R3). The central
panel is attached to the satellite, defined as body B1, which has mass and inertias much higher than the
remaining bodies.

In the first phase of the unfolding antenna a rotational spring-damper-actuator is applied to the revolute
joint R3. For the second phase, the revolute joint R3 is locked and the system is moved to the next
equilibrium position by a spring-damper-actuator positioned in joint R1. Each panel is 1.994 m long
by 1.3 m wide and has a thickness of 2 mm. The linkage between the panels and the four-bar linkage
mechanism is assured by a set of supports, six in body 2 and four in body 3. All truss members have a
uniform circular cross-section [Neto 2005].
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Figure 6. Multibody model of the SAR antenna.
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1st Layer 2nd Layer 3rd Layer 4th Layer

Lay-up 1 0o 0o 0o 0o

Lay-up 2 0o 90o 90o 0o

Thickness (m) 0.0005 0.0005 0.0005 0.0005

Table 1. Characteristics of the two lay-ups considered for the composite panels.

6.2. First phase of the antenna unfolding process. The material used in the different components of the
antenna is a carbon reinforced plastic IM6/SC1081 where the matrix is made of Epoxy SC1081 and the
fibers are made of Carbon IM6. Note that the material model used here is not necessarily that of the real
satellite antenna, as the characteristics of the material are not publicly available. The properties of the
composite material, for a single layer with an orientation of 0◦ relative to the X axis are: E1 = 177 GPa;
E2 = 10.8 GPa; G12 = G13 = 7.6 GPa; G23 = 8.504 GPa; ν12 = 0.27; with a specific mass of 1600 Kg/m3.
Two different laminates with four layers in each, described in Table 1, are considered as potential design
solutions.

In flexible multibody models the use of all the nodal degrees of freedom, resulting from the model of
the complex system, as generalized coordinates is not viable. The application of the modal superposition
technique in this kind of problem, characterized by linear elastic deformations, can be done without
compromising accuracy. By using of a small set of the modes of vibration associated to the lower
frequencies it is possible to reproduce the structural deformations of the panels with a small number of
generalized elastic coordinates.

The modes of vibration for all flexible bodies in the antenna are obtained by performing a modal
analysis of each one of the flexible bodies independently. The structural attachment conditions used in
the eigenproblem are the same as those used to fix the body coordinate system, that is, the node in the
center of mass is fixed to the body fixed frame. In this manner the free rigid body modes are removed.

In Tables 2 and 3 the 14 lowest frequencies are presented for panels 2 and 3 with composite material lay-
ups 1 and 2, respectively. The modes corresponding to the two lower frequencies are almost rigid modes,
resulting from the flexibility around a fixed node. However, these modes also represent deformation of
the panels and cannot be neglected.

The actuator that is applied in revolute joint R3, to initiate the satellite unfolding process, is modeled
as a nonlinear spring and damper actuator. The spring-damper-actuator is described by piecewise-linear
characteristics given by:

M(θ, θ̇)= cθ̇ +



0.10 + 9.00(3.12 − θ) 3.08< θ ≤ 3.12

0.45 + 60.41(3.08 − θ) 3.02< θ ≤ 3.08

4.03 − 5.19(3.02 − θ) 2.63< θ ≤ 3.02

2.00 0.20< θ ≤ 2.63

10.00θ −0.20 ≤ θ ≤ 0.20

−2.00 −0.20> θ,

(32)
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Mode Panel 2 Frequency [Hz] Panel 3 Frequency [Hz]

1 0.990 0.992
2 1.457 1.460
3 1.677 1.681
4 1.746 1.749
5 4.000 4.001
6 4.609 4.620
7 6.099 6.118
8 6.814 6.850
9 8.538 8.564
10 8.578 8.583
11 12.434 12.451
12 12.828 12.833
13 14.354 14.404
14 14.415 14.485

Table 2. First 14 natural modes of vibration for panels 2 and 3 with the composite
material lay-up 1.

Mode Panel 2 Frequency [Hz] Panel 3 Frequency [Hz]

1 1.311 1.313
2 1.563 1.566
3 1.694 1.699
4 2.334 2.336
5 4.719 4.719
6 5.755 5.770
7 6.220 6.242
8 7.388 7.427
9 12.832 12.844

10 12.953 12.971
11 13.626 13.685
12 13.829 13.873
13 15.282 15.303
14 15.969 15.986

Table 3. First 14 natural modes of vibration for panels 2 and 3 with the composite
material lay-up 2.
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1 

 

Figure 7. Configuration of the composite panels with the original damped spring-actuator.

where the damping coefficient used is c = 0.5 Nms.
The actuation law presented here is different from that reported by Anantharaman and Hiller [1991],

which was used to model the SAR antenna with panels made of isotropic material. In fact, when the actu-
ation law used by Antharaman and Hiller is used for the composite flexible models the satellite antenna
is driven to a different equilibrium state than that obtained in the rigid model. The trusses connected
to the actuator quickly reach their equilibrium, but panel 3 hardly moves because the unfolding trusses
break through the panel, as represented in Figure 7. This behavior is clearly unfeasible because contact
between trusses and panels would take place, preventing such penetration from happening. Therefore,
the reported results show that due to the deformations of the trusses the undesirable contacts between
trusses and panels are possible if the high torques associated to the original actuator have been maintained.
Consequently, the solution is to apply a ‘softer’ actuation law, in the sense of preventing such contact.

The problems associated with the unfolding of an isotropic flexible model due to the actuator deploy-
ment law have been identified by Anantharaman and Hiller [1991], and the solution found was to modify
that actuation in order to prevent the wrong deployment mechanism, which is in essence similar to the
solution adopted here. When using composite material models, the problem of the first phase of the
unfolding process increases in importance not only because the bending of the panels is significant but
also because torsional modes come in play. In Figure 8 the variation of the actuator angle during the
simulation period for the composite models is presented.

Figure 8 shows that the two models lead to similar simulation results. However, it is observed that
after the equilibrium positions are reached for both models, in the period from 7 to 8 s, the direction of
rotation of the truss members of the panels made with the lay-up 1 is opposite to that of the same truss
members of the model made with lay-up 2. This discrepancy can result from the difference between the
vibration modes of the both models. In fact, the lay-up 1 has no layers with the 90◦ orientation, thus the
stiffness of this model in the Y direction is smaller than that observed with lay-up 2. A similar difference
in stiffness is also visible in the X direction of the lay-up 1.

When observing the fourth frame of the unfolding in Figure 9a, it can be noticed that the flexible
model of the satellite antenna predicts interference between panel 2 and panel 1, which is attached to the
base satellite, when bodies B7 and B8 get aligned. This can be perceived as a flaw in the design of the
unfolding process of the satellite that requires being fixed. If not detected, the interference would cause
impact between the panels eventually leading to their failure.

6.3. Optimization of the SAR antenna. In this section the multibody model of the SAR antenna is used
within the framework of an optimization problem. The flexibility of the panels of the SAR antenna is
fundamental for the functional requirements of the antenna. The use of stiffer panels can improve the
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Figure 8. Actuator angle during the first phase of deployment for different composite
material lay-ups.
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Figure 9. Configuration of the antenna unfolded process: a) first phase b) second phase.
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Panels Design Variable Lower Bound Initial Value Upper Bound

2 = 3 θ1/θ2/θ2/θ1 −90◦/− 90◦/− 90◦/− 90◦ 55◦/− 55◦/− 55◦/55◦
+90◦/+ 90◦/+ 90◦/+ 90◦

Table 4. Design variables for panels’ layers’ orientations in the satellite optimization.

time needed to unfold the antenna, during the first phase of the unfolding process, allowing for the use
of a stiffer actuator on revolute joint R3. Furthermore, the stiffness increase of the panels, in particular
of panel 2, prevents the interference detected between panels in the first part of the unfolding process.

The multibody model of the flexible antenna for the first part of the unfolding process is composed of
two flexible panels. Therefore, the antenna deformation energy of the panels for instant tn is defined as

2Um(wi , tn)=

3∑
i=2

wT
i XT

i K i
f f X iwi

=

3∑
i=2

wi
T3wi = 2

(
U2(w2, tn)+ U3(w2, tn)

)
,

(33)

where the index m refers to the model used and index i refers to the body number of panels of the
multibody model SAR antenna. Equation (33) indicates that the deformation energy of the multibody
model of the SAR antenna is obtained as a summation of the deformation energy of the two panels of
the model. Then the function f0 = 2Um is used to optimize the SAR antenna.

The goal defined by Equation (29) represents an area defined by the curve of function f0 = 2Um during
the simulation period ti = 0 s ≤ t ≤ te = 3 s. The minimum value of the area may be achieved with a
peak value of the maximum deformation energy of each panel that exceeds acceptable limits. In order to
avoid this situation, the maximum value of the deformation energy, in each panel, is constrained to be

9i (θ)≤ ci ; i = 2, 3. (34)

The values ci are defined as being the maximum values of deformation energy, in each panel, observed in
the initial design. Therefore, in the initial design the optimization algorithm has two active constraints.

All material models considered herein are symmetric laminates with the number of layers being fixed.
The simulation scenario considered is restricted to the first three seconds of the unfolding process, iden-
tified as the critical period. Two design variables are used in the optimization process, corresponding to
the orientation of the layers that make up the laminate used to model panels 2 and 3. The initial design of
laminate used in the panels is defined in Table 4. The optimization method used is the Modified Method
of Feasible Directions (MMFD), as available in DOT [Vanderplaats 1992]. The analytic sensitivities
computed by the direct differentiation method are used to compute the gradients required by the optimizer.

In Table 5 the optimization results are presented for the flexible multibody of the antenna. In Figure 10
the evolution of the objective function for the antenna flexible multibody model is showed, the progress
of the design variables being shown in Figure 11. Figure 12 shows the actuator angle history during the
first phase of the unfolding antenna for the original and optimum designs.
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Panel 2 (MFD) Panel 3 (MFD)

Optimum Layer orientations 1.06◦/−47◦/−47◦/1.06◦

Initial objective function 0.0219814
Optimum objective function 0.00097180
Reduction of objective function 95.6%

Number of Constraints 2
Number of Design Variables 2
Active Constraints 0
Active Side Constraints 0
Function Calls 14
Gradient Calls 4
Number of Iterations 4

Table 5. Summary of the optimization results of the satellite on the second optimization scenario.

In Figure 10 it is possible verify that the optimization procedure converges very fast to the optimum
solution, reducing the deformation energy on the order of 95%. The largest variation in the design
variables observed is associated with the outside layers of the laminate, as depicted in Figure 11. The
deformation energies of panels 2 and 3 are compared for the initial and the optimized models of the
panels 2 and 3 in Figures 13 and 14, respectively. By observing the initial and optimized deformation
energy of panels 2 and 3 it is possible to conclude that the major contribution to the reduction of the
deformation energy is verified in panel 2.
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Figure 10. Evolution of the objective function during the optimization process.
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Figure 11. Evolution of the design variables during the optimization process.

7. Conclusions

A general method for the design optimization of flexible multibody systems made of composite materials
has been presented in this work and demonstrated by an application to the design of the unfolding process
of a satellite antenna. First, the correct choice of the optimization methods and the optimal problem
definition is more complex when the nonlinear dynamic response of the systems is involved. Furthermore,
the need to use analytic sensitivities instead of numerical sensitivities requires that expeditious methods
of obtaining these are implemented in order to allow for the definition of more general objective functions,
constraints and design variables. This has been achieved in this work by using an automatic differentiation
tool to obtain the gradients required by the optimizer. Finally, the optimization of the nonlinear dynamic
systems in general, and of the flexible multibody systems in particular, often present time-dependent
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Figure 12. Actuator angle for the initial and optimum laminate of the antenna panels.
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Figure 13. Deformation energy for the initial and optimum model of panel 2.

constraints that are difficult to tackle with common procedures. The use of min-max optimization is a
form of handling most optimization problems of this type.

The application of the methodology developed for a complex system was demonstrated by consider-
ing the multibody model of the SAR antenna. The optimization method was applied to minimize the
deformation energy of the SAR antenna panels. To get a stiffer antenna, the optimization problem was
formulated as minimization problems of the deformation energy of each panel. The design variables
of the optimization problem were the fiber orientations of the layers that form the lamination used to
model the material properties of the panels. The design problem considers the case of finding optimum
symmetric lamination with four layers only. In the optimization scenario two design variables were used
to define the optimum lamination on both panels. The results of this application demonstrate that not
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 Figure 14. Deformation energy for the initial and optimum model of panel 3.
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only are there feasible designs for the antenna in which interference between panels is avoided but also
that the control over of the deformation energy of the antenna was possible. In the process it was shown
that feasible designs for the actuation law during the deployment are obtained.
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GEOMETRIC ANALYSIS OF THE DYNAMICS OF A DOUBLE PENDULUM

JAN AWREJCEWICZ AND DARIUSZ SENDKOWSKI

In this paper we make use of Riemannian geometry to analyze the dynamics of a simple low dimensional
system with constraints, namely a double physical pendulum. The dynamics are analyzed by means
of the Jacobi–Levi–Civita equation and its solutions. We show that this geometrical approach is in
qualitative agreement with the classical techniques devoted to the study of dynamical systems.

1. Introduction

The classical approach to analysis of Hamiltonian systems has been widely applied, providing a classical
explanation of the onset of chaos in these systems. In addition to the classical techniques for analyz-
ing Hamiltonian systems, the geometric approach plays an important role. The geometric approach is
based on the relation between Riemannian geometry and Hamiltonian dynamics, but is distinct from the
geometric formulation of Hamiltonian mechanics in terms of symplectic geometry. This technique has
been successfully applied [Cerruti-Sola and Pettini 1995; 1996, Casetti et al. 1996; Di Bari and Cipriani
1998; Casetti et al. 2000], especially to systems with many degrees of freedom. It has also been widely
applied in general relativity [Szydłowski 2000] and to low dynamical systems with a nondiagonal metric
tensor [Awrejcewicz et al. 2006]. It is believed that the geometric approach can provide an alternative to
the classical explanation for the onset of chaos in Hamiltonian systems, which involves the homoclinic
intersections [Lichtenberg and Lieberman 1992]. In the geometric approach to Hamiltonian dynamics,
the analysis of dynamical trajectories and behavior of a system is cast into the analysis of a geodesic flow
in a corresponding Riemannian space. The main tool of this approach is the so-called Jacobi–Levi–Civita
(JLC) equation [do Carmo 1992; Di Bari and Cipriani 1998]. In general, the JLC equation is a system of
second-order differential equations with respect to a geodesic length, and it describes the evolution of a
tangent vector (so-called Jacobi vector) along the geodesic. Although there are many dynamical systems
that can be described in this manner, there are some that can not, namely systems with velocity-dependent
potentials. However, this kind of dynamical system can be analyzed by means of the Finslerian geometry
[Di Bari and Cipriani 1998]. In this paper, we confine ourselves to conservative Hamiltonian systems,
which can be geometrized within the Riemannian geometry approach. The main idea of this approach is
to make use of the fact that Hamilton’s least action principle,

δ

∫ t2

t1
L
(
q i , q̇ i , t

)
dt = 0,

Keywords: pendulum, chaos, Riemannian geometry.
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can be connected with the condition of minimizing the arc-length functional in the Riemannian space
between two points A, B. The condition has the form

δ

∫ B

A
ds = 0.

The point is that motion of a Hamiltonian system can be viewed as the motion of a single virtual particle
along a geodesic in a suitable Riemannian space Q. From the above condition one can obtain the geodesics
equation, which has the following form in local coordinates [do Carmo 1992]

d2q i

ds2 +0i
jk

dq j

ds
dqk

ds
= 0. (1)

The Riemannian space is endowed with a metric tensor, which is obtained from the dynamics of the
analyzed system. In order to make use of the geometric approach we must choose a Riemannian manifold
and the metric tensor. There are several choices for a Riemannian manifold and metric tensor: a space-
time configuration manifold and the Eisenhart metric [Szydłowski 1998], a configuration manifold and
the Jacobi metric [Casetti et al. 1996; Cerruti-Sola and Pettini 1996], etc. In this paper we choose a
configuration space of an analyzed system for a Riemannian manifold. Hence, the metric tensor is the
Jacobi metric g, which is connected to the dynamics by the following relationship [Casetti et al. 2000]

gi j = 2Wai j (q) , W ≡ E − V,

where E is a total energy and V is potential energy. The matrix a is a kinetic energy matrix (we use the
Einstein summation convention):

L =
1
2

q̇ iai j q̇ j
− V . (2)

This relationship follows from the Maupertuis principle, which gives

ds = 2W dt.

The main tool of the geometric approach, namely the JLC equation in a local coordinate system, has the
following form [do Carmo 1992; Casetti et al. 2000]

δ2 J n

δs2 + J i dq j

ds
dqk

ds
Rn

ki j = 0, n = 1, 2, . . . , dim Q, (3)

where q j satisfy the geodesics Equation (1), J n are components of the Jacobi vector, Rn
ki j are compo-

nents of the Riemann curvature tensor, and

δ J n

δs
=

dJ n

ds
+0n

kl J n dql

ds
are so-called absolute derivatives. The above equation has a similar form to the tangent dynamics equa-
tion, which is used to evaluate Lapunov’s exponents. In fact, Equation (3) takes exactly the same form in
the case of the Eisenhart metric [Casetti et al. 1996]. This means that there is a connection between the
JLC equation and the tangent dynamics equation. Moreover, it is possible to find Lapunov’s exponents
using the Riemannian geometry approach. This has been done only for systems with many degrees of
freedom and diagonal metric tensor [Casetti et al. 2000].
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Figure 1. Double physical pendulum.
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Because we are interested in systems of only two degrees of freedom, the Riemannian space Q is two-
dimensional. This implies that we have only one nonzero component R2121 of the Riemann curvature
tensor [Nakahara 1990; do Carmo 1992]. In this case, the JLC equation (3) takes the form

d29

ds2 +
R2121

det g
9 = 0,

where 9 is a normal component of the Jacobi vector relative to the geodesic. The tangent component of
the Jacobi vector evolves only linearly in a geodesic length, so it does not contribute to the character of
the solution [Di Bari and Cipriani 1998]. Next, making use of the fact that

R =
2R2121

det g
, (4)

we obtain a single differential equation which carries information about the system behavior

d29

ds2 +
1
2

R9 = 0, (5)

where R is the scalar curvature which, in general, is not periodic in τ . At this point, we can see where
a possible explanation of the onset of chaos in Hamiltonian system lies. The component 9 of the
Jacobi vector represents a distance between two nearby geodesics, which in turn represent trajectories
of the analyzed system. The solutions of Equation (5) can exhibit exponential growth due to parametric
excitations in the scalar curvature. Hence, this formulation and description of Hamiltonian dynamics
gives us a qualitatively different explanation of the onset of chaos as a parametric instability of geodesics
[Cerruti-Sola and Pettini 1996].

In order to solve Equation (5), we need to transform it into a differential equation with respect to the
real time, t . Taking into account Equation (2) we find

9̈ −
Ẇ
W
9̇ + 2RW 29 = 0.

The above equation can be easily transformed into another form by means of the following substitution
[Cerruti-Sola and Pettini 1996]

9 = J
√

W ,

which gives

J̈ +�(τ) J = 0, (6)

where

�(τ)≡
1
2

(
Ẅ
W

−
1
2

(
Ẇ
W

)2

+ 4RW 2

)
.

It should be emphasized here that � is not, in general, periodic in τ -time. Although � is written as a
function of τ , it does not depend on τ explicitly. In fact, it depends on a particular trajectory of the
system.
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2. The pendulum

In this paper we analyze a mechanical system with constraints, namely a double physical pendulum. The
dynamics of the pendulum are described by the following lagrangian L

L =
1
2

(
m1c2

1 + J1 + m2l2
1
)
ϕ̇2

1 +
1
2

(
m2c2

2 + J2
)
ϕ̇2

2 + m2c2l1ϕ̇1ϕ̇2 cos (ϕ1 −ϕ2)− V (ϕ1, ϕ2) ,

where

V (ϕ1, ϕ2)= g (m2l1 + m2c2 + m1c1)− g (m1c1 + m2l1) cosϕ1 − m2gc2 cosϕ2,

m1 and m2 are masses, J1 and J2 are moments of inertia, and c1 and c2 are the positions of centers of
masses of the first and second link, respectively (see Figure 1). In order to cast the above lagrangian into
a nondimensional form, we introduce the following scaling

τ ≡ t

√
m1gc1 + m2gl1

J1 + m1c2
1 + m2l2

1
, β ≡

J2 + m2c2
2

J1 + m1c2
1 + m2l2

1

κ ≡
m2c2l1

J1 + m1c2
1 + m2l2

1
, µ≡

m2c2

m1c1 + m2l1
.

Hence, the lagrangian takes the nondimensional form

L =
1
2
ϕ̇2

1 +
β

2
ϕ̇2

2 + κϕ̇1ϕ̇2 cosφ− 1 −µ+ cosϕ1 +µ cosϕ2

=
1
2

(
ϕ̇1ϕ̇2

)
a

(
ϕ̇1

ϕ̇2

)
− 1 −µ+ cosϕ1 +µ cosϕ2, φ ≡ ϕ1 −ϕ2,

where

a =

(
1 κ cosφ

κ cosφ β

)
,

The dot over ϕ denotes τ derivative. Using the Euler–Lagrange equations we obtain the equations of
motion 

ϕ̈1 =
−κ sinφ

(
κ cosφϕ̇2

1 +βϕ̇2
2

)
−β sinϕ1+κµ sinϕ2 cosφ

β−κ2 cos2 φ
,

ϕ̈2 =
κ sinφ

(
ϕ̇2

1 +κ cosφϕ̇2
2

)
−µ sinϕ2+κ sinϕ1 cosφ

β−κ2 cos2 φ
.

3. Geometrization

Let us consider the Jacobi metric g of the physical pendulum

g = 2Wa = 2W

(
1 κ cosφ

κ cosφ β

)
, W ≡ E − 1 −µ+ cosϕ1 +µ cosϕ2.
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Next, we find the connection coefficients 0i
jk :

01
11 =

1
2W det a

(
2κ2 sinϕ1 cos2 φ+ Wκ2 sin (2φ)−µκ sinϕ2 cosφ−β sinϕ1

)
,

02
22 =

1
2W det a

(
2µκ2 sinϕ2 cos2 φ− Wκ2 sin (2φ)−βκ sinϕ1 cosφ−βµ sinϕ2

)
,

02
11 =

1
2W det a

(µ sinϕ2 − κ sinϕ1 cosφ− 2Wκ sinφ) ,

01
22 =

β

2W det a
(β sinϕ1 −µκ sinϕ2 cosφ+ 2Wκ sinφ) ,

02
12 =

1
2W det a

(µκ sinϕ2 cosφ−β sinϕ1) ,

01
12 =

β

2W det a
(κ sinϕ1 cosφ−µ sinϕ2) .

In a two-dimensional space there is only one nonzero component of the Riemann curvature tensor,
namely,

w1
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Figure 3. Initial conditions: ϕ2 = −1.63, ϕ̇2 = 0.63.
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R2121 = µ cosϕ2 + 2Wκ cosφ+β cosϕ1 +
1
W
(κ sinϕ1 cosφ−µ sinϕ2)

2
+

sin2 ϕ1 det a
W

−
κ sinφ
det a

(βκ sinϕ1 cosφ−µκ sinϕ2 cosφ−βµ sinϕ2 +β sinϕ1)−
2Wκ3 sin2 φ cosφ

det a
.

Making use of Equation (4) we find the scalar curvature:

R =
κ cos (φ)
W det a

−
κ3 sin2 φ cosφ

W det2 a
+
µ cosϕ2+β cosϕ1

2W2 det a

−
κ sinφ (βκ sinϕ1 cosφ−µκ sinϕ2 cosφ−βµ sinϕ2+β sinϕ1)

2W2 det2 a

+
sin2 ϕ1
2W3 +

(κ sinϕ1 cosφ−µ sinϕ2)
2

2W3 det a
.

Finally, inserting the obtained scalar curvature into Equation (6) we get the JLC equation for the physical
pendulum.

4. Numerical simulations

The equations of motion have been numerically solved by means of the symplectic algorithm of Strömer–
Verlet [Hairer et al. 2006], whilst the JLC equation (6) has been solved by the Dormand-Prince 5(4)
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Figure 4. Initial conditions: ϕ2 = 0, ϕ̇2 = 1.46.
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Figure 5. Initial conditions: ϕ2 = −1.93, ϕ̇2 = −0.23.

algorithm with variable time-step size and the energy correction. Numerical simulation parameters were
given the following values: β = 0.6, κ = 0.4, µ= 0.66667. The simulation was performed for the total
energy E = 1.1. Below, we present the Poincaré section, in which one can observe chaotic regions as
well as islands of regular behavior. Thus, we can analyze the system’s behavior on the same energy
level. The numerical results include three cases, namely two of them (Figures Figure 3, and Figure
4) from regions of regular behavior and the last (Figure 5) one from the chaotic region. The initial
conditions of the regular behavior cases have been taken from the interior of the regular islands, so that
trajectories stay in regular regions regardless of numerical errors. The presented figures include two
projections of the phase trajectories (only in the case of regular behavior), the corresponding Poincaré
section of a particular trajectory, and the graph, which presents the evolution rate of a solution of the JLC
equation. One can easily observe that in the case of regular trajectories (Figures Figure 3, and Figure 4)
the evolution of the Jacobi vector along the geodesic is bounded. However, in Figure 5 we can observe
the unbounded evolution of the Jacobi vector, which means that two nearby geodesics originating from
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the neighborhood of the initial condition move away from each other and hence the distance between
them grows exponentially. This is caused by the parametric resonance occurring in the JLC Equation
(5).

5. Concluding remarks

We have applied the Riemannian approach to a low dimensional system with constraints, and have shown
that the geometric approach gives results that are in qualitative agreement with those obtained from the
classical approach. The existence of constraints is manifest in the metric tensor, which has a nondiagonal
form in this case. Although the obtained results show that there is an agreement between classical and
geometric approaches, a more thorough analysis is needed. The aim of this approach is to make use of
the Riemannian geometry tools to gain information about a system’s behavior without referring to the
geodesic evolution. The geometric approach has already been applied to systems that have no constraints
and many degrees of freedom [Di Bari and Cipriani 1998; Casetti et al. 2000]. However, systems with
few degrees of freedom and constraints are more difficult to analyze in this manner. Nevertheless, the
obtained results are very promising and enable us to work out a more analytical way to analyze such
systems within the geometric approach.
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NUMERICAL SIMULATION OF GRANULAR MATERIALS IN A ROTATING
TUMBLER

HORACIO TAPIA-MCCLUNG

Using a simple numerical model based on particle dynamics, we perform two-dimensional simulations
of granular materials inside a rotating tumbler. Still in its first stages of development, the model can
quantitatively reproduce some of the general behavior observed in these systems, both for monodisperse
and binary mixtures. Work is currently being done to validate the model and obtain results that are
directly comparable to experiments.

1. Introduction

Until recently, two special cases of granular segregation have received the most attention: systems in
which particles have the same size but differ in density (D-systems) and those in which particles have the
same density but different size (S-systems). In both cases, the mechanisms that give rise to segregation
are still not well understood. A more challenging case is that in which particles of different sizes and
densities are present [Jain et al. 2005] . This last situation is of practical importance since many of
the granular flows encountered in nature and industry involve particles of different sizes, shapes, and
densities.

It is known that particles of higher density or smaller size segregate to the core of the granular bed while
particles of lower density or larger size segregate to the outer edges and to the flowing layer. In mixed
systems, it would be expected that the mechanisms that give rise to segregation compete to decrease
or increase the final mixed state. Much of the experimental and numerical work already done to study
segregation in a rotating tumbler has focused on bidisperse particle systems in which only one of the
particle properties is varied (S and D systems), and only recently has a first step towards characterizing
regimes of segregation for systems with mixed particles been done experimentally [Jain et al. 2005].
In this study it was found that when the different mechanisms all contribute to segregation, a classical
behavior is observed, and when they oppose one another, a transition from a core composed of dense
particles to a core composed of small particles occurs and mixing can be achieved if the denser particles
are also bigger and if the ratio of particle size is greater that the ratio of particle density.

On the numerical side, granular flow has been approached by means of continuum-based models
[Khakhar et al. 1997; Jain et al. 2005] and particle dynamics simulations [Dury and Ristow 1997], but
in both cases, only the size or the density of the particles were different. In this work we present the
preliminary results of a numerical study on granular materials placed in a two-dimensional rotating
drum based on a particle dynamics simulation. Our final objective is to determine regimes of mixing and
segregation and their dependence on system parameters such as particle properties, filling level of the

Keywords: granular materials, rotating drum, numerical simulations.
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drum and angular velocity of rotation of the drum. Numerical simulations allow us to track the evolution
of quantities that are not accessible in real experiments and to scan a wide range of system parameters
in order to gain knowledge of the fundamental processes responsible for the complex collective behavior
that is observed in granular materials.

2. The system

A rotating tumbler is probably one of the simplest and most common devices used to mix particles. In its
most basic form, it is a cylindrical container that rotates about its axis of symmetry. Particles (or fluids)
placed inside of it undergo different flow regimes that depend on many factors, the most evident one
being the rotational velocity of the tumbler; but perhaps just as important as the angular velocity is the
friction of the particles with the inside walls and with themselves.

In the case of granular materials, as the tumbler rotates, particles are transported inside the drum mostly
by friction with the inner wall. For very small rotational velocities, the system of particles behaves as
a rigid body. As the velocity is increased, individual avalanches begin to appear on the surface layer,
carrying particles from one side of the rotating drum to the other. Further increase in the angular velocity
above a critical value results in a continuous flow on the surface layer, and for even higher values of
rotational velocity, the system reaches a centrifugal regime.

The choice of a rotating drum as a study case presents several advantages: rich behavior can be
observed and, under appropriate conditions, the processes taking place in such a device can be considered
almost two-dimensional. Industrial applications are wide and can provide a direct comparison between
experimental and numerical work.

3. The numerical model

We model single grains by idealized spherical particles (discs in two dimensions) of radius r0
i and mass

mi that interact only in pairs during collisions. The time evolution of each grain is obtained by numeri-
cally solving the coupled equations of motion using the velocity-explicit Verlet algorithm for temporal
integration of second-order differential equations. This algorithm approximates the solution using a
nonzero time step dt to update the positions at time tn+1 = (n + 1)dt from the knowledge of the position,
the velocity and the forces acting on the particle at time tn = ndt . The velocity is updated by using the
information from the previous time step (at time tn) and the forces acting on the particle at the current
time. Further details can be seen in [Andersen 1983; Allen and Tildesley 1989; Tapia-McClung and
Grønbech-Jensen 2005]. To use this numerical method, the forces acting on a particle have to be known
in advance in order to update the positions and velocities. Because of the nature of granular materials
and the complexity of their collective behavior, it is difficult to know what the forces acting on each
individual grain are [Schaefer et al. 1996]. In a numerical simulation we need a model simple enough
to be treated computationally, that is able to account for the observed behavior of the system. This is
particularly true for granular materials which are highly dissipative systems. In this work we have chosen
a simple and numerically tractable model that accounts for the basic interactions between particles in
granular media and that has been successfully used to study granular flows in different configurations
[Dury and Ristow 1997; Hirshfeld and Rapaport 1997]. According to Newton’s second law, the equation
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of motion for a single grain looks like

mi ¨̄ri +αi ˙̄ri j = −∇i e(ri j )−
∑
i 6= j

βi j ui j (ri j ) ˙̄ri j +µi t ui t(ri t)(1v̄R × dr̂)− mi ḡ,

where

e(ri j )=

∑
i> j

ui j (ri j ),

ui j (ri j )= 4εi j

( σi j

r0
i j − ri j

)12

−

(
σi j

r0
i j − ri j

)6
+ εi j

is the potential energy between pairs of grains, given in terms of the parameters εi j , which is a measure of
the strength of the interaction between grains and which provides a unit for the energy of the interaction,
σi j , the softness of the grains, and ri j , the relative separation of particles. The repulsive force in the normal
direction along the line joining the centers of mass of the particles is thus given by −∇i e(ri j ). This force
depends only on the relative separation of the particles, ri j , and prevents them from overlapping. The
analytical expression for the potential energy is that of the common Lennard-Jones potential widely used
in Molecular Dynamics simulations [Allen and Tildesley 1989]. This potential provides a smooth force
function (required by the numerical method) with the desired physical properties for the system: strongly
repulsive for small separations of the particles and zero for separation between particles that are larger
than a cut-off, since the particles do not interact when they are far apart from each other.

The terms proportional to the relative velocity in the equations of motion, ˙̄ri j , correspond to a dissi-
pative force that accounts for the inelastic collisions, and which is determined by the constant parameter
βi j . The force in the shear direction is connected to the normal force by the Coulomb laws of friction
[Schaefer et al. 1996]. A diagram of the forces acting on a pair of grains is shown in Figure 1. It is worth
noticing that, in three dimensions, the shear force in not uniquely defined and we must require that the
tangential force lie in the plane of the relative velocity.

The last two terms in the equations of motion correspond to the interactions between the particles and
the tumbler’s wall. We use µi t as the parameter for the frictional forces between the particles and the

Figure 1. Normal and tangential directions during particle contacts.
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interior wall, while the force resulting from the angular velocity is given by 1v̄R × dr̂ , where 1v̄R is
the relative velocity between the particle and the tumbler, and where dr̂ =

r̄i −r̄t
|r̄i −r̄t |

is a unit vector in the
direction determined by the center of the particle and the center of the tumbler.

4. Preliminary results

We are currently performing simulations for monodisperse systems of particles in order to establish an
appropriate correspondence between the model and the experimental measurements. For these simula-
tions, we fix the tumbler’s radius and the total number of particles used. It should be noticed that with
this choice, varying the size of the grains also changes the filling level of the tumbler and therefore the
dynamics since, clearly, a tumbler that is 10% filled will show different behavior than one that is 90%
filled. We also fix the model parameters αi , βi j and µi t and study the system as the rotational velocity
of the tumbler is varied. Figure 2 shows the results of simulations using 1500 particles of size r0

i = 1.0
(in arbitrary units) inside a tumbler of radius R = 52.5 with αi = βi j = µi t = 1.0 for rotational velocities
between 2.0 rpm and 2.4 rpm. The s-shape that can be seen in the surface layer has been observed
experimentally, and is commonly seen before a transition in the flow regime occurs [Ding et al. 2002].

A first step towards successfully applying the model discussed here to the study of mixing and segre-
gation in granular materials is shown in Figure 3. In this case, the simulation is done with 850 particles of
size r0

i = r0
= 0.1 in a drum of radius R = 35. Both types of particles have the same mass density and the

rotational speed is �= 2.0 rpm. The figure at the left is a snapshot of the simulation at the initial stage
and the one at the right shows a snapshot taken after only a few rotations of the tumbler. The images
show that the system is reaching a segregation state in which the smallest particles are accumulating
around the cores, as should be expected.

5. Discussion

Although this work is in a development stage, the simple model presented here is enough to observe
some of the general features of granular particles inside a rotating tumbler, not only for monodisperse
systems but also for the classical cases of D- and S-systems. Even in the simplest cases of monodisperse

Figure 2. Numerical simulations for mono disperse particles. Rotational speeds from
left to right are: �= 2.0, 2.1, 2.2, 2.3 and 2.4 rpm.
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Figure 3. Snapshot of a numerical simulation of a binary mixture. The final segregated
state can be observed on the right.

systems, our simulations have shown features and behavior that are richer than the originally expected
ones. A phase diagram of the flow transitions as the rotational speed increases is being constructed while
monitoring physical quantities like the average energy, the average torque on the tumbler due to the
particles, etc.

Another work currently in progress is the study of the dynamics of elongated grains inside the rotating
tumbler. In [Tapia-McClung and Grønbech-Jensen 2005] an efficient numerical algorithm was developed
to constrain particles in a linear geometry. This allows us to numerically construct elongated grains that
are composed of several individual particles and no longer have to be considered ideal grains represented
by spherical particles, since we are able to construct grains with irregular shapes.

Even where we have not mentioned it, three-dimensional simulations are also being considered. The
computational effort required to extend the calculations from two to three dimensions is relatively simple,
and so it is contemplated as a future goal of this research.
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DENSITY MEASUREMENTS IN A SUPERSONIC JET

CATALINA ELIZABETH STERN, JOSÉ MANUEL ALVARADO AND CESAR AGUILAR

We use a nonintrusive optical technique for heterodyne detection of the light scattered elastically by the
molecules of a moving transparent gas, a phenomenon known as Rayleigh scattering. It can be shown
that the signal that comes out of the photodetector is proportional to the spatial Fourier transform as a
function of time of the density fluctuations, for a wave vector given by the optical set-up. This is the only
technique we are aware of that can study density fluctuations inside a flow.

In this paper we present results obtained from a supersonic axisymmetric air jet. The signal that
comes out of the photodetector is processed, and the power spectrum calculated. In the spectrum, density
fluctuations of two different origins can be identified: acoustic, that is, those that propagate at the speed
of sound and are related to pressure variations, and entropic, those that have constant pressure and are
convected by the flow. At certain locations we have found an additional peak related to the interaction
between the flow and the shock structure. Furthermore, Rayleigh scattering can be used to visualize the
shock structure of the flow. We provide supporting images for our results.

1. Introduction

The original objectives of this work were to localize sound sources in a supersonic jet, relate the produc-
tion of sound with flow phenomena and determine the acoustic radiation pattern inside and outside the
flow. We use a Rayleigh scattering technique that can measure density fluctuations inside the flow for
a given wavevector. Our jet is very turbulent and sound sources are not localized. However, we have
been able to visualize the shock structure, allowing us to relate the spectrum at each location and at each
angle to the compression and expansion waves in the supersonic region of the jet. We have been able to
determine the direction of propagation of sound waves inside and outside the jet including the mixing
layer. We have also found an unexpected peak in the spectrum that is related to the interaction between
the flow and the shock structure.

2. Background

2.1. Acoustic emission. There are several theories that try to explain acoustic emission in a jet. Some
of them are based on the interactions between large-scale structures in the flow: pairing, cut and connect,
and annihilation. In general, it is accepted that large-scale structure interactions produce sound that
propagates at large angles, while small structures produce sound that propagates at small angles. There
are other possible sources of emission such as the interaction of the flow with the shock waves and the
feedback of acoustic waves that reenter the flow.

Keywords: aeroacoustics, Rayleigh scattering, supersonic flow.
This work was supported by UNAM through projects DGAPA IN107599, IN104102 and IN116206.
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Figure 1. Molecules scatter light in all directions. Selecting detector orientation, we
specify scattering angle and size of fluctuations to be studied.

Traditionally, experimental studies on acoustic waves have been performed by placing many micro-
phones in the far field and correlating these measurements with events measured inside the flow. Not
only is there a problem trying to determine sources from far field measurements as the solution of the
inverse problem is not unique, but this method fails to take into account certain phenomena such as the
diffraction of the acoustic waves by the mixing layer.

2.2. Rayleigh scattering. The elastic scattering of an electromagnetic wave of wavelength λ0 by a neu-
tral particle of dimensions smaller than the wavelength is known as Rayleigh scattering. In a static
transparent gas, light is scattered homogeneously, and the scattered field is constant. If the gas is in
motion or with strong density variations, the characteristics of the scattered light reflect the characteristics
of the structure and motion of the gas. In the far field, the light scattered by one molecule is given by

EES0 = r R
0

eik0r

r
{Er × EE0(Er ′)× Er},

where r R
0 is the Rayleigh scattering cross section. Figure 1 shows the wave vectors of the incident and

scattered light. The total scattered field can be obtained from the integral

EES = EES0(Er , t)
∫

VS

d3r ′n(Er ′, t)ei Ek1·Er
= EES0(Er , t)n(Ek1, t),

where n(Er ′, t) is the distribution of molecules in the scattering volume Vs , n(Ek1, t) is the spatial Fourier
transform of the density function and EES0(Er , t) is the field scattered by one molecule. The scattered field
has information about the motions of the molecules in the scattering volume through the spatial Fourier
transform of the density.

2.3. Density fluctuations. When the speed of the flow is close to Mach1, compressibility becomes im-
portant and the equations that describe the flow are more complicated than for the incompressible case.
However, if we consider small oscillations about the equilibrium, the equations can be linearized. Monin
and Yaglom [1987] have shown that if we write the equations of motion in terms of the vorticity �, the
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divergence D of the velocity, the entropy S and the pressure P , all possible motions can be described by
three noninteracting modes:

d�(t)
dt

= 0,
d S(t)

dt
= 0,

d2 D(t)
dt2 + a2

0k2 D(t)= 0,
d2 P(t)

dt2 + a2
0k2 P(t)= 0.

The incompressible vorticity mode and the entropy mode are stationary or move at constant speed. The
acoustic or potential mode is related to pressure fluctuations that propagate at the speed of sound as we
can see from the wave equation. We can expect to measure the two modes related to the compressible
part of the flow: entropic and acoustic.

2.4. Structure of a supersonic jet. Figure 2 shows the structure of a supersonic jet. The discontinuity
at the edge of the nozzle produces a perturbation that propagates at the speed of sound. Each new
perturbation catches on the previous one because the speed of the flow is supersonic. The addition of
these perturbations creates a shock, that is, a conic region of very high density. Starting with an expansion,
a stationary pattern of shocks is formed in the supersonic region of the jet. As the speed decays, the flow
becomes subsonic and the shocks disappear.

3. Experimental setup and techniques

3.1. Visualization. Figure 3 shows the experimental setup used for visualization. All the light scattered
at small angles is collected by a lens and sent to a screen where the flow pattern can be visualized
[Azpeitia 2004].

3.2. Heterodyne detection of the scattered light. The amplitude of the scattered light is extremely small
and cannot be measured by a common diode. To solve this problem we mix, on the surface of the pho-
todetector, the scattered light with a well known beam of light called the local oscillator. The frequency
of the local oscillator is different from the frequency of the incident beam. This technique is known as
heterodyning. Figure 4 shows the experimental setup.

Reflection
Atmospheric Pressure

Expansion
Mach Cones

Center
Compression

Nozzle
High Pressure

x

Figure 2. Discontinuity at nozzle end creates perturbation that gives a stationary shock
pattern for supersonic flow.



1440 CATALINA ELIZABETH STERN, JOSÉ MANUEL ALVARADO AND CESAR AGUILAR

Laser

Nozzle

Obstacle

Jet

Lens

Screen

Figure 3. Laser light is sent through the jet. Central part of beam is blocked, while
small angle scattering is collected on the screen.

The beam that comes out of the laser is sent into an acoustic modulator. The modulator acts as a Bragg
cell and several orders of diffraction come out. Order zero goes through without being deviated; we refer
to this beam as incident or primary. Order one is diffracted at a particular angle, is less intense and is
displaced in frequency by 110 MHz. We will refer to this beam as the local oscillator. Both beams are
manipulated so that they cross at angle θ in the volume to be studied. The local oscillator is sent directly
to a photodetector, while the main beam is blocked just after the scattering. The photodetector then
sees the part of the incident field scattered at the angle q and the local oscillator. The scattering angle
determines the wavenumber of the fluctuations through k1 = 2k0 sin(θ/2), where Ek0 is the wavevector

Acousto-optic modulator

AOM

Several orders of

diffraction

Scattering volume

Photodetector

Incident beam

Optical
system

Laser

Figure 4. Light sent to acousto-optic modulator comes out as several beams displaced
in frequency. One is used as local oscillator and mixed with scattered light at detector.
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of the incident field, Ek1 is the wavevector of the density fluctuations, and k0, k1 are their respective
magnitudes.

The photodetector is sensitive to the intensity of the incident light, so the current it produces is pro-
portional to the square of the electric field incident on its surface. The current of the photodiode is then
proportional to

( EES + EEO L)
2
= | EES|

2
+ | EEO L |

2
+ 2 EES · EEO L .

The first two terms are constant. In particular, the first is too small and the second is of no interest. The
third term gives a current that oscillates at the frequency that is the difference of the frequencies of the
two electric fields. It contains the information we are interested in, and is modulated by the amplitude
of the local oscillator. The current proportional to this term is known as the heterodyne current.

It can be shown [Stern and Grésillon 1983; Aguilar 2003] that the spectral density of the heterodyne
current I (ω) produced by all the scatterers is of the form

I (ω)=
1

8πk2
0

( ηe
h̄ω0

)2
n0(r R

0 )
2 ε0

µ0

(
EES · EEO L

)2
∫

d3k|W (Ek1 − Ek)|2 ×
[
S(Ek, ω−ω1)+ S(Ek, ω+ω1)

]
,

where η is the efficiency of the detector, n0 the mean density, W is related to the Gaussian profiles of the
beams and S(Ek1, ω) is the form factor defined by

S( Ek1, ω)=
|n(Ek1, ω)|2

n0V
.

To obtain the spectral density, the signal from the photodetector is either sent directly to a spectrum
analyzer or acquired with a computer and treated with periodgrams that have a higher spectral resolution
than the analyzer and the traditional Fourier transform.

The diameter of our nozzle is 0.8 mm. It is mounted on a rotating and translating traverse in such a
way that density fluctuations can be studied inside and outside the jet and in all directions. The technique
described is sensitive to the wavevector of the fluctuations. Therefore, we can determine the direction of
propagation of acoustic waves inside the flow, including the mixing layer.

4. Results

4.1. Visualization. When we visualize the near region of the flow we can see the shocks created by the
discontinuity at the nozzle exit. Figure 5(a) shows the first shock after the nozzle.

If we use a cylindrical lens, we can create a sheet of light and observe a series of shocks along the jet.
Figure 5(b) is a superposition of four images showing four jets with different exit velocities. The exit
pressure is increasing from top to bottom. It can be observed that as the pressure increases, the crossover
region where the expansion and the compression meet becomes flat.

4.2. Heterodyne detection. Figure 6 shows the spectral density obtained with the spectrum analyzer for
fluctuations that propagate perpendicular to the flow at a point in the centerline of the jet. The peak
is so broad that it is hard to differentiate between entropic and acoustic fluctuations. Figure 7 shows
the spectrum for fluctuations perpendicular to the flow outside the flow. As expected, only acoustic
fluctuations are detected in this region. The frequency of the center of the peak divided by k1 corresponds
to the speed of sound.
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(a) (b)

Figure 5. (a) First shock after nozzle; flow is upward. (b) Four jets visualized one at a
time with a sheet of light; flow is downward. Several shocks are observed.

1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15
x 108

−90

−80

−70

−60

−50

−40

−30

−20

−10

Frequency (Hz)

Am
pl

itu
de

 (d
B)

Figure 6. Fluctuations perpendicular to the jet on the axis.



DENSITY MEASUREMENTS IN A SUPERSONIC JET 1443

1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14 1.15
x 108

−90

−80

−70

−60

−50

−40

−30

−20

Frequency (Hz)

Am
pl

itu
de

 (d
B)

Figure 7. Fluctuations perpendicular to the flow outside the jet.
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Figure 8. Fluctuations parallel to the flow on the jet axis.
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Figure 9. New low-frequency peak appears at some locations along jet center.

The spectral density in Figure 8 corresponds to fluctuations at a point on the centerline of the jet that
propagate parallel to the flow. It can be seen that the entropic part of the peak is shifted because the
scattering molecules are convected with the flow. Through the change of frequency of the entropic peak,
that is, the Doppler shift, we can determine the local mean speed of the flow. An acoustic peak, due to
a reflection on the optical setup can be observed on the left hand side of the spectrum. The spectrum in
Figure 9 shows that at certain locations along the axis an additional low frequency peak can be observed.

In all the figures shown above, the spectral densities were obtained through a spectrum analyzer. The
resolution in frequency is quite poor. To ameliorate these results, we have deheterodyned the signal
to shift the reference frequency to zero, acquired it with a computer and treated it with parametric
periodgrams of the Burg type [Alvarado 2004].

Figure 10 shows the spectral density at various locations along the centerline for fluctuations perpen-
dicular to the flow. Three peaks are visible. The acoustic peak is always at the same location. The
entropic peak changes with the local speed of the flow, and the new peak appears and disappears along
the centerline and changes slightly its frequency. It is interesting to note that when the new peak has its
highest amplitude, the acoustic peak disappears and vice versa.

By comparing the photographs obtained with the visualization and the graph of the amplitude of the
new peak as a function of position as seen in Figure 11, we have been able to determine that the regions
of maximum amplitude for the low frequency peak correspond to the crossover between expansion and
compression in the shocks. The x coordinate is given in multiples of the nozzle diameter. We are
convinced that the peak is related to the interaction of the flow with the shocks. A more detailed study
of the origin of this peak is underway.
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Figure 10. Spectral densities calculated by means of Burgs parametric periodgrams at
several locations along jet center.
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Figure 11. Comparison of new peak amplitude with jet shock structure.
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Figure 12. Spectral densities outside the flow at same location for different wavevector
directions. Maximum amplitude corresponds to propagation direction of acoustic wave.

The signal of the photodetector depends on the wave vector and is thus sensitive not only to the
wavenumber, but also to the direction of propagation of the fluctuations. Figure 12 shows how the
amplitude changes when measurements are taken at the same point (outside the flow), for the same
wavenumber but different direction of propagation.

It can be observed that the amplitude changes with the direction. If we consider that the maximum
amplitude corresponds to the direction of propagation of the acoustic wave, we can determine the acoustic
radiation pattern of the jet inside and outside the flow. Figure 13 shows a preliminary radiation pattern
obtained by seeking, at each point in the jet, the direction where the acoustic peak has the highest
amplitude.

5. Conclusions

We have shown that heterodyne detection can measure density fluctuations in the flow and differentiate
among three different phenomena: acoustic waves propagating at the speed of sound, entropy fluctuations
that are convected by the flow, and low frequency fluctuations that appear close to the shock structure.
The mean local velocity of the jet can also be measured through the Doppler shift of the spectrum. The
signal is sensitive to the direction of propagation of the fluctuations, so the technique can also be used
to determine the acoustic radiation pattern inside and outside of the jet, and eventually to localize the
acoustic sources.

Moreover, Rayleigh scattering can be used to visualize certain aspects of the shock structure. To better
understand the origin of the low frequency peak we are planning two kinds of experiments. It is well
known that a certain noise known as screech is produced by the interaction of the flow with shocks. The
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Figure 13. Preliminary acoustic radiation pattern inside and outside the flow.

Strouhal number of the screech is well documented. We aim to detect the screech outside the flow with
a transducer and correlate it with our measurements.

Furthermore, we aim to find all the positions in the flow where the peak appears, as well as the direction
of maximum amplitude to understand how the flow behaves outside the centerline.
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FREQUENCY AND SPATIAL RESPONSE OF BASILAR MEMBRANE VIBRATION
IN A THREE-DIMENSIONAL GERBIL COCHLEAR MODEL

YONGJIN YOON, SUNIL PURIA AND CHARLES R. STEELE

The cochlea of the inner ear presents severe difficulties for measurement and computation, and contro-
versy exists on virtually every issue. However, the first in vivo measurement of the spatial distribution
of elastic response for a fixed frequency is now available. This work compares experimental results
and those from calculations with a three-dimensional model. This is a standard model that consists of
a long, fluid-filled box with a partition, a portion of which is the elastic BM (basilar membrane). The
BM velocity at a fixed point as a function of frequency and the spatial response for a fixed frequency
are calculated. The model includes the three-dimensional viscous fluid and the pectinate zone of the
elastic orthotropic BM with the gerbil dimensional and material property variation along its length. The
radial BM thickness variation is, however, replaced by an equivalent constant thickness. The active
process is represented by adding the motility of the OHCs (outer hair cells) to the passive model with a
feed-forward approximation of the organ of Corti (OC). Asymptotic and numerical methods combined
with Fourier series expansions are used to provide a fast and efficient iterative procedure that requires
about one second on a desktop computer for obtaining the BM response for a given frequency. Our three-
dimensional model results show the following agreement with the experimental measurements in various
situations: (i) for map of place of maximum response to frequency — excellent; (ii) for the response at
a fixed point as a function of frequency — excellent for amplitude, poor for phase; (iii) for the spatial
distribution for fixed frequency — fair for amplitude and excellent for phase. The discrepancies in (ii)
and (iii) remain to be clarified.

1. Introduction

The cochlea is a snail-shaped, fluid-filled duct that is divided along its longitudinal direction by the
compliant basilar membrane (BM), upon which is located the organ of Corti (OC) containing all sensory
cells. The fluid and compliant structures within the cochlea are set in motion in response to sound
input at the stapes, and the detection of this motion by inner hair cells (IHCs) initiates hearing through
afferent auditory nerve firing transmitted to the auditory cortex. In this study, the mechanical behavior
of the cochlea, especially BM velocity, was simulated with a physiologically based, three-dimensional
cochlear model. Model results were compared with in vivo cochlear experimental data in the character-
istic frequency-to-place (CF-to-place) map and BM velocity magnitude and phase for the frequency and
spatial distribution. Access for in vivo measurement in the cochlea is severely restricted and difficult.
The first in vivo measurement of the spatial distribution of elastic response for a fixed frequency by Ren
[2002] provides the motivation for the present study.

Keywords: cochlear model, mechanical response, basilar membrane velocity, outer hair cell, gerbil.
This work was funded by HFSP Grant No. RGP0051.
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Numerous mathematical models describe the biomechanical activity in the cochlea. Models extend
the passive cochlear model with the inclusion of the motions of OC, particularly the active behavior of
the outer hair cells (OHC), beginning with simplified one-dimensional models with negative damping
[de Boer 1983]. Higher-dimensional active models have also been developed. Two-dimensional finite
difference models were constructed by using a feedback law [Neely 1985; 1993]. Numerically intense
three-dimensional finite-element models had been developed with the inclusion of varying details and
complexities of the OC, but the fluid was still modeled as inviscid [Kolston and Ashmore 1996; Böhnke
and Arnold 1998]. Models include the activity in the OC as a feed-forward mechanism from the longi-
tudinal tilt of the OHCs. Two-dimensional [Geisler and Sang 1995] and three-dimensional models with
the active feed-forward mechanism have been employed [Steele et al. 1993; Steele and Lim 1999; Lim
and Steele 2002].

The present study uses the physiologically based, linear three-dimensional feed-forward model for
gerbil anatomy. The model uses a combination of the asymptotic phase integral method that is com-
monly known as WKB (Wentzel–Kramers–Brillouin) method and the fourth order Runge–Kutta (RK4)
numerical forward integration. This hybrid approach provides significantly faster computations than the
finite difference or finite element methods and more accuracy than the WKB alone [Lim and Steele
2002].

The present model is as simple as possible while still representing the essential features of the BM
response. Included in the model are the variation of the dimensions and material properties along the
cochlear duct and three-dimensional viscous fluid effects. Only one degree of freedom of the partition,
the flexing of the pectinate zone of the orthotropic BM, is considered. The spiral coiling of the cochlea
is neglected, as it has been shown to have little effect on the model response [Loh 1983; Steele and
Taber 1979]. The simulation results obtained from this active model successfully demonstrate various
aspects of in vivo measurements. Since it is difficult to understand the dynamic response of a structure
from measurements alone, particularly when the measurements are restricted to a few locations along
the cochlea, a reliable model and calculation procedure plays an important role.

2. Mathematical methods

2.1. Passive model. The physical cochlea consists of a rigid bony housing containing two coiled, fluid-
filled ducts, separated by the cochlear partition. The model is based on these physiologic features of
the cochlea. A schematic drawing of the model with the side, cross-section, and top view is shown in
Figure 1. The detailed derivations and features for the passive mechanics were described in a previous
study [Lim and Steele 2002]. Briefly, the three-dimensional fluid equations are integrated over the cross-
section to obtain the relation between the volume flow and the fluid pressure at the BM. Then the fluid
impedance is matched to the elastic BM impedance, which yields the second order reduced wave equation

G,xx + n(x, ω)2G = 0, (1)

in which n(x, ω) is the local wave number, determined from an eikonal equation dependent on distance
x and frequency ω. The eikonal equation is complex valued, dependent on the Fourier series expansions
on the cross-section of the three-dimensional viscous fluid. An iterative solution for n is obtained at each
x for fixed ω. The form of the x-dependence is not assumed a priori, but comes from the solution of
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Figure 1. Schematic drawing of the passive cochlear model geometric layout. Distances
parameterized in Cartesian coordinates {x, y, z} representing distance from stapes, dis-
tance across scala width, and height above partition, respectively. (a) Side, (b) cross-
section (A-A), and (c) top views of cochlear model.

Equation (1). The dependent variable G(x) provides the potential 8(x) for the fluid,

8(x)=
G(x)n

T0 sinh(nL3)
,

where T0(x) is the Fourier coefficient for the 0-th component of scalar potential for fluid displacement,
and L3 is the height of fluid chamber.

The function G(x) is obtained from Equation (1) by using the well-known WKB asymptotic solution
in the short wavelength region (n large) and the RK4 forward integration in the long wavelength region
(n small). The boundary conditions of matching the volume displacement at the stapes and zero pressure
at the helicotrema are taken into account with forward and reverse traveling waves.

2.2. Feed-forward active model. The active elements in the cochlea are the OHCs which behave as
piezoelectric actuators. In this model, the force applied by the OHCs on the BM partition is assumed
to be proportional to the total force acting on the BM. The total force at the pectinate zone (PZ) results
from the fluid force difference across the two scala and forces resulting from the OHCs motility,

FP Z = 2F f
B M + FC

B M . (2)

The OHC force acting at x +1 is proportional to the BM displacement sensed at x by the effect of
the OHC longitudinal tilt as in Figure 2, or

FC
B M(x +1)= α(x)FP Z (x), (3)

where α is the feed-forward gain factor and 1 is the longitudinal distance between the apex and base of
the OHC, which depends on the length of the OHC lO HC and its angle with respect to the longitudinal
direction θ , via 1= lO HC cos θ . Combining Equations (2) and (3) provides a modification of the eikonal
equation keeping the same form of the equation for G Equation (1) [Lim and Steele 2002].
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Figure 2. Schematic of longitudinal view of OC, showing longitudinal tilt of OHC. Lon-
gitudinal distance between base and apex of OHC is defined as 1.

3. Results and discussion

The cochlear model is used to calculate the response of a gerbil cochlea. The material property values
in Table 1 were taken from a number of sources [Smith 1968; Lim and Steele 2002; Miller 1985; Steele
et al. 1995; Karavitaki 2002] and the dimensions in Table 2 were from the anatomical measurements for
gerbil cochlea [Sokolich et al. 1976; Greenwood 1990; Dannhof et al. 1991; Cohen et al. 1992; Edge
et al. 1998; Thorne et al. 1999].

The model is meshed into 12000 sections along the gerbil cochlea length of 12 mm. Forty terms are
used in the Fourier expansion across the width of the cross-section. Running on an Intel Pentium IX
3.40 GHz processor, the average time taken for a single harmonic excitation calculation is about one
second. This method is a fast and efficient solution compared to a full-scale finite element model. We

Basilar membrane

E11 = 1.0 × 10−3 GPa
E22 = 1.0 GPa
E12 = 0.0 GPa
ρp = 1.0 × 103 kg/m3

ν = 0.5

Scala fluid
ρ f = 1.0 × 103 kg/m3

µ= 0.7 × 10−3 Pa s

Outer hair cell
θ = 60◦ and 80◦

α = 0.17

Table 1. Gross properties in cochlear model.
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x (mm) b (mm) h (mm) f L2, L3 (mm) lO HC (µm)

0 0.0210 0.030 1.000 25.0
1.5 0.0175
2.9 0.162 0.750
3.5 0.0131
5.0 0.480
5.9 0.0088
7.2 0.190 0.0073 0.370
8.4
9.0 0.0055 0.340

10.2 0.205 0.0044
12.0 0.0031 0.007 0.310 65.0

Table 2. Property variations in gerbil cochlear model: b, h and f are width, thickness
and fiber density of plate, respectively; L2, L3 are width and height of fluid chamber;
lO HC is OHC length. The thickness h is not anatomical but an equivalent value to give
proper tuning.

note that the computation time indicated by Parthasarathi et al. [2000] is measured in hours of computing
time for the linear solution for a single frequency.

The results include CF-to-place map for the gerbil cochlea, BM velocity frequency response, and BM
velocity spatial response. The modeling results for the gerbil cochlea are compared with recent in vivo
experiment measurements in the cochlea.

3.1. CF-to-place map. CF versus distance from the stapes along the gerbil cochlear (CF range: 0.3 kHz–
50 kHz) is shown in Figure 3. The gerbil CF-to-place map [Sokolich et al. 1976; Greenwood 1990] was
measured with cochlear-microphonic recording. The maps from the passive model and measurement are
in excellent agreement; see Figure 3. Near the stapes (0–4 mm from the stapes), the active model shows
4.5 dB CF shift, whereas CF shift disappears near the helicotrema. Due to the lower wave number for
the low input frequency, which has a peak near the apical region of the cochlea, feed-forward gain from
the active model shows less gain near the helicotrema.

3.2. Frequency response of BM velocity. The gerbil cochlear BM velocity magnitude and phase for
4.2 mm from the base (C F = 9.5 kHz) relative to the stapes displacement are computed over a range of
excitation frequencies up to 18 kHz; see Figure 4. Results from the model are compared with the gerbil
experimental data [Ren and Nuttall 2001]. The passive model shows quantitatively very good agreement
with data which are measured at a high stimulus level (100 dB SPL at the ear canal).

Karavitaki [2002] gives the angle of tilt of gerbil OHC as θ = 84◦, closer to perpendicular to the basilar
membrane; see Figure 2. We calculated the gain from OHC for two cases; a nominal mammalian value
of θ = 60◦ and θ = 80◦. The active model shows fairly good agreement with data at low stimulus level
(30 dB SPL at the ear canal) with 27 dB gain for either θ = 60◦ with feed-forward gain factor α = 0.15
(solid-red in Figure 4) or θ = 80◦ with forward gain factor α = 0.28 (solid-brown). So only a slightly



1454 YONGJIN YOON, SUNIL PURIA AND CHARLES R. STEELE

Figure 3. CF versus position for passive cochlear model (solid) compared to measure-
ments (*) and active cochlear model (dashed-dot). Present three-dimensional model
represents cochlear CF-to-place map of gerbil [Sokolich et al. 1976; Greenwood 1990]
over 0.3–50 kHz range spanning a length of 12 mm.

higher gain, still in the physiologically reasonable range, is needed for the OHC nearly perpendicular to
the BM.

In the relative BM velocity magnitude plot (top of Figure 4), CF place shifts from 9.5 kHz (passive
model) to 15 kHz (active model), which is 3/5 octave higher. In the animal measurement CF is also near
9.5 kHz for the high level passive case. For the low level active case, CF place shifts to about 13 kHz,
which is only about 2/5 octave higher. So the model appears to overestimate the CF for the active case.

In the model, the phase is normalized to the volume flow rate at x = 0, as the stapes is assumed to be
a piston at the end of the fluid chamber. As shown in the bottom of Figure 4, the phase of the response
obtained from the model shows a larger roll-off with frequency than the experimental measurements. In
the region of the low frequency input, below 4 kHz, the BM velocity phases both from the model and
measurement are similar. However, after 4 kHz, the phase of BM velocity from the model shows a larger
roll-off than the phase from the data, which means over fluctuation in the model above 4 kHz excitation
frequency range. To match the phase from the model to the measurement, the phase at 2.8 mm from the
stapes (CF of 15 kHz for the passive case) gives the same phase accumulation (magenta dashed-dot line
in the bottom of Figure 4) as the data. The actual position of the stapes in the cochlea extends over a
small portion of the basal end of the scala vestibuli, which may result in this discrepancy in the phase.

3.3. Spatial response of BM velocity. Ren [2002] measured the waveform of cochlear partition vibration
along the cochlear partition from the gerbil cochlea in vivo by using a scanning laser interferometer. In
this measurements, he could successfully obtain a snapshot, that is, the instantaneous waveform of the
cochlear partition vibration, for 16 kHz tones in a longitudinal region of the BM (2200–3000µm from the
stapes). In Figure 5, instantaneous waveforms and BM velocity phase for the passive case are presented.
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Figure 4. BM velocity relative to the stapes: (top) magnitude and (bottom) correspond-
ing phase for the gerbil cochlea at 4.2 mm from the base (C F = 9.5 kHz). For active
model, 0.15 feed-forward gain factor α for θ = 60◦ (solid-red) and 0.28 feed-forward
gain factor for θ = 80◦ (solid-brown) was used. Experimental data included for compar-
ison [Ren and Nuttall 2001].

Envelope (magnitude) of the waveform from the model shows less sharp than envelope of the waveform
from the measurements; see top of Figure 5. However, the peak place from the model is identical to
the measurement (near 2550µm from the stapes). The snapshot and phase of the waveform from the
model shows good agreement with experimental measurement. Around 16 kHz (CF at 2550µm from the
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Figure 5. Longitudinal patterns of the instantaneous waveform (top) and phase (bottom)
of the BM velocity from passive model and measurements [Ren 2002] near the CF loca-
tion (∼ 2550µm). Data (70 dB and 60 dB SPL at the ear canal) collected with 16 kHz
tones for sensitive gerbil cochlea. Considering 30 dB middle ear gain [Olson 1998],
100 dB and 95 dB SPL at the stapes are used as input pressure in the model, respectively.

stapes), instantaneous waveforms in the model also show energy propagation along the BM, supporting
the existence of the cochlear traveling wave on the BM, which was observed in the in vivo measurements;
see top of Figure 5. As shown in the bottom of Figure 5, BM velocity phase for the passive model shows
around 5 radians delay at the CF for 16 kHz and the total phase delay is around 18 radians (∼ 6π) over
the observed range as in the measurement. Unlike the total phase change of the traveling wave in human
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cadavers, which is about 3π radians [Békésy 1960], the phase delay in the gerbil model and measurement
is as much as 6π radians over a spatial range of 1000µm from the stapes.

4. Conclusions

Measurements of the spatial distribution of the response of the BM at a fixed frequency [Ren 2002]
and the frequency distribution at a fixed point [Ren and Nuttall 2001] offer an unusual opportunity
for validation of model calculations. The macromechanical cochlear model is a simplified box with
three-dimensional fluid and geometry from the gerbil anatomy. The BM properties are physical, with
orthotropic elastic properties and no fictitious mass or damping. Hence there are no parameters to adjust
to fit experimental results.

The comparison of results from the model and experiment is promising, but not fully satisfactory.
Using a single set of anatomically based parameters, the model predicts several significant features of
cochlear response. The CF-to-place map in the passive model, frequency and spatial responses of BM
velocity were in close agreement with those observed in animal measurement. The feed-forward linear
active model, the most speculative feature of the framework presented, showed excellent agreement with
experimental data in the BM relative velocity magnitude. However, the calculated phase shows excellent
agreement for the spatial distribution for fixed frequency, but a much larger roll-off for the frequency
dependence at a fixed point. In contrast, the calculated amplitude shows excellent agreement for the
fixed point and not quite as sharp a roll-off for the spatial distribution. These limitations in our current
model could be resolved by including more detailed structures of the organ of Corti to the current model
[Steele and Puria 2005].
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FLUSHING OF THE PORT OF ENSENADA USING A SIBEO WAVE-DRIVEN
SEAWATER PUMP

STEVEN PETER CZITROM, CESAR CORONADO AND ISMAEL NUÑEZ

A SIBEO wave-driven seawater pump is proposed to inject clean and oxygen-rich seawater from outside
the port of Ensenada, Baja California, to promote flushing in the more stagnant sections of the harbor.
Results from a simple two-dimensional numerical model of the port hydrodynamics shed light on how
the tides cannot on their own adequately flush the system. A three-dimensional model, which includes
thermal stratification, illustrates how the pumped seawater ventilation can spread throughout the harbor
via a density channel set up by the seasonal thermocline.

1. Introduction

Many human coastal settlements use the adjacent ocean to dispose of domestic and industrial refuse.
Substantial growth of these settlements has resulted in an increased concentration of pollutants in the
ocean, sometimes reaching levels that are dangerous for human habitation and the ecosystem health.
This problem is further exacerbated in semienclosed coastal water bodies such as ports with breakwaters
[Fischer et al. 1979].

The port of Ensenada, to the north of the Baja California Peninsula, Mexico, has witnessed brisk
activity since it was established in the 19th century, and is today an important hub of development. The
fishing, manufacture and tourist industries, among others, have grown substantially in support of social
and economic development, increasing living standards of the local and state populations. In the last few
decades growth has witnessed an explosion in size and diversity. This activity, however, has not been
without cost to the port’s ecosystem where domestic and industrial refuse have been dumped. Since
the construction of breakwaters to protect shipping, a large section of the port has become increasingly
isolated and stagnant, making it more vulnerable to the accumulation of pollutants.

There are essentially two ways to diminish the concentration of pollutants in a body of water. The first
is to restrict the flow of contaminant by diminishing its input and/or providing treatment. The second is to
increase the flow of unpolluted water through the system to encourage the expulsion of the accumulated
contaminants. A combination of both measures is probably the most adequate allowing ventilation to be
achieved in less time. Note that the added flushing should not be taken as a free ticket to increase the
discharge of pollutants. This combination of solutions must take into account that it is not healthy in the
long run to take the adjacent ocean as a universal and inexhaustible digester, into which one can pour
endless quantities of contaminants [Fischer et al. 1979]. This, unfortunately, has been common practice
throughout time in most parts of the world.

In the case of the port of Ensenada, in the last decade or so sewage treatment plants and a more
strict enforcement of antipollution legislation have substantially diminished the input of contaminants

Keywords: wave energy, flushing of stagnant coastal water bodies.
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to the harbor. High levels of pollution remain, however, despite the flushing action of the tides [Orozco
and Gutiérrez 1983; Delgadillo and Orozco 1987; 1989; Segovia and Rivera 1988; Portillo and Lizárraga
1997; Macı́as et al. 1997]. An additional flow of clean and oxygen-rich water from the adjacent ocean into
the stagnant and contaminated sections of the port is quite likely to promote a more effective ventilation.
This flow would dilute the polluted waters and, as they are displaced towards sectors with a greater
circulation, spread ventilation to a growing area.

In this paper the application of a wave energy driven seawater pump is discussed as a means of
delivering clean and oxygen-rich seawater into a stagnant polluted marine area to promote its ventilation.
Hydrodynamic numerical models of the water circulation in the harbor of Ensenada are used to shed
light on why significant pollution remains in the water and sediments of the northern section of the port,
despite the flushing action of the tides, and by which mechanisms the flow of clean and oxygen-rich
water from a wave-driven seawater pump can help ventilate the Ensenada harbor.

2. The SIBEO wave-driven seawater pump

Starting in the late 1980’s, research has been conducted at the Instituto de Ciencias del Mar y Limnologı́a
of the National University of Mexico (UNAM) to develop technology which uses wave energy for pump-
ing seawater. Czitrom [1997] proposed a wave-driven seawater pump (SIBEO1) in which a mechanical
oscillator, composed of an air spring flanked by two water masses in ducts, is excited by the waves.

A schematic diagram of the SIBEO can be seen in Figure 1. The pump is primed by a partial vacuum
that brings water up from the ocean and the receiving body of water to a working level in the compres-
sion chamber. The variable pressure signal induced by the waves at the resonant duct-mouth drives an
oscillating flow which spills water in the compression chamber with each passing wave. The spilt water
gathers in the chamber and descends by gravity to the receiving body of water via the exhaust duct; see
also [Carey and Meratla 1976].

The system operates optimally at resonance when the frequency of the driving waves coincides with
the SIBEO natural frequency of oscillation. A condition of resonance can be maintained, in an evolving

Figure 1. Schematic diagram of the SIBEO wave-driven seawater pump.

1SIBEO is an acronym for the Spanish Sistema de Bombeo por Energía de Oleaje.
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wave field, by means of a variable volume compression chamber which adjusts the hardness of the
mechanical oscillator air spring. The SIBEO natural frequency of oscillation can thus be matched to that
of the most energetic driving waves at all times.

In practice, the wave field is composed of various frequencies with particular energies associated
to each. Tuning to the highest energy frequency can be carried out automatically under control of a
programmed microchip that samples the wave field and adjusts the volume of air required for resonance
at the appropriate frequency. This tuning device, which can be used in other oscillating water column
wave-energy conversion devices (see, for example, [Falnes and McIver 1985]), was patented through the
National University of Mexico [Czitrom 2002].

Extensive theoretical and experimental studies back the SIBEO development. The pump equations
were derived by applying the Bernoulli equation to streamlines in the resonant and exhaust ducts and
adding terms for the losses due to viscosity, vortex formation and radiation damping [Czitrom 1997; Cz-
itrom et al. 2000a]. A numerical model of the SIBEO, which solves the pump equations, reproduces 1:25
scale wave tank test data remarkably well [Czitrom et al. 2000b]. A SIBEO prototype was temporarily
installed and field tested on the coast of Oaxaca, Mexico, with the help of a fisherman’s cooperative
[Czitrom 1996; 1997].

3. The port of Ensenada, Baja California

A general disposition of the port of Ensenada can be seen in Figure 2. At first glance it is apparent that the
corner at the base of the main breakwater is one of the sections of the port most isolated from the adjacent
ocean. The natural location for the SIBEO is near the breakwater base, where it is highly exposed to the
incoming Pacific Ocean waves, and can have a greater impact over one of the more stagnant sections of
the harbor.

Figure 2. Aerial view of the port of Ensenada, Baja California. North is at approxi-
mately one o’clock on this figure.
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The pump numerical model was used to estimate the flow which would be generated throughout the
year by the SIBEO with a 1.4 m diameter resonant duct (Figure 3). Maximum and minimum flows for
each month were computed with the extreme values of wave amplitude and period observed in that lapse
of time. An average yearly flow of some 200 liters/second can be expected from the SIBEO, varying
between 50 and 300 l/s, mainly due to changes in the wave size.

A very crude indication of the effect a 200 l/s flow might have on the harbor is the time it takes to inject
an equivalent volume of water. The port of Ensenada is approximately 1.9 km long, 0.8 km wide and
10 m deep with equivalent volume ∼ 1.5 × 107 m3, so that it would take 2.4 years to inject an equivalent
volume of water using a single SIBEO. This figure suggests that, in the first few months, the ventilating
effect would only be noticeable close to the location of the exhaust point. As an example, a volume of
water equivalent to that contained in a quadrant of 500 m radius, at the base of the breakwater, would be
injected by the SIBEO in somewhat less than 4 months.

By contrast with the SIBEO, the tides input a much greater volume of water through the navigation
channel. The M2 constituent at Ensenada is the most significant with a range of about 1 m so that, given
the area of the port, an average flow of 70 m3/s enters during the 6 hours of the flood tide. This input is
350 times greater than that of the SIBEO making it clear that questions must be answered concerning
the SIBEO effectiveness against that of the tides in their capacity to flush the port. In the first instance it
is necessary to understand why tidal flushing has such a reduced ventilating effect on the contaminated
waters and sediments of the northern section of the port. In the second we must clarify how a much
smaller but focused flow from the SIBEO pump might more effectively achieve the desired ventilation.

4. Port hydrodynamics

In order to answers these questions, two numerical models of the tidal and wind-driven hydrodynamics
of the port of Ensenada were implemented. A two dimensional single layer version of the Hamburg
Shelf Ocean Model (HAMSOM), a semiimplicit model known for its simplicity and proven performanceExpected SIBEO flow obtained driving the numerical model with wave 

measurements at the Ensenada Port wave breaker from September 1986 

to August 1987
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Figure 3. Estimated SIBEO flow, using wave data measured at the breakwater from
1986 to 1987 [Martínez Díaz de León et al. 1989].
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[Backhaus 1983; 1985; Huang 1995] was chosen to provide relatively straightforward first estimates.
The HAMSOM model can be easily set up to include external flows such as that of the SIBEO and has
been applied with success to places such as the North Sea [Backhaus 1985], the delta of the Colorado
River [Carbajal et al. 1997], and a coastal lagoon with river discharge on the west coast of Mexico
[Núñez Riboni 2000], among others. A full account of the implementation of this model to the port of
Ensenada can be found in [Czitrom et al. 2003].

Three-dimensional modeling has become a practical way of simulating circulation and the thermo-
haline field in coastal lagoons [Ramı́rez and Imberger 2002; Balas and Özhan 2002], and estuaries
[Cheng et al. 1993; Cheng and Casulli 2002]. The three dimensional Estuary and Lake Computer Model
(ELCOM), which uses a semiimplicit finite difference solution scheme and includes thermodynamic
effects, was developed by Hodges et al. [2000]. ELCOM can reproduce the first-order three-dimensional
baroclinic physical response of an estuary to environmental and tidal forcing on a coarse grid with
efficient CPU usage. The model has been recently applied to predict internal wave propagation in Lake
Kinneret in Israel [Hodges et al. 2000]. Laval et al. [2003] improved the scalar and momentum mixing
scheme used in ELCOM and successfully reproduced internal wave motions in Lake Kinneret. A full
description of the application of the ELCOM model to the port of Ensenada, including calibration pro-
cedures and comparison to field measurements, can be found in [Coronado 2003; Coronado et al. 2007].
Results of this application are used here to examine the mechanisms by which the SIBEO flow can spread
its ventilating effects throughout the harbor at times when the water column is stratified.

The Ensenada port bathymetry can be seen in Figure 4. The simulation domain for the two-dimensional
HAMSOM model was cut off at the port entrance navigation channel while a section external to the port
was included in the three-dimensional simulations to account for the influence of the stratified water
column there. The harbor has a surface area of approximately 1.51 km2 and opens into Todos Santos
Bay. It is protected by a 1640 m long breakwater and a 570 m long El Gallo jetty. Semidiurnal tides, with

Figure 4. Bathymetry of the port of Ensenada [Coronado 2003]. A grey arrow points to
the proposed location for the SIBEO exhaust.
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a maximum range of 2 m, propagate from Todos Santos Bay via a 350 m wide channel entrance. The
bathymetry of the harbor is characterized by a 13 m deep navigation channel, which runs parallel to the
breakwater.

5. Two-dimensional model results

In order to visualize the dispersion of inert particles in the harbor, and thus shed light on the flushing
characteristics of the port, the modeled two-dimensional circulation was used to simulate the trajectory
of labeled water parcels released within the harbor during a period of 6 months. Clusters of 1000 color
labeled water parcels were released at various points within the port and traced from one time step to the
next using the velocity fields derived from the hydrodynamic model.

The erratic movement of water particles which occurs in turbulent flow causes them to disperse in
spreading trajectories. Turbulent dispersion was simulated by introducing random variations in the parti-
cle velocity at each computational step. The lagrangian trajectories, which include advection as well as
turbulent diffusion, can help identify the regions where particles are trapped in eddies and can thus be
used to find the best location and flow intensity for the SIBEO to adequately flush the port.

Figure 5 shows the distribution of labeled water parcels after 6, 16 and 26 weeks of dispersion sim-
ulation for the case of the M2 tides without the SIBEO discharge in the port. With the exception of a
couple of stagnation points, it is clear that most of the particles from the southern section of the harbor
eventually reach the navigation channel through which they exit the system to the adjacent ocean. In the
northern section the particles remain gyrating in a series of closed eddies from which they cannot escape.
It appears that the tides have a flushing effect restricted to the southern section of the harbor while driving
closed circulation patterns in the north which in effect trap the particles released there. This result seems
to explain why the tides are not capable of renewing seawater in the more stagnant northern section of
the Ensenada harbor, which thus remains contaminated despite the flushing action of the tides.

Figure 6 shows the distribution of particles after 6, 16 and 26 weeks of dispersion simulation by the
M2 tides, with a 0.6 m3/s flow from 3 SIBEOs pumped into the north-west corner of the port, and an

Week: 6


Week: 16 Week: 26

Figure 5. Dispersion of color labeled water parcels in the Ensenada Harbor by the M2

tides after 6, 16 and 26 weeks of simulation.
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additional 0.4 m3/s flow from 2 SIBEOs to the north; the SIBEO discharge points are marked with dots.
Similar to the previous case, the southern portion of the harbor is adequately flushed by the tides. In the
northern section, the corners at which the SIBEO pumps discharge are swept clean of particles by the
injected water. The sequence of images suggests that a combined flow of 1 m3/s at the two corners is
adequate to flush the northern section of the port, displacing the particles southward, where the influence
of the tides can eventually expel them through the navigation channel. The 1 m3/s flow seems sufficient
to alter the closed residual circulation eddies generated by the M2 tides in the north.

6. Three-dimensional model results

The two-dimensional model results provide reasonable answers to the questions posed in Section 3 when
the water column is vertically mixed. During the spring and summer months, however, heating at the
surface stratifies the water column, and a seasonal thermocline develops in the port and the continental
shelf around. At this time, circulation and mixing processes are best described using a three-dimensional
approach, for which the ELCOM model is most adequate.

In Figure 7 the SIBEO water concentration in vertical sections along and perpendicular to the main
navigational channel are shown after 12 hours’ and three weeks’ simulations, respectively. The 1 m3/s
SIBEO flow was input at the surface near the breakwater base. It is apparent that the pumped water
from the neighboring ocean first sinks to its density level within the port and then spreads along the
thermocline. After 12 hours, the effect of the pumped water is noticeable only near the discharge point,
reaching most of the port after a few weeks.

In Figure 8 the depth averaged modeled SIBEO water concentration throughout the harbor is shown
at various time intervals up to 4 weeks. It is clear that in the first few hours the effect of the SIBEO
water is noticeable near the discharge point at the base of the breakwater. After one week, however, the
ventilating effect of the SIBEO water reaches most of the port, while in successive weeks, water external

Week: 6 Week: 16 Week: 26

Figure 6. Distribution of color labeled water parcels after 6, 16 and 26 weeks of disper-
sion simulation by the M2 tides. SIBEO flows of 0.6 m3/s and 0.4 m3/s were injected to
the north west and due north corners of the harbor, respectively, at the positions marked
with circles.
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Figure 7. Snapshots of vertical distribution of the SIBEO water tracer along a transect
at the head of the harbor (left panels) and along the main navigational channel (right
panels). (a) and (c) show the tracer distribution after 12 hours of simulation, (b) and (d)
after 3 weeks. Tide state is indicated in (a) and (b). Note that the horizontal scales in left
panels differ from the right ones. Discharge location is at the left of each panel.

to the port spreads in patterns which are less noticeably linked to the SIBEO exhaust position. In the
last panel, higher concentrations appear in the northern section of the port, which is in effect the most
polluted and where the ventilating effect of clean and oxygen-rich water is most beneficial.

7. Conclusions

At times when the water column is vertically mixed, closed eddy circulation patterns driven by the tides
in the northern section of the port of Ensenada inhibit flushing of the stagnant polluted waters there. A
proposed 1 m3/s flow of clean and oxygen-rich seawater from outside the port, forced into this section by
SIBEO wave-driven seawater pumps, would alter these patterns enough to flush the contaminated waters
southward, where the tides are able to expel them from the port.
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a) 12 hours b) 24 hours

c) 1 week d) 2 weeks

e) 3 weeks f) 4 weeks

Figure 8. Snapshots of the depth-averaged distributions of the SIBEO water tracer after
(a) 12 hours of simulation, (b) 24 hours, (c) 1 week, (d) 2 weeks, (e) 3 weeks and (f)
4 weeks. Tidal state and wind vector at snapshot instant are in each panel.
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At times in summer when the water column is stratified due to heat input at the surface, the clean and
oxygen-rich water from outside the port sinks to its density level, spreading the beneficial ventilating
effect throughout the port via the density channel formed by the pycnocline.
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SYMMETRY ANALYSIS OF EXTREME AREAL POISSON’S RATIO IN
ANISOTROPIC CRYSTALS

LEWIS WHEELER AND CLIFF YI GUO

Poisson’s ratio is defined as the negative of the ratio of the transverse strain to the longitudinal strain in
response to a longitudinal uniaxial stress. In the presence of anisotropy, this means that the ratio depends
on two directions. With a view to assessing crystals that exhibit directions for which the ratio is negative,
we resort to a transverse average to eliminate one directional variable and at the same time to arrive
at a measure that poses a challenge to achieving significant negative values. The areal Poisson ratio
coincides with the Poisson ratio for an isotropic material. We determine the stationary directions of the
areal Poisson ratio for all crystal symmetry classes. The directions represented by invariant stationary
points—those that hold independently of the material—we identify and explain class-by-class in terms
of the axes of symmetry for the class. It is shown that for cubic crystals, positive definiteness of the strain
energy requires that the areal Poisson ratio lie between −1 and 1/2, as it does for isotropy. We conclude
that the areal Poisson ratio for the classes of lower symmetry are not restricted.

1. Introduction

Over the last two decades there has been increasing interest in finding, creating, and understanding
material structures that exhibit a negative Poisson’s ratio describing materials that are referred to as
auxetic, a term attributed to Evans et al. [1991]. While much of the work has focused on microstructures,
there is an abundance of crystal structures that possess a negative ratio values for specific directions due
to their anisotropic nature. The knowledge that a crystal may possess a negative Poisson’s ratio is by
no means recent. Love [1927] mentions a pyrite that yields a value near −1/7. Moreover, auxeticity in
crystals is not uncommon, since nearly 69 of cubic elemental metals have a negative Poisson’s ratio when
the stressed axis lies along the [110] direction [Baughman et al. 1998]. Ting and Barnett [2005] derived
simple necessary and sufficient conditions on elastic compliances to identify if any given material of
cubic or hexagonal symmetry is completely auxetic or nonauxetic. Further examples of auxetic behavior
in crystals of cubic, hexagonal, and monoclinic symmetry are discussed in [Tokmakova 2005] with the
aid of stereographic projections.

The meaning of the Poisson’s ratio in the presence of anisotropy raises questions that are not apparent
in the isotropic case. Not only does the ratio depend upon the choice of a direction for the longitudinal
strain, but all directions at right angles to it for the transverse strain component. This transverse variation
is apt to yield offsetting ratios [Baughman et al. 1998], a negative value for one transverse direction
and a positive value for another, that diminish or negate the auxetic effect. Guo and Wheeler [2006]

Keywords: auxetic, areal Poisson’s ratio, crystal anisotropy.
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introduced an areal Poisson’s ratio that is relatively simple in form and serves to measure the offsetting
effects. The search for auxetic directions leads naturally to the search for the direction of the minimum
areal Poisson’s ratio, and more broadly to an examination of directions that yield stationary values. Of
special interest, as we demonstrate, are stationary directions that are related only to the symmetry of the
material and bear a simple relation to the crystallographic directions. For each crystal class, we find the
stationary directions of the areal Poisson’s ratio, examine their extremal nature, and graphically illustrate
them for a particular crystal within the class.

The effect of crystal symmetry on the elastic constants of crystals is covered thoroughly in [Nye 1957;
Ting 1996]. Cazzani and Rovati [2003; 2005] examine the directionality and extrema of Young’s modulus
in crystals of cubic, transversely isotropic and tetragonal symmetry. Ting and Chen [2005] proved that
for all of the seven crystal classes, the Poisson’s ratio can have an arbitrarily large positive or negative
value under the constraint of positive definiteness of the strain energy density. In contrast, for the cubic
crystal class we conclude here that the areal Poisson’s ratio must lie within bounds. For the remaining
crystal classes, there are no bounds on the areal Poisson’s ratio.

In this paper, we investigate the directional variation of the areal Poisson’s ratio for all nine crystal
classes. Stationary directions that are independent of the material are called invariant stationary points.
The directions represented by invariant stationary points are related to the axes of symmetry belonging
to the particular crystal class. Where sensible, both the invariant and material dependent stationary direc-
tions are found, and their extremal nature is discussed. Based on the values of the areal Poisson’s ratio
at stationary directions and positive definiteness of the compliance tensor, we analyze the boundedness
of the areal Poisson’s ratio for each crystal class.

2. Preliminaries

We denote by C the linear operator on the linear space of all symmetric 2-tensors that accounts for the
elastic properties in the linear theory of anisotropic elastic solids. The elasticity operator C and its adjoint
C∗, are related by

〈A,C [B]〉 =
〈
C∗ [A] , B

〉
,

under the inner product
〈A, B〉 = tr ABT .

Here, the elasticity operator C is required to be self adjoint, C = C∗, in other words to possess the major
symmetry, so that

〈A,C [B]〉 = 〈B,C [A]〉 .

Let {e1, e2, e3} denote a right-handed orthonormal frame, for short a cartesian frame. Define Ei j as

Ei j = sym
(
ei ⊗ e j

)
.

The set
{

Ei j
}

is an orthogonal basis for the linear space of 2-tensors. These basis elements Ei j though
orthogonal are not normalized, but rather obey〈

Ei j , Ekl
〉
=

1
2

(
δikδ jl + δilδ jk

)
, (1)
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which implies ∣∣Ei j
∣∣2 =

{
1, i = j,
1
2 , i 6= j.

The components of C in the frame {e1, e2, e3} are given by Gurtin [1972]:

Ci jkl =
〈
Ei j ,C [Ekl]

〉
. (2)

These components are simultaneously the components of the operator C and the fourth-order tensor
associated with C.

The components Ii jkl of the identity I are given by the right side of Equation (1),

Ii jkl =
1
2

(
δikδ jl + δilδ jk

)
. (3)

We assume for the remainder of this presentation that C is positive definite. Thus, C has an inverse, the
compliance operator, denoted by S, that, like C, is self-adjoint and positive definite.

The reduced forms of the matrix of elastic constants that appear in [Nye 1957] and [Gurtin 1972]
represent these constants in a preferred frame, which we denote by {a1, a2, a3} to distinguish it from the
generic frame {e1, e2, e3} . Remarkably, this frame may be taken as orthonormal. Here, we frequently
refer to the frame {a1, a2, a3} as a crystallographic frame. The crystallographic counterparts of the basis
elements Ei j are denoted by Ai j .

The Voigt compliances si j and the corresponding crystallographic tensor components Si jkl are related
through [Nye 1957],

(
si j
)
=



s11 s12 s13 s14 s15 s16

s22 s23 s24 s25 s26

s33 s34 s35 s36

s44 s45 s46

s55 s56

s66


=



S1111 S1122 S1133 2S1123 2S1131 2S1112

S2222 S2233 2S2223 2S2231 2S2212

S3333 2S3323 2S3331 2S3312

4S2323 4S2331 4S2312

4S3131 4S3112

4S1212


. (4)

3. Definition of the Poisson’s ratio and areal Poisson’s ratio for an anisotropic crystal

Consider a unit uniaxial stress

τ = l ⊗ l, |l| = 1

in the direction l . The longitudinal strain ε (l) is given by

ε (l)= l • εl = l • S [l ⊗ l] l = 〈l ⊗ l,S[l ⊗ l]〉 . (5)

Let t be a given direction perpendicular to l , that is, l • t = 0, |t| = 1. The strain ε (t) in the transverse
direction t is given by

ε (t)= t • εt = t • S [l ⊗ l] t = 〈t ⊗ t,S[l ⊗ l]〉 . (6)
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The Poisson’s ratio corresponding to the longitudinal direction l and the transverse direction t is defined
as

ν (l,t)= −
ε (t)
ε (l)

,

and in view of Equations (5) and (6) is expressed in terms of the compliance in the form

ν (l,t)= −
〈t ⊗ t,S[l ⊗ l]〉
〈l ⊗ l,S[l ⊗ l]〉

. (7)

For given orthogonal unit vectors l and t , the ratio is determined by the elastic properties of the crystal.
We note that for S positive definite, the denominator is positive, so the sign of ν is determined by the
numerator. The areal Poisson’s ratio is defined by

ν̂ (l)=
1

2π

2π∫
0

ν (l,t (α)) dα.

It is readily seen that this averaging reduces to finding the average of t ⊗ t , with the result

ν̂ (l)= −
〈〈t ⊗ t〉 ,S[l ⊗ l]〉
〈l ⊗ l,S[l ⊗ l]〉

where

〈t ⊗ t〉 =
1
2
(I − l ⊗ l) . (8)

Therefore,

ν̂ (l)=
1
2

(
1 −

tr S[l ⊗ l]
〈l ⊗ l,S[l ⊗ l]〉

)
. (9)

Of course, ν̂ reduces to the Poisson’s ratio if S is isotropic.
The direction l of the stressed axis can be expressed in spherical coordinates,

l = cos θ sinφa1 + sin θ sinφa2 + cosφa3,

where 0 ≤ φ ≤ π, 0 ≤ θ < 2π. Thus, the areal Poisson’s ratio can be expressed in terms of the polar
angles φ and θ through

ν̂ (l)= ν̂ (φ, θ)=
1
2
(1 −

tr S[l (φ, θ)⊗ l (φ, θ)]
〈l (φ, θ)⊗ l (φ, θ) ,S[l (φ, θ)⊗ l (φ, θ)]〉

).

To identify the directions l for which the areal Poisson’s ratio attains extreme values, we begin by exam-
ining stationary directions, those for which

ν̂φ =
∂ν̂ (φ, θ)

∂φ
= 0,

ν̂θ =
∂ν̂ (φ, θ)

∂θ
= 0,

(10)
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which we also at times refer to as stationary “points”. With the aid of the matrix

J =

(
ν̂φφ ν̂φθ

ν̂φθ ν̂θθ

)
, (11)

we are able to further analyze the stationary points. If J is nonsingular, we can determine the extremal
nature of a stationary point. If the matrix is sign definite, there is an extreme point—a minimum if
positive definite, a maximum if negative definite. For J nonsingular but indefinite, there is a saddle
point. If J is singular, additional analysis is required.

4. Poisson’s ratio for the isotropic case

For an isotropic medium, the elasticity tensor may be expressed in spectral form as

C = 3k
1
3

I ⊗ I + 2µ(I −
1
3

I ⊗ I), (12)

where k denotes the bulk modulus and µ stands for the shear modulus. The principal values of C are
3k and 2µ. They are coefficients of orthogonal projections of rank 1 and rank 5, respectively. Hence,
S = C−1 is given by

S =
1

3k
1
3

I ⊗ I +
1

2µ
(I −

1
3

I⊗I).

Therefore, and by Equation (7), one finds

ν =
1
2

(
3k − 2µ
3k +µ

)
. (13)

Similarly, Equation (9) furnishes

ν̂ =
1
2

(
3k − 2µ
3k +µ

)
,

and we see that the Poisson’s ratio and its areal counterpart reduce to the same elastic constant if the
material is isotropic. In passing, we mention that in view of Equation (12), positive definiteness is
equivalent to

k > 0, µ > 0, (14)

and by Equation (13), furnish the well-known restriction on the Poisson’s ratio for isotropic materials,

−1< ν <
1
2
.

Such bounds do not hold for the Poisson’s ratio for the crystal classes, as demonstrated in [Ting and
Chen 2005]. We examine the corresponding question for the areal Poisson’s ratio in what follows.



1476 LEWIS WHEELER AND CLIFF YI GUO

4.1. Cubic materials. For a crystal of cubic symmetry, the Voigt compliance matrix takes the form

(
si j
)
=



s11 s12 s12 0 0 0
s11 s12 0 0 0

s11 0 0 0
s44 0 0

s44 0
s44


. (15)

In terms of the Voigt compliances, positive definiteness is equivalent to (see [Nye 1957])

s11 > 0, s44 > 0,−
1
2

s11 < s12 < s11. (16)

The areal Poisson’s ratio can be expressed in spherical coordinates as:

2̂ν (φ, θ)= 1 −

(
S1111 + 2S1122

)
S1122 + 2S1212 + (S1111 − S1122 − 2S1212)

[(
sin4 θ + cos4 θ

)
sin4 φ+ cos4 φ

] . (17)

From this expression, we find

ν̂(φ, θ)= ν̂ (π −φ, θ)= ν̂
(
φ,
π

2
+ θ

)
= ν̂

(
φ,
π

2
− θ

)
,

a manifestation of the symmetry associated with the class of crystals of cubic symmetry.
So we can limit the scope to 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/4 without loss of generality. A contour plot of the

areal Poisson’s ratio for the cubic material pyrite is shown in Figure 1. At room temperature, the indepen-
dent elastic compliance components are s11 = 2.652 (TPa)−1, s12 = −0.199 (TPa)−1, s44 = 9.141 (TPa)−1

[Simmons and Wang 1971]. By Equation (17), the angles (θ, φ) for the stationary directions of cubic

φ
νmin=0.0751

νmax=0.203

π/4
     

π/4 

π/8 

0 

θ 

π/2

Figure 1. Contours for the areal Poisson’s ratio for a pyrite of cubic symmetry.
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materials obey 
0 =

2 sin 2φ
[
sin2 φ(sin4 θ+cos4 θ)−cos2 φ

]
(S1111+2S1122)β{

S1122+2S1212+β
[
(sin4 θ+cos4 θ) sin4 φ+cos4 φ

]}2 ,

0 =
− sin4 φ sin 4θ(S1111+2S1122)β{

S1122+2S1212+β
[
(sin4 θ+cos4 θ) sin4 φ+cos4 φ

]}2 .

(18)

The factor

β
def
= S1111 − S1122 − 2S1212 (19)

does not vanish unless the material is isotropic and the factor S1111 + 2S1122 is positive owing to positive
definiteness. Hence, the stationary points of the areal Poisson’s ratio are given by

φ = 0, and φ =
π
2 , θ = 0,

φ =
π
2 , θ =

π
4 , and φ =

π
4 , θ = 0,

θ =
π
4 , (cosφ)2 =

1
3 .

(20)

The stationary points in the first line of Equation (20) lie along the [100] direction, those in the second
line lie along the [110] direction, and the last line describes stationary points along the [111] direction.
The directions represented by these stationary points thus lie respectively on a four-fold axis, a two-fold
axis and a three-fold axis of symmetry for cubic crystals. One important fact is that these directions do
not depend upon the compliances. For a crystal of cubic symmetry, the directions of the extreme areal
Poisson’s ratio must coincide with the direction of a lattice vector, face diagonal, or body diagonal.

To determine the nature of a stationary point, whether it is a local extremum or a saddle point, we
examine the value of the areal Poisson’s ratio and its second derivatives at these points. For a stationary
point lying along the [100] direction,

ν̂ = − S1122/S1111,

ν̂φφ = ν̂θθ = − 2
(
S1111 + 2S1122

)
β/S2

1111
,

ν̂φθ = 0.

Assuming that the material is not isotropic, so that β 6= 0, the matrix J defined by Equation (11) assumes
diagonal form. The eigenvalues, ν̂φφ and ν̂θθ , are positive or negative accordingly as β is negative or
positive. In conclusion for the [100] direction, a stationary point is a minimum or maximum accordingly
as β ≶ 0. For a stationary point on the [110] direction,

ν̂ =
1
2

[
1 −

2(S1111+2S1122)
(S1111+S1122+2S1212)

]
,

ν̂φφ = −
4(S1111+2S1122)β

(S1111+S1122+2S1212)
2 ,

ν̂θθ =
8(S1111+2S1122)β

(S1111+S1122+2S1212)
2 ,

ν̂φθ = 0.
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The matrix Equation (11) is again diagonal, but the eigenvalues are of opposite sign for β 6= 0, indicative
of a saddle point. The stationary values of the areal Poisson’s ratio associated with a face diagonal
direction are neither a local minimum nor a local maximum. If a stationary point lies along the [111]
direction, 

ν̂ =
1
2

[
1 −

3(S1111+2S1122)
(S1111+2S1122+4S1212)

]
,

ν̂φφ =
12(S1111+2S1122)β

(S1111+2S1122+4S1212)
2 ,

ν̂θθ =
8(S1111+2S1122)β

(S1111+2S1122+4S1212)
2 ,

ν̂φθ = 0.

Hence, the matrix Equation (11) is once again in diagonal form. Its eigenvalues are positive if β > 0,
yielding a relative minimum, whereas a relative maximum is present if β < 0.

The global minimum and maximum are obtained by comparing the values of the areal Poisson’s ratio
at the stationary points. For the pyrite described earlier, β = − 4.372. Thus the [111] direction locates
the maximum value, ν̂max = 0.203, whereas the [100] direction is associated with the minimum value,
ν̂min = 0.075. In Figure 1, the extreme points are easily identified by the closed contours.

In summary, for a cubic crystal that is not isotropic, we find

β > 0,


ν̂max = −

S1122
S1111

< 1
2 , along a1,

ν̂min =
1
2 [1 −

3(S1111+2S1122)
S1111+2S1122+4S1212

]>−1, along q,

β < 0,


ν̂max =

1
2 [1 −

3(S1111+2S1122)
S1111+2S1122+4S1212

]< 1
2 , along q,

ν̂min = −
S1122
S1111

>−1, along a1,

where

q =
1

√
3
(a1 + a2 + a3).

With the aid of these results, and by means of definiteness conditions (16), we conclude that for the case
of cubic symmetry,

−1< ν̂ <
1
2
,

the same as for an isotropic medium. If s11 + 2s12 → 0+, both ν̂min and ν̂max approach the upper bound
1/2 and the material behaves like an isotropic medium. There are many cubic materials for which s12/s11

is near −1/2, for example, gold (−0.462), γ − Fe (−0.440), lead (−0.459), Cu2.7AlMn0.3 (−0.475).
When the shear compliance s44 is much larger than s11 and s12, β is negative, and the areal Poisson’s
ratio assumes its maximum value (1/2) along the q direction. But if s44 is much smaller than s11 and
|s12| , then the areal Poisson’s ratio can assume either the maximum or the minimum value along q,
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depending on the relative values of s12 and s11, and approach the limits −1 for s11 � −2s12 or 1/2
for s11 ' −2s12. Moreover, we see that positive s12 yields a negative areal ratio. Measured values of
this constant are recorded for many cubic materials, including the ones just mentioned, in [Landolt and
Bornstein 1992], and the scarcity of cubic materials possessing a positive s12 is readily apparent.

4.2. Hexagonal crystal. The Voigt compliance matrix for the hexagonal class assumes the form [Nye
1957]

(
si j
)
=



s11 s12 s13 0 0 0
s11 s13 0 0 0

s33 0 0 0
s44 0 0

s44 0
2 (s11 − s12)


in an orientation frame {a1, a2, a3} There are thus five independent elastic compliance constants for
material possessing hexagonal symmetry. Positive definiteness is equivalent to [Nye 1957]{

s11 > 0, s33 > 0, s44 > 0, s11 + |s12|> 0,

s33s11 > s2
13, s33 (s11 + s12) > 2s2

13.
(21)

In terms of spherical angles, the areal ratio takes the form

ν̂ (φ, θ)= [(cos 4φ− 1) (S1111 − 4S1313 + S3333)− 8 (sinφ)2 S1122

− 2 (5 + 2 cos 2φ+ cos 4φ) S1133]/{16[(sinφ)4 S1111

+ (cosφ)4 S3333 + 2 (sinφ)2 (cosφ)2 (S1133 + 2S1313)]},

from which we conclude that the areal Poisson’s ratio is independent of θ . We further conclude that

ν̂ (φ, θ)= ν̂ (φ)= ν̂ (π −φ) ,

so we can limit the range of φ to 0 ≤ φ ≤ π/2. A plot of the areal Poisson’s ratio for hexagonal crystalline
graphite is shown in Figure 2. The room temperature compliances are [Landolt and Bornstein 1992]:

s11 = 0.98 (TPa)−1 , s12 = − 0.16 (TPa)−1 ,

s13 = − 0.33 (TPa)−1 , s33 = 27.5 (TPa)−1 ,

s44 = 250 (TPa)−1

The stationary condition for a hexagonal crystal is

0 = sin 2φ{16 (sinφ)4 S2
1111

− 16 (cosφ)4 S2
3333

− 2[16 (sinφ)4 S1122

− (6 + 24 cos 2φ+ 2 cos 4φ) S1133]
(
S1133 + 2S1313

)
+ 4 (cosφ)2 [(2 cos 2φ− 6)

(
S1122 + S1133

)
+ 16 (cosφ)2 S1313]S3333 + 4S1111[4 (sinφ)4 S1122 + (10 + 6 cos 2φ) (sinφ)2 S1133 − 16 (sinφ)4 S1313

− 4 cos 2φS3333]}/{32[(sinφ)4 S1111 + (cosφ)4 S3333 + 2 (sinφ)2 (cosφ)2
(
S1133 + 2S1313

)
]
2
}, (22)
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from which we conclude that the stationary points of ν̂ are given by
φ = 0, and φ =

π
2 ,

φS = arcsin
(√

−b±
√

b2−4ac
2a

)
,

(23)

where the subscript S indicates that φ depends upon the compliance constants, and a, b, c are given by

a =
[
S2

1111
+ S1111 S1122 − 3S1111 S1133 − 2S1122 S1133 + 2S2

1133
+ S1122 S3333 + S1133 S3333 − S2

3333

+4S1313

(
−S1111 − S1122 + S1133 + S3333

)]
,

b = 2(2S1111 S1133 − 4S2
1133

− 8S1133 S1313 + S1111 S3333 − 4S1313 S3333 + S2
3333
),

c = (4S2
1133

+ 8S1133 S1313 − S1111 S3333 − S1122 S3333 − S1133 S3333 + 4S1313 S3333 − S2
3333
).

The stationary points φ = 0 and φ = π/2 are invariant stationary points. The direction represented by
the stationary point φ = 0 coincides with the unique six-fold rotation symmetry axis, and the direction
represented by stationary point φ = π/2 lies in the reflection symmetry plane along an axis of two-fold
symmetry. The stationary point φ = φS , which depends on the elastic compliance constants, lies between
φ = 0 and φ = π/2. The three stationary points for the hexagonal material graphite, indicated in Figure
2, have the values ν̂max = 0.433 at φ = φS , ν̂min = 0.012 at φ = 0 and ν̂ = 0.254 at φ = π/2.

Consider ν̂ at the stationary points

ν̂ (0)= − S1133/S3333, (24)

ν̂
(π

2

)
= −

(
S1122 + S1133

)
/
(
2S1111

)
, (25)
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Figure 2. Areal Poisson’s ratio for graphite (hexagonal).
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ν̂ (φS)=

−[sin4 φS (S1111−2S1133−4S1313+S3333)+2S1133−sin2 φS (S1111−S1122−S1133−4S1313+S3333)]

2[sin4 φS (S1111+S3333−2S1133−4S1313)+2 sin2 φS (S1133+2S1313−S3333)+S3333]
.

Whether the areal Poisson’s ratio is a local minimum or maximum at φ = 0, π/2, φS depends on the
elastic compliance constants. The global extreme values of the areal Poisson’s ratio can be found by
comparing the values at the stationary points. Without violating the positive definite conditions (21),
S1122, S1133 can be expressed in terms of S1111, S3333 .

S1122 = pS1111, − 1< p < 1,

S1133 = q
√

S1111 S3333, − 1< q < 1.

The formulae (24) and (25) can be rewritten as
ν̂ (0)= − q

√
S1111
S3333

,

ν̂
(
π
2

)
= −

1
2

(
p + q

√
S3333
S1111

)
.

The parameters p, q are bounded by ±1,. The ratio χ = S3333/ S1111 can take on any positive value
without violating the positive definite conditions (21). For q < 0, the limits as χ −→ ±∞ are{

χ → ∞, ν̂ (0)→ 0+, ν̂
(
π
2

)
→ ∞,

χ → 0, ν̂ (0)→ ∞, ν̂
(
π
2

)
→ −

1
2 p.

and for q > 0, {
χ → ∞, ν̂ (0)→ 0−, ν̂

(
π
2

)
→ −∞,

χ → 0, ν̂ (0)→ −∞, ν̂
(
π
2

)
→ −

1
2 p.

This means that there is neither an upper bound nor a lower bound for the areal Poisson’s ratio of a
hexagonal crystal. As the case of s12 for cubic material, s13 is negative for all hexagonal materials in
[Landolt and Bornstein 1992]. This interesting fact can be investigated in future research.

4.3. Tetragonal (six constants). For tetragonal crystal material with symmetry 4mm, 42, 422, 4/mmm,
the Voigt compliance matrix si j takes the form

(
si j
)
=



s11 s12 s13 0 0 0
s11 s13 0 0 0

s33 0 0 0
s44 0 0

s44 0
s66


.

indicating six independent elastic compliance constants. Positive definiteness is equivalent to [Nye 1957]{
s11 > 0, s33 > 0, s44 > 0, s66 > 0,
s11 >±s12, s33s11 > s2

13, s33 (s11 + s12) > 2s2
13.

(26)



1482 LEWIS WHEELER AND CLIFF YI GUO

In terms of spherical angles, the areal Poisson’s ratio takes the form

ν̂ (φ, θ)=

1
2

−
2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

sin4 φ
[
(3 + cos 4θ) S1111 + 2 sin2 2θ

(
S1122 + 2S1212

)]
+ 2 sin2 2φ

(
S1133 + 2S1313

)
+ 4 cos4 φS3333

.

From this expression, we find that the restrictions imposed by the symmetry are

ν̂ (φ, θ)= ν̂ (π −φ, θ)= ν̂
(
φ,
π

2
+ θ

)
= ν̂

(
φ,
π

2
− θ

)
,

so we can limit the scope to 0 ≤ φ ≤
π
2 , 0 ≤ θ ≤

π
4 without loss of generality. A contour plot for

α-cristobalite is shown in Figure 3. The room temperature compliances are [Yeganeh-Heari et al. 1992]:

s11 = 17.0 (TPa)−1 , s12 = − 0.965 (TPa)−1 ,

s13 = 1.67 (TPa)−1 , s33 = 23.9 (TPa)−1 ,

s44 = 14.9 (TPa)−1 , s66 = 38.9 (TPa)−1 .

From the stationary conditions (10), the invariant stationary points of the areal Poisson’s ratio are

νmin=0.261

νmax=0.0096

π/2

π/4
     

π/4
     

0 

π/8 

φ

θ 

Figure 3. Areal Poisson’s ratio for tetragonal material: α-cristobalite.
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φ = 0, and φ =
π
2 , θ = 0,

φ =
π
2 , θ =

π
4 ,

φS1 = arcsin(

√
−b1±

√
b2

1−4a1c1
2a1

), θ = 0,

φS2 = arcsin(

√
−b2±

√
b2

2−4a2c2
2a2

), θ =
π
4 ,

where

a1 =
[
S2

1111
+ S1111 S1122 − 3S1111 S1133 − 2S1122 S1133 + 2S2

1133
+ S1122 S3333 + S1133 S3333 − S2

3333

+4S1313

(
−S1111 − S1122 + S1133 + S3333

)]
,

b1 = 2(2S1111 S1133 − 4S2
1133

− 8S1133 S1313 + S1111 S3333 − 4S1313 S3333 + S2
3333
),

c1 = (4S2
1133

+ 8S1133 S1313 − S1111 S3333 − S1122 S3333 − S1133 S3333 + 4S1313 S3333 − S2
3333
),

and

a2 = 2
[
S2

1111
+ 2S1111 S1122 + S2

1122
− 5S1111 S1133 − 5S1122 S1133 + 4S2

1133
+ 2S1212

(
S1111 + S1122 − S1133 − S3333

)
.

+8S1313

(
−S1111 − S1122 + S1133 + S3333

)
+ S3333

(
S1111 + S1122 + 2S1133 − 2S3333

)]
,

b2 = 4
[
2S1133

(
S1111 + S1122 − 4S1133 + 2S1212 − 8S1313

)
+ S3333

(
S1111 + S1122 + 2S1212 − 8S1313 + 2S3333

)]
,

c2 = 4(4S2
1133

+ 8S1133 S1313 − S1111 S3333 − S1122 S3333 − S1133 S3333 + 4S1313 S3333 − S2
3333
).

The stationary points (φ, θ) = (0, θ) , (π/2, 0) , (π/2, π/4) are invariant stationary points. The direc-
tions represented by invariant stationary points are thus respectively on a unique four-fold axis, a two-
fold axis and another two-fold axis of rotation symmetry for tetragonal crystals. The stationary points
(φS1, 0) , (φS2, π/4) depend on the elastic compliances. The global extreme values of the areal Poisson’s
ratio can be obtained by comparing the values at above stationary points. Consider the values of the areal
Poisson’s ratio at the stationary points:

ν̂ (0, θ)= − S1133/S3333,

ν̂
(
π
2 , 0

)
= −

(
S1122 + S1133

)
/2S1111,

ν̂
(
π
2 ,

π
4

)
=
(
−β − 2S1122 − 2S1133

)
/2(S1111 + S1122 + 2S1212);

ν̂ (φS1, 0)=
1
2 − [sin2 φS1

(
S1111 + S1122 − S1133 − S3333

)
+2S1133 + S3333]/{2[sin4 φS1

(
S1111 + S3333 − 2S1133 − 4S1313

)
+2 sin2 φS1

(
S1133 + 2S1313 − S3333

)
+ S3333]},

ν̂
(
φS2,

π
4

)
=

1
2 − [2 sin2 φS2

(
S1111 + S1122 − S1133 − S3333

)
+4S1133 + 2S3333]/{sin4 φS2[2S1111 + 2

(
S1122 + 2S1212

)
− 8

(
S1133 + 2S1313

)
+ 4S3333]

+8 sin2 φS2
(
S1133 + 2S1313 − S3333

)
+ 4S3333}.
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For the tetragonal material α-cristobalite, the (π/2, π/4) direction locates the maximum value, ν̂max =

9.6×10−4 and the (φS1, 0) direction is associated with the minimum value, ν̂min = −0.261. In Figure 3,
the extreme points are easily identified by the closed contours. While many crystal materials can have a
negative Poisson’s ratio in a particular direction, α-cristobalite is one of the few materials that also yield
a negative areal Poisson’s ratio.

Proceeding as we did in the hexagonal case, from positive definiteness (26), we obtain
ν̂ (0)= − q

√
S1111
S3333

,

ν̂
(
π
2

)
= −

1
2

(
p + q

√
S3333
S1111

)
.

The ratio χ = S3333/S1111 can be any positive value. If we set q 6= 0, the areal Poisson’s ratio is not
bounded for tetragonal crystal material with symmetry 4mm, 42m, 422, 4/mmm either.

4.4. Tetragonal (seven constants). For crystal material with tetragonal symmetry 4, 4, 4/m, the Voigt
compliance matrix si j takes the form

(
si j
)
=



s11 s12 s13 0 0 s16

s11 s13 0 0 −s16

s33 0 0 0
s44 0 0

s44 0
s66


,

which shows six independent elastic compliance constants. In addition to the inequalities in Equation
(26) the positive definite of strain energy requires

2s2
16 − (s11 − s12) s66 > 0.

In terms of spherical angles, the areal Poisson’s ratio takes the form

ν̂ (φ, θ)=

1
2
−

2 sin2 φ
(
S1111+S1122

)
+(3+cos 2φ) S1133+2 cos2 φS3333

sin4φ
[
(3+cos4θ) S1111+4sin 4θ S1112+2sin2 2θ

(
S1122+2S1212

)]
sin2 2φ

(
S1133+2S1313

)
+4cos4 φS3333

.

From this expression, we can find that the relationships imposed by tetragonal 4, 4, 4/m symmetry are

ν̂ (φ, θ)= ν̂ (π −φ, θ)= ν̂
(
φ,
π

2
+ θ

)
,

so we can limit the scope to 0 ≤ φ ≤
π
2 , 0 ≤ θ ≤

π
2 without loss of generality. Contours of the areal

Poisson’s ratio are plotted for the tetragonal material calcium molybdate (+Z = −Z) in Figure 4. At
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νmin=0.225

νmax=0.344

0.253
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π/4
     

π/4
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Figure 4. Areal Poisson ratio for calcium molybdate (+Z = − Z).

room temperature, the compliances are [Landolt and Bornstein 1992]:

s11 = 9.90 (TPa)−1 , s12 = − 4.2 (TPa)−1 ,

s13 = − 2.1 (TPa)−1 , s16 = 4.2 (TPa)−1 ,

s33 = 9.48 (TPa)−1 , s44 = 27.1 (TPa)−1 ,

s66 = 24.4 (TPa)−1 .

From the stationary conditions (10), the stationary points of the areal Poisson’s ratio are


φ = 0,

φ =
π
2 , θS1 =

1
4 arctan

(
4S1112/β

)
,

φ =
π
2 , θS2 = θS1 +

π
4 .

The stationary point φ = 0 is the only invariant stationary point. The direction represented by this station-
ary point is the unique four-fold (C4) rotation symmetry axis. The stationary points

(
π
2 , θS1

)
,
(
π
2 , θS2

)
depend on the elastic compliance constants. The global extreme values of the areal Poisson’s ratio can
be obtained by comparing values at the stationary points. We find

ν̂ (0, θ)= − S1133/S3333,
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ν̂
(π

2
, θS1

)
=

1
2

−
2
(
S1111 + S1122

)
+ 2S1133

3S1111 + S1122 + 2S1212 + 4 sin 4θS1S1112 + cos 4θS1
(
S1111 − S1122 − 2S1212

) ,
ν̂
(π

2
, θS2

)
=

1
2

−
2
(
S1111 + S1122

)
+ 2S1133

3S1111 + S1122 + 2S1212 − 4 sin 4θS2S1112 − cos 4θS2
(
S1111 − S1122 − 2S1212

) .
For tetragonal material Calcium Molybdate (+Z = − Z), the

(
π
2 , θS1

)
direction locates the maximum

value, ν̂max = 0.344 and the (0, θ) direction is associated with the minimum value, ν̂min = 0.225 as
illustrated in Figure 4. The stationary point

(
π
2 , θS2

)
is also a local extreme point since it is circumscribed

by contours.
Similar to the hexagonal case, from the positive-definiteness conditions (26), we obtain

ν̂ (0)= − q

√
S1111

S3333

.

The ratio χ = S3333/ S1111 may assume any positive value. For q 6= 0, the areal Poisson’s ratio for tetragonal
crystal material with symmetry 4, 4, 4/m, like those before and those to follow, is unbounded.

4.5. Trigonal crystal (six constants). For crystal material with trigonal symmetry 32, 3m, 3m, the Voigt
compliance matrix si j appears as

(
si j
)
=



s11 s12 s13 s14 0 0
s11 s13 −s14 0 0

s33 0 0 0
s44 0 0

s44 s14

2 (s11 − s12)


,

indicating six independent elastic compliance constants. In addition to (21), positive definiteness requires

s44s11 > s2
14, (s11 − s12) s44 > 2s2

14, (s11 − s12) >
s14

2
. (27)

In terms of spherical angles, the areal ratio takes the form

ν̂(φ, θ)=

1
2 − [2 sin2 φ

(
S1111 + S1122

)
+ 2 cos2 φS3333 + (3 + cos 2φ) S1133]

{2[2 sin4 φS1111 + 8 sin3 φ cosφ sin 3θ S1123 + sin2 2φ
(
S1133 + 2S1313

)
+ 2 cos4 φS3333]}

.

Hence, the relationships imposed by trigonal symmetry are

ν̂ (φ, θ)= ν̂

(
φ, θ +

2π
3

)
= ν̂

(
π −φ, θ +

π

3

)
.

Thus, we may limit the ranges to 0 ≤ φ ≤ π , 0 ≤ θ ≤
π
3 without loss of generality. Contours of the areal

Poisson’s ratio for the trigonal material aluminum oxide are plotted in Figure 5. The room temperature
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Figure 5. Areal Poisson’s ratio for trigonal material: aluminum oxide.

elastic compliance constants are [Landolt and Bornstein 1992]:

s11 = 2.35 (TPa)−1 , s12 = − 0.69 (TPa)−1 ,

s13 = − 0.38 (TPa)−1 , s14 = 0.47 (TPa)−1 ,

s33 = 2.18 (TPa)−1 , s44 = 7.0 (TPa)−1 .

By Equation (10), the stationary points of the areal Poisson’s ratio are:
φ = 0,

φ =
π
2 , θ = 0, π3 ,

θ =
π
6 , φ = φS1, φS2,

where φS1, φS2 satisfy the condition:

0 =
{(

S1111 + S1122 − S1133 − S3333

) [
2 sin4 φS1111 + 8 cosφ sin3 φS1123

+ sin2 2φ
(
S1133 + 2S1313

)
+ 2 cos4 φS3333

]
− 2

[
2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

]
×
[
sin 4φ

(
S1133 + 2S1313

)
+2 sin 2φ sin2 φS1111 + sin 3φS1123 − cos3 φS3333

]}
.

The stationary points (φ, θ)= (0, θ) , (π/2, 0) , (π/2, π/3) are invariant stationary points. The direction
for the stationary point φ = 0 is the unique three-fold (C3) rotation symmetry axes, and the directions
corresponding to the stationary points

(
π
2 , 0

)
, (π/2, π/3) are two-fold (C2) rotation symmetry axes,

while the stationary points (φS1, π/6) , (φS2, π/6) depend on the elastic compliance constants. The
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global extrema may be analyzed by comparing the values at the stationary points. For φ = 0,


ν̂ (0, θ)= −

S1133
S3333

,

ν̂φφ (0, θ)=
4S1133(S1133+2S1313)−S3333 (S1111+S3333+S1122+S1133−4S1313 )

S2
3333

,

ν̂θθ (0, θ)= ν̂φθ (0, θ)= 0.

The values represent, at φ = 0, a local minimum for ν̂φφ > 0, and a local maximum for ν̂φφ < 0. For
(φ, θ)= (π/2, 0) , (π/2, π/3) , we have



ν̂
(
π
2 , 0

)
= ν̂

(
π
2 ,

π
3

)
= −

S1122+S1133
2S1111

,

ν̂φφ
(
π
2 , 0

)
=

2(S1122+S1133)(S1133+2S1313)−S1111 (S1111+S3333+S1122+S1133−4S1313 )

S2
1111

,

ν̂φφ
(
π
2 ,

π
3

)
= ν̂φφ

(
π
2 , 0

)
,

ν̂θθ
(
π
2 , 0

)
= ν̂θθ

(
π
2 ,

π
3

)
= 0,

ν̂φθ
(
π
2 , 0

)
= − 6S1123

(
S1111 + S1122 + S1133

)
/S2

1111
,

ν̂φθ
(
π
2 ,

π
3

)
= − ν̂φθ

(
π
2 , 0

)
.

Hence, at (π/2, 0) , (π/2, π/3),

det (J )= −
36S2

1123

(
S1111 + S1122 + S1133

)2

S4
1111

< 0.

Thus the values of the areal Poisson’s ratio at (π/2, 0) , (π/2, π/3) furnish neither a local minimum nor
a local maximum. The global extreme values are achieved at φ = 0 and the material dependent stationary
points (φS1, π/6) , (φS2, π/6). This is illustrated in Figure 5 for the trigonal material aluminum oxide,
where the (φS1, π/6) direction locates the maximum value, ν̂max = 0.277 and the (0, θ) direction is
associated with the minimum value, ν̂min = 0.174. The stationary point (φS2, π/6) is also a local extreme
point.

Without violating the definiteness conditions (27), we may write

ν̂ (0)= − q

√
S1111

S3333

.

The ratio χ = S3333/ S1111 is free to assume any positive value. If we take q 6= 0, we see that the areal
Poisson’s ratio is not bounded for trigonal crystal material with symmetry 32, 3m, 3m.



SYMMETRY ANALYSIS OF EXTREME AREAL POISSON’S RATIO IN ANISOTROPIC CRYSTALS 1489

4.6. Trigonal crystal (seven constants). For a crystal with trigonal 3, 3 symmetry, the Voigt compliance
matrix takes the form

(
si j
)
=



s11 s12 s13 s14 s15 0
s11 s13 −s14 −s15 0

s33 0 0 0
s44 0 −s15

s44 s14

2 (s11 − s12)


,

which indicates the presence of seven independent elastic compliance constants.
In addition to the constraints in Equation (21), positive definiteness requires

{
s44s11 > s2

14, s44s11 > s2
15, (s11 − s12) s44 > 2s2

14,

(s11 − s12) s44 >
s2

14
2 , (s11 − s12) s44 >

s2
15
2 .

(28)

In terms of spherical angles, the areal Poisson’s ratio reads as

ν̂ (φ, θ)=

1
2

−
2 sin2 φ

[(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

]
2[2 sin4 φS1111 + 8 sin3 φ cosφ

(
cos 3θ S1113 + sin 3θ S1123

)
+ sin2 2φ

(
S1133 + 2S1313

)
+ 2 cos4 φS3333]

.

From this expression, we see that the relationships imposed by trigonal symmetry are:

ν̂ (φ, θ)= ν̂

(
φ, θ +

2π
3

)
= ν̂

(
π −φ, θ +

π

3

)
.

Thus, we may limit the ranges to 0 ≤ φ ≤ π, 0 ≤ θ ≤ π/3 without loss of generality.
Contours for the trigonal material MgSiO3 ilmenite are shown in Figure 6. At room temperature, the

independent elastic compliance constants are reported to be [Weidner and Ito 1985]:

s11 = 2.604 (TPa)−1 , s12 = − 0.976 (TPa)−1 ,

s13 = − 0.298 (TPa)−1 , s14 = 0.911 (TPa)−1 ,

s15 = − 0.810 (TPa)−1 , s33 = 2.727 (TPa)−1 ,

s44 = 10.265 (TPa)−1 .

The first derivatives of the areal Poisson’s ratio are:
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νmin= 0.109

νmax= 0.320
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π/3
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Figure 6. Areal Poisson’s ratio for MgSiO3 ilmenite.

ν̂φ = −{2 sinφ[2 sin2 φ
(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333]

× [cosφ sin2 φS1111 − cos3 φS3333 + sin 3φ
(
cos 3θ S1113 + sin 3θ S1123

)
+ cosφ cos 2φ

(
S1133 + 2S1313

)
] − sin 2φ

(
S1111 + S1122 − S1133 − S3333

)
× [sin4 φS1111 + cos4 φS3333 + 4 sin3 φ cosφ

(
cos 3θ S1113 + sin 3θ S1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
]}/{2[sin4 φS1111 + cos4 φS3333

+ 4 sin3 φ cosφ
(
cos 3θ S1113 + sin 3θ S1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
]
2
},

ν̂θ = −{3 sin3 φ cosφ
(
sin 3θ S1113 − cos 3θ S1123

)
[2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333]}/[sin4 φS1111

+ 4 sin3 φ cosφ
(
cos 3θ S1113 + sin 3θ S1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
+ cos4 φS3333]

2.

Thus, the stationary points are: 
φ = 0,

φ =
π
2 , θ = θS1,

θ = θS2, φ = φS1, φS2,
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where θS1 obeys cos 3θ S1113 + sin 3θ S1123 = 0, θS2 satisfies sin 3θ S1113 − cos 3θ S1123 = 0, φS1 is governed
by

0 = [2 sin2 φ
(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333]

× [cosφ sin2 φS1111 + sin 3φ
√(

S2
1113

+ S2
1123

)
+ cosφ cos 2φ

(
S1133 + 2S1313

)
− cos3 φS3333]

− cosφ
(
S1111 + S1122 − S1133 − S3333

)
× [sin4 φS1111 + 4 sin3 φ cosφ

√(
S2

1113
+ S2

1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
+ cos4 φS3333],

and φS2 satisfies

0 =
[
2 sin2 φ

(
S1111 + S1122

)
+ (3 + cos 2φ) S1133 + 2 cos2 φS3333

]
× [cosφ sin2 φS1111 − sin 3φ

√(
S2

1113
+ S2

1123

)
+ cosφ cos 2φ

(
S1133 + 2S1313

)
− cos3 φS3333]

− cosφ(S1111 + S1122 − S1133 − S3333)× [sin4 φS1111 − 4 sin3 φ cosφ
√(

S2
1113

+ S2
1123

)
+ 2 sin2 φ cos2 φ

(
S1133 + 2S1313

)
+ cos4 φS3333].

The values (φ, θ) = (0, θ) furnish the only invariant stationary points. The direction represented by
stationary point φ = 0 is the unique three-fold (C3) rotation symmetry axes, while (π/2, θS1), (φS1, θS2),
(φS2, θS2) depend on the elastic compliance constants. The global extreme values of the areal Poisson’s
ratio are obtained by comparing the values at above stationary points. Thus

ν̂ (0, θ)= −
S1133
S3333

,

ν̂φφ (0, θ)=
4S1133(S1133+2S1313)−S3333 (S1111+S3333+S1122+S1133−4S1313 )

S2
3333

,

ν̂θθ (0, θ)= ν̂φθ (0, θ)= 0.

The areal Poisson’s ratio has a local minimum if ν̂φφ > 0, a local maximum if ν̂φφ < 0. Further,

ν̂
(
π
2 , θS1

)
= −

S1122+S1133
2S1111

,

ν̂φφ
(
π
2 , θS1

)
=

2(S1122+S1133)(S1133+2S1313)−S1111 (S1111+S3333+S1122+S1133−4S1313 )

S2
1111

,

ν̂θθ
(
π
2 , θS1

)
= 0,

ν̂φθ
(
π
2 , θS1

)
= −

6
√

S2
1123

+S2
1113 (S1111+S1122+S1133)

S2
1111

.

This yields

det (J )= −
36
(
S2

1123
+ S2

1113

) (
S1111 + S1122 + S1133

)2

S4
1111

< 0.

Thus the value of the areal Poisson’s ratio at the invariant stationary point (π/2, θS1) is neither a local
minimum nor a local maximum. The global extreme values are achieved at φ = 0 and the material de-
pendent stationary points. These conclusions are demonstrated in Figure 6 for trigonal material MgSiO3
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ilmenite, where the (φS1, θS1) direction locates the maximum value ν̂max = 0.320 and the (0, θ) direction
is associated with the minimum value, ν̂min = 0.109.

Without violating (28), we may write

ν̂ (0)= − q

√
S1111

S3333

.

The ratio χ = S3333/ S1111 is free to assume arbitrary positive values. For q 6= 0, positive definiteness fails
to impose bounds on ν̂ for trigonal crystals with symmetry 3, 3.

4.7. Orthorhombic. For an orthorhombic crystal, the Voigt compliance matrix si j takes the form

(
si j
)
=



s11 s12 s13 0 0 0
s22 s23 0 0 0

s33 0 0 0
s44 0 0

s55 0
s66


.

There are nine independent elastic compliance constants. Positive definiteness imposes the requirements


s11 > 0, s22 > 0, s33 > 0, s44 > 0, s55 > 0, s66 > 0,

s11s22 > s2
12, s33s11 > s2

13, s33s22 > s2
23,

s11
(
s33s22 − s2

23

)
− s2

12s33 + 2s12s13s23 − s2
13s22 > 0.

(29)

The areal Poisson’s ratio can be expressed in spherical coordinates as

ν̂ (φ, θ)=
1
2

−
1
2

{
sin2 φ

[
S1122 + cos2 θ

(
S1111 + S1133

)
+ sin2 θ

(
S2222 + S2233

)]
+ cos2 φ

(
S1133 + S2233 + S3333

)}
/
{
sin4 φ(cos4 θ S1111 + sin4 θ S2222 + 2 sin2 θ cos2 θ S1122)

+ cos4 φS3333 + sin2 φ
[
2 cos2 φ cos2 θ S1133 + 4 sin2 θ cos2 θ sin2 φS1212

+2 cos2 φ
(
2 cos2 θ S1313 + sin2 θ(S2233 + 2S2323)

)]}
.

From this expression, we find that orthorhombic symmetry requires

ν̂ (φ, θ)= ν̂ (π −φ, θ)= ν̂ (φ, π + θ)= ν̂ (φ, π − θ) .

Therefore, we may limit the ranges to 0 ≤ φ ≤ π/2, 0 ≤ θ ≤ π/2 without loss of generality. Contours for
the orthorhombic material acenaphthene are shown in Figure 7. The elastic compliance matrix (at room
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νmin= 0.195

νmax= 0.355

0.237

θ 
π/2

π/2π/4
     

π/4
     

0 
φ

Figure 7. Areal Poisson’s ratio for acenaphthene.

temperature), expressed in term of (TPa)−1 is [Simmons and Wang 1971]

(
si j
)
=



81.438 −3.125 −28.605 0 0 0
93.354 −37.298 0 0 0

115.385 0 0 0
377.358 0 0

344.828 0
540.540


.

By (10), the stationary points of the areal Poisson’s ratio are
φ = 0,

φ =
π
2 , θ = 0, π2 ,

φ =
π
2 , θ = θS,

where θS satisfes the condition

0 = sin 2θ
[
cos4 θ S1111 + 2 sin2 θ cos2 θ

(
S1122 + 2S1212

)
+ sin4 θ S2222

]
×
(
S1111 + S1133 − S2222 − S2233

)
− sin 2θ

[
2 cos2 θ S1111 − 2 cos 2θ

(
S1122 + 2S1212

)
− 2 sin2 θ S2222

]
×
[
S1122 + cos2 θ

(
S1111 + S1133

)
+ sin2 θ

(
S2222 + S2233

)]
.

The stationary points (φ, θ)= (0, θ) , (π/2, 0) , (π/2, π/2) are invariant with respect to the elastic con-
stants. The directions represented by these stationary points are the two-fold (C2) rotation symmetry
axes. The stationary point (π/2, θS) depends on the elastic compliance constants. The global extreme
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values of areal Poisson’s ratio can be obtained by comparing the values at above stationary points,
ν̂ (0, θ)= −

S1133+S2233
2S3333

,

ν̂
(
π
2 , 0

)
= −

S1122+S1133
2S1111

,

ν̂
(
π
2 ,

π
2

)
= −

S1122+S2233
2S2222

,

(30)

ν̂(
π

2
, θS)=

1
2

−
1
2

S1122 + cos2 θS
(
S1111 + S1133

)
+ sin2 θS

(
S2222 + S2233

)[
cos4 θS S1111 + 2 sin2 θS cos2 θS

(
S1122 + 2S1212

)
+ sin4 θS S2222

] .
For the orthorhombic material acenaphthene, the (π/2, θS) direction locates the maximum value ν̂max =

0.355 and the (π/2, 0) direction is associated with the minimum value, ν̂min = 0.195 as indicated in
Figure 7. From the definiteness conditions Equation (29), S1122, S1133, S2233 can be expressed in terms of
S1111, S2222, S3333 :

S1122 = r
√

S1111 S2222, − 1< r < 1,

S1133 = q
√

S1111 S3333, − 1< q < 1,

S2233 = w
√

S2222 S3333, − 1<w < 1.

The expressions in Equation (30) give way to

ν̂ (0, θ)= −
1
2

(
q
√

S1111
S3333

+w

√
S2222
S3333

)
,

ν̂
(
π
2 , 0

)
= −

1
2

(
r
√

S2222
S1111

+ q
√

S3333
S1111

)
,

ν̂
(
π
2 ,

π
2

)
= −

1
2

(
r
√

S1111
S2222

+w

√
S3333
S2222

)
.

Consider ν̂ (0, θ) . Since the ratios S3333/S1111 and S3333/S2222 may take on any positive value without vio-
lating the definiteness conditions (29), it is not bounded. A similar argument can be made for ν̂ (π/2, 0)
and ν̂ (π/2, π/2). Thus the areal Poisson’s ratio is not bounded for an orthorhombic crystal.

4.8. Monoclinic. The Voigt compliance matrix si j for monoclinic materials takes the form

(
si j
)
=



s11 s12 s13 0 0 s16

s22 s23 0 0 s26

s33 0 0 s36

s44 s45 0
s55 0

s66


,
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involving thirteen independent elastic constants. In addition to the conditions in Equation (29), definite-
ness of the strain energy requires {

s44s55 > s2
45, s33s66 > s2

36,

s22s66 > s2
26, s11s66 > s2

16.
(31)

The areal Poisson’s ratio can be expressed in spherical coordinates as

ν̂ (φ, θ)=
1
2

−
1
2

{
sin2 φ[S1122 + cos2 θ

(
S1111 + S1133

)
+ sin2 θ

(
S2222 + S2233

)
]

+ cos2 φ
(
S1133 + S2233 + S3333

)}
/
{
sin4 φ(cos4 θ S1111 + sin4 θ S2222 + 2 sin2 θ cos2 θ S1122)

+ cos4 φS3333 + sin2 φ
[
2 cos2 φ cos2 θ S1133 + 4 sin2 θ cos2 θ sin2 φS1212

+2 cos2 φ(2 cos2 θ S1313 + sin2 θ S2233 + 2 sin2 θ S2323)
]}
.

From this expression, we see that the relationships imposed by monoclinic symmetry are

ν̂ (φ, θ)= ν̂ (π −φ, θ)= ν̂ (φ, π + θ) .

Accordingly, we may limit the ranges of the spherical angles to 0 ≤ φ ≤
π
2 , 0 ≤ θ ≤ π . A contour plot of

the areal Poisson’s ratio for the monoclinic material feldspar (plagioclase — 29 AN) is shown in Figure
8. The room temperature elastic compliance matrix (TPa)−1 is [Simmons and Wang 1971]:

(
si j
)
=



15.460 −3.403 −3.739 0 0 1.333
7.786 −0.852 0 0 0.266

9.526 0 0 4.390
54.157 1.737 0

29.210 0
34.861


By Equation (10), the stationary points are

φ = 0,

φ =
π
2 , θ = θS1,

φ = φS, θ = θS2,

where θS1 satisfy

0 = −
{
cos4 θ S1111 + sin θ [4 cos3 θ S1112 + sin3 θ S2222 + sin 2θ(cos θ

(
S1122 + 2S1212

)
+ 2 sin 2θ S2212)]

}
×
[
sin 2θ

(
−S1111 − S1133 + S2222 + S2233

)
+ 2 cos 2θ(S1112 + S2212 + S3312)

]
+

1
2

[
4 (cos 2θ + cos 4θ) S1112

+2 sin 4θ
(
S1122 + 2S1212

)
+ 8 sin θ

(
− cos3 θ S1111 + sin 3θ S2212 + cos θ sin2 θ S2222

)]
×
{
cos2 θ S1111 + sin 2θ S1112 + S1122 + cos2 θ S1133 + sin θ

[
sin θ

(
S2222 + S2233

)
+ 2 cos 2θ

(
S2212 + S3312

)]}
.

The point φ = 0 is the only invariant stationary point. The direction represented by this stationary point
is the two-fold (C2) rotation symmetry axis. The stationary points (π/2, θS1) , (φS, θS2) depend on the
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elastic compliance constants. The global extreme values of the areal Poisson’s ratio may be obtained by
comparing the values at the above stationary points.

Let us consider the values of the areal Poisson’s ratio at stationary points
ν̂ (0, θ)= −

S1133+S2233
2S3333

,

ν̂
(
π
2 , θ

)
=

1
2 −

1
2

cos2 θ(S1111+S1133)+sin2 θ(S2222+S2233)+S1122+2 sin θ cos θ(S1112+S2212+S3312)
cos4 θ S1111+sin4 θ S2222+2 sin2 θ cos2 θ(S1122+2S1212)+4 sin θ cos3 θ S1112+4 sin3 θ cos θ S2212

.

For the monoclinic material feldspar (plagioclase — 29 AN), the (π/2, θS1) direction locates the maxi-
mum value, ν̂max = 0.399 and the (φS, θS2) direction is associated with the minimum value, ν̂min = 0.168
in Figure 8.

Similar to the orthorhombic case, we obtain

ν̂ (0, θ)= −
1
2

(
q

√
S1111

S3333

+w

√
S2222

S3333

)
.

Since the ratios S3333/ S1111 and S3333/ S2222 may be arbitrarily small or large while remaining positive, the
areal Poisson’s ratio is thus not bounded for monoclinic crystal materials.

4.9. Triclinic. The Voigt compliance matrix si j is shown in Equation (4). There are twenty one inde-
pendent elastic constants. The elastic compliance matrix must obey the positive definiteness conditions
(29) and (31).

The areal Poisson’s ratio are restricted only by inversion center symmetry

ν̂ (φ, θ)= ν̂ (π −φ, π + θ) ,

←νmin= 0.168

←νmax= 0.399

π/2

π/2π/4
     

π/4
     

0 

θ 

φ

3π/4
      

3π/4
      

π  
     

π  
     

Figure 8. Areal Poisson’s ratio for monoclinic material: feldspar.
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so we can limit the scope to 0 ≤ φ ≤ π, 0 ≤ θ ≤ π without loss of generality. Contours are shown for the
triclinic material copper sulfate pentahydrate in Figure 9. At room temperature, the elastic compliance
matrix in term of (TPa)−1 is [Krishnan et al. 1971]

(
si j
)
=



28.61 −9.67 −9.77 2.39 0.45 9.83
49.26 −25.21 −6.24 2.26 −8.01

39.16 6.92 1.94 3.26
60.0 −4.32 −0.76

88.04 23.46
110.64


.

By investigating the stationary conditions (10), we find no invariant stationary point for triclinic materials.
All stationary points depend on the elastic compliance constants. For the triclinic material copper sulfate
pentahydrate, the maximum value, ν̂max = 0.456 and minimum value ν̂min = 0.250 are shown in Figure
9.

Let’s look at the values of the areal Poisson’s ratio at φ = 0.

ν̂ (0, θ)= −
(
S1133 + S2233

)
/2S3333

Similar to the orthorhombic case, we obtain

ν̂ (0, θ)= −
1
2

(
q

√
S1111

S3333

+w

√
S2222

S3333

)
.

Since the ratios S3333/ S1111 and S3333/ S2222 can be arbitrary small or large positive value, the areal Poisson’s
ratio is not bounded for triclinic crystal material.

←νmin=0.250

←νmax=0.456

0.32

0.32

θ 
π  
     

π  
     

3π/4
      

3π/4
      

π/2

π/2π/4
     

π/4
     

0 
φ

Figure 9. Areal Poisson’s ratio for copper sulphate pentahydrate.
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Symmetry Class 1 2 3

Cubic (0, θ) , (π/2, 0) (π/2, π/4), (π/4, 0)
(
arctan

√
3/3, π/4

)
Hexagonal (0, θ) (π/2, θ) none

Tetragonal
(4mm, 42m, 422, 4/mmm) (0, θ) (π/2, 0) (π/2, π/4)
Tetragonal

(
4,4, 4/m

)
(0, θ) none none

Trigonal
(
32,3m, 3m

)
(0, θ) (π/2, 0) (π/2, π/3)

Trigonal
(
3,3
)

(0, θ) none none

Orthorhombic (0, θ) (π/2, 0) (π/2, π/2)

Monoclinic (0, θ) none none

Triclinic none none none

Table 1. Invariant stationary points (φ, θ) of all crystal symmetry classes.

5. Summary

We determine the stationary points of the areal Poisson’s ratio for all crystal classes, and illustrate them
graphically. The directions of invariant stationary points are related directly to the symmetry of the
crystal class, but do not depend upon the elastic constants of the particular material at hand. The invariant
stationary directions are summarized in Table 1, apart from points that are trivially related to these by
symmetry.

For crystals of low symmetry, at least one of the global extreme values occurs on the direction of
an invariant stationary point. To find the remaining global extreme, we have to consider both invariant
and material dependent stationary points. It is also shown that the areal Poisson’s ratio for cubic crystal
is bounded between −1 and 1/2, just as the case for isotropic material. But the areal Poisson’s ratio
the remaining eight lower symmetry crystal classes can have arbitrarily large positive or negative values
without violating the positive definiteness of strain energy density.
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A THREE DIMENSIONAL CONTACT MODEL FOR SOIL-PIPE INTERACTION

NELLY PIEDAD RUBIO, DEANE ROEHL AND CELSO ROMANEL

One of the most common causes of collapse of pipelines crossing unstable slopes is the large deformation
induced by landslides. This paper presents a numerical methodology based on the finite element method
for the analysis of buried pipelines considering the nonlinear behavior of the soil-pipe interface. This
problem is inherently complex since it involves the interaction between two different bodies (pipe and
soil), and is affected by many elements such as material nonlinearities, local and global buckling, soil
settlement, pipe upheaval, among others. An important aspect that should be considered in the study
of buried pipes is the mechanical behavior along the interface between the structure and the soil. The
contact problem, which includes both a normal and a tangential constitutive law, is formulated through
a penalty method. The finite element model considers full three-dimensional geometry, elasto-plastic
material behavior and accounts for the presence of large displacements and deformations.

1. Introduction

In Brazil transport of petroleum, gas and oil derivatives between refineries and the port tanking terminals
that collect and export petroleum products is generally made through buried pipelines that cross the
mountain range of Serra do Mar. These mountains run parallel to the Atlantic Coast and stand between
the Brazilian plateau, where most of the largest cities are located, and the lower sea plains.

A major concern during design and performance monitoring of these buried structures is the potential
occurrence of soil movements, usually triggered by heavy rainfalls in areas lacking protective forest
covering or those that have recently experienced changes of landscape caused by excavations, cuts and
embankments due to road constructions, new industrial developments, etc. In cases of pipeline damage
the consequences may be quite severe in terms of economical losses, social and environmental impacts.
For example, the rupture of an expansion gasket during oil pumping in the state of Paraná in 2000
provoked a leakage of more than a million gallons of crude oil, endangering fauna and flora in addition
to interrupting the distribution of potable water to the population of nearby towns.

Many analytical and computational procedures for the investigation of the mechanics of soil-pipe
interaction problems are presented in the literature. The available numerical solutions are generally
based on the finite element method and consider models ranging from simple one-dimensional beam
models [Zhou and Murray 1993; Zhou and Murray 1996; Lim et al. 2001] and two-dimensional analysis
of buried galleries [Katona 1983], to shell models [Selvadurai and Pang 1988]. Numerical models based
on the boundary element model have also been employed [Mandolini et al. 2001]. Moreover, many
different material models have been adopted to represent soil behavior, the most popular of which are
elastic and elasto-plastic models.

Keywords: soil-pipe interaction, frictional contact, penalty method, large deformation.
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In the analysis of the behavior of buried pipes one very important aspect is the consideration of the inter-
face behavior. This problem is inherently complex since it involves the interaction between two different
bodies (pipe and soil) and is affected by many elements such as material nonlinearities, local and global
buckling, soil settlement, pipe upheaval, among others. Various possible modes of deformation must be
taken into account, including the stick and slip modes, for which normal stress remains compressive, as
well as the debonding and rebonding modes, for which normal stress can reach zero. Models for the pipe-
soil interface describe limiting cases such as perfect adhesion [Selvadurai and Pang 1988], elastic and
inelastic springs for both transversal and longitudinal behavior [Zhou and Murray 1993], and continuum
interface elements as in the pioneer works [Katona 1983; Desai et al. 1984]. More realistic continuum
contact models including both normal and longitudinal contact forces models can be generically framed
as optimization models, by which the contact constraints are introduced in the general equations of motion
through a Lagrangian multiplier formulation and solved through mathematical programming algorithms.
A long list of authors who have adopted this strategy includes [Simo et al. 1985; Kwak and Lee 1988;
Lee et al. 1994; Laursen and Simo 1993; Ferreira and Roehl 2001]. Alternatively, the contact conditions
are satisfied empirically through a penalty based formulation. Examples of this type of contact model
are [Bathe and Chaudhary 1985; Peric and Owen 1992; Laursen 2002].

This paper presents a numerical methodology based on the finite element method for the analysis of
buried pipelines considering the nonlinear behavior of the soil-pipe interface. The finite element model
considers full three-dimensional geometry, elasto-plastic material behavior and accounts for the presence
of large displacements and deformations. Both pipe and soil are modeled with hexahedral enhanced
assumed strain elements. The numerical solution procedure is based on an incremental, iterative proce-
dure, forming a sequence of nonlinear incremental problems solved by a Newton–Raphson scheme. The
solution of boundary problems subject to the normal contact restrictions (impenetrability and compressive
normal tractions at contact) and to the friction law (tangential constitutive law) is carried out here with
a penalty formulation, by which the contact restrictions are approximated through an easy-to-implement
procedure. The incremental evolution equations for the contact constitutive model are obtained through
numerical integration with an implicit Euler algorithm. The element stiffness and contact matrices are
obtained in the framework of a consistent linearization of the contact virtual work. Finally, application
of the model to a slowly sliding slope with buried pipe is presented.

2. Continuum governing equations

2.1. Equations of motion. The formulation of the contact problem presented in this work is based on
the work of Laursen and Simo [1993] and is reviewed here for the case of two deformable bodies Bi

for i = 1, 2 in the space <
3 as shown in Figure 1. We assume that the bodies are contact-free in the

corresponding reference configurations �1 and �2 at time t = 0. The subsequent configurations indicated
as φ1

t , φ2
t cause the two bodies to physically come into contact introducing interactive forces. The contact

surfaces are represented by 0(1) and 0(2) , the so-called slave and master surfaces, respectively. The
current surface location is given by γ (i) = φi

t
(
0(i)

)
. In the initial configuration, material points on 0(1)

and 0(2) are represented by X and Y , respectively; correspondingly, the current configuration is given
by x = ϕ

(1)
t (X) and y = ϕ

(2)
t (Y).
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Figure 1. Body configurations at t = 0 and general t .

Assuming a quasistatic response and considering a description of motion in the reference configuration,
the classical equations of motion for each body i at time t are given by

DIVP (i)t + f (i)t = 0 in �(i), P (i)t n(i)0 = t(i)t in 0(i)σ , ϕ
(i)
t = ϕ

(i)
t in 0(i)ϕ , (1)

where P (i)t is the first Piola–Kirchhoff stress tensor, f (i)t is the prescribed body force, n(i)0 is the outward
normal in the reference configuration, 0σ (i), 0φ(i) are, respectively, the parts of ∂�(i) where the tractions
t (i)t and displacements φ(i)t are given, and P (i)t is assumed to be given by a hyperelastic constitutive law.

2.2. Frictional contact formulation. For a pair of motions φ(1)(·, t), φ(2)(·, t), the impenetrability re-
striction can be formulated for all points X ∈ 0(1) by first identifying a potential contact point Y−(X, t)
on the master surface according to the following closest point projection in the spatial configuration:

Y−(X, t)= arg min
Y∈0

(2)
c

∥∥ϕ(1)(X, t)−ϕ(2)(Y , t)
∥∥.

To formulate the contact conditions, a configuration-dependent differentiable distance function is intro-
duced, which will be constrained to guarantee physical impenetrability.

For a pair X , Y−, a gap function may be defined as g(X, t) = −ν
(
ϕ(1)(X, t)−ϕ(2)(Y−, t)

)
, where

ν is the outward unit normal to the γ (2) at y = φ
(2)
t (Y ) as illustrated in Figure 2. Then, the definition

of g(X, t) is given in terms of the closest point projection of x = φi
t (X) onto the opposing surface γ (2)c .

The impenetrability condition is formulated as g(X, t)≤ 0.
Furthermore, the complementarity conditions are connected to the superficial contact force t (1)(X, t)=

P (1)(X, t)·n0
(1)(X), where P (1)(X, t) is the first Piola–Kirchhoff tensor at X and n0

(1)(X) is the outward
normal at X in the reference configuration. This surface force may therefore be written as

t(1)(X, t)= tN (X, t)ν+ Pν t(1)(X, t), (2)

where Pν t (1) is the projection of t (1) onto the associated tangent plane, and tN (X, t) represents the contact
pressure at X .
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Figure 2. Contact problem and unit outward normal.

The Kuhn–Tucker conditions for normal contact are given by

g(X, t)≤ 0, tN (X, t)≥ 0, tN (X, t)g(X, t)= 0, tN (X, t)ġ(X, t)= 0. (3)

The first three conditions reflect the impenetrability constraint, the compressive normal traction constraint,
and the requirement that the pressure is nonzero only when contact takes place, that is, the gap function
g = 0, respectively. The last requirement is the persistency condition used when considering frictional
kinematics.

Once the impenetrability constraint (3)1 induces a geometric structure through the gap function, an
associated convective basis, adequate for definition of the frictional constraints, is necessary. Parameter-
izations for 0(i) and γ (i) are adopted for body 2 (see Figure 3) according to the definition of a series of
time indexed mappings 9(i)

t : A(i) → <
n−1, with 0(i) =9

(i)
0 (A

(i)), γ (i) =9
(i)
t (A(i)) and 9(i)

t = ϕ
(i)0
t 9

(i)
0 .

The dimension of the contact surface 0(i) is one dimension lower than the number of spatial dimensions
involved in the kinematic description. In the three-dimensional case, one point ξ ∈ A(2) is given by
ξ = (ξ 1, ξ 2). Bases for 0(2) and γ (2) are conveniently defined by partial derivatives with respect to these
variables:

Eα(ξ)=9
(2)
0,α(ξ), eα(ξ)=9

(2)
t,α(ξ)= F(2)

t
(
9
(2)
0 (ξ)

)
Eα(ξ), α = 1, 2.

In the above equations F(2)
t is the gradient deformation corresponding to ϕ(2). Subscript , α represents

derivatives with respect to ξα. For any point X ∈ 0(1), a point Y ∈ 0(2) is assigned such that Y− is
obtained through minimization.

Correlated points y− and ξ− in the spatial and parametric domains, respectively, are defined as

Y 0(X, t)= ψ
(2)
0

(
ξ−(X, t)

)
, y−(X, t)= ψ

(2)
t
(
ξ−(X, t)

)
.

Identification of ξ− with point X depends upon the motions of both bodies. The specific basis for ξ− is

Tα = Eα(ξ−), tα = eα(ξ−), α = 1, 2.

Tangent vectors Tα and tα describe a convective basis at point X relative to 0(2). The normal vector is
defined as v = (t1 × t2)/‖t1 × t2‖.

According to the persistency condition, if ġ(X, t)= 0, the time rate of change of the relative position
vector between x = φ(1) and y− = φ(2)(Y−(X, t), t) must be zero. The evaluation of this time derivative



A THREE DIMENSIONAL CONTACT MODEL FOR SOIL-PIPE INTERACTION 1505

y
)2(

Y
)2( 3

)2(
A

)2(
t

)2(
t

)2(
0

Figure 3. Parameterizations for 0(i) and γ (i).

gives an important expression for the material relative velocity of X , namely,

V (1)(X, t)− V (2)(Y−(X, t), t
)
= F(2)

t
(
9
(2)
0 (ξ−)

) d
dt

[Y(X, t)].

In the above equation, the left side gives the relative material velocities of X and Y−, thus physically
representing the slip rate of X relative to the adjacent surface γ (2) = φ(2)(0(2)). The right hand side of
this equation represents the geometry that is used in the definition of frictional evolution law.

VT (X, t) :=
d
dt

[Y−(X, t)] = ξ̇β−(X, t)Tα.

Mathematically, VT (X, t) represents the relative tangential velocity and, by the assumption of ġ(X, t)= 0
it contains no normal component. It is convenient to express VT in a dual basis. One can define the dual
basis vector, the metrics and the inverse metrics. The spatial counterpart of the material relative velocity
VT (X, t) is obtained through push forward transformation to the spatial frame. It and the frictional
traction are expressed in the dual basis as

vb
T (X, t)= Mαβ ξ̇β−(X, t)tα, tb

T (X, t) := −Pv t(1)(X, t) := tTα(X, t)tα.

Based on the description of slip velocity and traction, the Coulomb friction model is stated as

8 := ‖tb
T ‖ −µtN ≤ 0, vb

T − ζ
tb

T

‖tb
T ‖

= 0, ζ ≥ 0, 8ζ = 0, (4)

which are the friction law, relative tangential velocity, the irreversibility of slip, and the complementarity
condition. In the above formulation µ is the friction coefficient with hardening effects excluded, tN and tT

are the normal and tangential contact forces, vT is the relative tangential velocity. Frictional traction and
velocity are expressed in dual basis, according to the large deformation theory. More details on the fric-
tional contact formulation can be found in [Laursen and Simo 1993; Laursen 2002; Rubio et al. 2003].

2.3. Formulation of the virtual work of contact. We consider the approximate weak form of the global
equilibrium equations. The test function φ∗ (i)

: �(i) → R3 satisfies the condition φ∗ (i)
= 0 on 0φ(i).

Restrictions placed upon φ∗ (i) by the contact conditions are not imposed since such limitations are to
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be removed using the penalty regularization introduced above. Multiplying Equations (1) by φ∗ (i) and
integrating by parts over �(i) we obtain the weak form of the equilibrium:

G(i)(ϕ
(i)
t , ϕ

∗ (i)) : =

∫
�(i)

P (i)t · G R AD[ϕ∗ (i)
]d�(i) −

∫
�(i)

f (i)t ·ϕ∗ (i)d�(i) −
∫
0
(i)
σ

t(i) ·ϕ∗ (i)d0(i)σ ,

G(i)(ϕ
(i)
t , ϕ

∗ (i)) : =

∫
0(i)

t(i)t ·ϕ∗ (i)d0(i).

The quantity G(i) is the sum of the internal virtual work and the virtual work of the applied forces and
tractions for body i . The balance of the virtual work of the contact forces acting on 0(i) is

G(ϕt , ϕ
∗) := G(1)(ϕ

(1)
t , ϕ∗ (2))+ G(2)(ϕ

(2)
t , ϕ∗ (2))=

∫
0(1)

t(1)t ·ϕ∗ (1)d0(1) +
∫
0(2)

t(2)t ·ϕ∗ (2)d0(2),

where φt is the collection of mappings φ(1)t and φ(2)t and so is φ∗. The contact contribution of the integral
over 0(1) is

G(ϕt,ϕ
∗)+ Gc(ϕt,ϕ

∗)= 0, Gc(ϕt , ϕ
∗)= −

∫
0(1)

t(1)t (X) ·
{
ϕ∗ (1)(X)−ϕ∗ (2)

[Y(X)]
}
d0(1).

The statement of the contact virtual work is given by

Gc(ϕt , ϕ
∗)= −

∫
0(1)

[
tNv− tTατ

α
]
·

[
ϕ∗ (1)(X)−ϕ∗ (2)(Y(X))

]
d0(1) =

∫
0(1)

[
tNt δg − tTαt δξ

α
−

]
d0(1).

3. Numerical solution

3.1. Penalty regularization of constraints. The solution of boundary problems subject to restrictions
such as those presented in Equation (2) for normal contact and in Equation (4) for the Coulomb friction
laws is carried out here with a penalty formulation by which the restrictions are approximated through
an easy-to-implement procedure. For normal contact, a normal penalty parameter εN is introduced in
the definition of the constitutive relation of the normal force tN = εN 〈g〉, where 〈·〉 denotes the positive
part of the operand.

By introducing a tangential penalty εT , the regularization for the frictional response is expressed as

8 := ‖tb
T ‖ −µtN ≤ 0, vb

T − ζ
tb

T

‖tb
T ‖

=
1
εT

Lv tb
T , ζ ≥ 0, 8ζ = 0,

where Lv tb
T := ṫTα tα is the Lie derivative of the tangential force. The above regularization is exact only

in the limit εN → ∞ and εT → ∞, in which case the slip rate ζ tb
T /‖tb

T ‖ equals the relative velocity vb
T .

These relations are easy to incorporate in the virtual work principle and subsequently implement in a finite
element procedure. For frictional problems, the tangential gap function is introduced as gαT = ξαn+1 − ξαn .

3.2. Incremental finite element formulation. The boundary value problem can be solved incrementally
by considering a set of subintervals U N

n=0[tn, tn+1]. The evolution equations for the constitutive model
are obtained through numerical integration. Here we adopt an implicit Euler algorithm. In the framework
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of a consistent linearization, the contact virtual work is defined according to

1Gc(ϕt , ϕ
∗
)
=1

{∫
0
(1)
c

[
tN δg + tTα · δξα

]
d0
}

=

∫
0
(1)
c

[
1(tN δg)+1tTαδξ

α + tTα1δξ
α
]
d0(1), (5)

where tN are contact pressures and tT frictional tractions. The quantity 1(δg) is computed by linearizing
δg, which is the linearized variation of the gap function, δξ is obtained by application of the orthogo-
nality condition of the tangent vectors with the normal vector, and 1(δξ) is obtained by computing the
directional derivative of the orthogonality condition.

For finite element discretization of the domain, the contact virtual work expression in discrete form is

Gc
(
ϕh

t , ϕ
∗ h)

=

∫
0(i)

h

[
th
Ntδg

h
+ th

T δξ
αh ]d0(1)h ,

where the discrete counterparts of φ(i) and φ∗ (i) are φ(i)
h

and φ∗ (i)h , defined over individual element
surfaces as φe

(i)h (η)=6N a(η)φ
(i)
a for a = 1, . . . , ne. The term φa

(i) is the nodal value of φ(i)
h
, ne is the

number of nodes per element surface, N a(η) is an isoparametric shape function for three-dimensional
problems. Using the same scheme Xh

e (η)=6N a(η)Xa .
Solution of the weak form of equilibrium is obtained here with the Newton–Raphson method, which

requires linearization of Equation (5). For numerical integration, the linearized virtual contact work is

1Gc
(
ϕh, ϕ∗ h)

≈

nel∑
j=1

nint∑
k=1

W k j (ηk)
[
1
[
th
N (η

k)δgh(ηk)
]
+1th

Tα (η
k)δξα

h
(ηk)+ th

Tα (η
k)1

[
δξα

h
(ηk)

]]
,

where nint is the number of integration points on each contact surface element 0(1)
h
, W k is the integration

weight factor, δ8k
c is the vector of nodal displacement variations, Rk

c is the residual vector, and the index
k indicates the number of the integration point. The terms δgh(ηk) are the variations of g and the
simplification of the variation δξαh

(ηk) with the corresponding discrete fields. Expression (5) can now
be written as

1Gc
(
ϕh, ϕ∗ h)

=

nel∑
j=1

nint∑
k=1

W k j (ηk)δ8k
c · K k

c18
k
c . (6)

In the above equation K k
c is the contact stiffness matrix. The linearized contact terms 1

[
th
N (η

k)δgh(ηk)
]

and 1
[
δξα

h
(ηk)

]
are given by their corresponding discrete components. Vector 18k

c contains the nodal
displacement values uh , which take part at contact. The term 1th

T (η
k) is obtained by a classical plasticity

return algorithm. In the present work a nodal quadrature is employed by the evaluation of Equation (6)
as presented in detail in [Ferreira and Roehl 2001].

The finite element discretization is carried out with eight-node hybrid brick elements based on an
enhanced assumed strain formulation in the framework of large strain J2 plasticity; for details see
[Simo et al. 1985; Roehl and Ramm 1996]. In this case the node-to-surface contact involves five nodes
as illustrated in Figure 4.
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Figure 4. Slave node and master surface.

Accordingly, δ8 contains the displacement variations of the contacting slave node ϕ∗ (1)(X) and those
of the four nodes on finite element on the master surface γ (2)

h

e (ϕ∗ (2)(Y)):

δ8=


ϕ∗ (1)(X)
ϕ∗ (2)(Y 1)

ϕ∗ (2)(Y 2)

ϕ∗ (2)(Y 3)

ϕ∗ (2)(Y 4)

 , 18=


u(1)(X)
u(2)(Y 1)

u(2)(Y 2)

u(2)(Y 3)

u(2)(Y 4)

 .

4. Applications

4.1. Benchmark for soil-structure interface contact. Figure 5 (left) illustrates a long elastic block (that
is, L � H ) loaded in compression at one end and restrained at the other. The block is also restrained
against compression in the x direction by the frictional contact model along its base. No strain is permitted
in either the y or z direction. The block has length L = 10 m with L/H = 10, Young’s modulus
E = 1.0 × 105 kPa, Poisson’s coefficient v = 0.0, and the initial value of applied stress P = 100 kPa.

For this analysis the penalty method was used with normal and tangential penalties equal to εN = 104

and εT = 108, respectively. The Coulomb frictional law at the block-foundation interface has friction
coefficient µ= 0.5. The analysis was executed under loading control conditions. The system was mod-
eled by a finite element mesh consisting of 20 eight-node hexahedral elements; see Figure 5 (right). The
results for the horizontal displacements at the contact interface obtained in this analysis were compared
with the results obtained in the numerical solutions developed for [Hird and Russell 1990] for different
load levels as shown in Figure 6.

4.2. Buried pipeline. Figure 7 shows a buried steel pipe of diameter D0 = 1 m embedded at a depth 2D0

with the following mechanical and geometrical properties: axial stiffness E A = 4.2 × 105 kN, flexural

L=10m

H=1m P

Figure 5. Definition of the long elastic block problem (left). Finite element mesh (right).
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0,00 0,00 0 0 0
1,00 0,43 0,852 1,28 1,7
2,00 0,82 1,63 2,45 3,27
3,00 1,16 2,33 3,49 4,65
4,00 1,49 2,98 4,46 5,95
5,00 1,82 3,65 5,47 7,29
6,00 2,20 4,4 6,6 8,8
7,00 2,65 5,3 7,95 10,6
8,00 3,22 6,43 9,65 12,9
9,00 3,86 7,73 11,6 15,5

10,00 4,72 9,43 14,4 18,8

0,00 0,759747 1,519494 2,279241 3,038988
1,00 0,822214 1,644429 2,466643 3,288858
2,00 0,895875 1,791749 2,687624 3,583498

Horizontal Displacements on the interface
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Figure 6. Horizontal displacements at contact interface; results of CARAT versus
[Hird and Russell 1990].

stiffness E I = 0.1 kN·m2, thickness t = 2 mm, and Poisson’s ratio νp = 0.3. The linear elastic soil layer
has thickness H = 8 m, Young’s modulus E = 2.7×103 kPa, and Poisson’s ratio νs = 0.33. The soil layer
is submitted to a strip load q = 100 kPa, uniformly distributed over a length B = 2 m in the xy-plane;
see Figure 6.

Due to symmetry, only half of the soil-pipe system was modeled by a finite element mesh (Figure 7,
right), consisting of 365 eight-node elements (brick8). The analysis was carried out under the assumption
of plane strain conditions, by preventing axial displacements through the introduction of proper boundary
constraints. The frictional coefficient was considered to be µ = 0.5, and the penalty parameters were
εN = 104 and εT = 108. The analysis was executed under displacement control conditions. Figure 8
shows the horizontal and vertical field displacement of the soil-pipe system according to the frictional
contact formulation.

B=2m

D

5Do5Do

2Do

5Do

Figure 7. Geometry of the soil-pipe system (left). Finite element mesh (right).
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Figure 8. Vertical (left) and horizontal (right) displacement fields according to the fric-
tional contact formulation.

4.3. Soil-pipe interaction: three-dimensional model. In this example the elastic behavior of the soil
is considered with Young’s modulus E = 50.0 MPa and Poisson’s coefficient v = 0.2. The pipeline
assumes an elasto-plastic constitutive model based on the von Mises criteria with isotropic hardening.
The yielding stress and the tangent modulus are Sy = 420 MPa and ET = 75000 MPa, respectively. Pipe
properties are listed in Table 1.

The loading applied to the pipeline consists in an internal pressure equal to 9.0 MPa, transversal load
of 1000.0 N/m, and the overburden (γ = 1.8 KN/m3), according to Table 2.

Due to symmetry, only half of the soil-pipe system is modeled by a finite element mesh (longitudinal
direction), consisting of 622 eight-node hybrid brick elements (Hexa8-E3). Pipeline geometry and the
finite element model are shown in Figure 9. The frictional coefficient is considered to be µ= 0.1 and
the penalty parameters are εN = 102 and εT = 102. The analysis was carried out under load control
conditions. The frictional contact problem formulation simulates the soil-pipe interface behavior.

The internal pressure induces longitudinal stresses in the pipe due to Poisson’s effect; see Figure 10.
These longitudinal stresses arise when the pipe is restricted at its ends and/or by the presence of longitu-
dinal friction. We have verified that the pipe has achieved yielding; see Figure 10.

Parameter Value

Izz (m4) 7.9516531 × 10−5

A (m2) 6.2586416 × 10−3

De (m) 0.325

Di (m) 0.3125

t (m) 0.00625

Table 1. Pipe properties.
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Distance Overburden Additional Load Internal Pressure

0 – 5.0 m X X X

5.0 – 6.5 m X - X

6.5 – 8.0 m - - X

8.0 – 13.0 m - - X

Table 2. Pipeline load.

Figure 9. The pipeline geometry in the yz-plane (left). Finite element mesh: 622 Hexa8-
EAS elements (right).

Figure 10. Longitudinal stresses and von Mises stresses obtained with our model.

5. Conclusion

This work presents a finite element numerical model for the analysis of buried pipes. The solution of
elasto-plastic contact problem includes the presence of large elasto-plastic strains. The contact conditions
are imposed through a penalty formulation that has been proven quite effective in the cases studied, if the
penalty parameters are adequately chosen. For problems in which the contacting bodies present stiffness
of the same order of magnitude the choice of these parameters is not difficult. Large normal contact
forces make the parameter calibration more troublesome.
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This is not usually the case by pipe-soil systems. An application of the model to the problem of a
buried pipe under close to site conditions illustrates the effectiveness of the soil-pipe interaction model
for more realistic engineering problems.
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CALCULATION OF INERTIAL PROPERTIES OF THE MALLEUS-INCUS
COMPLEX FROM MICRO-CT IMAGING

JAE HOON SIM, SUNIL PURIA AND CHARLES R. STEELE

The middle ear bones are the smallest bones in the human body and are among the most complicated
functionally. These bones are located within the temporal bone making them difficult to access and
study. We use the micro-CT imaging modality to obtain quantitative inertial properties of the MIC
(malleus-incus complex), which is a subcomponent of the middle ear. The principal moment of inertia
of the malleus along the superior-inferior axis (17.3 ± 2.3 mg/mm3) is lower by about a factor of six
in comparison to the anterior-posterior and lateral-medial axes. For the incus, the principal moment of
inertia along the superior-inferior axis (35.3 ± 6.9 mg/mm3) is lower by about a factor of two than for
the other two axes. With the two bones combined (MIC), the minimum principal moment of inertia
(132.5 ± 18.5 mg/mm3) is still along the superior-inferior axis but is higher than for the individual bones.
The superior-inferior axis inertia is lower by a factor of 1.3 than along the anterior-posterior axis and is
lower by a factor 2 along the lateral-medial axis. Values for inertia of the MIC show significant individual
differences in three human ears measured, suggesting that middle ear models should be based on individ-
ual anatomy. Imaging by micro-CT scanner is a nondestructive modality that provides three-dimensional
volume information about middle ear bones at each stage of manipulation with resolution down to 10µm.
In this work extraneous tissue is removed to obtain a sufficiently small specimen. However, advances in
imaging hold promise that this capability will be available for in vivo measurements.

1. Introduction

The ossicular chain in the middle ear consists of the MIC and the stapes, which transfer vibrations
of eardrum into fluid vibrations in the inner ear. This is a very important step in the hearing process.
Because these bones are mobile in all three dimensions, the inertial properties are important for a biome-
chanical model of the middle ear. Inertial properties in the human middle ear bones have been studied
[Kirikae 1960; Beer et al. 1996; Weistenhöfer and Hudde 1999], and those values have been widely used
for models of the middle ear [Eiber and Freitag 2002; Gan et al. 2002; Koike et al. 2002].

Three-dimensional volume information for the ossicles is necessary to calculate the inertial properties.
Such information has been obtained by microscopic surface measurements [Kirikae 1960; Beer et al.
1996; Weistenhöfer and Hudde 1999]. However, this method cannot yield information on the mass distri-
bution inside bone and is not suitable for the complicated features of the middle ear bones. Alternatively,
traditional histological methods are used, but they require several months for results. Another issue in
modeling the middle ear is the fairly large difference in individual middle ear anatomy. Such a large
difference does not allow a nominal middle ear model to be used for all ears. To construct the middle ear

Keywords: inertial properties, principal axes, ossicles, malleus-incus complex (MIC), middle ear, computed tomography (CT).
This work was supported in part by a grant from the NIDCD of NIH (DC005960).
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model based on individual anatomy, three-dimensional volume information should be obtained at each
stage of manipulation of the specimen, and a nondestructive method is needed. Both microscopic surface
measurement and the histological method are destructive.

The microscale X-ray computed tomography (micro-CT) scanner provides nondestructive imaging
with resolution as small as 10µm resolution. The first application of the micro-CT to obtain the general
geometry of the middle ear bones [Decraemer et al. 2003; Lane et al. 2004; 2005] found more clarity
than with MRI. The present effort extends the method to obtain the quantitative mechanical properties,
so some detail of the procedure is given. While the steps involve well-known relations, assembling,
generation and interpretation of the images require insight into the mechanics and materials.

2. Material and methods

2.1. Temporal bone preparation. Four human temporal bones from three different human cadavers were
used (two right ears and one left ear). The ear canal was dissected, the cochlea was removed, and the
middle ear cavity was dissected to reduce X-ray attenuation due to materials of no interest for present
purposes. The reduction of specimen size also allows increased resolution. Since the focus was on the
MIC, the eardrum and stapes were dissected by a surgical laser.

2.2. Micro-CT scanning. The vivaCT 40 micro-CT scanner developed by SCANCO Medical AG (see
www.scanco.ch) was used in this study. This machine permits control of the resolution, the photon
energy, the intensity of the X-ray beam, and the integration time, all of which determine the visibility of
the objects of interest.

Scans with higher resolution result in clearer images, especially on micron sized structures such as the
ossicles. Figure 1 shows example slice images of the intact ear (left) and the isolated MIC preparation
(right) when the resolution of 12.5µm was obtained with a 25.6 mm diameter holder. This machine
allows us to perform high resolution scans up to 2048 × 2048 pixels per image, which correspond to
resolutions of 10.5µm for a 21.5 mm diameter holder. The best resolution of 10.5µm could be obtained
for our specimen by reducing its size to fit into the 21.5 mm diameter holder.

The transmitted photons from an X-ray source to a detector either interact with a particle of matter in
their path or pass unaffected [Johns and Cunningham 1974]. The number of photons in the laser beam
that are lost due to attenuation in a region of thickness 1x can be represented as

1N = −µN1x, (1)

where N is the total number of impinging photons and µ is a constant of proportionality known as the
linear attenuation coefficient [Macovski 1983]. The final number of photons Nout after traversing an
attenuation region of thickness x can be represented by the initial number of photons suppressed by an
exponential decay term, the relationship known as Beer Lambert’s Law:

Nout = Nin e−µx . (2)

The attenuation coefficient µ depends on the photon energy of the beam and absorption characteristics
of the elements as dictated by the quantum mechanical energy levels of the element involved during
the absorption process. Since the absorption strength also depends on the mass of the material itself,
attenuation coefficients are often characterized instead by the so-called mass attenuation coefficient µ/ρ

http://www.scanco.ch
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Figure 1. Micro-CT images of intact (left) and isolated MIC (right) from a human
temporal bone preparation obtained from 12.5µm iso-volume scans with the 25.6 mm
diameter holder.

[Johns and Cunningham 1974; Macovski 1983]. Mass attenuation coefficients for body materials show
relatively large differences in the lower photon energy regions, where the photoelectric effect is signif-
icant. At higher energies, where the attenuation is primarily due to Compton scatter, mass attenuation
coefficients become the same for all biological tissues [Macovski 1983]. Even though lower photon
energy provides a larger contrast ratio between biological tissues, it is limited by the nonlinear beam
hardening artifacts [Brooks and Di Chiro 1976; Wang et al. 1996; Wang and Vannier 1998]. X-ray
photons emitted from an X-ray source do not all have the same energy. As an X-ray beam traverses an
object, photons within the lower energy spectrum are more readily absorbed and the portion of higher
energy photons in the X-ray spectrum increases. Therefore, when high X-ray absorption structures are
in the field of view, beam hardening effects are particularly pronounced since photoelectric absorption
in bone is high due to the high calcium content.

The vivaCT 40 micro-CT scanner in this study allows 30, 55, or 70 keV as the diagnostic energy level.
Because of large interruptions due to beam hardening in bony portions with the lower energy levels,
70 keV was selected as the photon energy, where bones are clearly distinguishable from the background.

The intensity at the detector Id is given by

Id(x, y)=

∫
Io(E) exp

[
−

∫
µ(x, E)

]
d E, (3)

where Io(E) is the incident X-ray beam intensity as a function of the energy per photon E and µ(x, E)
is the linear attenuation coefficient at each region [Macovski 1983; Ketcham and Carlson 2001]. The
image clarity depends on the signal-to-noise ratio, which is directly affected by the X-ray intensity.
Higher intensities improve the underlying counting statistics, but often require a larger focal spot, which
results in degrading image sharpness [Ketcham and Carlson 2001]. The focal spot size of the X-ray tube
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Figure 2. Top: slice image from micro-CT. Bone and soft tissue are distinguishable
from surrounding air. Bottom: grayscale along the red line above. Grayscale value of
bone has higher range (350 ∼ 550) than for soft tissue (200 ∼ 350) and air (below 200).

influences the unsharpness of the final image. Generally the smaller spot size is better for the image
sharpness.

The micro-CT scanner used allows the maximum X-ray intensity of 145µA, where we could get
good signal-to-noise ratio and good image clarity for the default integration time of 380 msec. The
typical scan length was about 12 mm for scans in the superior-inferior direction and about 9 mm for
scans in the anterior-posterior direction. These values in scan length correspond to approximately 1140
slices and 860 slices at the 10.5µm resolution, respectively.

2.3. Three-dimensional volume reconstruction. The three-dimensional volume reconstruction from a
stack of slices consists of several steps. The first is to outline the object with contours in each slice image.
For bone, with high contrast ratio relative to the surrounding soft tissue and air, contours are constructed
semiautomatically. Once a contour that approximately matches the shape of the bone is hand-drawn, its
shape is adapted to the nearest surface of the bone by a gauss segmentation algorithm. The algorithm is



CALCULATION OF INERTIAL PROPERTIES OF THE MALLEUS-INCUS COMPLEX 1519

Figure 3. Top: slice image before segmentation. Bottom: segmented slice image of
malleus (left) and incus (right). The different threshold values were applied for the low-
density part (blood vessels) and high-density part (bone).

repeated until the region of interest (ROI) is judged to be adequately contoured. In essence, the contour
shrink wraps the ROI. The contour is then copied to the next slice (iterating forward) or the previous
slice (iterating backward), and the shrink wrapping procedure is repeated. Once the volume of interest
(VOI) is separated from adjacent objects by contours, thresholds in grayscale are applied to identify full
voxel and empty voxel, which correspond to the volume within threshold and out of threshold. Grayscale
values in slice images make it easier to select the appropriate thresholds.

Bottom of Figure 2 shows the grayscale values along the red line on top of Figure 2, which were recal-
culated such that the maximum attenuation (µ/ρ = 8 cm2/g) and no attenuation (µ/ρ = 0) correspond
to values of 1000 and 0. Grayscale values of 200–350 were set for the soft tissue range. A range above
350 is the range of bone and below 200 is the range for surrounding air.

Figure 3 shows a slice image before (top) and after (bottom) contouring and applying threshold for the
malleus (left) and incus (right) bones. After segmenting a stack of slices, they are combined to construct
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Figure 4. Three-dimensional volume reconstruction of the malleus and incus bones
(right ear).

the three-dimensional volume of the object. Figure 4 shows the reconstructed three-dimensional volume
of the MIC bones.

2.4. Calculation of inertial properties. Portions of the malleus/incus bones are vascularized and thus
contain lower-density blood vessels. Consequently, the entire bone cannot be treated as having uniform
density; see bottom of Figure 3. The center of mass in the Cartesian coordinate system is calculated with
the standard discretization

x̄ ≈

∑NL
i=1 x i1mL +

∑NH
i=1 x i1m H∑NL

i=11mL +
∑NH

i=11m H
, (4)

while moments of inertia are calculated as

Ixx ≈

N L∑
i=1

(yi
2
+ zi

2)1mL +

NH∑
i=1

(yi
2
+ zi

2)1m H , Ixy ≈ −

NL∑
i=1

xi yi1mL −

NH∑
i=1

xi yi1m H ,

Iyy ≈

N L∑
i=1

(xi
2
+ zi

2)1mL +

NH∑
i=1

(xi
2
+ zi

2)1m H , Iyz ≈ −

NL∑
i=1

yi zi1mL −

NH∑
i=1

yi zi1m H ,

Izz ≈

N L∑
i=1

(xi
2
+ yi

2)1mL +

NH∑
i=1

(xi
2
+ yi

2)1m H , Ixz ≈ −

NL∑
i=1

xi zi1mL −

NH∑
i=1

xi zi1m H .

(5)

In the above equations, 1mL is the mass of a lower-density voxel and 1m H is the mass of a higher-
density voxel. These can be calculated from the physically measured bone mass M and the number of
lower-density and high-density voxels NL , NH , respectively, with the assumption that the lower-density
value ρL is just that of water

1mL = ρL1v, 1m H = ρH1v =
M − NL1mL

NH
, (6)

where ρH indicates the higher-density value and 1v the volume of a single voxel.
Once moments of inertia are known in a given frame, the orientation of a second frame is calculated

such that all products of inertia, that is, nondiagonal terms in inertia matrix given by the right side of
Equation (5), are zero simultaneously. The principal directions of the second frame and corresponding
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(a) (b)

(c)

Figure 5. Principal axes of (a) malleus, (b) incus, and (c) MIC of (right) Ear 1. Red line
denotes principal axis with minimum principal moment of inertia; blue line denotes
maximum.

three principal moments of inertia are calculated from the eigenvalue problem as

[I ]{ω} = α{ω}, (7)

where the three eigenvectors {ω} provide the directions of the principal axes, and the three eigenvalues
α the corresponding principal moments of inertia.

3. Results

Figure 5 shows the principal axes of the malleus, incus, and MIC for Ear 1. In this figure, the intersection
of the three axes is at the center of mass. The principal axis with the minimum moment of inertia is in
nearly the same direction for the malleus, incus and the MIC (red lines in Figure 5), while the direction
of the principal axis with the maximum moment of inertia is different (blue lines in Figure 5). The
minimum moment of inertia occurs in the superior-inferior direction for the malleus, incus, and MIC.
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The malleus has the maximum moment of inertia in the anterior-posterior direction, while incus and the
MIC have the maximum moment of inertia in the medial-lateral direction.

Table 1 shows the tabulated mass, density, and the principal inertia measured and calculated from
the three-dimensional volume of micro-CT images. Lower-density material within bone, which was
measured to consist of 3 to 14% portion of the entire volume, make a relatively small contribution to the
dynamic mechanical properties compared to the material of higher density.

Ear 3 has the largest mass and volume, while Ear 2 has the largest density for the malleus and the incus
among three specimens. The malleus average density of 2.39 mg/mm3 is higher than the incus average
density of 2.15 mg/mm3 by 11%. The difference between the malleus and incus density is distinguishably
large for Ear 2, and only Ear 2 has a heavier malleus than incus.

The principal inertial values of the malleus are consistent with the particular feature of the malleus
that length is large compared to the cross section dimensions, by more than a factor of 2. The malleus’
moment of inertia along the principal axis of the superior-inferior direction of 17.3±2.3 mg·mm2 is much
smaller than the other two principal moments of inertia, which are similar, namely, 106.1 ± 10.9 mg·mm2

and 100.6 ± 10.1 mg·mm2. The values of the principal moments of inertia of MIC are similar for Ears 1
and 2, while for Ear 3, which has much heavier bones than the other ears, these values are much larger,
specifically 50% larger for the lateral-medial direction. Ear 1 has smaller principal moments of inertia
for the malleus, but larger principal moments of inertia for the incus than Ear 2. Even though three
ear samples showed a large diversity in the values of the principal moments of inertia, the ratio of the
maximum moment of inertia to the minimum moment of inertia in MIC was about 2 for all three ear
samples.

4. Conclusion and discussion

Following previous work of Decraemer et al. [2003] and Lane et al. [2004; 2005], the micro-CT is
found to be advantageous for the nondestructive investigation of the middle ear. The procedure for
the determination of quantitative geometric and mechanical properties appears to be accurate. Inertial
properties of the malleus-incus complex showed significant differences in three ear samples, and also
some differences when compared to values found by other procedures by other authors [Kirikae 1960;
Beer et al. 1996; Weistenhöfer and Hudde 1999]. For the densities of the malleus and the incus we
obtained 2.39 ± 0.16 mg/mm3 and 2.15 ± 0.07 mg/mm3, respectively, while Kirikae [1960] reported
2.27–4.02 mg/mm3 and 1.48 mg/mm3 as the corresponding values. Our principal inertial values 132.5 ±

18.5 mg·mm2, 174.5 ± 21.1 mg·mm2, and 259.4 ± 34.2 mg·mm2 of the MIC were slightly larger than
the corresponding values 97.6 mg·mm2, 165.0 mg·mm2, and 217.4 mg·mm2 obtained by Weistenhöfer
and Hudde [1999]. However, the present results are based on just three ears, so it appears likely that the
present and previous values may be correct and indicate the actual variation that occurs in normal ears.

In ongoing work, the dynamic response of the middle ear bones is measured under various conditions
with the objective of a better determination of the stiffness properties of ligament attachments. The
results from the optimization procedure are sufficiently sensitive that it is important to have the correct
inertial properties as input. The simple model for the middle ear consists of a rigid lever rotating about
a fixed axis, to represent the ossicular chain, and a rigid piston to represent the eardrum.
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Bone Properties Ear 1 Ear 2 Ear 3 Mean SEM

Malleus

Mass 25.9 29.8 35.1 30.3 2.7

Density 2.14 2.68 2.35 2.39 0.16

Principal nM
AP 88.3 103.9 126.0 106.1 10.9

moments nM
SI 13.6 16.7 21.5 17.3 2.3

of inertia nM
L M 83.9 98.9 118.9 100.6 10.1

Incus

Mass 29.4 27.8 38.7 32.0 3.4

Density 2.02 2.23 2.21 2.15 0.07

Principal n I
AP 57.4 48.6 72.6 59.5 7.0

moments n I
S I 31.8 25.5 48.6 35.3 6.9

of inertia n I
L M 79.1 66.2 107.7 84.3 12.3

MIC

Mass 55.3 57.6 73.8 62.2 5.8

Density 2.07 2.44 2.27 2.26 0.11

Principal nM I
AP 149.0 158.2 216.4 174.5 21.1

moments nM I
SI 114.9 113.2 169.4 132.5 18.5

of inertia nM I
L M 223.9 226.4 327.8 259.4 34.2

Table 1. Mass (in mg), density (in mg/mm3) and principal moments of inertia (in
mg·mm2). SEM stands for standard error of mean. n AP , nSI , nL M denote principal
axes in the anterior-posterior, superior-inferior, and lateral-medial directions.

From many measurements and theoretical considerations, it is clear that such a model loses all cred-
ibility for frequencies above about 1 kHz. In particular, the ossicular chain has many modes of motion
for high frequencies [Eiber and Freitag 2002]. It remains a puzzle how an efficient transfer of acoustic
energy takes place with such modes. The present results provide necessary parameters for the analysis
of the motion through the audio frequency range and the possibility for an answer to the puzzle.
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ELECTROELASTIC INTENSIFICATION AND DOMAIN SWITCHING NEAR A
PLANE STRAIN CRACK IN A RECTANGULAR PIEZOELECTRIC MATERIAL

YASUHIDE SHINDO, FUMIO NARITA AND FUMITOSHI SAITO

We study the effects of crack face boundary conditions and localized polarization switching on the
piezoelectric fracture. This paper consists of two parts. In the first part, the electroelastic problem
of an infinite piezoelectric material with a crack is formulated by means of integral transforms, and
the exact solution is obtained. The electroelastic fields are expressed in closed form. The fracture
mechanics parameters, such as energy release rate, are obtained for the permeable, impermeable and
open crack models. In the second part, finite element analysis is carried out to study the crack behavior
in a rectangular piezoelectric material by introducing a model for polarization switching in local areas
of electroelastic field concentrations. A nonlinear behavior induced by localized polarization switching
is observed between the fracture mechanics parameters and applied electric field.

1. Introduction

The fracture behavior of piezoelectric materials has received much attention in recent years. In the
theoretical studies of the piezoelectric crack problems, there are two commonly used electrical boundary
conditions across the crack face: (1) the permeable crack model and (2) the impermeable crack model.
Theoretical analyses on cracked piezoelectric ceramics indicated that a negative energy release rate is
produced for the impermeable crack model [Narita et al. 2003]. Furthermore, some experimental results
show that the fracture loads are increased or decreased depending on the mechanical loading conditions
(applied load or applied displacement) and direction of electric fields [Park and Sun 1995; Shindo et al.
2002; Narita et al. 2003; Shindo et al. 2005]. These experimentally observed phenomena contradict the
results of the calculations using energy release rate for the impermeable crack model. Recently, some
researchers [Xu and Rajapakse 2001; Wang and Mai 2003; Landis 2004; McMeeking 2004] used the open
piezoelectric crack model [Hao and Shen 1994] and discussed the effect of electric fields on the fracture
mechanics parameters such as energy release rate. Although the impermeable and open crack models
may provide mathematical solutions of piezoelectric cracks, there is still a great deal of uncertainty in
searching for fracture design parameters characterizing the electric failure.

The nonlinear effect caused by the polarization switching may affect the piezoelectric fracture behavior
[Fu and Zhang 2000; Shindo et al. 2003]. In this investigation, the effects of crack face boundary
conditions and localized polarization switching near the crack tip on the piezoelectric fracture mechanics
parameters are studied by analyzing the plane strain electroelastic problem of a piezoelectric material
with a crack. First, the crack problem of an infinite piezoelectric material is formulated by means of

Keywords: elasticity, finite element method, piezoelectric material, crack, energy release rate, polarization switching.
This work was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan under the Grant-in-
Aid for Scientific Research (B).
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Figure 1. A rectangular piezoelectric material with a crack.

integral transforms and the solutions are obtained exactly. Electroelastic fields and energy release rate
based on permeable, impermeable and open crack models are compared. Secondly, a finite element
method incorporating the polarization switching mechanism is used to calculate the energy release rate
in a rectangular piezoelectric material. The numerical results illustrate that the impermeable and open
crack models can lead to significant errors regarding the effect of electric fields on piezoelectric crack
propagation.

2. Statement of the problem and basic equations

A rectangular piezoelectric material of length 2l and width 2h contains a central crack of length 2a, as
shown in Figure 1. A set of Cartesian coordinates {x, y, z} is attached to the center of the crack normal
to the z-axis. The piezoelectric material has symmetry properties of hexagonal crystal of 6 mm class
with respect to the x, y, z-axes, and is under a state of plane strain. The material is loaded by mechanical
displacement u0 with the electric field in the z-direction of the poling axis. Due to the symmetry of the
problem, only the first quadrant with appropriate boundary conditions needs to be analyzed.

The constitutive equations can be written as

σxx = c11ux,x+c13uz,z−e31 Ez, σzx = c44(ux,z+uz,x)−e15 Ex , σzz = c13ux,x+c33uz,z−e33 Ez, (1)

Dx = e15(ux,z+uz,x)+ε11 Ex , Dz = e31ux,x+e33uz,z+ε33 Ez. (2)

Here σxx , σzz, σxz = σzx are the components of stress tensor, Dx and Dz are the components of electric
displacement vector, ux and uz are the components of displacement vector, Ex and Ez are the components
of electric field intensity vector; c11, c13, c33, c44 are the elastic stiffness constants measured in a constant
electric field, ε11, ε33 are the dielectric permittivities measured at constant strain, and e15, e31, e33 are the
piezoelectric constants. A comma implies partial differentiation with respect to the coordinates. The
electric field components are related to the electric potential φ(x, z) via Ex = −φ,x and Ez = −φ,z . The
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governing equations can be written as

c11ux,xx + c44ux,zz + (c13 + c44)uz,xz + (e31 + e15)φ,xz = 0,

c44uz,xx + c33uz,zz + (c13 + c44)ux,xz + e15φ,xx + e33φ,zz = 0,

(e31 + e15)ux,xz + e15uz,xx + e33uz,zz − ε11φ,xx − ε33φ,zz = 0.

(3)

In a vacuum, the constitutive equations (2) and the governing equation (3)3 become

Dx = ε0 Ex , Dz = ε0 Ez, φ,xx +φ,zz = 0, (4)

where ε0= 8.85 × 10−12 C/Vm is the electric permittivity of the vacuum.
The crack face boundary and the loading conditions can be expressed in the form

σzx(x, 0)= 0 (0 ≤ x ≤ h), σzz(x, 0)= 0 (0 ≤ x < a), uz(x, 0)= 0 (a ≤ x ≤ h) (5)

Ex(x, 0)= Ec
x(x, 0) (0 ≤ x < a), φ(x, 0)= 0 (a ≤ x ≤ h), (6)

Dz(x, 0)= Dc
z (x, 0) (0 ≤ x < a), (7)

uz(x, l)= u0, (0 ≤ x ≤ h), φ(x, l)= φ0 (0 ≤ x ≤ h). (8)

where φ0 is an applied electric potential and the superscript c stands for the electric field quantity in the
void inside the crack. The electric potential is zero on the symmetry planes inside the crack and ahead
of the crack, so the boundary conditions (6) reduce to φ(x, 0)= 0 for 0 ≤ x ≤ h. Equations (6) and (7)
are the permeable boundary conditions.

Applying the loading conditions (8), the stress σzz for the uncracked piezoelectric material is

σzz(x, z)= σ0 − e1 E0, σ0 =

(
c33 −

c2
13

c11

)
u0

l
, E0 = −

φ0

l
, e1 = e33 −

(
c13

c11

)
e31. (9)

The stress at z = l for the uncracked piezoelectric material is denoted by σl = σ0 − e1 E0. Note that σ0 is
the stress for a closed-circuit condition with the potential forced to remain zero (grounded) and depends
only on the displacement at the edge z = l. When a uniform displacement u0 is applied and fixed at z = l,
the stress σ0 will be uniform. On the other hand, when the stress σl is applied and fixed at z = l, σl is
left unchanged and the displacement u0 depends on E0.

3. Cracked infinite piezoelectric material

In this section we consider the problem of an infinite piezoelectric material with a crack for l → ∞

and h → ∞. The material is under applied uniform strain ε0 and electric field E0 at infinity. The
stress at infinity is denoted by σl = σ0 − e1 E0, and Equation (9)2 can be rewritten in terms of ε0 as
σ0 =

(
c33 − c2

13/c11
)
ε0. Fourier transforms are used to reduce the mixed boundary value problem to a

pair of dual integral equations. The integral equations then can be solved exactly; see Appendix A. The
energy release rate G for the permeable crack model may be expressed as

G =
1

2F2

(
− F

3∑
j=1

d j

γ j
+

3∑
k=1

hkdk

3∑
j=1

b j d j

γ j

)
K 2

I , (10)



1528 YASUHIDE SHINDO, FUMIO NARITA AND FUMITOSHI SAITO

where the stress intensity factor KI is defined as KI = limx→a+[2π(x − a)]1/2σzz(x, 0). The stress
intensity factor under applied strain and applied stress is given by, respectively,

KI =

{(
c33 −

c2
13

c11

)
ε0 − e1 E0

}
(πa)1/2, KI = σl(πa)1/2. (11)

Energy release rates for the impermeable and open crack models are discussed in Appendices B and C,
respectively.

4. Cracked rectangular piezoelectric material

In this section the finite element computer program ANSYS is selected for the analysis of the con-
figuration considered here. A nonlinear finite element model incorporating the polarization switching
mechanisms with the energy release rate calculations is developed. Two criteria are used for this purpose:
work done switching criterion, and internal energy density switching criterion.

The first criterion requires that a polarization switches when the combined electrical and mechanical
work exceeds a critical value [Hwang et al. 1995]

σxx1εxx + σzz1εzz + 2σzx1εzx + Ex1Px + Ez1Pz = 2Ps Ec, (12)

where 1εxx ,1εzz,1εzx are the changes in the spontaneous strain γ s, 1Px ,1Pz are the changes in the
spontaneous polarization Ps, and Ec is a coercive electric field. It is assumed that elastic and dielectric
constants of the piezoelectric materials remain unchanged after 180◦ or 90◦ polarization switching occurs
and only piezoelectric constants vary with switching. It is also assumed that for 90◦ switching there are
two allowable directions of the poling in the coordinate system: in the positive and negative x-direction.
The changes in spontaneous strains and polarizations for 180◦ switching can be expressed as

1εxx =1εzz =1εzx = 0, 1Px = 0, 1Pz = −2Ps.

For 90◦ switching in the xz plane, we have

1εxx = γ s, 1εzz = −γ s, 1εzx = 0, 1Px = ±Ps, 1Pz = −Ps.

The polarization switching criterion based on internal energy density is defined as [Sun and Achuthan
2004]

U = Uc, (13)

where U is the internal energy density and Uc is its critical value corresponding to the switching mode.
The internal energy density associated with 180◦ and 90◦ switching, respectively, is

U =
1
2 Dz Ez, U =

1
2(σxxεxx + σzzεzz + 2σzxεzx + Dx Ex).

We assume that the critical value of internal energy density takes the form Uc =
1
2ε

T
33(Ec)

2, where εT
33 is

the dielectric permittivity at constant stress.
Due to polarization switching, piezoelectric materials are often nonhomogeneous. The piezoelectric

properties vary from one location to the other, and the variations are either continuous or discontinuous.
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The energy release rate G can be obtained from the following crack tip integral [Shindo et al. 2005]:

G =

(∫
00

−

∫
0p

){
Hnx − (σxx ux,x + σzx uz,x)nx − (σzx ux,x + σzzuz,x)nz + Dx Ex nx + Dz Ex nz

}
d0,

where 00 is a small contour closing a crack tip, 0p is a path embracing that part of phase boundary which
is enclosed by 00, and nx , nz are the components of the outer unit normal vector. The electrical enthalpy
density H is

H(ux , uz, Ex , Ez)=
1
2

(
c11u2

x,x + c33u2
z,z + 2c13ux,x uz,z + c44(ux,z + uz,x)

2)
−

[
1
2

(
ε11 E2

x + ε33 E2
z
)
+ e15(ux,z + uz,x)Ex + (e31ux,x + e33uz,z)Ez

]
.

Each element consists of many grains, and each grain is modeled as a uniformly polarized cell that
contains a single domain. The model neglects the domain wall effects and interaction among different
domains. In reality these effects matter, but the assumption does not affect the general conclusions drawn.
The polarization of each grain initially aligns as closely as possible to the z-direction. Polarization
switching is defined for each element in the material. The displacement u0 and electric potential φ0 are
applied at the edge 0 ≤ x ≤ h, z = l, and the electroelastic fields of each element are computed from
the finite element analysis. The switching criterion (12) or (13) is checked for every element to see
if switching will occur. After all possible polarization switches have occurred, the piezoelectric tensor
of each element is rotated to the new polarization direction. The electroelastic fields are recalculated,
and the process is repeated until the solution converges. The macroscopic response of the material is
determined by the finite element model, which is an aggregate of elements. The spontaneous polarization
Ps and strain γ s are assigned representative values of 0.3 C/m2 and 0.004, respectively. Our previous
experiments [Yoshida et al. 2003; Shindo et al. 2004; Narita et al. 2005] verified the accuracy of the above
scheme, and showed that the results obtained are of general applicability. After polarization switching
is predicted, J-integral paths are selected, which do not pass exactly through the singular point.

The calculations of the electroelastic fields and energy release rate for the open crack model are more
complicated than for the permeable and impermeable crack models. The open crack model calculations
start with φ = 0 on the crack surface [McMeeking 1999]. The crack opening displacement and charge
density on the crack surface are estimated, and the resulting potential difference is applied to the crack
surface. The electroelastic fields are again solved leading to new crack opening displacement and charge
density on the crack surface. If this is accomplished, then the potential difference is applied once more
to the crack surface. Such a procedure is repeated until the evolution of the objective solutions shows no
improvements.

5. Numerical results and discussion

Numerical calculations have been carried out for commercially available piezoelectric ceramics C-91
(Fuji Ceramics, Japan). The material properties of C-91 are listed in Table 1, and the coercive electric
field Ec is approximately 0.35 MV/m. Figure 2a shows the crack opening displacement uz(x, 0+) from
the theoretical solutions for an infinite C-91 (l, h → ∞) with a crack of length 2a = 2 mm under ε0 =

5 × 10−5 and E0 = 0. The results for the permeable, open and impermeable crack models are shown
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Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(×1010 N/m2) (C/m2) (×10−10 C/V m)

c11 c12 c13 c33 c44 e31 e33 e15 ε11 ε33

12.0 7.7 7.7 11.4 2.4 −17.3 21.2 20.2 226 235

Table 1. Material properties of C-91.

(a) (b)

(c) (d)

Figure 2. (a) Displacement uz(x, 0+); (b) electric potential φ(x, 0+); (c) normal com-
ponent of electric displacement Dz(x, 0+); and (d) tangential component of electric field
Ex(x, 0+) along the upper crack surface for an infinite piezoelectric material C-91 under
uniform strain. Here l, h → ∞, a = 1 mm, ε0 = 5 × 10−5 and E0 = 0. The permeable
model is represented by the solid line, open by the dot-dashed line, and the impermeable
by the dashed line.
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for comparison purposes. Little difference among three piezoelectric crack models is observed. The rest
of Figure 2 shows the electric potential φ(x, 0+), normal component of electric displacement Dz(x, 0+)

and tangential component of electric field Ex(x, 0+) along the upper crack surface. There are differences
among the crack models. It is noted that the open and impermeable crack models reduce the continuity
of the tangential components of the electric field across the crack surface.

Figure 3a presents the crack opening displacement uz(0, 0+) at the center of the crack versus electric
field E0 from the finite element analysis without the polarization switching effect. The rectangular
piezoelectric material C-91 with a crack of length 2a = 2 mm has a length 2l = 20 mm and width
2h = 20 mm, and is under applied displacement u0 = 0.5µm corresponding to the uniform strain
5 × 10−5 for the uncracked material. For comparison, the results for the infinite piezoelectric material
(l, h → ∞, ε0 = 5 × 10−5) obtained from the theoretical analysis are included. The results for the finite
element analysis agree with the theoretical analysis data. Figure 3b shows similar results for the normal
component of electric displacement Dz(0, 0+).

Figure 4a shows the dependence of the energy release rate G on E0. The results for the infinite
piezoelectric material obtained from the theoretical analysis are also shown. The energy release rates are
lower for positive electric fields and higher for negative electric fields under applied displacement. In the
impermeable case, a negative energy release rate is produced. The energy release rate for the permeable
crack in the infinite piezoelectric material under applied stress is independent of the electric field (not
shown). Figure 4b shows the similar results under u0 = 1µm with ε0 = 10−4. A negative energy release
rate is also produced for the open crack model. The parameters for the impermeable and open crack
models have questionable physical significance.

(a) (b)

Figure 3. (a) Crack center displacement uz(0, 0+) and (b) normal component of electric
displacement Dz(0, 0+) versus electric field E0 for rectangular piezoelectric material C-
91 under applied displacement for finite element analysis data l = h = 10 mm, whereas
the theoretical prediction is made with l, h → ∞. a = 1 mm, ε0 = 5 × 10−5, and
u0 = 0.5µm. The permeable theory is represented by the solid line and data with open
circles, open by the dot-dashed line and triangles, and the impermeable by the dashed
line and solid circles.
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(a) (b)
Figure 4. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied displacement. For finite element analysis data l = h =

10 mm, whereas the theoretical prediction is made with l, h → ∞; also a = 1 mm. (a)
ε0 = 5 × 10−5 and u0 = 0.5µm, (b) ε0 = 10−4 and u0 = 1µm. For legend, see Figure 3.

Figure 5 displays the variation of G with electric field E0 for the permeable crack model from the finite
element analysis with and without the polarization switching effect. For the polarization switching effect,
the predictions by the criteria based on work (12) and energy density (13) are shown. The rectangular
piezoelectric material C-91 (2l = 5 mm, 2h = 5 mm) with a crack (2a = 2 mm) is under applied displace-
ment u0 = 0.125µm corresponding to the uniform strain 5 × 10−5 for the uncracked material. Positive
electric fields decrease the values of G, while negative electric fields have an opposite effect. A monoton-
ically increasing negative E0 causes polarization switching. The value of electric field associated with
the switching is −0.25 MV/m for the work-based criterion, while it is approximately −0.17 MV/m for

Figure 5. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied displacement in the permeable model. l = h = 2.5 mm,
a = 1 mm, and u0 = 0.125µm. Thin line gives prediction without polarization switching;
the dashed line gives work-based and thick line gives energy density-based switching
effect.
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the criterion based on the energy density. When the negative E0 increases further, G with the polarization
switching effect becomes larger than that without the switching effect. After E0 reaches about −0.325
(−0.305) MV/m, polarization switching in a local region, based on the work (energy density), leads to
an unexpected decrease in G for the permeable crack. Our previous experimental study [Shindo et al.
2003] showed a significant nonlinearity in the fracture load due to polarization switching. The nonlinear
effect caused by polarization switching may affect the piezoelectric crack behavior.

Figure 6 shows the 180◦ and 90◦ switching zones near the permeable crack tip in the rectangular
piezoelectric material C-91 (2l = 5 mm, 2h = 5 mm, 2a = 2 mm) under u0 = 0.125µm for various
values of E0. Predictions resulting from different criteria are presented. The size of the 180◦ (90◦)
switching zone behind (ahead of) the crack tip increases at first when the negative E0 is increased, and
the difference between energy release rate results with and without switching effect becomes larger at a
higher negative E0. As the negative E0 continues increasing, the area of the 180◦ switching zone grows
ahead of the crack tip. Unexpected decrease in G is attributed to 180◦ switching ahead of the crack tip.
In the impermeable case, the region ahead of the crack tip is found to undergo 180◦ switching due to the
large negative electric field, and the region behind the crack tip has 90◦ switching because of the large
intensified electric field Ex [Kalyanam and Sun 2005].

The applied displacement may enhance the polarization switching depending on its magnitude. The
critical value of the electric field associated with the polarization switching decreases (relative to u0 =

Figure 6. Polarization switching zone induced by displacement u0 = 0.125µm and
electric field E0 of (a, d) −0.25, (b, e) −0.30, (c, f) −0.32 MV/m based on different
criteria: (a–c) work and (d–f) energy density.
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Figure 7. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied displacement in the permeable model. l = h = 2.5 mm,
a = 1 mm, and u0 = 0.5µm. For legend, see Figure 5.

0.125µm) when u0 = 0.5µm is applied, as shown in Figure 7. After E0 reaches about −0.21 (−0.15)
MV/m, the G with the switching effect, based on the work (energy density), deviates from the curve
without the switching effect. This is due to the 180◦ switching behind the crack tip; see Figure 8. As

Figure 8. Polarization switching zone induced by displacement u0 = 0.5µm and elec-
tric field E0 of (a, d) −0.10, (b, e) −0.20, (c, f) −0.30 MV/m based on different criteria:
(a–c) work; (d–f) energy density.
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Figure 9. Energy release rate G versus electric field E0 for rectangular piezoelectric
material C-91 under applied stress in the permeable model. l = h = 2.5 mm and a = 1 mm.
We present results for σl = 22.8 and 5.70 MPa. For legend, see Figure 5.

E0 reaches about −0.32 (−0.30) MV/m, G falls. In the experimental data [Sun and Park 2000], crack
length deviated from the linear function of the electric field for the case of a larger load, especially for
negative electric fields. By including the polarization switching effect of the energy release rate, the
observed nonlinear dependence of piezoelectric crack behavior on the electric field is explained.

Figure 9 shows the energy release rate G versus electric field E0 under applied stress. The rectangular
piezoelectric material C-91 (2l = 5 mm, 2h = 5 mm) with a permeable crack (2a = 2 mm) is subjected to
the stress σl = 22.8 MPa, corresponding to the uniform strain 2×10−4 for the uncracked material without
the electric field. We also present data for σl = 5.70 MPa. The results for positive E0 under applied stress
are different from those under applied displacement, and the energy release rate for the permeable crack
in the rectangular piezoelectric material is independent of the positive E0. The behavior of the energy
release rate for negative E0 is complicated because of the polarization switching phenomena.

6. Conclusions

Theoretical and finite element analyses are presented for the cracked piezoelectric materials under tension.
Based on the results of this study, the following conclusions may be inferred:

(1) Piezoelectric crack face boundary conditions strongly affect the electric field effect characteristics
of the electromechanical behavior and fracture mechanics parameters such as energy release rate.

(2) The energy release rate criteria for the open and impermeable crack models led to negative values
which are unphysical. The energy release rate for the permeable crack always remains positive.

(3) For the permeable crack in the rectangular piezoelectric material, the positive electric field decreases
the energy release rate under applied displacement. If the negative electric field is applied, localized
polarization switching occurs due to electroelastic field concentrations near the crack tip, and the
switching causes a sudden change in the energy release rate under applied displacement or stress.
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(4) The higher mechanical loading level decreases the critical value of the electric field associated with
the polarization switching, and the localized 180◦ switching ahead of the crack tip can significantly
influence the energy release rate.

Appendix A

We consider an infinite piezoelectric material with a permeable crack under applied strain ε0 and electric
field E0. The crack face boundary and loading conditions become

σzx(x, 0)= 0 (0 ≤ x <∞), σzz(x, 0)= 0 (0 ≤ x < a), uz(x, 0)= 0 (a ≤ x <∞), (A.1)

Ex(x, 0)= Ec
x(x, 0) (0 ≤ x < a), φ(x, 0)= 0 (a ≤ x <∞), (A.2)

Dz(x, 0)= Dc
z (x, 0) (0 ≤ x < a), (A.3)

εzz(x, z)= ε0 (0 ≤ x <∞, z → ∞), Ez(x, z)= E0 (0 ≤ x <∞, z → ∞). (A.4)

Fourier transform is applied to Equations (3) and the results satisfying the loading conditions (A.4) are

ux(x, z)=
2
π

3∑
j=1

∫
∞

0
a j A j (α) exp(−γ jαz) sin(αx)dα+

(
c13

c2
13 − c33c11

(σl + e1 E0)+
e31

c11
E0

)
x,

uz(x, z)=
2
π

3∑
j=1

∫
∞

0

1
γ j

A j (α) exp(−γ jαz) cos(αx)dα+
c11

c33c11 − c2
13
(σl + e1 E0)z,

φ(x, z)= −
2
π

3∑
j=1

∫
∞

0

b j

γ j
A j (α) exp(−γ jαz) cos(αx)dα− E0z,

(A.5)

where A j (α) are the unknowns to be solved for, a j and b j stand for expressions

a j =
(e31 + e15)(c33γ

2
j − c44)− (c13 + c44)(e33γ

2
j − e15)

(c44γ
2
j − c11)(e33γ

2
j − e15)+ (c13 + c44)(e31 + e15)γ

2
j
, b j =

(c44γ
2
j − c11)a j + (c13 + c44)

e31 + e15
,

and γ 2
j are the roots of the characteristic equation a0γ

6
+ b0γ

4
+ c0γ

2
+ d0 = 0 with

a0 = c44(c33ε33 + e2
33), d0 = −c11(c44ε11 + e2

15),

b0 = −2c44e15e33 − c11e2
33 − c33(c44ε11 + c11ε33)+ ε33(c13 + c44)

2

+ 2e33(c13 + c44)(e31 + e15)− c2
44ε33 − c33(e31 + e15)

2,

c0 = 2c11e15e33 + c44e2
15 + c11(c33ε11 + c44ε33)− ε11(c13 + c44)

2

− 2e15(c13 + c44)(e31 + e15)+ c2
44ε11 + c44(e31 + e15)

2.

Application of the Fourier transform to Equation (4)3 yields

φc
=

2
π

∫
∞

0
C(α) sinh(αz) cos(αx)dα, (0 ≤ x < a),

where C(α) is also unknown.
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By applying the crack face boundary conditions of Equations (A.1) and (A.2), the unknowns A j (α)

are related to the stress σl via

A j (α)= −
π

2
d j

F
a J1(aα)
α

σl,

where J1( ) is the order one Bessel function of the first kind and F =
∑3

j=1 g j d j with

d1 = γ1(b2 f3 − b3 f2), d2 = γ2(b3 f1 − b1 f3), d3 = γ3(b1 f2 − b2 f1),

f j = c44(a jγ
2
j + 1)− e15b j , g j = c13a j − c33 + e33b j .

The displacement uz and electric potential φ on the crack surface are given by

uz(x, 0)= −
b
F
σl(a2

− x2)1/2, φ(x, 0)= 0, b = b1( f2 − f3)+ b2( f3 − f1)+ b3( f1 − f2).

The tangential component of electric field Ex and the normal component of electric displacement Dz on
the crack surface are

Ex(x, 0)= 0, Dz(x, 0)= Dl −
σl

F

3∑
j=1

h j d j ,

Dl =
e31c13 − e33c11

c2
13 − c33c11

σ0 +

(
e2

31

c11
+ ε33

)
E0, h j = e31a j − e33 − ε33b j .

The displacement component uz and electric potential φ near the crack tip can be written as

uz = −
KI

F

(
r
π

)1/2 3∑
j=1

d j

γ j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

− cos θ
]1/2

,

φ =
KI

F

(
r
π

)1/2 3∑
j=1

b j d j

γ j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

− cos θ
]1/2

,

(A.6)

where the polar coordinates r and θ are defined by r = [(x − a)2 + z2
]
1/2, θ = tan−1 z/(x − a). The

singular parts of the stress σzz and electric displacement Dz in the neighborhood of the crack tip are

σzz =
KI

2F(πr)1/2

3∑
j=1

g j d j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

+ cos θ

cos2 θ + γ 2
j sin2 θ

]1/2

,

Dz =
KI

2F(πr)1/2

3∑
j=1

h j d j

[(
cos2 θ + γ 2

j sin2 θ
)1/2

+ cos θ

cos2 θ + γ 2
j sin2 θ

]1/2

.

(A.7)

By using the concept of crack closure energy and the asymptotic behavior of electroelastic fields near
the crack tip illustrated in Equations (A.6) and (A.7), the energy release rate G in Equation (10) for the
permeable crack model can be obtained.
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Appendix B

A solution procedure for the impermeable crack model in the infinite piezoelectric material is outlined
here. The crack face electric boundary condition for the impermeable crack model is

Dz(x, 0)= 0 (0 ≤ x < a), φ(x, 0)= 0 (a ≤ x <∞). (B.8)

The unknowns A j (α) in Equations (A.5) can be found using the same approach as in the permeable case.
By applying the crack face boundary conditions of Equations (A.1) and (B.8), the unknowns A j (α) are
related to σl and Dl as follows:

f1

γ1
A1(α)+

f2

γ2
A2(α)+

f3

γ3
A3(α)= 0,

1
γ1

A1(α)+
1
γ2

A2(α)+
1
γ3

A3(α)= −
π

2F ′

a
α

J1(aα)(F22σl − F12 Dl),

b1

γ1
A1(α)+

b2

γ2
A2(α)+

b3

γ3
A3(α)=

π

2F ′

a
α

J1(aα)(F21σl − F11 Dl).

where

F11 =
1
b

3∑
j=1

g j d j , F12 =
1
b

3∑
j=1

g j l j , F21 =
1
b

3∑
j=1

h j d j , F22 =
1
b

3∑
j=1

h j l j ,

F
′

= F11 F22 − F12 F21, l1 = γ1( f2 − f3), l2 = γ2( f3 − f1), l3 = γ3( f1 − f2).

The displacement uz , electric potential φ, tangential component of electric field Ex and normal compo-
nent of electric displacement Dz on the crack surface are given by

uz(x, 0)= −
F22σl − F12 Dl

F ′

(
a2

− x2)1/2
, φ(x, 0)= −

F21σl − F11 Dl

F ′

(
a2

− x2)1/2
,

Ex(x, 0)= −
F21σl − F11 Dl

F ′

x(
a2 − x2

)1/2 , Dz(x, 0)= 0.

The energy release rate GI for the impermeable crack model is

GI
= −

1
2F ′2

[(
F ′

3∑
j=1

s j

γ j
−

3∑
k=1

hksk

3∑
j=1

b j s j

γ j

)
K 2

I

+

( 3∑
k=1

hk tk
3∑

j=1

b j s j

γ j
+

3∑
k=1

hksk

3∑
j=1

b j t j

γ j
− F ′

3∑
j=1

t j

γ j

)
KIKD −

( 3∑
k=1

hk tk
3∑

j=1

b j t j

γ j

)
K 2

D

]
, (B.9)

where s j = d j F22−l j F21 and t j = d j F12−l j F11. In Equation (B.9) the stress and the electric displacement
intensity factors are given by, respectively,

KI = lim
x→a+

[2π(x − a)]1/2σzz(x, 0)= σl(πa)1/2, KD = lim
x→a+

[2π(x − a)]1/2 Dz(x, 0)= Dl(πa)1/2.
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Appendix C

The solutions for the open crack model in the infinite piezoelectric material can be derived as follows.
The crack face electric boundary condition for the open crack model becomes

D+

z = D−

z (0 ≤ x < a), D+

z (u
+

z −u−

z )= ε0(φ
−

−φ+) (0 ≤ x < a), φ(x, 0)= 0 (a ≤ x <∞).

(C.10)
where the superscripts + and − denote the upper and lower crack surfaces, respectively. By applying the
crack face boundary conditions of Equations (A.1) and (C.10), the unknowns A j (α) in Equations (A.5)
are related to σl and Dl as follows:

f1

γ1
A1(α)+

f2

γ2
A2(α)+

f3

γ3
A3(α)= 0,

1
γ1

A1(α)+
1
γ2

A2(α)+
1
γ3

A3(α)= −
π

2F ′

a
α

J1(aα)
(
F22σl + F12(D0 − Dl)

)
,

b1

γ1
A1(α)+

b2

γ2
A2(α)+

b3

γ3
A3(α)=

π

2F ′

a
α

J1(aα)
(
F21σl + F11(D0 − Dl)

)
,

where

D0 = −ε0
F21σl + F11(D0 − Dl)

F22σl + F12(D0 − Dl)
.

If ε0 = 0, D0 is equal to zero. When ε0 becomes very large, the expression for D0 above shows that
D0 → Dl − (F21/F11)σl .

The displacement, electric potential, tangential component of electric field and normal component of
electric displacement on the crack surface are

uz(x, 0)= −
F22σl + F12(D0 − Dl)

F ′

(
a2

− x2)1/2
, φ(x, 0)= −

F21σl + F11(D0 − Dl)

F ′

(
a2

− x2)1/2
,

Ex(x, 0)= −
F21σl + F11(D0 − Dl)

F ′

x(
a2 − x2

)1/2 , Dz(x, 0)= D0.

Energy release rate GO for the open crack model is given by (B.9) with KD = (Dl − D0)(πa)1/2.
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ACTIVE CONTROL SCHEMES BASED ON THE LINEARIZED
TSCHAUNER–HEMPEL EQUATIONS TO MAINTAIN THE SEPARATION

DISTANCE CONSTRAINTS FOR THE NASA BENCHMARK TETRAHEDRON
CONSTELLATION

PEDRO A. CAPÓ-LUGO AND PETER M. BAINUM

The NASA benchmark tetrahedron constellation is a proposed satellite formation that requires a nominal
separation distance at every apogee point. To maintain these separation distance constraints between
any pair of satellites within the constellation, an open-loop scheme was developed based on the orbital
elements. For a particular size of the NASA benchmark tetrahedron problem, the constellation maintains
the separation distance conditions without perturbations. On the other hand, with perturbations, the
constellation maintains the separation distance criteria for a limited number of orbits.

This scheme does not maintain the constellation together for the complete mission period. For this
reason, the Tschauner–Hempel (TH) equations are used to maintain the separation distance criteria. Two
control schemes are used to maintain the separation distance conditions of the tetrahedron constellation
and are compared with each other to determine which one provides for minimum time and consumption.

1. Introduction

The proposed NASA benchmark tetrahedron constellation [Carpenter et al. 2003] is a complex problem
because of the different strategies used to maintain the separation distance constraints. This benchmark
problem is divided in three different specific sizes that contain different orbital dimensions for every
orbit. For three specific sizes, we have analyzed the proposed constellation without the use of an active
control scheme in which the strategy was based only on the orbital elements; for details see [Capó-
Lugo 2005; Capó-Lugo and Bainum 2005b]. With this strategy the constellation satisfied the separation
distance constraints for a short period of time without perturbations. When perturbations are added, the
constellation violates the separation distance constraints in a limited number of complete orbits. After
the first pair of satellites violates the separation distance conditions, an active control scheme is needed
to maintain the separation distance criteria for an additional short period of time.

The motion of a pair of satellites around Earth is explained by the linearized Tschauner–Hempel (TH)
equations. These equations describe the rendezvous of a pair of satellites in an elliptical orbit in which
these satellites have a relative separation distance. To maintain the separation distance between a pair
of satellites within the constellation, the linear quadratic regulator (LQR) is used as the active control
scheme, but two different approaches are used with this active control scheme. Tan et al. [1999; 2002] and
Bainum et al. [2004] (BST) developed an active control scheme which adapted in a piecewise manner
the varying term in the linearized TH equations to correct the separation distance of an along-track

Keywords: tetrahedron constellation, linear quadratic regulator, elliptical orbits.
Research supported by the Alliances for Graduate Education and Professoriate (AGEP) Program.
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constellation (or string of pearls). Carter and Humi [1987] and Carter [1990] (CH) developed a different
control scheme based on the Pontryagin minimum principle, but a different formulation based on the
CH approach is developed for the LQR control scheme. With these two techniques, one specific size of
the NASA benchmark tetrahedron constellation is used to determine how the active control scheme is
affected by these orbital dimensions and the different weighting matrices used in the LQR strategy. After
the correction of the positions and velocities for a pair of satellites is performed, the Satellite Tool Kit
[STK 2003] software is used to determine if the constellation is going to hold for another short period of
time before a pair of satellites within the constellation violates the separation distance constraints. Hence,
two active control schemes will be tested with one orbital size to understand their different responses to
the correction of the separation distance between a pair of satellites.

2. Tetrahedron definition

The NASA benchmark tetrahedron configuration is similar to a pyramid, but the base of this configura-
tion is an equilateral triangle with an apex point above the centroid of the triangle in a different plane
[Carpenter et al. 2003; Capó-Lugo 2005; Capó-Lugo and Bainum 2005b]. Figure 1 shows the top and
front view of the configuration. Points A, B, C , and H are the nominal positions of the satellites in
the constellation, but throughout the paper these points will be also referred to as S A, SB, SC , and
SH . Points B and C are nominally situated along the line of apsides, and points H and A are the
satellites nominally orbiting around the centroid in a different orbital plane and in the equilateral triangle,
respectively. The nominal separation distance between any two subsatellites at apogee is 10 km, and the
separation error at subsequent apogees should be within 10%, giving an acceptable range between 9 and
11 km [Carpenter et al. 2003]. At other points in the orbit, the minimum separation distance between
any pairs of subsatellites should be 1 km [Carpenter et al. 2003]. The purpose of this constellation is to
measure the electromagnetic field of the Earth.

The positions of the satellites are determined from the reference point with respect to the Earth Coor-
dinate Inertial (ECI) frame, given by point E in Figure 2. In this problem, the configuration is assumed
such that the satellites arrive at the initial apogee point by some predetermined launch sequence. Figure 2
shows the tetrahedron configuration in the x-y plane. This configuration is situated at the apogee point
where ra and rp, are the radii of apogee and perigee, respectively. As mentioned above, SB and SC are

Figure 1. Top view (left side) and front view (right side) of the tetrahedron configuration.
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Figure 2. Two dimensional view of the configuration at apogee.

situated along the line of apsides (Y direction), S A forms the equilateral triangle, and SH is over the
centroid in a different orbital plane. Table 1 shows the initial positions of the constellation at the apogee
point with respect to the ECI frame [Capó-Lugo 2005; Capó-Lugo and Bainum 2005b].

3. Definition of the specific sizes (or phases)

The benchmark problem has four phases with a mission period of two years, but this research is only con-
cerned with the three phases that contain the restrictions to maintain the separation distance constraints.
Table 2 details these three phases in terms of the orbital elements [Carpenter et al. 2003; Capó-Lugo
2005; Capó-Lugo and Bainum 2005b]. The fourth phase for the NASA benchmark problem is a lunar
swing-by which is not considered here. Table 2 shows the dimensions considered for the three phases.

The inclination angle in the third phase is not specified in the benchmark problem because the constel-
lation must be in a near polar orbit, so this orbital inclination angle is chosen to be 85 degrees. As Table 2
shows, the last phase has the largest orbit, smallest eccentricity and largest orbital period. Through this
paper only phase I is analyzed with the LQR active control scheme.

Axis Ref. Point SA SB SC Centroid SH
(ECI frame) (km) (km) (km) (km) (km) (km)

x 0 −AE 0 0 −E F −E F
y −ra −ra −(ra + 5) −(ra − 5) −ra −ra

z 0 0 0 0 0 H F

Table 1. Initial satellite position at apogee with respect to the ECI frame, where
AE = 5

√
3, E F = 5/

√
3, and H F = 10/

√
3.
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Dimensions First phase Second phase Third phase

Radius of perigee (rp) 1.2 ER 1.2 ER 10 ER
Radius of apogee (ra) 12 ER 30 ER 40 ER
Semimajor axis (a) 42,095.7 km 99,498.92 km 159,453.4 km
Eccentricity (e) 0.818 0.923 0.6
Inclination angle (i) 18.5◦ 18.5◦ 85.0◦

Period (days) 1 2 7

Table 2. Dimensions and properties for the three phases; ER means Earth radius.

4. Development of the equations of motion

The derivation of the equations of motion follows that of Carter and Humi [1987] who derived a set
of equations to describe the rendezvous motion between a pair of satellites in an elliptical orbit for a
general Keplerian orbit. For this application, the separation distance between a pair of satellites within the
constellation is needed to be maintained at the apogee point to satisfy the separation distance constraints
of the NASA benchmark problem [Capó-Lugo and Bainum 2005b].

The equations of motion are derived for a maneuvering satellite and a reference (target) satellite or
point which is orbiting about the Earth in an elliptical orbit as shown in Figure 3. The maneuvering
satellite is assumed to have a scalar point mass m(t) and an applied thrust vector T (t) projected in the
reference axis system. The target satellite is acted on by a Newtonian gravitational force directed toward
the center of the Earth. R(t) is the vector measured from the center of the Earth to the reference or target
satellite, and r(t) is the vector determined from the center of the Earth to the maneuvering satellite. ρ(t)
(dashed line in Figure 3) is the vector measured from the reference satellite to the maneuvering satellite
and describes their relative separation distance. The coordinate system is defined by two conditions.
First, x1 is opposed to the motion of the maneuvering satellite and perpendicular to the x2-axis, whose
positive direction is along R(t). Secondly, x3 is positive when the right handed system is completed. ω
is the relative angular velocity of the satellites about the Earth.

Carter and Humi [1987] developed a set of equations which explains the movement of a maneuvering
spacecraft relative to the reference satellite in an elliptical orbit as shown in Figure 3. This set of equations
is dependent on the true anomaly angle θ and is given by

(1 + e cos θ)x ′′

1 − (2e sin θ)x ′

1 = (e cos θ)x1 − (2e sin θ)x2 + 2(1 + e cos θ)x ′

2 + a1, (1)

(1 + e cos θ)x ′′

2 − (2e sin θ)x ′

2 = (2e sin θ)x1 − 2(1 + e cos θ)x ′

1 + (3 + e cos θ)x2 + a2, (2)

(1 + e cos θ)x ′′

3 − (2e sin θ)x ′

3 = −x3 + a3, (3)

a j =
T j

m

( h6

µ4

)
(1 + e cos θ)−3, ϕ′

=
dϕ
dθ
, ϕ′′

=
d2ϕ

dθ2 ,

where j = 1, 2, 3 and ϕ is any function of the true anomaly angle. Equations (1)–(3) describe the
Keplerian motion of the maneuvering satellite relative to the reference or target satellite for the special
case where ai (or Ti ) are zero. These equations can be solved analytically using transformations from



ACTIVE CONTROL SCHEMES BASED ON THE LINEARIZED TSCHAUNER–HEMPEL EQUATIONS 1545

Figure 3. Reference and maneuvering satellite motion about Earth.

[Carter and Humi 1987]: {
(1 + e cos θ)x j

}′
= (−e sin θ)x j + (1 + e cos θ)x ′

j ,

1
1 + e cos θ

{
(1 + e cos θ)x ′

j
}

= (1 + e cos θ)x
′′

j − 2(e sin θ)x ′

j ,

which then give

1
1 + e cos θ

{
(1 + e cos θ)2x ′

1
}′

= (e cos θ)x1 + 2
{
(1 + e cos θ)x2

}′
+ a1, (4)

1
1 + e cos θ

{
(1 + e cos θ)2x ′

2
}′

= (3 + e cos θ)x2 − 2
{
(1 + e cos θ)x1

}′
+ a2, (5)

1
1 + e cos θ

{
(1 + e cos θ)2x ′

3
}′

= −x3 + a3. (6)

Since

y j = (1 + e cos θ)x j , y′

j = (1 + e cos θ)x ′

j − (e sin θ)x j ,

and

y′′

j = (1 + e cos θ)x
′′

j − (2e sin θ)x ′

j − (e cos θ)x j ,

Equations (4)–(6) reduce to

y′′

1 = 2y′

2 + a1, y′′

2 = 3κy2 − 2y′

1 + a2, y′′

3 = −y3 + a3, (7)

where κ = µr/h2
= 1/(1 + e cos θ) is determined from the well known equation of a Keplerian orbit

(or equation of a conic section). Equations (7) are called the rendezvous linearized Tschauner–Hempel
(TH) equations for the motion of a pair of satellites in an elliptical orbit. A control function u(t) can
be used to represent the change in thrust T (θ) and mass m(θ) with respect to the true anomaly angle
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[Carter and Humi 1987] via
Tm

m0
u j (θ)=

T j (θ)

m(θ)
, (8)

where Tm and m0 are the maximum thrust and initial mass of the maneuvering satellite. One can introduce
new state variables ξ , ς , and η by defining [Athans and Falb 1966]

ν =
h6

µ4

Tm

m0
, ξ =

y1

ν
, ς =

y2

ν
, η =

y3

ν
. (9)

Using Equations (8) and (9), the linearized equations for the motion of the maneuvering satellite (see
Equation (7)), in state-based format, can be expressed in the following form:

ξ ′

ς ′

η′

ξ ′′

ς ′′

η′′


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 2 0
0 3κ 0 −2 0 0
0 0 −1 0 0 0





ξ

ς

η

ξ ′

ς ′

η′


+



0 0 0
0 0 0
0 0 0
κ3 0 0
0 κ3 0
0 0 κ3


u1

u2

u3

 . (10)

5. BST control approach

Tan et al. [1999; 2002] used the linearized TH equations to determine an active control scheme to satisfy
the separation distance constraints for a constellation in an along-track formation (or string of pearls).

The active control scheme used by these authors is the linear quadratic regulator (LQR) which is an
optimal control. To determine this active control law, they used the following quadratic cost function:

J =
1
2

∫ θ f

θ0

{[
(x(θ)− xD)

T Q(x(θ)− xD)
]
+
[
(u(θ))T R(u(θ))

]}
dθ, (11)

where x(θ), xD describes the components of the actual a desired state vector, respectively, u(θ) is the
control signal that will be used to maintain the separation distance constraints, Q and R are n ×n positive
semidefinite and m × m positive definite weight functioning matrices, respectively. This cost function is
used to minimize the difference in the errors between the state vector and the desired state vector, and a
minimum time problem can be obtained to maintain the separation distance criteria.

For these authors, κ = (µr)/h2, and they adapt the nonlinear term in a piecewise manner. The nonlinear
term in Equation (10) can be adjusted in a number of ways [Strong 2000; Bainum et al. 2004]:

1. When it is assumed that r remains constant, that is, r(θ) = h2/µ, true for a circle and relatively
short displacements, then, the term becomes 3.

2. If the simulation is started at perigee or apogee, then, evaluate r at perigee and apogee, respectively,
and treat as constant for a sufficiently short time after.

3. If several orbits are needed to correct the disturbance, then, use an average value of r with h = rv =√
(b2µ)/a, where b is the semiminor axis.

4. A final consideration is to update 1 and 2 in a piecewise adaptive manner along the orbit.
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6. CH control approach

Carter and Humi [1987] and Carter [1990] used the same linearized TH equations, but with

κ = 1/(1 + e cos θ)

and with the control matrix B defined differently. BST assumed the B matrix as a control signal that
produces some force to maintain the satellites in their corresponding relative distance between the ref-
erence (or target) and maneuvering satellite. For Carter and Humi, the A and B matrices vary with the
true anomaly angle because Marec [1979] established that to obtain a minimum time problem with a
minimum consumption of control the true anomaly must be considered as part of the controls for an
elliptic orbit.

Carter and Humi used the Pontryagin minimum principle to obtain an admissible control such that the
control scheme is used to rendezvous in an optimal way between the target satellite and the reference
satellite [Carter and Humi 1987; Carter 1990]. Their cost function for the optimal control is given by

J =

∫ θ f

θ0

|ui (θ)|

(1 + e cos θ)2
dθ. (12)

Using this LQR strategy, let us define the cost function via the varying terms in the A and B matrices as

J =
1
2

∫ θ f

θ0

{
(x(θ)− xD)

T Q(x(θ)− xD)

1 + e cos θ
+
(u(θ))T R(u(θ))
(1 + e cos θ)2

}
dθ. (13)

This proposed cost function is in accordance with Marec’s statement for a minimum-time problem in an
elliptical orbit and is based on the cost function defined by Carter and Humi.

7. Development of the linear quadratic regulator

Pontryagin minimum (or maximum) principles have been used by different authors to obtain an admissi-
ble control which leads to an optimal control that maintains the relative distance between the maneuvering
and target satellite (or reference point) [Carter and Humi 1987; Carter 1990; Carter and Brient 1992;
Massari et al. 2004]. Carter and Brient [1992] show that these principles apply to any elliptical orbit
if the cost function is defined by Equation (13). On the other hand, a digital optimal control has been
implemented by Massari et al. [2004] to maintain the orbit of some satellites in elliptical orbits, using the
form of Equations (4)–(6), but their cost function is not defined in terms of the true anomaly angle. In
this section, the linear quadratic regulator (LQR) technique will be developed to satisfy a minimum-time
problem defined by the cost functions in Equations (11) and (13).

The LQR optimal control approach will be implemented with the use of the cost function defined by
Equation (11). The solution of the LQR problem leads to an optimal feedback system with the property
that the components of the state vector x(θ) are kept near the desired state vector xD without excessive
expenditure of control energy [Athans and Falb 1966]. The existence of the optimal control is obtained
from the solution of the Hamilton–Jacobi equation which is defined everywhere to obtain a minimum-
time problem.

Consider the angle varying system defined by Equation (10) in the form

x ′
= Ax + Bu +ψ(θ) (14)
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and the cost functional defined by Equation (11). ψ(θ) is a n × 1 disturbance column matrix that can
contain different perturbations such as the J2 (Earth’s oblateness) perturbation, the drag force, Moon’s
gravity, and the solar pressure. It is defined as a function of the true anomaly angle. The A and B
matrices have dimensions of n × n and n × m, respectively. It is assumed that for any initial state, there
exists an optimal control which can obtain a desirable minimum consumption problem. The Hamiltonian
H for the system in Equation (14) and the cost function in Equation (11) can be defined as

H =
1
2 |x(θ)− xD|

2 Q +
1
2 |u(θ)|2 R + A(θ)x(θ) · p(θ)+ B(θ)u(θ) · p(θ)+ψ(θ) · p(θ).

The minimum principles are used to obtain the necessary conditions for the optimal control [Athans and
Falb 1966]. The costate vector p(θ) is the solution of the vector differential equations

p′(θ)= −
∂H
∂x(θ)

= −Q(x(θ)− xD)− AT (θ)p(θ). (15)

The optimal trajectory is given by

∂H
∂u(θ)

= 0 = u(θ)R + BT (θ)p(θ), u(θ)= −R−1 BT (θ)p(θ). (16)

Using Equation (16), the angle varying differential equations defined by the Hamiltonian above can be
rewritten as

x ′
= A(θ)x − S(θ)p(θ)+ψ(θ), S(θ)= B(θ)R−1 BT (θ). (17)

S(θ) is a square n × n matrix. Using the transversality conditions defined in [Athans and Falb 1966] the
costate variables have the following relationship,

p(θ)= k(θ)x(θ)+ m(θ). (18)

The k(θ) and m(θ) matrices are n × n and n × 1, respectively. They depend on the final angle θ f and a
weighting matrix in the final state [Athans and Falb 1966], but not on the initial state. The solutions of
the state and costate vectors are related by Equation (18). Upon differentiating it with respect to the true
anomaly angle and substituted into Equation (15), the costate variables can be written as

k ′(θ)x(θ)+ k(θ)x ′(θ)+ m′(θ)= −Qx(θ)− AT (θ)p(θ)+ QxD.

Substituting Equation (17) into the above equation, we get

k ′(θ)x(θ)+k(θ)
{

A(θ)x(θ)+ S(θ)(k(θ)x(θ)+ m(θ))+ψ(θ)
}
+m′(θ)=−Qx(θ)− AT (θ)p(θ)+QxD,

which can be separated into two equations

k ′(θ)= −AT (θ)k(θ)− k(θ)A(θ)+ k(θ)S(θ)k(θ)− Q, (19)

m′(θ)=
(
k(θ)S(θ)− AT (θ)

)
m(θ)+ QxD − k(θ)ψ(θ). (20)

Equations (19) and (20) are the Ricatti equation (RE) and the adjoint Ricatti equation (ARE), respectively.
The RE and ARE must be solved backwards in time as explained in [Phillips and Nagle 1995]. This
system can be solved using Runge–Kutta methods, but, this method always runs forward in time. For
this reason, Euler’s method is used to obtain an approximate solution since it can be applied backwards
in time [Strang 1986; Borse 2000; Gerald and Wheatley 2004]. Euler’s method must be applied until a
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stable solution is obtained, but, instead of using this method to obtain a stable solution for the RE and
ARE, the system can be defined continuously with respect to the true anomaly angle. In this way, a
solution is obtained in the stable region. The following approximation can be applied for the system

lim
1θ→∞

k ′(θ)= lim
1θ→∞

m′(θ)= lim
1θ→∞

k(θ +1θ)− k(θ)
1θ

= lim
1θ→∞

m(θ +1θ)− m(θ)
1θ

= 0.

Equations (19) and (20) become

0 = −AT (θ)k(θ)− k(θ)A(θ)+ k(θ)S(θ)k(θ)− Q, (21)

m(θ)= (AT (θ)+ k(θ)S(θ))−1(QxD − k(θ)ψ(θ)
)
. (22)

The state vector can be solved using a numerical integration scheme such as the Runge–Kutta method
since this integration process runs forward in time. Substituting Equation (18) into Equation (17), the
state vector is defined as x ′(θ) = A(θ)x(θ)− S(θ)k(θ)x(θ)− S(θ)m(θ)+ψ(θ). With Equations (16)
and (18), the control vector is u(θ)= −S(θ)(k(θ)x(θ)+ m(θ)).

The following procedure is adapted to obtain a solution for the RE, the ARE, the state vector, and the
control vector:

1. Use Equations (21) and (22) to obtain a solution for the RE and the ARE.

2. Substitute these values for k(θ) and m(θ) (continuous in time) into the state vector equation, and
integrate forward in time using any numerical scheme.

3. Substitute these values for k(θ), m(θ), and x(θ) to determine u(θ).

8. BST approach to the LQR active control scheme

The LQR is determined from the cost function defined by Equation (11). The Q and R matrices do not
vary with the true anomaly angle. Then, the RE and the ARE are

0 = −AT (θ)k∞ − k∞ A(θ)+ k∞S(θ)k∞ − Q, m∞ =
(

AT (θ)+ k∞S(θ)
)−1(QxD − k∞ψ(θ)

)
.

k∞ and m∞ are constants if the matrix is completely controllable and continuous with respect to the true
anomaly angle. The state vector equation and the control vector are then given by

x ′(θ)= A(θ)x(θ)− Sk∞x(θ)− Sm∞ +ψ(θ), u(θ)= −S(k∞x(θ)+ m∞).

These substitutions are performed because the authors adapt in a piecewise manner the angle varying
term in the A matrix which is going to be constant for short periods of time.

9. Carter–Humi approach to the LQR active control scheme

For this control scheme, the LQR is complex because the cost function defined by Equation (13) varies
with the true anomaly angle and therefore takes the form of an elliptical integral. Define it by

J =
1
2

∫ θ f

θ0

{
(x(θ)− xD)

T Q̃(x(θ)− xD)+ (u(θ))T R̃u(θ)
}
dθ, Q̃ =

Q
1 + e cos θ

, R̃ =
R

(1 + e cos θ)2
.
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Then, the RE and ARE, continuous with respect to the true anomaly angle, are defined as

0 =−AT (θ)k(θ)−k(θ)A(θ)+k(θ)S̃(θ)k(θ)− Q̃, m(θ)=
(

AT (θ)+ k(θ)S̃(θ)
)−1(Q̃xD − k(θ)ψ(θ)

)
,

where S̃(θ) = B(θ)R̃−1 BT (θ). These equations vary with the true anomaly angle instead of being
constant for short periods of time as for BST. For the Carter–Humi control schemes, the differential
equations are defined by Equation (10), where κ = 1/(1 + e cos θ). The state and control vectors are

x ′(θ)= A(θ)x(θ)− S̃(θ)k(θ)x(θ)− S̃(θ)m(θ)+ψ(θ), u(θ)= −S̃(θ)(k(θ)x(θ)+ m(θ)).

The same procedure to calculate the values for the RE, ARE, state vectors, and control vectors will be
applied for this scheme, but the true anomaly angle will vary with the position of the satellites.

10. Reference and maneuvering satellite

The reference and maneuvering satellite must be chosen such that the linearized TH equations can be
used to maintain the separation distance constraints [Capó-Lugo 2005; Capó-Lugo and Bainum 2005b;
2005a]. The maneuvering satellite is assumed to have an applied thrust along its reference axes to
correct the separation distance with respect to the reference satellite. With only the Earth’s oblateness
(J2) perturbation, the satellites near the centroid (SA-SH) maintain the separation distance constraints for
a long period of time, but SA-SB and SA-SC violate the separation distance constraints in 6 complete
orbits for phase I and must be corrected first as shown in [Capó-Lugo 2005; Capó-Lugo and Bainum
2005b]. Since SH-SA does not violate the separation distance constraints for a simulation time of 30 days,
these two satellites are nominally on their orbits and can be used as references to correct the drift of the
other two satellites, namely, SB and SC. For the in-plane motion, SA will be used as the reference satellite
to correct the positions and velocities of the other two satellites along the semimajor axis, making SB
and SC the maneuvering satellites. SH is not considered to correct its separation distance conditions, but
it can be used to correct the out of plane motion of the other satellites.

The J2 perturbation has major effects on low-earth orbit (LEO) satellites, but, for this constellation,
phase I is greatly disturbed at the perigee and apogee points because the altitude of the perigee point
is very close to the Earth. This perturbation causes the constellation to violate the separation distance
constraints in a limited number of complete orbits. Following [Mishne 2004] the J2 perturbation can be
defined in component form as

ψ(θ)=



0
0
0
fx

fy

fz


=



0
0
0

−
3
2 J2

µ

r2

(
Re
r

)2
(1 − 3 sin2 i sin2 θ)

−3J2
µ

r2

(
Re
r

)2
(sin2 i sin θ cos θ)

−3J2
µ

r2

(
Re
r

)2
(sin i cos i sin θ)


, (23)

where i is the inclination angle, and θ is the true anomaly angle. For the NASA benchmark tetrahedron
constellation, the inclination angle for phase I is equal to 18.5◦. Equation (23) is the disturbance matrix
defined in Equation (14) in terms of the true anomaly angle.
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Nominal coordinates Separation distance
ξN = −8.6602543 km ξS = −9.928 km
ςN = 4.7416 km ςS = 4.7 km
ηN = 1.5865 km ηS = 1.5 km
ξ ′

N = 3.49665 × 10−4 km/s ξ ′

S = 3.51 × 10−4 km/s
ς ′

N = 0 km/s ς ′

S = −1.4 × 10−5 km/s
η′

N = 0 km/s η′

S = −9 × 10−6 km/s

Table 3. Nominal coordinates and initial separation distance for SA-SB system in phase I.

To initialize the procedure to calculate the Ricatti and adjoint Ricatti equations, state variables, and
the optimal control explained in the previous section, Table 3 shows the nominal coordinates and the sep-
aration distance [Capó-Lugo 2005; Capó-Lugo and Bainum 2005b; 2005a]. The first column illustrates
the nominal separation distance coordinates for which the constellation satisfies the separation distance
conditions at the apogee point. The second column shows the separation distance coordinates when the
pair SA-SB first violates the separation distance criteria. These separation distances are obtained from
[Capó-Lugo 2005] when the J2 perturbation is added into the STK simulations.

The relative drift from the reference satellite to the maneuvering satellite, in state-based variables
(ξ, ς, η), can be calculated as:

x(θ0)=



ξ

ς

η

ξ ′

ς ′

η′


=



ξS − ξN

ςS − ςN

ηS − ηN

ξ ′

S − ξ ′

N
ς ′

S − ς ′

N
η′

S − η′

N


. (24)

Equation (24) represents initial conditions for system of differential equations defined by Equation (10),
with the desired state vector xD used in Equations (11) and (13) set equal to zero. With this scheme the
satellites will reduce the relative drift in the separation distance and the velocity for a pair of satellites
within the constellation such that, at the next apogee point, the satellites will satisfy the separation
distance constraints.

11. Results of the active control laws

The two active control laws are studied to determine if there exists a difference between the methods to
correct the drift between a pair of satellites. The main question is: how much weight do the Q and R
matrices need? The Q and R matrices can have any values within the maximum limits on the magnitude
of the control and can change the response in the system. Through these simulations, the matrices will
be weighted in different ways.

Equations of motion are written in terms of the true anomaly angle, but the time that it takes to correct
the drift between a pair of satellites can be determined with the following equations [Massari et al. 2004]:
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tan(E/2)=
√
(1 − e)/(1 + e) tan(θ/2), n(t − tπ )= E − e sin E, (25)

where E is the eccentric anomaly, n is the mean motion of a satellite in which n =
√
µ/a3, tπ is the time at

the perigee point, and t is the time of the satellite at some point in the orbit. This transformation is used to
determine how much time is required for the satellites to make the corrections. The time is changed from
seconds to hours because the period of the orbit is expressed in days as shown in Table 1, and a number
of orbits can be obtained to understand when the maneuvering satellite finishes the corrections to the drift
between a pair of satellites. The responses that will be obtained from the solution of the active control
scheme will have particular units as follows: km for the correction in the separation distance, km/s for
the velocity correction, and km/s2 for the optimal control since it is expressed in terms of acceleration.

The optimal control u j (θ), for j = 1, 2, 3 also shows thrust levels because in Equation (10) the thrust
T (θ) is divided by the mass m(θ) such that the terms can be expressed in terms of accelerations to
develop the linearized TH equations. The directions of the axes in state variable format, defined by
Equation (10), are as follows: ξ is positive against the motion of the spacecraft, ς is positive along the
radial direction, and η is positive when the right hand system is completed. The thrust T (θ) is specified
in the same directions as ξ , ς , and η in which the control function u(θ) is defined over the same direction
as the thrust T (θ).

The simulation begins at the apogee point where the constellation first violates the separation distance
conditions and finishes at the following apogee point. Since the linear quadratic optimal controller is
defined continuously in the true anomaly angle, the simulation can be expanded after one complete period,
but, in some cases, the simulation time is shortened because, after the system of linear equations (10)
comes into steady state, the same result is obtained through the complete simulation of the corresponding
nonlinear equations. The Runge–Kutta method is used to integrate the linear equations forward in the
true anomaly angle, where the step size is chosen to be 0.004 radians for this phase. This step size is
small, but is used to diminish the error in the calculations. For the BST active control scheme, the κ
term in Equation (10) is updated every 0.012 radians, but the active control scheme will depend mainly
on the weighted matrices. In the simulations the following aliases are used: (1) xi → ξ , (2) zeta → ς ,
(3) eta → η, (4) Vxi → ξ ′, (5) Vzeta → ς ′, (6) Veta → η′ , and (7) U1, U2, and U3 is the control vector
in the directions of ξ , ς , and η defined in Equation (10), respectively. This representation is used in the
legend of all the simulations performed in this study.

The first set of initial conditions defined in Table 3 are used to determine the drift between the position
and velocity of SA and SB using Equation (24). Table 2 details the values for the orbital elements defined
in the state matrix A, the control matrix B, and Equation (25). The simulations are run with the BST
active control scheme, and thereafter the Carter–Humi control scheme is implemented to compare the
two different control techniques for the correction of the separation distance and velocity of a pair of
satellites.

When Q = diag[20 20 20 20 20 20] and R = diag[10 10 10] Figure 4 shows the results with the
BST and CH active control schemes. The correction in the separation distance and the velocity of the
maneuvering spacecraft shows that the system is stabilized in approximately 5 hr, but, for the CH active
control scheme, the optimal control effort is less than in the BST active control scheme. The cost function
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Figure 4. SA-SB separation distance correction using BST (top) and CH (bottom) active
control scheme for Q = diag[20 20 20 20 20 20] and R = diag[10 10 10].
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in the CH active control scheme varies with the true anomaly angle and uses the eccentricity term such
that a minimum time and consumption problem can be obtained along the orbit.

If the Q matrix is split to weight the velocities ξ ′, ς ′, η′ more than the positions ξ, ς, η while setting
R = diag[20 20 20], Figure 5 shows the results for the correction of the drift in the separation distance
and velocities. In Figure 5 both control schemes show that the correction is going to take more time
before a steady state response is obtained. In the BST active control scheme, the optimal control is going
to be stabilized before 6 hr. In the CH active control scheme, the optimal control is stabilized after 8 hr,
and the optimal control and the correction of the velocity shows lower levels than in the BST active
control scheme. For the BST active control scheme, this weighting in the Q matrix will cause greater
fuel expenditure, an undesired situation.

When the positions ξ, ς, η are weighted more than the velocities ξ ′, ς ′, η′ Figure 6 shows the responses
in the correction of the separation distance and velocity for the maneuvering spacecraft for both active
control schemes. The weights for this case are Q = diag[20 20 20 1 1 1] and R = diag[20 20 20]. For
both active control schemes, the separation distance and the velocities are corrected faster compared to
the previous case. The correction takes less than 2 hr for both active control schemes, but the CH active
control schemes shows a lower level in the optimal control as well in the velocity.

Analyzing Equation (10), one sees that if the varying term in the A matrix is weighted more, then the
active control scheme is going to take less time to stabilize the system; this is shown in Figure 6. On the
other hand, when the velocities are weighted more, the system is going to take more time to stabilize the
varying term; this is illustrated in Figure 5.

12. Examination of the drifts after the first correction

When the satellites move to the apogee point the constellation will satisfy the separation distance con-
straints, but the perturbations will still be present, and the constellation may hold for only a limited
number of complete orbits. This situation may guarantee that the constellation will not violate the sep-
aration distance constraint at the following apogee point. The Satellite Tool Kit software [STK 2003]
(STK) is used to propagate the constellation motion after the active control scheme has corrected the drift
between a pair of satellites; in the last simulations, the correction in the drift of the separation distance is
between SA and SC [Carpenter et al. 2003; Capó-Lugo 2005; Capó-Lugo and Bainum 2005b]. This pair
of satellites violates the NASA benchmark tetrahedron conditions first. The STK motion is propagated
from the apogee point after the correction is made, assuming that the satellites corrected the drift made
by the J2 perturbation.

For phase I, Table 4 shows the initial conditions at the initial apogee point for the NASA benchmark
tetrahedron constellation. The simulation for the correction in the positions and velocities between a pair
of satellites for the BST and Carter–Humi active control schemes shows that the correction in the drift is
less than 1 × 10−6 km for the separation distance and 1 × 10−6 km/sec for the velocities when the control
schemes finish the correction. To start the simulation at the next apogee point, the drift is assumed to be
1 × 10−6 for the correction in the positions (km) and velocities (km/sec) between a pair of satellites after
the correction is performed. This value is used because, if the correction for the J2 perturbation is made,
the maneuvering satellites (SB and SC) satisfy the separation distance requirements at the following
apogee point. This small drift is added into the initial conditions shown in Table 4 to determine if the
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Figure 5. SA-SB separation distance correction using BST (top) and CH (bottom) active
control scheme for Q = diag[1 1 1 20 20 20] and R = diag[20 20 20].
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Figure 6. SA-SB separation distance correction using BST (top) and CH (bottom) active
control scheme for Q = diag[20 20 20 1 1 1] and R = diag[20 20 20].
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Satellite x (km) y (km) z (km) vx (km/s) vy (km/s) vz (km/s)

SA −8.66025403 −72,582.4525 −24,285.7489 0.973083288 0 0

SB 0 −72,587.1941 −24,287.3354 0.972733623 0 0

SC 0 −72,577.7109 −24,284.1624 0.973432881 0 0

SH −2.88675134 −72,585.0433 −24,278.0058 0.973083324 0 0

Table 4. Initial coordinates and velocities for phase I.

constellation can be maintained for another six complete orbits. The constellation is propagated with
J2 perturbation at the starting date of June 29, 2009 22:56 (UTCG). The orbit propagation will include
only SA and SB because these satellites are considered in the correction of the drift. Figure 7 shows
that the satellites in the in-plane motion will maintain the desired benchmark configuration for another
6 complete orbits before the constellation violates the separation distance constraints again. Also, the
arrow indicates the time when the first correction is made. The constellation may violate the separation
distance constraints earlier because the drift is assumed to be small at the apogee point, but, at least for
six complete orbits, the constellation maintains the configuration. Moreover, the active control scheme
ensures that the constellation will maintain the configuration at the following apogee point, even though
the perturbations are still present when the correction is performed.

Figure 7. Satellite separation for in-plane motion with J2 perturbation only for phase I.
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13. Conclusion

The NASA benchmark tetrahedron constellation will not satisfy the separation distance constraints with
perturbations, and an active control scheme is needed to maintain the separation distance conditions.
To define the motion of a pair of satellites about Earth in an elliptical orbit, the linearized Tschauner–
Hempel (TH) equations are used. The linear quadratic regulator (LQR) technique is used as an active
control strategy in which two different control schemes are used to maintain the separation distance
constraints of the NASA Benchmark tetrahedron constellation depending on the varying term in the TH
equations. The Bainum, Strong, and Tan (BST) active control scheme adapts in a piecewise manner
the varying term in the TH equations; on the other hand, a different LQR control scheme is defined for
the cost function using the Carter–Humi (CH) approach. The CH technique developed a different cost
function based on the true anomaly angle and eccentricity of the orbit.

When the simulations to correct the drift for the first specific size (phase I) of the tetrahedron constella-
tion are performed, the LQR control scheme shows a (relative) impulsive type response for both control
schemes, but the CH active control scheme shows a lower thrust level than in the BST active control
scheme because the CH active control scheme is varying with respect to the true anomaly angle and
is explained in terms of the eccentricity. Furthermore, the eccentricity must be part of the equations of
motion to obtain a better approximation of the ellipse. Marec [1979] established that for an eccentric orbit,
the true anomaly angle must be defined in the cost function to obtain a minimum time and consumption
problem. Given these results the LQR using the CH approach gives a lower consumption problem than
in the BST control scheme because the BST control scheme keeps constant the varying term for short
periods of time.

After the first correction is performed to maintain the separation distance conditions, the simulations
show that the pair of satellites analyzed in this paper is going to satisfy the separation distance constraints
for at least another 6 complete orbits before the constraints are violated again. For the simulations already
presented in this paper, the pair of satellites within the constellation is going to satisfy the separation
distance constraints at the next apogee point.
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EVALUATION OF EFFECTIVE MATERIAL PROPERTIES OF RANDOMLY
DISTRIBUTED SHORT CYLINDRICAL FIBER COMPOSITES USING A

NUMERICAL HOMOGENIZATION TECHNIQUE

HARALD BERGER, SREEDHAR KARI, ULRICH GABBERT, REINALDO RODRÍGUEZ RAMOS,
JULIAN BRAVO CASTILLERO AND RAÚL GUINOVART DÍAZ

In this paper effective material properties of randomly distributed short fiber composites are calculated
with a developed comprehensive tool for numerical homogenization. We focus on the influence of
change in volume fraction and length/diameter aspect ratio of fibers. Two types of fiber alignments are
considered: fiber orientations with arbitrary angles and parallel oriented fibers. The algorithm is based
on a numerical homogenization technique using a unit cell model in connection with the finite element
method. To generate the three-dimensional unit cell models with randomly distributed short cylindrical
fibers, a modified random sequential adsorption algorithm is used, which we describe in detail. For
verification of the algorithm and checking the influence of different parameters, unit cells with various
fiber embeddings are created. Numerical results are also compared with those from analytical methods.

1. Introduction

Short fiber composites can be easily produced and have good mechanical properties. Since the mixture
of short fibers and liquid resin can be manufactured by injection or compression molding, the production
of parts with nearly arbitrary and very complicated shapes is possible. Composites consisting of spatially
distributed short fibers have become popular in a wide variety of applications. Moreover, using spatial
short fibers as reinforcing elements in a controlled manner can provide more balanced properties, which
lead to an improved through-the-thickness stiffness/strength.

A classical problem in solid mechanics is the determination of effective elastic properties of a com-
posite material made up of a statistically isotropic random distribution of isotropic and elastic short
cylindrical fibers embedded in a continuous, isotropic and elastic matrix. Even though analytical and
semianalytical models have been developed to homogenize fiber composites, they are often applicable
only to specific cases. Numerical models seem to be a well-suited approach to describe the behavior of
these materials, because there are no restrictions on the geometry, on material properties, on the number
of phases (constituents) and on size. In order to obtain realistic predictions of a new material, micro-
macro considerations are the appropriate approach. In this context the finite element method has been
used to determine effective properties of the short fiber composites based on unit cell models.

Keywords: finite element method, unit cell, representative volume element, homogenization, short fibers, random sequential
adsorption algorithm, effective material properties.
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A number of classical micromechanics theories have been developed. Using variational principles,
Hashin [1962] and Hashin and Shtrikman [1963] established bounds on materials that could be consid-
ered as mechanical mixtures of a number of different isotropic and homogeneous elastic phases which
are then treated as statistically isotropic and homogeneous. These two-point bounds were improved by
three-point bounds [Milton 1982; Milton and Phan-Thien 1982], which incorporate information about the
phase arrangement through the statistical correlation parameters. The dilute approximation can be used
to model a dilute suspension of spherical elastic particles in continuous elastic phases. The interaction
between particles is neglected. So the algorithm reduces to that of solving the problem of a spherical in-
clusion in an infinite matrix subjected to hydrostatic loading at infinity. Eshelby [1957; 1959] considered
the problem of an ellipsoidal inclusion in an infinite isotropic matrix, assuming a well-defined matrix.
That, however, is not always true in polycrystalline materials. A variety of properties can be exhibited,
but there is no clearly defined matrix phase. In these cases the interactions between particles are more
significant. The Mori–Tanaka method [Mori and Tanaka 1973] was designed to calculate the average
internal stress in the matrix containing precipitates with eigenstrains. Benveniste [1987] reformulated
it so that it could be applied to composite materials. He considered isotropic phases and ellipsoidal
phases. Recently, Segurado and Llorca [2002] and Böhm et al. [2002] have assessed the effective co-
efficients of randomly distributed spherical particles using random sequential adsorption method and
compared them with Hashin–Shtrikman bounds and other results from literature. Gusev et al. [2000] and
Lusti et al. [2002] performed experiments of randomly distributed short cylindrical fiber composites and
found good agreement with numerical results. However, due to the lack of literature which deals with
randomly distributed short cylindrical fibers and the restriction to low volume fractions of fibers, we have
been motivated to develop a numerical homogenization tool which extends the limits and provides the
basis for investigation of composites with arbitrary inclusions. In our opinion micro-macro mechanical
approaches offer new insights in the material behavior of such fiber composites, and may result in new
procedures to develop realistic material models for design and optimization purposes.

2. Numerical homogenization

2.1. Basic procedure. The mechanical and physical properties of the constituent materials are always
regarded as a small-scale/micro structure. To predict the overall behavior of the structure on a macro
level, the knowledge of effective material properties is necessary. One of the most powerful tools to
estimate such effective properties is the homogenization method. The main idea is to find a globally
homogeneous medium equivalent to the original composite, such that the strain energy stored in both
systems is approximately the same. The common approach to model the macroscopic properties of fiber
composites is to create a unit cell or a representative volume element (RVE) that captures the major
features of the underlying microstructure.

The RVE can generally be considered as a periodic part of the heterogeneous structure that is suffi-
ciently large to be a statistically representative of the composite, that is, to effectively include a sampling
of all microstructural heterogeneities that occur in the composite [Kanit et al. 2003]. To obtain the
homogenized effective material properties, periodicity must be ensured for the mechanical behavior of
the RVE by introducing periodic boundary conditions between opposite surfaces. By constructing several
load cases with selected traction loads and selected shear loads in one direction and preventing strains in
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the other directions, all effective elasticity coefficients can be calculated from the constitutive relations
by an averaging technique. This procedure is described in detail in [Berger et al. 2005a; 2005b] and shall
not be explained here.

2.2. Fiber generation by random sequential adsorption algorithm. Creation of an RVE with randomly
distributed cylindrical short fibers which fulfill certain restrictions, such as nonoverlapping, ensuring
periodicity and the like, is a difficult task. Due to the statistical distribution of inclusions, the RVE
can be modeled as a cube with unit size. For automatic generation of such RVEs, a modified random
sequential adsorption algorithm [Hinrichsen et al. 1986] is used. Several input parameters can be given,
including the size of RVE, diameter and length range of fibers, minimum distance between neighboring
fibers, and desired volume fraction. The algorithm starts by creating the cylinder axis of the first fiber
at a random position, with random length and with random angle. Subsequently new fibers are created
with random distribution values. If the new fiber matches the restriction of nonoverlapping and sufficient
distance to the earlier one, it is accepted; otherwise it is deleted. Furthermore, to ensure periodicity, if
any surface of the cylinder cuts any of the cubic RVE surfaces it is copied to the opposite surface with
the RVE size length. In this case one also checks all the restrictions; if it fails, the original and copied
fibers are deleted. Concerning the later finite element generation, we would also like to ensure that some
practical limitations are fulfilled. For instance, the cylinder surfaces should not be very close to the
RVE surface as well as to corners of the RVE in order to avoid highly distorted finite elements during
meshing. The generation of new fibers is repeated until the desired volume fraction is reached or no
more fibers can be placed due to the aforementioned restrictions. Figure 1 shows a sample of generated
fibers before cutting on the RVE surface, after cutting, and an ensemble of four RVEs which demonstrate
that periodicity is maintained.

By modifying the input parameters it is possible to create RVEs with different fiber arrangements,
such as, for example, fibers of same diameter, fibers of same length, or only parallel alignment of fibers.
Combining these arrangements opens the possibility of generating RVEs which represent different types
of fiber reinforced composites such as those presented in this paper. The possible maximum fiber volume
fraction plays an important role. In general, for fibers of identical size the algorithm can generate up to

�

�

�

(a) (b) (c)

Figure 1. Generation of randomly distributed short fibers: (a) uncut fibers, (b) cut fibers,
(c) periodicity demonstrated with four RVEs.
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Figure 2. Types of composites: (a) ROF and (b) POF.

25% fiber volume fraction. For higher volume fractions, one must use fibers of different sizes, which
can be generated by creating fibers with subsequently descending diameters. Using this approach, fiber
volume fraction up to 40% can be achieved with minimum distortion of the finite elements.

For calculating effective material properties of randomly distributed short fiber composites, we investi-
gate two types of fiber arrangements: randomly oriented fibers (ROF) and parallel-oriented fibers (POF);
see Figure 2. For POF composites, the fibers in the models are aligned along the x3-axis. This is denoted
as the longitudinal direction, while the perpendicular x1x2 plane are the transverse directions.

2.3. Finite element modeling. All finite element calculations were performed with the commercial FE
package ANSYS. The matrix and the fibers were meshed with 10 node tetrahedron elements with full
integration. For the calculation of geometry of the fibers by random sequential adsorption algorithm,
a special preprocessor was developed in FORTRAN programming language, which produces a partial
input file for ANSYS. Cutting of the fibers on the RVE surfaces is carried out by geometrical modeling
features of ANSYS. Figures 3 and 4 show samples of meshed RVEs for ROF and POF models.

To apply the periodic boundary conditions on the RVE, identical meshes are necessary on opposite
surfaces. For this purpose a surface of the RVE is first meshed with blind plane elements; then this

� �

(a) (b)

Figure 3. Sample for meshed RVE for ROF: (a) only fibers, (b) fibers and matrix.
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� �

(a) (b)

Figure 4. Sample for meshed RVE for POF: (a) only fibers, (b) fibers and matrix.

element configuration is copied to the opposite surface. Based on all meshed surfaces, three-dimensional
meshing is carried out. In order to apply periodic boundary conditions, we must generate constraint
equations between opposite nodal pairs. Here the ANSYS Parametric Design Language (APDL) is
used to automate this process. This script language allows the common nodal pairs to be identified
automatically by their coordinates. Furthermore, APDL is used to collect averaged stresses and strains
from element solution as well as to calculate the effective elastic constants.

The combination of the FORTRAN preprocessor, APDL and ANSYS batch processing lets us auto-
mate the whole process. It also provides a powerful tool for the fast calculation of homogenized material
properties for composites with a great variety of inclusion geometries.

3. Test models

We have investigated two types of short fiber composites: ROF and POF. In order to test the influence
of various parameters, different RVEs were generated. Furthermore so that we can obtain statistically-
averaged results for every configuration, five RVEs with different starting values for the random algorithm
were generated. The material properties of the constituents used for the analysis to evaluate the effective
material properties were taken from literature [Böhm et al. 2002] to verify the developed method with
other solutions. Table 1 contains Young’s moduli and Poisson’s ratios for matrix and fibers.

The calculated results were compared with different analytical methods such as Hashin–Shtrikman
two-point bounds (HS) [Hashin and Shtrikman 1963], Mori–Tanaka estimates (MTM) [Mori and Tanaka
1973], the self-consistent method (SCM) [Li and Wang 2005], and the generalized self-consistent method
(GSCM) [Christensen and Lo 1979]. We also performed studies to determine the influence of aspect ratio
length/diameter of fibers on the effective material properties of these composites.

Constituent Young’s modulus Poisson’s ratio

Matrix Al2618-T4 70 GPa 0.3
Fiber SiC 450 GPa 0.17

Table 1. Material constants for constituents of the composite.
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4. Results and discussion

4.1. Variation of volume fraction. Effective values of Young’s modulus E , shear modulus G and Pois-
son’s ratio ν were evaluated for different volume fractions from 10% to 40% in steps of 10%; see Figure 5.
Five samples of RVE models with randomly distributed short fibers (random angle of orientation, random
diameter and length in a certain range) were generated for each volume fraction. In six particular load
cases the RVEs were subjected to uniaxial tension as well as shear deformation along the three coordinate
axes [Berger et al. 2005a; 2005b]. From these load cases nine material constants were calculated: E11,
E22, E33, G12, G13, G31, ν12, ν23, ν31. Because of the statistically isotropy mean values E , G and ν from
all directions were used for comparison with other methods. Furthermore, due to the random distribution
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Figure 5. Variation of effective material properties for ROF composites with change in
volume fraction and comparison with different analytical results: (a) Young’s modulus,
(b) shear modulus, (c) Poisson’s ratio.
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of fibers in each five samples, a certain variance can be observed for the effective values. The bounds of
this variance are marked in the figures with vertical bars in the sense of a standard deviation.

The effective material properties, which were obtained for ROF composites using the presented nu-
merical homogenization technique, lie within the lower (HS-L) and upper (HS-U) Hashin–Shtrikman
bounds. The results of the analytical methods MTM and GSCM are always the same and are nearly
identical with HS-L. The results of our solution (ROF) are nearer to the self-consistent method (SCM)
for all volume fractions. The maximum difference between ROF and SCM is about 3%.

To show the nearly isotropic behavior of the ROF composite, in Figure 6 we plot effective Young’s
moduli in all coordinate directions as mean values from the five random samples for different volume
fractions. Effective Young’s moduli, which were obtained for the three coordinate directions, are nearly
the same over the full investigated range of volume fraction; the maximum difference is less than 1.5%.
This indicates a nearly isotropic macro behavior of the short fiber composite with randomly distributed
fiber orientation.

Effective material properties obtained for POF composites were compared with ROF composites. Fig-
ure 7 shows the variation of effective Young’s moduli for POF composites with change in volume fraction
in three coordinate directions, and compares it with the results for ROF composites. The transverse
Young’s moduli of POF composites have slightly lower values compared to ROF composites. Never-
theless, along the longitudinal direction the POF effective material properties have higher values when
compared with ROF composites. This is obvious because in case of POF composites, fibers are aligned
along the longitudinal direction, which results in higher stiffness relative to the transverse directions.
From Figure 7 it can also be seen that the effective Young’s moduli E11 and E22 are nearly the same;
this fact expresses transverse isotropy.

4.2. Variation of fiber aspect ratio. We have investigated the influence of aspect ratio length/diameter
L/D of fibers on their effective material properties for ROF and POF composites. As L/D increases,
the composite tends to a long fiber composite. The effective material properties were calculated at 10%
volume fraction of fibers. Table 2 represents the variation of effective material constants E11, E22 and
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Figure 6. Isotropy of effective material properties expressed by Young’s moduli in three
directions for ROF composites.
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Figure 7. Variation of effective Young’s moduli for all three directions with change in
volume fraction for ROF and POF composites.

E33 with change in aspect ratio L/D of the fibers for ROF and POF composites. From Table 2 it can
be observed that with respect to change in aspect ratio of fibers, there are no significant variations in
effective Young’s moduli along the three coordinate directions for ROF composites. This is not true for
POF composites, which show a significant variation in E33 with the increase in aspect ratio of fibers.
Along the transverse direction, E11 and E22 of POF composites are slightly less than these parameters
for ROF composites, but variations in the transverse Young’s moduli with respect to the aspect ratio of
fibers are not significant.

5. Conclusions

Numerical homogenization tools have been developed and presented for the evaluation of the effective
material properties of short fiber reinforced composites. The effective material properties of randomly
oriented fiber (ROF) and parallel-oriented fiber (POF) composites were obtained using these tools and
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Aspect ratio L/D E11 (ROF) E11 (POF) E22 (ROF) E22 (POF) E33 (ROF) E33 (POF)

1 83.73 83.53 83.79 83.21 83.85 83.95
3 83.81 82.68 83.77 82.34 84.80 92.96
6 84.57 82.54 84.27 81.98 82.94 98.85
9 85.17 82.16 83.53 82.19 84.44 103.98

12 83.74 81.96 83.85 82.01 83.92 104.36

Table 2. Variation of effective Young’s moduli (in GPa) with change in aspect ratio of
fibers length/diameter (L/D) for ROF and POF composites at 10% volume fraction.

compared with the results of different analytical methods. Our numerical predictions fit between the
Hashin–Shtrikman bounds and are close to the results of the self-consistent approximation. We have
also studied the influence of the aspect ratio of fibers on the effective material properties. These studies
showed that there is no significant influence on effective material properties with increase of aspect ratio
for ROF composites. However, POF composites show that along the longitudinal direction of the fibers
the material behavior becomes stiffer as the aspect ratio increases.

Our investigation provides an insight into the more complex investigation of influencing factors for
the macro behavior of fiber reinforced composites. We have shown that our method is reliable and offers
the possibility for treatment of composites with arbitrary inclusions, for example, spheres and ellipsoids,
with random distribution. Moreover, it allows the investigation of composites with more than two phases.
The use of a modified random sequential adsorption algorithm allows the inclusions with different sizes
to be generated so as to attain high volume fractions typical for many real composites.

The developed procedure, which combines a special geometrical preprocessor, ANSYS Parametric De-
sign Language and ANSYS batch processing, provides a comprehensive tool for calculation of effective
material properties of composites in a highly automated manner.
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NATURAL CONVECTION FLUID FLOW AND HEAT TRANSFER IN POROUS
MEDIA

ELSA BÁEZ AND ALFREDO NICOLÁS

Natural convection and heat transfer of fluid flow are studied numerically inside a rectangular cavity with
inclination filled with a porous medium. The mass and momentum equations are given by the Darcy
equations coupled with the thermal energy equation through the unsteady Boussinesq approximation.
The two-dimensional restriction in terms of the stream function and vorticity variables is considered.
The study is analyzed in terms of several values of the parameters that determine the evolution of the
flow: the Rayleigh Number, the aspect ratio of the cavity and the angle of inclination.

1. Introduction

The mass and momentum equations in natural convection fluid flow in a porous medium are given by
the Darcy equations coupled with the thermal energy equation through the unsteady Boussinesq approx-
imation to deal with an incompressible structure. In this work the dimensionless problem is formulated
in terms of the stream function and vorticity variables; then, the computation of the pressure is avoided
and the incompressibility condition is satisfied automatically. Regarding the numerical method, once a
convenient second order time discretization is performed, a nonlinear elliptic system is obtained which
is solved through a fixed point iterative process. The iterative process leads to the solution of uncoupled,
well-conditioned, symmetric linear elliptic problems for which very efficient solvers exist regardless of
the space discretization.

The study of natural convection and heat transfer of fluid flow in a porous medium has important
technological applications: storage and preservation of grains and cereals; solar energy collectors; filter
systems; transport of radioactive wastes through the soil; and postaccident heat removal in nuclear reac-
tors. Our numerical study is carried out on tilted rectangular cavities. The study is realized through the
parameters that influence directly the behavior and evolution of the flow: the Rayleigh Number Ra, the
aspect ratio of the cavity A, and the angle of inclination φ.

We mention below two categories of research in connection with natural convection problems that
arise when opposing walls of a cavity are subjected to a temperature gradient and where the other set of
walls is insulated—the subject of the present work.

(i) The steady problem: Vasseur et al. [1987] studied analytically and numerically the flow in a tilted
rectangular cavity and observed that the maximum heat transfer, for a given Ra, is obtained when
the cavity is heated from below, with φ in the range 90◦ < φ < 180◦. They found that this maximum
takes place for values of φ approaching 90◦ whenever Ra increases. Moya et al. [1987] studied
the problem in tilted horizontal rectangular cavities for Rayleigh number Ra = 100 and found

Keywords: natural convection, heat transfer, tilted cavity, Boussinesq approximation.
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multiple cellular flow. Sen et al. [1987] studied the multiplicity of solutions, considering vertical
and horizontal inclined cavities, and showed analytical and numerical results for Rayleigh numbers
Ra ≤ 500 with small angles.

(ii) The unsteady problem : Baytas [2000] showed results in a tilted square cavity for Rayleigh numbers
102, 103, and 104. Saeid and Pop [2004] studied the transient evolution for Rayleigh numbers with
values of 102

− 104 in a square cavity, and reported the final time when the steady state is reached.

Results for Ra = 102 and 103 are reported to validate the numerical method; these flows, obtained from
the unsteady problem, agree with the ones obtained by other authors solving either the steady problem
or the unsteady one but using different methods. Results for Ra ≥ 102 with A = 4 and 8 are also reported,
which to the best of our knowledge, have not been presented before. To assure that these new flows are
correct, a time step and mesh independence studies have been made. All the results are complemented
with their local and global Nusselt numbers on the hot wall, and the extreme values of the stream function.
Actually, results with the numerical method described here are reported in [Báez and Nicolás 2006],
where the numerical method is extended to include natural convection flows in homogeneous fluids (the
evolution of some oscillatory, time-dependent, flows is also described therein); however, the results for
porous media reported here are different from those shown in that work.

2. Mathematical models

Nomenclature

W width of the cavity
H height of the cavity
A aspect ratio of the cavity (=H/W )
ρ density
ρ0 reference density
T temperature
Tr reference temperature
β thermal expansion coefficient
k permeability of porous medium
η thermal diffusivity
µ dynamic viscosity
ν kinematic viscosity (= µ

ρ0
)

t dimensionless time
u dimensionless velocity vector (u = (u1, u2) )
p dimensionless pressure
θ dimensionless temperature
ψ stream function
Ra Rayleigh number
φ angle of inclination of the cavity
g gravity constant
e unitary vector in the gravity direction
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Nu local Nusselt number
Nu global Nusselt number

Natural convection flow of a thermal viscous fluid assumed to be Newtonian is considered under the
well known Boussinesq approximation in the presence of a gravitational field. Let �⊂ RN (N = 2, 3) be
the region of the flow of an unsteady, viscous, and thermal fluid, and 0 the boundary of the region. This
kind of flow may be governed by the following dimensionless system of equations with incompressible
structure: 

t > 0 :

u + ∇ p = Ra θe, in �, (a)
∇ · u = 0, in �, (b)
θt − ∇

2θ + u · ∇θ = 0, in �. (c)

(1)

Equations (1)a–b are the Darcy equations in primitive variables u and p coupled with the temperature
Equation (1)c; Equation (1)b is known as the incompressibility condition. The Rayleigh number is given
by

Ra =
kβLg(Th − Tc)

ην
,

with Th as the constant temperature on the hot wall, Tc that of the cold wall, and L as a reference
length. The system must be supplemented with initial conditions u(x, 0) = u0(x) and θ(x, 0) = θ0(x)
in �, and boundary conditions: for instance u = f and Bθ = 0 on 0, t ≥ 0, where B is a temperature
boundary operator that can involve Dirichlet, Neumann or mixed boundary conditions. Figure 1 shows
the geometry of the model considered.

Restricting the system in Equation (1) to a two-dimensional region �, applying the rotational in both
sides of the momentum equation, and considering that ∇ · u = 0, imply the existence of a function ψ ,
called the stream function, such that

u1 =
∂ψ

∂y
, u2 = −

∂ψ

∂x
, (2)

q
=
  
 0

.5

q
=
  
- 
0
.5

X

Y

1

L

j

g

Figure 1. Geometry of the model.
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the following scalar system is then obtained, where the unitary vector e has been replaced by the contri-
bution of the angle of inclination φ of the region � through e = (sinφ, cosφ):

t > 0 :

−∇
2ψ = Ra

(
∂θ
∂x cosφ−

∂θ
∂y sinφ

)
, in �,

θt − ∇
2θ + u · ∇θ = 0, in �.

(3)

This system represents the Boussinesq approximation in stream-function vorticity variables of system
Equation (1) in primitive variables. As pointed out in Section 1, the pressure has been eliminated since
the curl of the gradient is zero and the incompressibility condition is satisfied automatically by Equation
(2). This work is concerned with natural convection in rectangular cavities, and so the equations are set
in �= (0,W )× (0, H). For viscous fluids u = 0 on solid and fixed walls, all the walls of the cavities
are solid and fixed in natural convection, and so, by Equation (2), ψ is constant and this constant can be
chosen to be 0.

The local Nusselt number Nu measures the heat transfer at each point on the hot wall where the
temperature is specified, and the global Nusselt number Nu measures the total rate of heat transfer on
the same wall. These nondimensional parameters are defined by

local Nusselt number: Nu(y)= A|
∂θ

∂x
| |x=0;

global Nusselt number: Nu =

∫ H

0
Nu(y) dy.

3. Numerical scheme

The time derivative θt in the system of Equation (3) is approximated by

ft
(
x, (n + 1)1t

)
≈

1.5 f n+1
− 2 f n

+ 0.5 f n−1

1t
, n ≥ 1 , x ∈ �, (4)

where 1t > 0 is the time discretization step, f r is an approximation of f (x, r1t), and where it is known
that Equation (4) is a second order approximation for sufficiently smooth function f .

Then, once Equation (4) is applied to θt the following nonlinear elliptic system is obtained, incorpo-
rating the boundary condition for ψ and θ as discussed before: −∇

2ψn+1
= Ra( ∂θ

n+1

∂x cosφ−
∂θn+1

∂y sinφ) in �, ψn+1
= 0 on 0,

αθn+1
− ∇

2θn+1
+ un+1

· ∇θn+1
= fθ in �, Bθn+1

= 0 on 0,
(5)

where α =
1.5
1t , fθ =

2θn
−0.5θn−1

1t , u in terms of ψ is given by Equation (2), and B is still the temperature
boundary operator.

Renaming (ψn+1, θn+1) by (ψ, θ) to simplify the notation, we must solve at each time level, for
Equation (5), a nonlinear elliptic system of the form{

−∇
2ψ = Ra( ∂θ

∂x cosφ−
∂θ
∂y sinφ) in �, ψ = 0 on 0

αθ − ∇
2θ + u · ∇θ = fθ in �, Bθ = 0 on 0.

(6)
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To obtain (ψ1, θ1) in Equation (5), a first order approximation is applied to the temporal derivative with
a smaller time step to maintain second order precision; an elliptic system like the one in Equation (6) is
also obtained.

Given
2(ψ, θ)≡ (α I − ∇

2θ)+ u · ∇θ − fθ in �,

then system Equation (6) is equivalent to{
−∇

2ψ = Ra( ∂θ
∂x cosφ−

∂θ
∂y sinφ) in �, ψ |0 = 0,

2(ψ, θ)= 0 in �, Bθ |0 = 0.
(7)

System Equation (7) is solved with the following fixed point iterative process:
Knowing θ0

= θn solve until convergence on θ

−∇
2ψm+1

= Ra( ∂θ
m

∂x cosφ−
∂θm

∂y sinφ) in �, ψm+1
= 0 on 0, (a)

θm+1
= θm

− λ(α I − ∇)−12(ψm+1, θm) in �, Bθm+1
= 0 on 0, λ > 0, (b)

and take (ψn+1, θn+1)= (ψm+1, θm+1).

(8)

The partial differential equation problem for θm+1 in Equation (8)b is equivalent to

(α I − ∇
2)θm+1

= (α I − ∇
2)θm

− λ2(ψm+1, θm) in �, Bθm+1
|0 = 0.

Therefore, at each iteration of each time level, uncoupled, well-conditioned, symmetric elliptic linear
problems associated with the operators −∇

2 and α I − ∇
2 must be solved.

For linear elliptic problems, very efficient solvers exist regardless of the space discretization. The
results in this work are obtained with the second-order approximation of the Fishpack solver [Adams
et al. 1980], where the algebraic linear systems are solved with an efficient cyclic reduction iterative
method [Sweet 1977]. As mentioned before, the first time derivative θt is approximated by Equation (4),
which is a second-order approximation, whereas the first space derivatives of ψ in Equation (2) to obtain u
in Equation (6), the normal derivative of the boundary condition for θ (described later), and the first space
derivative for the local Nusselt number are approximated by the centered second-order finite difference
approximation in interior points and by Equation (4) in boundary points. To approximate the integral in
the global Nusselt number the second-order trapezoid rule (in the entire interval) is used. All these kinds
of approximations imply that the whole discrete problem relies on second-order approximations.

4. Numerical results

The initial condition for the temperature is given by θ(x, 0)= 0. The discretization parameters, time step
1t and the size of the mesh hx × h y , will be specified in each case under study. In the iterative process,
the parameter λ is chosen as λ= 0.7 and the stopping absolute criterion as 10−5.

The results are reported through the streamlines of the stream function and the isotherms of the tempe-
rature; most of the isocontours are specified for each case, otherwise they are the default ones. All the
results are also complemented with their local Nu and global Nu Nusselt numbers, in order to see the
local and global heat transfer, as well as the extreme values of the stream function ψ .
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The results shown correspond to steady state flows from the unsteady problem. They are the converged
asymptotic steady state as time t approaches +∞ (large time, in practice). To reach convergence to an
asymptotic steady state a stopping criterion must be given for the final time Tss when it occurs. Since Tss

is the time when the solution does not change any more with respect to time at any spatial point occupied
by the fluid [Nicolás and Bermúdez 2005], Tss is determined with the point-wise discrete L∞ absolute
criterion in the closure � of the cavity

θ : ||θn+1
hx,hy − θn

hx,hy||∞,

with tolerance 10−5. For Ra = 102 and Ra = 103 results are shown to validate the numerical method
mainly in the square cavity with results other authors have obtained solving the steady problem or the
unsteady one but using a different method. New results, to the best of our knowledge reported here for
the first time, are presented for Ra ≥ 102 with aspect ratios A = 4, 8. To support the validity of these
results, a time step and mesh independence studies have been made with the point-wise discrete L∞

relative error in �  1t fixed :
|| fhx1,hy1;1t− fhx2,hy2;1t ||∞

|| fhx1,hy1;1t ||∞
,

{hx , h y} fixed :
|| fhx,hy;1t1− fhx,hy;1t2||∞

|| fhx,hy;1t1||∞
.

The specific temperature boundary condition to be considered, described so far in the boundary oper-
ator B, is given by

∂θ

∂y
= 0 on 0|y=0,W , θ = 0.5 on 0|x=0, θ = − 0.5 on 0|x=1;

that is, horizontal walls are adiabatic and the hot and cold wall are the left and the right wall, respectively.
Figure 2 shows the streamlines and isotherms for Ra = 102 in the unit square, that is A = 1, and

0◦
≤ φ ≤ 90◦. This range of angles means that heating from the lateral (left) wall to heating on the

bottom wall is considered.
It is observed from the streamlines of Figure 2 that one main cell only is obtained for the range of

angles considered and therefore, from the local Nusselt number graphic, one maximum is also obtained
for heat transfer. In this case, from ψmin, it follows that the fluid motion is slower when the heating
comes either from the lateral or bottom wall, that is when φ = 0◦ or φ = 90◦, than for the other angles.
It is also observed, from Nu in Figure 1, that the heat transfer is smaller for these angles than for the
others.

Figure 3 shows the results for Ra = 103 and some angles 0◦
≤ φ ≤ 360◦ in the unit square cavity

also. For φ = 0◦, it is observed that the fluid is heated along the left wall causing the less dense fluid
to rise toward the top wall; this fluid is then cooled on the right wall, becomes denser, and then falls
to the bottom of the cavity, originating a rotating clockwise cell in the streamlines. A similar situation
occurs for 40◦ and 330◦; however, the opposite effect occurs for 130◦. In this case, the main cell rotates
counterclockwise since the hot wall is below the cold one and the isotherms show that the hot fluid is
localized toward the top of the right part of the tilted cavity while the cold fluid resides toward the bottom
of the left part. Secondary cells appear for some angles, for instance φ = 330◦. The graphic of the local
Nusselt number shows that the maximum value for 0◦, 40◦, and 330◦ is reached on the bottom wall
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Figure 2. Results for Ra = 102, A = 1, 1t = 10−2 and hx × h y =
1
30 ×

1
30 .

whereas for 130◦ the opposite occurs, that is, the maximum is reached on the top wall because of the
buoyancy effect.

The corresponding results for the minimum and maximum values of the stream function, ψmin and
ψmax, the global Nusselt number Nu, and the final time Tss when the flow reaches the steady state are
displayed in Figure 3. The extreme values of the stream function indicate an increase in the fluid motion
for the angles φ = 40◦ and φ = 130◦, implying an increase of heat transfer, because of Nu, although this
is higher for the first angle than for the second, whereas for 330◦ less fluid motion is obtained implying
a diminution of the heat transfer.

The above results for Ra = 102 and Ra = 103 as well as others obtained for Ra = 102 and Ra = 104

with 0◦
≤ φ ≤ 360◦ are in agreement with those reported in [Baytas 2000] from the unsteady problem

also but using a different method. For these three values of Ra one main cell is obtained for almost all
values of φ and secondary cells appear for some angles when Ra = 103 and 104, as pointed out before
for Ra = 103.

As already mentioned, the new results are shown for values of Rayleigh number Ra ≥ 102 with aspect
ratios A ≥ 1. For Ra = 102 and the aspect ratio is augmented to A = 4, it can be seen in Figure 4 that
there appears from one cell for φ = 0◦ to five cells when the cavity is heated on the bottom, that is for
φ= 90◦. The local Nusselt number graphic shows one maximum for φ= 0◦ and φ= 58◦, two for φ= 65◦

and three for φ = 90◦.



1578 ELSA BÁEZ AND ALFREDO NICOLÁS

Streamlines             Isotherms Streamlines              Isotherms

0° 40°

130° 330°

.4

.2

0

-.4

-.2

0

.2

-.2

.4

.2

-.4

-.2

.3

.1

-.1

-.3

0

-18.5

-15.25

-7.25

-19.25

-24.85

25.4

22

14

-9.5
-8

-6
-4

-2

Local Nusselt number

0°

40°

130°

330°

Nu

y

q
 =

  
0

.5

q =
 -

 0
.5

q =
  0

.5

q =
 -

 0
.5

q
 =

  0
.5

q
 =

 -
 0

.5

q =
  0

.5

q
 =

 -
 0

.5

Streamlines             Isotherms Streamlines              Isotherms

0° 40°

130° 330°

.4

.2

0

-.4

-.2

0

.2

-.2

.4

.2

-.4

-.2

.3

.1

-.1

-.3

0

-18.5

-15.25

-7.25

-19.25

-24.85

25.4

22

14

-9.5
-8

-6
-4

-2

Local Nusselt number

0°

40°

130°

330°

Nu

y

q
 =

  
0

.5

q =
 -

 0
.5

q =
  0

.5

q =
 -

 0
.5

q
 =

  0
.5

q
 =

 -
 0

.5

q =
  0

.5

q
 =

 -
 0

.5

φ ψmin ψmax Nu Tss

0◦
−19.5938 0 16.8230 .02250

40◦
−25.9263 0 18.2113 .02779

130◦ 0 26.3407 16.9855 .02920
330◦

−9.7545 0 8.4882 .03396

Figure 3. Results for Ra = 103, A = 1, 1t = 10−5 and hx × h y =
1
70 ×

1
70 .

Figure 4 indicates that the fluid motion is faster when the cavity is heated laterally, φ = 0◦, than when
it is heated from below, φ = 90◦; however, the heat transfer is larger when three cells appear, φ = 65◦.

Figure 5 shows that when Ra = 102 and A = 8, the fluid motion ranges from one cell rotating clockwise
for φ = 0◦ (lateral heating) to eleven cells circulating in directions opposite to one another for φ = 90◦

(heating on the bottom). The local Nusselt number graphic shows one maximum when one main cell
appears, 0◦; a similar situation occurs for 50◦, whereas for φ = 70◦, there exist five maxima and six for
90◦, indicating that there are several places on the hot wall where the heat transfer is increased: those
between cells where the fluid moves from the cold to the hot wall. The minima correspond to flow
moving in opposite directions.

From the extremum values of the stream function in Figure 5, it follows that the fluid motion is stronger
when φ = 0◦ than when φ = 90◦, but this is not reflected on the global heat transfer coefficient, Nu: a
high heat transfer is given for those angles when multiple cells appear. However, from other experiments
for Ra = 102 and Ra = 103 with A > 1, when plotting Nu versus φ, was observed that one maximum
of Nu is obtained for those angles φ with a single cell and a second maximum appears for those angles
with multiple cells.
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Figure 4. Results for Ra = 102, A = 4, 1t = 10−2 and hx × h y =
1
30 ×

4
120 .

To demonstrate that the flows in Figures 4 and 5 are correct, a time step and mesh independence
studies were performed in the vertical case, φ = 0◦, with A = 8 in Figure 5, for three mesh sizes and
three times as follows:

(1) time step fixed, 1t = 10−2 and (hx , h y)= (1/30, 8/240), (1/45, 8/360), (1/60, 8/480);

(2) mesh size fixed (hx , h y)= (1/30, 1/240) and 1t = 10−2, 5 × 10−3, 2.5 × 10−3.

The respective discrepancies are:

(1) less than 6 × 10−2% (at most 3.8 × 10−1% for stream function and 5.9 × 10−1% for temperature);

(2) at most 4.96 × 10−2% (2.44 × 10−2% for stream function and 4.96 × 10−2% for temperature).

The corresponding minima of the stream function ψ in each case (the maximum value is always zero)
are:
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Figure 5. Results for Ra = 102, A = 8, 1t = 10−2 and hx × h y =
1
30 ×

8
240 .

(1) min = −12.1216, −12.1206, −12.1280, respectively;

(2) min = −12.1216, −12.1223, −12.1238, respectively.

Therefore, the results shown in Figure 5 are chosen as the correct ones.
For the corresponding easier case with A = 4 in Figure 4 something similar occurs.
In Figure 6, results for Ra = 103 and some angles 0◦leqφ ≤ 360◦ with A = 4 are presented. A single

large cell appears for angles φ = 0◦ and φ = 65◦ rotating clockwise. Experiments show that multiple
cells appear for angles 66◦

≤ φ ≤ 114◦, the result for φ = 110◦ is an example of this situation: seven
main cells appear, five small cells occupying the middle of the cavity enclosed by two big ones in the
extremes of the cavity and rotating in opposite direction each other. The graphic of the local Nusselt
number shows that the maximum heat transfer for this angle is localized on the top of the cavity due to
the reverse effect of the buoyancy force, in comparison to the other angles; the other maximums are a
consequence of the fact that multiple cells appear.



NATURAL CONVECTION FLUID FLOW AND HEAT TRANSFER IN POROUS MEDIA 1581

Streamlines          Isotherms

0°

110°

65°

300°

Local Nusselt number

0°

65°

110°

300°

q =
0.5

0.4

q
=

  
-

0
.5

q =  - 0.5

q =
0.5

q =  -
0.5

q =
0.5

q =  -
0.5

-0.4

-0.2

0.2

0
.4

0
.2

-0
.2

-0
.4

-0.4

0.4

0.2

-0.2

0.2

- 0.2

-42

-15

-25

-35
-32

28

-18

-35

5

-14
- 8

28

- 2

-18.5

5
5

5

- 2

-2
-2

q
=

0
.5

St
re

a
m

lin
e
s 

  
  
  
  
  
Is
o
th

e
rm

s

St
re

a
m

lin
e
s 

  
  
  
  
  
Is

o
th

e
rm

s

Stre
a
m

lin
e
s          Iso

th
e
rm

s

Nu

y

Streamlines          Isotherms

0°

110°

65°

300°

Local Nusselt number

0°

65°

110°

300°

q =
0.5

0.4

q
=

  
-

0
.
5

q =  -
0.5

q =
0.5

q =  -
0.5

q =
0.5

q =  -
0.5

-0.4

-0.2

0.2

0
.4

0
.2

-0
.2

-0
.4

-0.4

0.4

0.2

-0.2

0.2

- 0
.2

-42

-15

-25

-35
-32

28

-18

-35

5

-14
- 8

28

- 2

-18.5

5
5

5

- 2

-2
-2

q
=

0
.
5

S
tr
e

a
m

li
n
e

s 
  
  
  
  
  
Is

o
th

e
rm

s

S
tr
e

a
m

li
n
e

s
  
  
  
  
  
 I
s
o

th
e

rm
s

S
tre

a
m

lin
e
s          Iso

th
e
rm

s

Nu

y

φ ψmin ψmax Nu Tss

0◦
−44.6267 0 9.1802 .02381

65◦
−37.2395 0 7.0151 .09325

110◦
−16.2286 29.8881 10.2587 .10000

300◦
−20.1421 0 4.0483 .05061

Figure 6. Results for Ra = 103, A = 4, 1t = 10−5 and hx × h y =
1
70 ×

4
280 .

From Figure 6 it is also observed that a stronger fluid motion occurs for 0◦ than for 110◦; however, the
corresponding value of the global Nusselt number for 0◦, when there is a single cell, indicates a smaller
heat transfer than for 110◦, when multiple cells appear.

Figure 7 pictures numerical results for the same Rayleigh number with A = 8 and several angles
0◦

≤ φ ≤ 360◦. Multiple cells may appear for some angles, as shown for φ = 117◦, which indicate a
more complex fluid motion. On the other hand, Figure 5 shows that with some angles the fluid motion
is stronger than others, but the corresponding value of the heat transfer is smaller. Complemented with
other experiments, not shown here, it may be concluded that this situation is characteristic of aspect
ratios A > 1.
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Figure 7. Results for Ra = 103, A = 8, 1t = 10−5 and hx × h y =
1
70 ×

8
560 .

To show that the flows in Figures 6 and 7 are correct, a time step and mesh independence studies were
performed in the vertical case, φ = 0◦, with A = 8 in Figure 7, for three mesh sizes and three times as
follows:

(1) time step fixed, 1t = 10−5 and (hx , h y) = (1/70, 8/560), (1/105, 8/840), (1/140, 8/1120);

(2) mesh size fixed (hx , h y)= (1/70, 8/560) and 1t = 10−5, 5 × 10−6, 2.5 × 10−6.

The respective discrepancies are:

(1) less than 2% (at most 1.67% for stream function and 1.59% for temperature);

(2) at most 5.16% (5.16% for stream function and 2.15% for temperature).

The corresponding minima of the stream function ψ in each case (the maximum value is always zero)
are:

(1) min = −64.8389, −64.8197, −64.8379, respectively;
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(2) min = −64.8389, −64.8415, −64.8351, respectively.

Therefore, the results shown in Figure 7 are chosen as the correct ones.
For the corresponding easier case with A = 4 in Figure 6 something similar occurs.

5. Conclusions

From the numerical experiments we observe that when Ra increases, the time step and the spatial mesh
size must necessarily be significantly diminished—which can become a problem computationally speak-
ing, at least in the current form of the numerical method. The results obtained for several values of the
Rayleigh number, the aspect ratio, and the angle of inclination of the cavity indicate that the flow is
affected whenever the value of each of these parameters changes. The fluid motion is strong not only
when Ra increases but also when A increases and Ra is fixed. The global Nusselt number shows also
that the heat transfer increases as Ra increases, but when this value is fixed and the aspect ratio is larger,
the heat transfer is smaller. For angles where multiple cells appear the global heat transfer is higher than
for those with a single cell. Moreover, there exist two maxima of the global heat transfer, as a function
of the angle φ, with 0◦

≤ φ ≤ 90◦: one for angles when a single cell appears and one more for angles
with multiple cells. About the time Tss necessary to reach a steady state, for φ fixed, it can be observed
that Tss is smaller whenever Ra is higher; however, this time increases whenever A increases. It may
be pointed out that with some modifications of the numerical method, the case with variable porosity
[Marcondes et al. 2001] and variable anisotropy [Nguyen et al. 1994] can be also explored as well as
viscous effects near walls through the Brinkman extension [Rees 1999].
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STARK LADDER RESONANCES IN ACOUSTIC WAVEGUIDES

GUILLERMO MONSIVAIS AND RAUL ESQUIVEL-SIRVENT

We present a theoretical study on how to obtain a Wannier–Stark ladder in the transmission spectra
of an acoustic wave traveling through a waveguide of variable cross section. Starting from Webster’s
equation for the acoustic pressure, we derive the necessary conditions to obtain the Wannier–Stark ladder.
Furthermore, we present a numerical calculation for the transmission spectra when a Wannier–Stark
ladder is present. This ladder is characterized by a family of well defined peaks, equidistant in frequency.

1. Introduction

Band structures of the energy spectrum of the electrons are the basis of electronic devices. When electrons
travel through a periodic structure such as a crystal, the constructive and destructive interference gives rise
to bands in the energy spectra of the electrons [Brillouin 1953; Guo 2006]. Similarly, an electromagnetic
wave traveling through a structure with a dielectric function that varies periodically will exhibit a band
structure in its frequency spectrum. This gives rise to photonic crystals and its applications in light flow
control as described by Joannopoulos et al. [1995]. In an elastic structure with a specific impedance that
varies periodically, the transmission spectra as a function of frequency, elastic waves will also show a
band structure [Esquivel-Sirvent and Cocoletzi 1994].

Physically, the band structure represents regions of allowed and forbidden propagation as shown in
Figure 1. λ represents the frequency (or energy) of a wave (or electron) traveling through a system.
Figure 1(a) corresponds to a periodic system in which λ can get only certain allowed values indicated by
the dark zones. The regions where no values of λ are permissible are known as forbidden bands or gaps.
When the periodicity is only slightly modified, for example at only one site of the structure, the band
structure shows localized states. This is, there are certain allowed values of λ for which transmission is
allowed in an otherwise forbidden region. This is indicated by the dotted lines in Figure 1(b). Finally,
Figure 1(c) shows that λ can take any value when there is no periodicity.

An interesting case of broken periodicity give rise to Wannier–Stark ladders (WSL) that will be dis-
cussed in the next section. By imposing a particular condition on the configuration of the system, it is
possible to destroy the band structure of an otherwise periodic system, and obtain sharply localized states
that are equidistant in frequency or energy. This resonances were first predicted in quantum mechanics
by Wannier [1962] in connection with the energy spectrum of an electron traveling through a crystal
in a dc electric field. As in the case of periodic system, it has been shown that WSL exist in photonic
crystals [Monsivais et al. 1990], elastic systems [Mateos and Monsivais 1994] and piezoelectric systems
[Monsivais et al. 2003].

Keywords: Stark, acoustic, resonances.
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(a) (b) (c)

λ

Figure 1. Allowed values of λ in three different structures: (a) periodic; (b) periodic
with a defect, where the localized states are shown by dotted lines; (c) disordered.

In this paper we study the formation of WSL in acoustic waveguides. This system is simpler than the
elastic case since there is no mode conversion. In addition, for low frequencies, it is easier to realize
experimentally.

2. Theory

Up to constants, we can write Schroedinger’s equation for stationary solutions as

−
d2ψ

dx2 + U (x)ψ = λψ. (1)

If the potential U (x) is periodic, that is, U (x)= U (x +np) where p is the period and n a positive integer,
the system will show a band structure [Brillouin 1953]. We can break the periodicity by requiring that

U (x + np)= U (x)+ npF, (2)

where F is a constant. In the case of an electron of charge q traveling through a crystal, F = q E , where
E is a constant electric field. Making the change of variable x = x ′

+ npF , Equation (1) becomes

−
d2ϕ(x ′)

dx ′2 + U (x ′
+ nd F)ϕ(x ′)= λϕ(x ′).

Finally, using the property of U (x) given by Equation (2) we have

−
d2ϕ(x ′)

dx ′2 + U (x ′)ϕ(x ′)= (λ− npF)ϕ(x ′),

where ϕ(x ′)= ψ(x ′
+ npF). Comparing Equations (1) and (2), we see that if λ is an eigenvalue, then

so is λ− npF . The difference between two neighboring eigenvalues is exactly pF ; it is this that gives
rise to a Wannier–Stark ladder.

We should mention, however, that the mathematics described above presents many subtleties [Zak
1968] and a rigorous description is very difficult. For this reason the existence of WSL in quantum
mechanics was a controversial matter for twenty years, from the prediction of Wannier [1962] in the
1960’s until the experimental observation of WSL in superlattices [Mendez et al. 1988] and the results
of numerical calculations in, both in the 1980’s.
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Figure 2. Schematic representation of the function U(x) given by Equation (2). (a)
Periodic case obtained by setting F = 0. (b) If F 6= 0 the periodicity of U (x) is broken
and the solution of Equation (3) gives rise to a WSL.

The formulation discussed in this paper associated with the properties of the acoustic waveguide
presents several differences compared with the quantum mechanical case. However, it suffers from
similar mathematical subtleties, and, therefore, our discussion cannot be a rigorous demonstration of the
existence of acoustic WSL. However, our numerical calculation will show that the naive formulation, in
fact, predicts the correct result.

Now we will show how the above ideas can be adapted to an acoustic waveguide. Consider the equation
for a waveguide with variable cross section S(x) and symmetry axis parallel to the x-axis. Webster’s
equation for pressure p(x, t) is

∂2 p(x, t)
∂t2 = c2

(
1

S(x)
∂

∂x

[
S(x)

∂p(x, t)
∂x

])
,

where c is the speed of sound in the waveguide. This equation can be transformed to a Schrodinger-
like one by introducing a function f (x, t) defined by p(x, t)= f (x, t)/S(x)1/2. This particular choice
comes from the fact that f (x, t) is proportional to the potential energy per unit area of the acoustic wave
[Forbes et al. 2003]. Thus, Webster’s equation takes the form

∂2 f (x, t)
∂t2 = c2

(
∂2 f (x, t)
∂x2 − U (x) f (x, t)

)
, U (x)=

1
S(x)1/2

d2S(x)1/2

dx2 . (3)

Equation (3) is separable in the variables x, t , and its solutions are of the form f (x, t) = X (x)T (t) =

X (x) exp (iωt), where ω is the wave frequency. Substituting this ansatz into Equation (3) yields the
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Figure 3. Transmission spectra for an acoustic waveguide. Period of unit cell is 5 cm.
Black curve shows result for a periodic system made of 60 unit cells. For F = 1 the band
structure disappears and WSL emerges, demonstrated by the blue curve.

following equation for X (x):

d2 X (x)
dx2 +

[
ω2

c2 − U (x)
]

X (x)= 0, (4)

which has the form of Schrodinger’s equation. By imposing condition (2) for the U (x), the existence of
Wannier–Stark ladders can be expected. We can now construct the function U (x) subject to the required
condition. The actual variation of the cross section S(x) is obtained by solving Equation (3). However,
this is not done in this paper, and will be reported elsewhere. First we notice that when F = 0, we have
a periodic function constructed by repeating a unit cell as shown in Figure 2(a). When F 6= 0 we choose
a function profile as that shown in Figure 2(b). This profile will be used in the numerical calculations
presented in the next section.

3. Numerical results

In this section we consider a finite system in order to have a model to analyze the existence of WSL
numerically. Since for a finite system Equation (2) is only satisfied for a finite region of space, it can be
expected that WSL formation will not be perfect.

The transmission spectra are calculated for a particular function U (x) of Figure 2(b). To perform the
calculations, we consider that the changes in U (x) imply a change in the cross section of the waveguide.
This in turn implies a change in the acoustic impedance that also depends on S(x). At each change
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Figure 4. Detail of WSL in Figure 3: sharp, equidistant peaks are evident.

in the cross section, the boundary conditions are given by the continuity of X (x) and of its derivative
d X (x)/dx . A transfer matrix approach is used to calculate the transmission spectra [Esquivel-Sirvent
and Cocoletzi 1994].

In Figure 3 we show two curves. The black line shows the transmission spectra for a periodic system
made of 60 unit cells as described in Figure 2(a). The band structure is clearly seen. The number of
oscillations in the regions of high transmission is equal to the number of unit cells. In the case of an
infinite number of unit cells, the transmission will be equal to one in these regions. If we break the
periodicity by setting F = 1, we obtain the blue curve. The periodicity is broken and the band structure
is replaced by a series of sharp transmission peaks. This is the Wannier–Stark ladder. In Figure 4 we show
a detail of the transmission spectra. The spikes are equally spaced and are sharply peaked as expected.
For these calculations we took a unit cell of period 5 cm. As mentioned before, the peaks in WSL are
equidistant, but their separation is not pF as predicted by the theory since the system we analyzed was
finite.

The parameters we choose to construct the function U (x) were adequate to obtain a WSL. However,
we have observed that not any choice of parameters gives rise to WSL. It is not possible to know when
a Stark ladder will emerge, except by trial and error.

4. Conclusions

In this paper we have demonstrated the basic principles to obtain the Wannier–Stark ladder in the
transmission spectra of an acoustic waveguide. Starting with Webster’s equation, we find an equivalent



1590 GUILLERMO MONSIVAIS AND RAUL ESQUIVEL-SIRVENT

Schrodinger-like equation that exhibits a Stark ladder for a suitable choice of a function U (x). In our
case, this function is related to the changes in cross section of the acoustic waveguide.

Our numerical studies show that the Stark ladder in acoustic waveguides in fact exist, even though
this cannot be rigorously proven from the theoretical analysis, as was the case in quantum mechanics.
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TENSION BUCKLING IN MULTILAYER ELASTOMERIC ISOLATION BEARINGS

JAMES M. KELLY AND SHAKHZOD M. TAKHIROV

Seismic isolators are constructed from multiple layers of elastomer (usually natural rubber) reinforced
with steel plates; they are, therefore, very stiff in the vertical direction, but soft in the horizontal direction.
The buckling of these bearings under compression load is a well-understood phenomenon and has been
widely studied. It is therefore unexpected that the buckling analysis for compression predicts that the
isolator can buckle in tension at a load close to that for buckling in compression. The linear elastic model
that leads to both compression and tension buckling is an extremely simple one, so it might be argued
that the tensile buckling may be an artifact of the model itself rather than a property of the isolator. To
test the simple theoretical model we have conducted a numerical simulation study using a finite element
model of a multilayer elastomeric bearing. We find that the prediction of tensile buckling by the simple
linear elastic theory is indeed accurate and not an artifact of the model.

1. Introduction

Seismic isolation using multilayer elastomeric isolators has been used in the United States and around the
world for more than 20 years. The isolators are constructed from many layers of elastomer reinforced
with steel shims, and are very stiff in the vertical direction, but soft in the horizontal direction. This
enables them to carry the weight of a building, but cause the building to have a fundamental natural
frequency that is both lower than that of the same building, if conventionally founded, and the dominant
frequencies of strong ground motion.

They appear to be very stable, though the low shear stiffness causes a buckling phenomenon. However,
it is straightforward to design them to have a large safety factor against buckling. The buckling of
these bearings under compression load is a well-understood phenomenon, and has been widely studied.
Buckling theory is based on a linearly elastic analysis. Although the elastomer is not really linearly
elastic, the deformation is predominantly one of shear, and typical elastomers used in bearings are very
close to linear over a large range of shear strain. While approximate, the linear theory is relatively
accurate and adequate for most design purposes.

However, buckling analysis for compression has been used to make an unexpected prediction that the
isolator can buckle in tension at a load close to that for buckling in compression. Of course, there are
many examples of strange systems that buckle in tension, but these are entirely pathological in that the
tension forces are always transferred to compression elements that produce the instability. This is not the
case here. The buckling process is in fact tensile. The linear elastic model that leads to both compression
and tension buckling is an extremely simple one, so it might be argued that tensile buckling may be an
artifact of the model itself and not of the isolator.

Keywords: steel-reinforced elastomeric seismic isolators, tension and compression buckling, linear theory, nonlinear finite
element analysis.
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For this reason we had undertaken a numerical simulation study using a finite element model of a
multilayer elastomeric bearing to check whether the prediction of tensile buckling by the simple linear
elastic theory is, in fact, accurate. We found this to be the case. The essential point is that the mechanics
of the isolator in tension are the mirror image of that for the isolator in compression. In particular, when
the isolator is in compression below the buckling load but laterally displaced, the layers in the center
experience rotations that give the vertical load a component along the layer causing a shear deformation.
In tension, the layers in the center experience rotations in the opposite direction giving a shear defor-
mation due to the tensile force that permits the top of the isolator to move upwards by a much larger
displacement than that which could be sustained in pure tension with no lateral displacement.

While the bearings are normally in compression, base-isolated tall buildings in near-fault locations
can lead to situations where peripheral bearings in the isolation system can be required to take some
amount of tension. This tension is caused by global overturning of the building produced by the lateral
inertial force at the center of the mass of the isolated building. The maximum inertial force and the
resulting maximum overturning movement occur at the same time as the maximum lateral displacement
of the isolators; at first sight this would seem to be a critical situation. The value of the buckling analysis
is that it demonstrates that the condition of the isolator in tension and shear is not as dire as had been
feared. In tension, the layers in the center experience a rotation which allows a shear deformation caused
by the tensile force and permits the top of the isolator to move upwards by a much larger displacement
than that which could be sustained in pure tension with no lateral displacement. Thus the simultaneous
occurrence of tension and shear in the isolator prevents the development of damage due to cavitation.

2. Overview

Earliest theoretical approaches to study the stability of rubber bearings by Haringx [1948; 1949a; 1949b]
were based on linearity of the rubber material and small displacements. Theoretical predictions of the
decrease in horizontal stiffness with increasing axial load based on Haringx’s theory were made by
Gent [1964] and Derham and Thomas [1981]. Simo and Kelly [1984] used finite element modeling to
study the variation of lateral load-displacement behavior under increasing axial load.

An extensive experimental study of low shape factor elastomeric isolators used for base isolation was
given by Aiken et al. [1989]. Buckling tests were conducted on doweled bearings; they consisted of
applying monotonically increasing axial load to a bearing with the top of the bearing free to displace in
the horizontal direction. The tests showed that the analytical formula gives a higher value of the critical
load than the experimentally measured one.

Roeder et al. [1987] and Stanton et al. [1990] studied the stability of laminated elastomeric bearings ex-
perimentally and theoretically with due consideration given to axial shortening. Buckle and Kelly [1986]
studied the stability of elastomeric bearings using a model bridge deck tested using a shaking table.
Since the bearings were doweled, bearing overturning or rollover was clearly evident in these tests.
Koh and Kelly [1986; 1988; 1989] developed a viscoelastic stability model and a mechanical model
based on bearing test results. A comprehensive study of the basic theory and its application to design
issues, including the stability problem, was presented by Kelly [1997].

Experimental determination of critical buckling behavior of steel-reinforced bearings at high shear
strain was conducted by Buckle and Liu [1994]. Studies by Nagarajaiah and Ferrell [1999] introduced
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a nonlinear analytical model based on the Koh–Kelly model and included large displacements, large
rotations, and nonlinearity of the rubber. The model was verified through experimental results. Further
experimental work on the stability of elastomeric bearings was presented by Buckle et al. [2002]. It was
shown that the critical buckling load decreases with increasing horizontal displacement or shear strain.
Finite element analysis results conducted on a plane model of the bearings with a coarse mesh were
compared with the experimental results.

Some results on finite element analysis of the multilayered elastomeric bearings can be found in several
papers and reports; see, for example, [Takayama et al. 1992].

3. Formulation of elementary stability theory of multilayer elastomeric isolators

The elementary theory for the buckling of isolation bearings treats the bearing as a continuous homo-
geneous beam in which plane sections normal to the undeformed axis remain plane but not necessarily
normal to the deformed axis. The deformation is defined by three functions u(x), v(x), ψ(x), which
are the axial and lateral displacements of the centroidal axis and the rotation of a section normal to
the undeformed axis, respectively. The overall shear deformation γ (x) of the section is the difference
between the rotations of the centroidal axis and the section, namely, γ (x)= v′(x)−ψ(x).

The internal forces on the deformed plane section are the axial load N (x) normal to the section, the
shear force V (x) parallel to the section and the bending moment M(x), as shown in Figure 1. These
internal forces are related to the deformation quantities through

N (x)= Ec Asu′(x), V (x)= G As(v
′
−ψ), M(x)= E Isψ

′(x).

As is the cross sectional area A increased by h/tr , where h is the total height of the bearing (rubber plus
steel), tr is the total thickness of rubber. and Ec is the compression modulus of the bearing. The value of
Ec for a single rubber layer is controlled by the shape factor S =(loaded area)/(force-free area), which
is a dimensionless aspect ratio of a single layer of the elastomer. For example,

S =


S = b/t, infinite strip of width 2b with a single layer thickness t,

S = R/2t, circular pad of diameter R and thickness t,

S = a/4t, square of side a and thickness t .

In a circular isolator Ec = 6GS2, while in the long strip isolator that will be used for the numerical
simulation Ec = 4GS2. The increase in the area is needed to account for the fact that the steel does not
deform in the composite beam. Is is the effective moment of inertia of the cross section. This is modified
the same way as A. There is an additional modification to account for the fact that in the isolator the
pressure distribution that generates the internal bending moment is a cubic parabola in contrast to regular
beam theory where the bending stress distribution is linear. The effective bending stiffness, accounting
for these two effects is [Kelly 1997]

E Is =

{
1
3 Ec I h

tr
, circular bearing,

1
5 Ec I h

tr
, strip bearing.
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Under the kinematic assumptions of this beam theory, the downward deflection of the top of the
composite column representing the isolator and the resulting external work done by the applied load P
are, respectively,

v(x)=
1
2

∫ h

0

(
2v′ψ −ψ2)dx, Wext = − Pv(x)= −

P
2

∫ h

0

(
2v′ψ −ψ2)dx .

The internal stored energy of the column is given by

Wint =
1
2

∫ h

0
N (x)u′dx +

1
2

∫
M(x)ψ ′(x)dx +

1
2

∫
V (x)

(
v′(x)−ψ(x)

)
dx .

Application of the method of virtual work to the total work Wint + Wext with respect to the virtual
displacements δu(x), δv(x), δψ(x) leads to the following set of equilibrium equations

N ′
= 0, V ′

− Pψ = 0, M ′
+ V + P(v′

−ψ)= 0. (1)

The boundary conditions for Equations (1) are shown in Figure 1; the external loads applied to the column
at x = 0 are the axial load P (or T ), a transverse load Ho and a moment Mo.

From Equation (1)1 we have N = const = − P . Integrating the second equation using the consistent
boundary condition gives

V − Pψ = − Ho, (2)

and inserting V = Pψ − Ho into the third equation gives M ′
+ Pv′

= Ho, which can be integrated to

M + Pv = Mo + Pvo + Hox, (3)

where vo = v(0). These two integrated versions of equilibrium equations (2) and (3) are the starting point
for the stability analysis of the isolator. When the constitutive equations are included, these become

E Isψ
′
+ Pv = Pvo + Mo + Hox, G As(v

′
−ψ)− Pψ = − Ho.

Figure 1. Geometry and loads in theoretical study of buckling.
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The second equation above can be used in two ways to give a pair of uncoupled equations for v and ψ .
First we can write ψ in terms of v in the form ψ = (G Asv

′
+ Ho)/(G As + P), and substitute ψ ′ into the

first equation to get

E Is
G As

G As + P
v′′

+ Pv = Pvo + Mo + Hox . (4)

We can also express v in terms of ψ as v′
= (P +G As)ψ/(G As)−(Ho)/(G As), which, when substituted

into the first, leads to

E Is
G As

G As + P
ψ ′′

+ Pψ = Ho. (5)

Thus, Equations (4) and (5) for two kinematic variables have similar form, but different right hand sides.
The most general form of solution, taking into account the connections between v and ψ , is

v = A cosαx + B sinαx + vo +
Mo

P
+

Ho

P
x, ψ = αβB cosαx −αβA sinαx +

Ho

P
,

where A and B are constants of integration and α, β are given by

α2
=

P(P + G As)

E Is G As
, β =

G As

P + G As
.

These equations are now used to predict the buckling behavior of a bearing in an isolation system. As
shown in Figure 2, the isolator is constrained against displacement and rotation at the bottom, against
rotation at the top, but is free to move laterally at the top, which give boundary conditions v(0) = 0,
ψ(0)= 0, ψ(0)= 0, Ho = 0 leading to αh = π . The deformed configuration becomes

v(x)=
1
2δh

(
1 − cos

πx
h

)
, ψ(x)=

1
2αβδh sin

πx
h
.

Figure 2. Boundary conditions for isolation bearing under a vertical load P . The bear-
ing buckles with no lateral force constraint, but is prevented from rotating at each end.
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The above result α2
= π2/h2 means that

P(P + G As)

G As
=
π2 E Is

h2 = PE ,

where PE is the Euler load for the column without shear deformation. Denoting G As by PS , the above
equation for the buckling load can be recast as a quadratic P2

+ P PS − PS PE = 0, which gives two
critical loads: a compression load PC and a tension load PT

PC =

−PS +

√
P2

S + 4PS PE

2
, PT =

−PS −

√
P2

S + 4PS PE

2
. (6)

For all reasonable values of the shape factor S, the PS is so much less than PE that it can be neglected,
and the two critical loads can be approximated by

PC,T = ±

√
PS PE . (7)

The significance of the tensile critical load becomes clear when we replace the generic load P in the
formulae for α and β by −T , with the assumption T ≥ G As , giving

α2
=

T (T − G As)

E Is G As
, β = −

G As

T − G As
,

showing that the buckled shape in tension v(x) is the same as that in compression, but the rotation ψ(x)
is reversed, and the central layers of the bearing are rotated in the direction that facilitates the upward
movement of the top through a rotated shear deformation. Because of the natural symmetry of shear,
there is an intrinsic symmetry here between compression and tension.

4. Modification for change in length of column prior to buckling

One interesting aspect of the comparison between the buckling loads predicted by the theory and those
obtained by the numerical simulation is the fact that while the theory has the buckling load in tension
always slightly higher than that in compression for the same shape factor (the difference is G As), in the
numerical results the buckling load in compression is always higher than that in tension. The reason for
this is that theory neglects the change in length due to the axial load, whereas in the simulation when
buckling is initiated, the bearing has shortened or lengthened. For smaller values of the shape factor, the
changes in length can be significant.

Using the approximation G As � P and the values of G As , E Is for a long strip bearing, the critical
pressures pcrit = P/A are given in the theoretical analysis by pcrit/G = ±2πbS/(

√
15tr ), where tr is the

total thickness of rubber in the bearing. To compare the theory with the simulation we replace tr by

tr = to
r

(
1 ∓

pcrit

4GS2

)
,

where the minus sign is for compression and the plus for tension. The buckling loads are then given by

pcrit

G
= ±

2πbS
√

15to
r

(
1 ∓

pcrit

4GS2

) .
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Figure 3. Theoretical buckling loads with and without global bearing deformation:
Equation (6) versus (8); solid line corresponds to load approximation from (7).

Solving the last expression for pcrit/G and taking into account that P = p A leads to

P∗

C,T

G A
= ±2S2

{
1 −

√
1 ∓

2πb

St0
r

√
15

}
. (8)

Compression and tension critical loads computed by means of Equation (8) are presented in Figure 3.
It is easy to see that the value in compression is always larger than that in tension. The difference

between |Pcrit/G A| in compression and tension is approximately 2(2π2b2)/(15to 2
r ). For the case of the

numerical models studied we have b = to
r . The difference is about 8/3 and, thus, becomes less important

with increasing S.

5. Numerical modeling of buckling in tension

In order to verify the tension buckling predicted by the simple analytical theory we use the general
purpose finite element ABAQUS application [ABAQUS 2001] to model a steel-reinforced bearing and
to study the buckling behavior in both tension and compression [Kelly and Takhirov 2004].

5.1. Modeling details. Five finite element models of a bearing are created. These numerical models
have the same width and total rubber thickness, and steel shims have the same thickness also. The
only difference between them is the shape factor of the bearing. The total thickness of rubber layers
is the same in each model, but the thickness of a single rubber layer varies from model to model. The
correspondence between the model name and the shim thickness is given in Table 1.

The finite element analysis on the elastomeric bearings is restricted to plane strain. The Oy-axis of
the coordinate system is a vertical axis that extends across the steel shims and rubber layers, while the
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Model
Steel shim Total rubber

Width
Rubber layer

Shape factorthickness thickness thickness

Model 1 2.60 80.01 160.02 5.72 14

Model 2 2.60 80.01 160.02 8.00 10

Model 3 2.60 80.01 160.02 11.43 7

Model 4 2.60 80.01 160.02 16.00 5

Model 5 2.60 80.01 160.02 26.67 3

Table 1. Numerical models with various shape factors. All lengths in mm.

horizontal axis Ox corresponds to the lateral direction of the bearing as shown in Figure 4. Generally
steel-reinforced rubber bearings have a hole in the middle of the steel plates and a rubber cover on the
traction-free sides of the bearing. In order to create a model close to the theoretical one given earlier, the
hole in the middle and the rubber cover are not included in the consideration.

In the analysis the end plates of the bearing are assumed to be undeformable. Therefore, in the
numerical model, the top rubber layer of the bearing is connected to an absolutely rigid surface with the
reference point in the middle at which the vertical load is applied. The bottom surface of the bearing
is fixed. Two vertical sides of the bearing model are traction-free. The top surface is restrained against
rotation around the Oz-axis (out of the plane), but is free to move horizontally.

Linearly elastic material properties are assumed for the steel plates with Young’s modulus and Pois-
son’s ratio equal to 200, 000 MPa and 0.3, respectively. Rubber materials have very little compressibility
compared to their shear flexibility; these materials are usually modeled by a hyperelastic material model.
ABAQUS [ABAQUS 2001] has a special family of hybrid elements to model the fully incompressible
behavior seen in a rubber material. The following assumptions are made in modeling a rubber material:
(1) elastic, (2) isotropic, (3) (almost) incompressible, and (4) includes nonlinear geometric effects.

Figure 4. Geometry and coordinate axes of numerical simulation models.
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Rubber model C10 C01 C20 C11 C02 D1

Polynomial 193.4 −0.1 −0.8 0.2 0 0

neo-Hookean 345.0 0 0 0 0 9.7 × 10−7

Table 2. Material parameters for two rubber models. Ci j in kPa, D1 in kPa−1.

Hyperelastic materials are described in terms of a strain energy potential U , which defines the strain
energy stored in the material per unit of reference volume in the initial configuration as a function of the
strain at that point in the material. The rubber is selected as a polynomial hyperelastic material of the
second order. In this case, the strain energy potential has the form

U =

2∑
i+ j=1

Ci j (I1 − 3)i (I2 − 3) j
+
(J el

− 1)2

D1
,

where Ci j and D1 are the material parameters, I1 and I2 are the first and the second invariants of the
deviatoric strain, and J el is the elastic volume ratio.

Two rubber models are included in the consideration: a fully incompressible (polynomial) model, and
an almost incompressible (neo-Hookean) model. The material parameters of the rubber can be expressed
in terms of initial shear modulus G, and initial bulk modulus K via G = 2(C10 + C01), K = 2/D1. The
values of the material parameters for both rubber models are presented in Table 2. Since D1 is not equal
to zero for the neo-Hookean model, this model allows some compressibility in the rubber material.

A supplemental study on the properties of the rubber models is conducted on a rubber cylinder and a
rubber layer. The cylinder is used for the rubber material study in tension and compression. The layer,
representing one single layer of the rubber locked between two rigid horizontal surfaces, is used to study
behavior of the rubber material in shear with no vertical load. While both rubber materials are linearly
elastic up to about 250% strain in shear, they exhibit a significant nonlinearity in tension or compression
as shown in Figure 5.

5.2. Critical buckling load in compression and tension. The model is studied by a classical buckling
analysis scheme available in ABAQUS. First the buckling mode of each bearing model is determined.
Very small imperfections of about 1% of the steel layer thickness are introduced in the model; they
are based on the buckling mode obtained in the buckling mode analysis. The postbuckling behavior is
followed up to about 30% shear deformation.

The buckling analysis of the numerical bearing models reveals the following results. All models
have significant horizontal drift caused by a large vertical load. The curves of the compression vertical
load versus horizontal drift for all numerical models are shown in Figure 6. The critical buckling load
increases with the increase in the shape factor. All plots show similar behavior with the majority of the
change happening up to a 3% deformation after which they flatten out when the bearing is buckling.
Figure 7 presents the corresponding curves of buckling in tension. The critical load is again dependent
on the shape factor increasing with it. The buckling in tension is more sudden, so the point at which
buckling begins moves very close to the vertical axis, and the shear when the buckling starts in tension
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Figure 5. Properties of rubber material in (top) shear and (bottom) compression/tension
deformation (polynomial rubber material).

can be as low as 0.2%; see Model 5 with the smallest shape factor. Increase in the shape factor moves
this point closer to the 3% critical strain obtained for the compression buckling.

Theoretical critical force versus the shape factor for the corresponding numerical model was discussed
earlier; see Figure 3. Theoretical buckling compression load is always less than the absolute value of the
tension load for the simple theoretical solution presented in Equation (6), which is not consistent with
the numerical analysis results shown in Figure 8. The critical load determined by Equation (8) takes into
account shortening or elongation of the bearing in the vertical direction. Therefore, it correlates better
with numerical results. As the latter show, the compression buckling load is always greater than the
absolute value of the tension buckling load shown in Figure 8 by dashed and dot-dashed lines. Figure 8
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Figure 6. Buckling diagram for all models (compression).
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Figure 7. Buckling diagram for all models (tension).

also shows no significant differences between critical buckling load for incompressible (polynomial) and
compressible (neo-Hookean) rubber materials. As a typical result, Figures 9–12 show deformed shapes
of two numerical models in compression and tension.

The numerical results on buckling behavior of the bearing have satisfactory correlation with the the-
oretical solutions presented earlier. The theoretical study and the finite element analysis lead to the
following conclusions. The critical buckling load increases with the shape factor; this behavior is almost
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Figure 9. Buckled shape and Mises stresses for Model 2 (compression).

linear as predicted by the theory. The numerical compression buckling load is almost always higher than
the theoretically estimated one for all bearings. The compression buckling load is always higher than the
absolute value of the corresponding tension load due to nonlinear geometry effects noted for the simple
rubber cylinder model. The numerical models have different postbuckling behaviors in compression and
tension. In compression, the vertical load remains almost the same after the buckling occurs, and the
bearing deflects horizontally. In contrast, the vertical load in tension slowly decreases with horizontal
deflection.
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Figure 10. Buckled shape and Mises stresses for Model 2 (tension).
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Figure 11. Buckled shape and Mises stresses for Model 5 (compression).
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Figure 12. Buckled shape and Mises stresses for Model 5 (tension).
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6. Conclusions

We have shown that numerical analysis confirms that the buckling of a bearing in tension is not an artifact
of the way the theory has been set up. Of course, it must be acknowledged that a bearing will experience
cavitation before the buckling load can be achieved. However, the theory shows that under high seismic
loading, the isolators that experience tension will avoid the possibility of cavitation since the tension
loading due to the overturning of the structure is accompanied by large lateral shear. Moreover, due to
the interaction between shear and the vertical stiffness, the tension stresses are much less than they would
be if the tension force were applied in the absence of shear.

It has been the purpose of this paper to demonstrate that the condition of the isolator in tension and
shear is not as dire as has been feared. The analysis has shown that the mechanics of the isolator in
tension are the mirror image of those for the isolator in compression. In particular, when the isolator
is in compression below the buckling load but laterally displaced, the layers in the center experience a
rotation which gives the vertical load a component along the layer and turns the compression displacement
into a shear deformation. In tension the rubber layers in the center of the bearing experience a rotation
in the opposite direction which allows a shear deformation caused by the tensile force and permits the
top of the isolator to move upwards by a much larger displacement than that which could be sustained
in pure tension with no lateral displacement. The elastomer can sustain only small strains in the state of
triaxial stress generated by pure tension on a multilayer isolator with a large shape factor, but can sustain
shear strains on the order of 500–600%. Thus the simultaneous occurrence of tension and shear allows
the isolator to avoid the damaging effects of cavitation.
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REPRESENTATIVE VOLUME ELEMENT AND EFFECTIVE ELASTIC
PROPERTIES OF OPEN CELL FOAM MATERIALS WITH RANDOM

MICROSTRUCTURES

SERGEY KANAUN AND OLEKSANDR TKACHENKO

This work is devoted to the problem of the numerical simulation of effective elastic properties of open-
cell foam materials. The Laguerre tessellation procedure is used for the construction of skeletons of
random foam microstructures with prescribed distributions of cell diameters. A four-parametric approxi-
mation of the ligament shapes in the open-cell foams is proposed. A version of the finite element method,
based on the Timoshenko beam finite element, is developed for calculating stresses and strains in the
foam ligaments and the solution of the homogenization problem. The size of the representative volume
element for reliable calculations of the effective elastic properties of the foam materials is evaluated on
the basis of a series of numerical experiments. The dependences of the effective elastic properties of the
open-cell foams on cell size distributions and on ligament shapes are obtained and analyzed.

1. Introduction

Physical and mechanical properties of carbon foam materials have been extensively studied in recent
decades. Interest in these very light and highly thermoconductive materials has increased because of
many important areas of their applications. A typical microstructure of the open-cell foams is shown
on the left-hand side of Figure 1. It consists of a set of ligaments (fiber like elements) connected to a
number of nodes that are, in fact, irregular lumps. The cross section of a typical ligament is presented
on the right-hand side of Figure 1. For applications, it is important to predict the dependence of a
foam material’s mechanical and physical properties on the details of its microstructure. Effective elastic
properties of foam-like systems have been studied by many authors [Gibson and Ashby 1982; Warren and
Kraynik 1997; Christensen 2000; Roberts and Garboczi 2002; Gong et al. 2005]. Analytical equations
for the Young moduli and the Poisson ratios of such materials were obtained for regular structures, and
approximation of an actual random foam structure by a regular one allows us to describe experimental
behavior of the effective elastic properties of such materials in some region of microstructural parameters
[Gong et al. 2005]. Nevertheless, in the framework of the regular approach, many important details of
mechanical and physical behavior of random foams cannot be described (see discussions of this problem
in Roberts and Garboczi [2002] and Zhu et al. [2000]).

In the works of Roberts and Garboczi [1999; 2001; 2002], Zhu et al. [2000], and Kadashevich and
Stoyan [2005], elastic properties of the open-cell foams by direct numerical simulations of the elastic

Keywords: open-cell foams, representative volume element, random space tessellation, homogenization problem, finite
element method, elastic constants.
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Figure 1. Scanning electron microscopy image of an open-cell carbon foam microstruc-
ture (left), and the cross section of a typical ligament (right).

fields inside a representative volume element (RVE) of the foam material. The process of numerically
simulating the effective elastic properties of open-cell foams consists of the following steps: First, the
microstructure (skeleton) of the foam material is constructed using statistical models of the actual foam
microstructure. As a rule, the Voronoii tessellation procedure is used to produce a set of polyhedron cells
inside the chosen RVE. The geometry of the open-cell foam in the RVE is defined by using the edges
of the Voronoii polyhedra as the axes of the ligaments, and by choosing a certain approximation of the
ligament shapes. Next, the finite element technique is applied for calculation of stresses and strains in the
ligaments for given boundary conditions on the surface of the RVE. Finally, the values of the effective
elastic constants of the foam are obtained by averaging detailed strain and stress fields over the RVE.

The first problem that must be addressed in carrying out numerical simulations is the appropriate
choice of RVE size. If the RVE is a cube, one has to point out the number of cells that should be taken
inside this cube by the numerical simulations in order to obtain reliable values for the effective elastic
constants of the foam material. Usually, the number of cells in the RVE is restricted by capacities of
available computers and software. Standard finite element packages permit the consideration of RVEs
that contain hundred of cells. Nevertheless, in some works (see [Kadashevich and Stoyan 2005]) the
authors came to the conclusion that the number of cells in the RVE should be more than a thousand in
order to obtain reliable values of the effective elastic constants.

Another problem that must be addressed in carrying out numerical simulations of the effective prop-
erties of foams is the construction of the foam microstructures with the law of the cell size distribution
that corresponds to the one observed in the actual foams. In fact, the Voronoii tessellation procedure
does not permit the simulation of microstructures with predetermined distributions of the cell sizes. To
be exact, it is impossible to point out the positions of seed points in the RVE that produce the Voronoii
polyhedra with the prescribed distribution of diameters.

The influence of ligament shape on the properties of open-cell foams is another important problem
that has not been considered sufficiently in the literature. The ligaments in the actual foams have rather
complex geometry. An adequate description of this geometry, and an analysis of its influence on the
effective properties, are important tasks of numerical simulations.

The paper is focused on the above-mentioned problems, and its structure is as follows:

(1) In Section 2, the problem of computer simulation of skeletons of the open-cell foams is considered.
We use the Voronoii and Laguerre tesselation procedures in order to construct a set of cells inside
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a cubic RVE. The Laguerre procedure allows us to simulate foam skeletons with a given known
distribution of cell diameters.

(2) In Section 3, an analytical four-parametric approximation of the ligament form is proposed. This
approximation reflects the most important features of the ligaments in actual foams.

(3) In Section 4, a version of the finite element method based on the Timoshenko beam theory is
developed for calculation of stresses and strains in the ligaments of the open-cell foam structures.
In this method, every ligament is considered as one finite element (super element), and it results that
the RVE with several thousands of cells may be considered. The appropriate size of the cubic RVE
is assessed in Section 5. Performing series of numerical experiments we show that the number of
cells in the RVE should be about 900–1000 in order to obtain reliable values of the effective elastic
constants of the open-cell foams.

(4) The influence of the ligament form and the cell size distribution on the effective elastic properties
of foams is studied in Section 6. Some details of the proposed method and its possible area of
application are discussed in the conclusion.

2. Computer simulation of skeletons of open-cell foam materials

A conventional method for carrying out computer simulations of the microstructures of open-cell foams,
shown in Figure 1, is based on the Voronoii tessellation algorithm. In our study, this algorithm is used in
the following specific form. Let us consider a cube V : {|x1|< 1, |x2|< 1, |x3|< 1} centered at the origin
of the Cartesian coordinate system, (x1, x2, x3). First, a random set S(0,0,0) of the so-called seed points,
homogeneously distributed inside this cube, is generated. After that, the sets S(i, j,k) (i, j, k = 0,±1)
that have mirror-like symmetry to the set S(0,0,0) with respect to the planes xi = ±1 (i = 1, 2, 3), are
constructed. For instance, the set S(1,0,0) is mirror-like to the set S(0,0,0) with respect to the plane x1 = 1,
the set S(0,1,0) is symmetric to the set S(0,0,0) with respect to the plane x2 = 1, etc. The union of these
sets S̄ = S(0,0,0) ∪ S(1,0,0) ∪ . . . ∪ S(0,0,−1) is the set of seed points under consideration. The Voronoii
polyhedron that corresponds to a seed point x (i) with the coordinates (x (i)1 , x (i)2 , x (i)3 ) consists of the points
of three-dimensional space that are closer to the point x (i) than to any other seed point x ( j). The Voronoii
polyhedra that correspond to the seed points of the set S(0,0,0) perform a tesselation of the original cube
V . Because of the mirror symmetry of the sets S(i, j,k) (i, j, k = 0,±1) with respect to S(0,0,0), the borders
of the cube V belong to the polyhedron surfaces. For the realization of the Voronoii tesselation procedure,
the algorithm proposed by Tenemura et al. [1983] was adopted in this work.

A typical polyhedron obtained by the Voronoii tessellation procedure is shown in Figure 2. The edges
of this polyhedron compose the ligament axes of the future foam microstructure, and the polyhedron
vertices are the nodes where the ligaments are connected. Note that very often the Voronoii tessellation
produces polyhedra whose vertices are situated too closely to each other (e.g. the set A of nodes in Figure
2), and the lengths of the ligaments that connect these close nodes are very short. Because every ligament
has a finite volume, these short ligaments turn out to be inside other ligaments that connect more distant
nodes. It means that the obtained tessellation model should be altered (cleaned): the clusters of the nodes
that are closer to each other than a characteristic size of the ligament cross-sections should be joined into
one node. An additional reason for such a procedure is that the elastic deformation of very short ligaments
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Figure 2. A typical polyhedron obtained by the Voronoii 3D-space tesselation process.

cannot be described by the beam theory that is used in the finite element technique adopted in this study
(Section 4). If the number of such short ligaments is large, the error of the calculation of elastic fields
based on the beam finite elements may be essential.

In Figure 3, the Voronoii tessellation of a cube with two hundred cells is presented. The seed points
corresponding to these structure were homogeneously distributed inside the cube under an additional
condition that the distance between two different points x (i) and x ( j) should be more than 0.3. The
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Figure 3. The Voronoii tesselation of the cube (left) and the same structure after elim-
ination of two small polyhedron surfaces (right). (In the regions 1 and 2 in the right
picture, small polyhedron surfaces are eliminated).
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images of the tessellation before and after the ”cleaning” procedure are presented in the left and right
hand sides of Figure 3. In the right hand side of Figure 3, the nodes that are closer than 0.05 are joined
into one node. If the original left hand side structure consists of 3855 ligaments with the maximal and
minimal lengths 0.5559 and 1.26 · 10−6 and the mean length 0.138, the final structure contains 1971
ligaments of the maximal and minimal lengths 0.557 and 0.05, and the mean ligament length is equal to
0.205. The difference between two microstructures may be observed in regions 1 and 2 in the left and
right hand sides of Figure 3.

The distribution function f (d) of the diameters d of the cells shown in Figure 3 is presented in Figure
4. Note that this distribution is difficult to control in the framework of the Voronoii tessellation procedure.
In actual carbon foam materials, however, the cell size distributions are rather specific. In many cases, the
experimental histograms of the cell diameters are close to a linear distribution law: f (d)≈ ad , where a
is an appropriate constant (K. Lafdi, 2004, private communication). The diameter d of a cell is calculated
from the equation d = 2 3

√
3v/(4π), where v is the volume of the cell.

For simulation of the microstructure of the foam materials with a prescribed distribution of cell di-
ameters, the so-called Laguerre tesselation procedure may be used. The application of this procedure
consists of two steps. First, a set of balls of random diameters d(i), whose distribution coincides with
the distribution of cell diameters of the simulated foam, is generated. After that, these balls are closely
packed inside the RVE (cube V ). As a result, we obtain a set of ball centers x (i) and a set of diameters
d(i) associated with these centers. Next, this information is used for the Laguerre tesselation of the cube
V . Following Aurenhammer and Klein [2000], let us consider a ball B(i) of the diameters d(i) centered
at the point x (i). A positive scalar t (x (i), x),

t (x (i), x)=

√
|x (i) − x |2 −

(
d(i)

2

)2

, (1)

is the distance from a point x (x /∈ B(i)) to the surface S(i) of B(i) along the tangent line to this surface
(see Figure 5). The i th Laguerre polyhedron consists of the union of the points of the i th ball and the
points x for which the parameter t (x (i), x) is less than such a parameter t (x ( j), x) for any other j th ball,
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Figure 4. A typical histogram of the cell diameters obtained after the Voronoii tessela-
tion process.
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Figure 5. The Laguerre tesselation algorithm; the point x belongs to the i th Laguerre
polyhedron if the parameter t is smaller for the point x (i) then for any other seed point
x ( j).

i 6= j . It is possible to show that the common border of the Laguerre polyhedron that correspond to two
neighbor balls i and j centered at the points x (i) and x ( j), |x (i)− x ( j)

| ≥ (d(i)+ d( j))/2, is orthogonal to
the interval connecting the centers of these balls, and that the border plane intersects this interval in the
proportion s(i)/s( j),

s(i)

s( j) =
4|x (i) − x ( j)

|
2
+
(
d(i)

)2
−
(
d( j)

)2

4|x (i) − x ( j)|2 +
(
d( j)

)2
−
(
d(i)

)2 . (2)

The intervals s(i) and s( j) are indicated in Figure 5, and the dashed line in this figure is the border of
the Laguerre polyhedra. It is shown in [Aurenhammer and Klein 2000] that all Laguerre polyhedra are
convex and span three-dimensional space.

The algorithm of packing used in this work is based on the following procedure. We start with the
first ball centered at the origin, and the center x (i) of the i th ball is defined such that x (i) has minimal
distance from the center of the cube, and |x (i) − x ( j)

| ≥ (d(i) + d( j))/2 for j = 1, 2, 3, . . . , i − 1. The
number of the balls is increased until it is impossible to find a center for the next ball inside the cube.

The algorithm of Tenemura et al. [1983] is also adopted for carrying out the Laguerre tesselation
procedure.

Figure 6 presents the histograms of three distribution functions f (d) of the diameters of the Laguerre
polyhedra for different distributions of the diameters of the initial balls. The line with black rhombs
corresponds to a set of balls of approximately the same diameters, the line with triangles corresponds
to a homogeneous distribution of the ball diameters in the region (0.5 〈d〉 , 1.5 〈d〉), and the line with
squares corresponds to a linear distribution of the ball diameters in the interval (0.3 〈d〉 , 1.2 〈d〉) . Here
〈d〉 is the mean value of the ball diameters.

3. Approximation of the form a typical ligament in the open-cell foams

As seen from Figure 1, the cross-section of a typical ligament has a quasitriangular form (see also the
discussion of the forms of ligaments in carbon foams in [Gong et al. 2005]). In this study, we treat a
typical ligament as a direct beam with a quasitriangular cross-section that changes along the ligament
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Figure 6. The distribution function of cell diameters after the Laguerre tesselation for
random packing of spheres of approximately the same diameter (line with black rhombs),
for packing of spheres with the homogeneous distribution of the diameters in the interval
{0.5 〈d〉 , 1.5 〈d〉} (line with triangles), and for packing of spheres with linear distribution
of diameters on the interval {0.3 〈d〉 , 1.2 〈d〉} (line with squares).

axis. Taking into account that function f (ζ ) of a complex variable ζ ,

f (ζ )= R
(

1
ζ

+
ζ 2

a1

)
, a1 ≥ 2,

maps a unit circle in the ζ -plane into a quasitriangular region in the w= f (ζ )-plane, we define the border
of the ligament cross-section by the equations

y(ϕ, x)= R(x)
(

cos(ϕ)+
cos(2ϕ)

a1

)
,

z(ϕ, x)= R(x)
(

− sin(ϕ)+
sin(2ϕ)

a1

)
.

(3)

Here ϕ is the angle parameter, 0 ≤ ϕ < 2π, (y, z) are the Cartesian coordinates in the plane of the
ligament cross-section, and the coordinate x is directed along the ligament axis. The function R(x) that
defines the change of the ligament along its axis is taken in the form

R(x)= a2 [1 − a3ξ(1 − ξ)] , ξ =
x
l
, 0< x < l, (4)

which reflects the experimental fact that the ligaments are thinner in the middle region than in the regions
near their ends: x = 0, l.

Parameters a1, a2, a3 and l define the global shape of the ligament. The cross-sections of the ligament
by the plane x3 = 0 is presented in Figure 7 for the parameters a2 = 0.3 and a1 = 2, 3, 10. The shape
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Figure 7. Ligament cross-sectional area different values of the parameter a1 in Equation
(3), a2 = 0.3, ξ = 0.

of a typical ligament that corresponds to Equation (3) and Equation (4) is presented in Figure 8 for the
parameters a1 = 2.5, a2 = 0.3, a3 = 0.4.

The proposed approximation allows us to calculate the basic geometrical characteristics of the ligament
in closed analytical form. For instance, the area S of the cross-section of the ligament is

S(a1, a2, a3, ξ)= πa2
2
(a2

1 − 2)
a2

1

[
1 − 4a2

3ξ(1 − ξ)
]2
. (5)

The main moment of inertia J of the cross-section takes the form

J (a1, a2, a3, z)= πa4
2
(a4

1 − 2a2
1 − 2)

4a4
1

[
1 − 4a2

3ξ(1 − ξ)
]4
. (6)

The volume Vl of the ligament is

Vl(a1, a2, a3)= πa2
2l
(a2

1 − 2)
15a2

1
(15 − 20a3 + 8a2

3). (7)
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Figure 9. A typical node of the foam structure where four ligaments intersect.

A typical element of the microstructure of the foam material consists of four ligaments connected in
a node. Such an element is shown in Figure 9. For calculating the volume of the hard phase in the RVE,
one has to take into account the volume Vint of the intersection of the ligaments in the nodes. The volume
Vint may be evaluated approximately as the sum of four pyramids with bases of area Sint , and we can
write

Sint = S(a1, a2, a3,
a2

l
), Vint =

4
3

a2Sint . (8)

Here the function S(a1, a2, a3, ξ) is defined in Equation (5). Finally, the volume Vh of the hard phase
in the RVE may be evaluated from the equation

Vh = Nl Vl−2a2 + NnVint .

Here Nl is the number of the ligaments, Nn is the number of the nodes in the RVE, Vl−2a2 is the
volume of the ligament without two zones of length a2 near its ends

Vl−2a2 = πa2
2l
(a2

1 − 2)
15a2

1
(1−2λ)[15+4a3(2a3 −5)−8a3(1−λ)λ (5 − 2a1 − 6a1λ(1 − λ))], λ=

a2

l
.

Thus, the geometrical structure of the open-cell foam inside a cubic region V is defined if the coordi-
nates of all the nodes and connections between them are indicated as well as the parameters a1, a2, a3 of
all the ligaments that perform such connections.

4. The finite element method

The version of the finite element method used in this work for calculating elastic fields in the ligaments
of open-cell foams is based on a special beam element. The geometry of a typical beam was described
in the previous section, and its material is assumed to be elastic with a Young modulus E and Poisson
ratio ν. The Timoshenko beam model is used to describe the deformation of the beam element.
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Let us consider a beam element of length l, and introduce a local Cartesian coordinate system (x, y, z)
with the origin at the left end of the beam and the x-coordinate directed along the beam axis. The
ends of the beam (nodes) are labeled with numbers 1 and 2. The vectors of the nodal displacements
{u(i)x , u(i)y , u(i)z } and rotations {θ

(i)
x , θ

(i)
y , θ

(i)
z } compose the generalized vector of displacements

d(i) = {u(i)x , u(i)y , u(i)z , θ
(i)
x , θ (i)y , θ

(i)
z }

T

of the i th node (i = 1, 2). The two vectors
{
d(1),d(2)

}T completely define the deformation of the beam.
Hence, the degrees of freedom per node are equal to 6 (3 displacements and 3 rotations). The vectors of
the nodal forces { f (i)x , f (i)y , f (i)z } and moments {m(i)

x ,m(i)
y ,m(i)

z } compose the vector of generalized force
p(i) = { f (i)x , f (i)y , f (i)z ,m(i)

x ,m(i)
y ,m(i)

z }
T . Here {}

T is the transposed vector.
We derive the beam stiffness matrix by using the direct method of Cook et al. [1989]. The stiffness

matrix K of the beam element is defined by the equation

K
{

d(1)

d(2)

}
=

{
p(1)

p(2)

}
, K =

[
K11 K12

K21 K22

]
. (9)

Here Ki j are the block elements of the stiffness matrix that are constructed below. There are two
vector equations of equilibrium connecting the nodal forces and moments:

p(1) + R12p(2) = {0},

R21p(1) + p(2) = {0},
(10)

where matrices R12 and R21 have forms

R12 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 L 0 1 0
0 −L 0 0 0 1


, R21 =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −L 0 1 0
0 L 0 0 0 1


, R12 = R−1

21 .

The strain energy U of the Timoshenko beam can be expressed as follows [Pilkey et al. 2003]

U =
1
2

(∫ L

0

N 2(x)
E S(x)

dx +

∫ L

0

M2
y (x)

E J (x)
dx +

∫ L

0

M2
z (x)

E J (x)
dx

)

+
1
2

(∫ L

0

M2
x (x)

µ Ĵp(x)
dx +

∫ L

0

αs V 2
y (x)

µS(x)
dx +

∫ L

0

αs V 2
z (x)

µS(x)
dx

)
,

where S, J are the area and the main moment of inertia of the beam cross-section, respectively (see
Section 3), Ĵp is the corrected polar moment of inertia that results from the solution of the torsion
problem for a beam with a noncircular cross section

Ĵp = πa4
2(1 − 4a−2

1 + 2a−4
1 )(1 − 4a2

3ξ(1 − ξ))4,
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and αs is the shear deformation coefficient [Pilkey et al. 2003, p. 750]. Fx , Fy , Fz are internal axial
and shear forces, Mx , My , Mz are internal torque and bending moments.

Let us fix displacements at node 2 (d(2)= 0) and apply the force p(1) to node 1. In this case, the
internal forces in the beam are

Fx(x)= − f (1)x , Fy(x)= − f (1)y , Fz(x)= − f (1)z ,

Mx(x)= − m(1)
x , My(x)= − m(1)

y − f (1)z x, Mz(x)= − m(1)
z + f (1)y x . (11)

The Castigliano theorem
(
∂U
∂ p = d

)
together with equilibrium Equation (10) give us the equations

S11p(1) = d(1), R21p(1) + p(2) = {0}, (12)

where S11 is the flexibility matrix

S11 =



s11 0 0 0 0 0
0 s22 0 0 0 −s26

0 0 s33 0 s35 0
0 0 0 s44 0 0
0 0 s35 0 s55 0
0 −s26 0 0 0 s66


. (13)

The components si j of this matrix are defined by the equations

s11 =
L
E

∫ 1

0

1
S(ξ)

dξ, s22 = s33 =
L3

E

∫ 1

0

ξ 2

J (ξ)
dξ +

αs L
µ

∫ 1

0

1
S(ξ)

dξ,

s44 =
L
µ

∫ 1

0

1
Ĵp(ξ)

dξ, s55 = s66 =
L
E

∫ 1

0

1
J (ξ)

dξ,

s35 =
L2

E

∫ 1

0

ξ

J (ξ)
dξ, s26 =

L2

E

∫ 1

0

ξ

J (ξ)
dξ, ξ =

x
L
. (14)

Next, we fix displacements at node 1
(
d(1)= 0

)
and apply the force p(2) to node 2. In this case, the

internal forces in the beam are

N (x)= f (2)x , Vy(x)= f (2)y , Vz(x)= f (2)z ,

Mx(x)= m(2)
x , My(x)= m(2)

y − f (2)z (L − x), Mz(x)= m(2)
z + f (2)y (L − x). (15)

The Castigliano theorem with the equilibrium Equation (10) give

S22p(2) = d(2), p(1) + R12p(2) = {0}, (16)
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where S22 is the flexibility matrix

S22 =



s11 0 0 0 0 0
0 s22 0 0 0 s̃26

0 0 s33 0 −̃s35 0
0 0 0 s44 0 0
0 0 −̃s35 0 s55 0
0 s̃26 0 0 0 s66


, (17)

s̃35 = s̃26 =

∫ L

0

L − x
E J (x)

dx = Ls55 − s35.

Finally, the blocks of stiffness matrix K in Equation (9) are defined by the equations

K11 = S−1
11 , K21 = −R21K11,

K22 = S−1
22 , K12 = −R12K22, (18)

K11 =



k11 0 0 0 0 0
0 k22 0 0 0 k26

0 0 k33 0 −k35 0
0 0 0 k44 0 0
0 0 −k35 0 k55 0
0 k26 0 0 0 k66


, K12 =



−k11 0 0 0 0 0
0 −k22 0 0 0 k26

0 0 −k33 0 −k35 0
0 0 0 −k44 0 0
0 0 k35 0 d55 0
0 −k26 0 0 0 d66


,

K21 = KT
12, K22 =



k11 0 0 0 0 0
0 k22 0 0 0 −k̃26

0 0 k33 0 k̃35 0
0 0 0 k44 0 0
0 0 k̃35 0 k55 0
0 −k̃26 0 0 0 k66


,

k11 = s−1
11 , k22 = k33 = dzs55,

k44 = s−1
44 , k55 = k66 = dys22,

k26 = k35 = ds26, k̃26 = k̃35 = ds̃26,

k55 = d(Ls35 − s33), k66 = d(Ls26 − s22),

d = (s22s66 − s2
26)

−1. (19)

By the calculation of the elastic energy of the open-cell structures, there appears a problem of ac-
counting for the elastic energy of the regions of the beam intersections (nodes). The elastic energy of the
node regions increases together with the volume concentration of the hard phase of the foams. In this
study, we suppose that the nodal force vector p corresponding to the considered beam does not vary in
the node region, and coincides with its value at the point of the beam connections. Let the node have the
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coordinate x = l in the local coordinate system, and the characteristic size of the node region be dl. The
components of the strain tensor in this region are calculated as follows

εxx =
∂ux

∂x
=

N (l)
E S(l)

, γxy = αs
Fy(l)
µS(l)

, γxz = αs
Fz(l)
µS(l)

, (20)

and the parameters of rotation angle altering are

dθx

dx
=

Mx(l)
µ Ĵp(l)

,
dθz

dx
=

My(l)
E J (l)

,
dθy

dx
=

Mz(l)
E J (l)

. (21)

Using these equations one can determine the corresponding part of the energy by integrating Equation
(20) and Equation (21) along the dl element. If the ligament is very short (L < 2dl) , it is considered to
be a beam of a constant cross-section. Note that the accepted geometrical model of the ligament (Section
2) allows us to calculate all the integrals in the above equations in closed analytical forms.

If the stiffness matrices of all the beam elements are constructed, the final system of the EFM may be
obtained by the displacement method [Cook et al. 1989]. This system follows from the conditions that
the displacement vectors of the beam ends connected at one node are the same for all these beams.

5. Representative volume element of the open-cell foam materials

Let us go to the calculation of the effective elastic properties of the foam material. The procedure
of simulation of the foam microstructure inside a cubic region, V described in Section 2, give us the
skeleton of the foam microstructure inside the RVE: the coordinates of the nodes and the rule of their
connections by the ligaments. The parameters of the ligaments mentioned in Section 3 are the other part
of information necessary for performance of the EFM calculations. The version of the EFM considered
in the previous section is used to calculate displacements, angles of rotations, forces and moments at all
the nodes of the beam structure by the prescribed boundary conditions on the surface of the RVE (cube
V ). Note that the ligaments that are placed on the surface of cube V should be deleted from the skeleton
in order to obtain reliable values of the effective elastic constants of the foam material. These ligaments
appear as a result of the mirror reflections of the seed point inside V with respect to the sides of the cube
(see Section 2). They don’t correspond to the actual foam structure and provoke excess of rigidity of the
considered RVE.

In the nodes that are on the surface � of the cube V one has to define static and kinematic conditions
that are necessary for uniqueness of the solution of the elasticity problem. Let us define the components
of the displacement vector u(k)i at the surface nodes x (k) ( x (k) ⊂ �) by the following equation (affine
deformation)

u(k)i = εi j x
(k)
j , (22)

where εi j is a fixed symmetric tensor. All angles of rotations of the surface nodes are assumed to be equal
to zero. These boundary conditions are sufficient in order to obtain displacements, forces and moments
at every node of the beam structure including the border nodes.

Let us go to the homogenization problem that is the determination of a homogeneous elastic material
equivalent to the given foam material. It means that the elastic module tensor C∗ of the equivalent
material should coincide with the tensor that connects the mean values of the stress

〈
σi j
〉

and strain
〈
εi j
〉
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tensors over the RVE of the foam material〈
σi j
〉
= C∗

i jkl 〈εkl〉 , (23)〈
σi j
〉
=

1
V

∫
V

σi j (x)dv,
〈
εi j
〉
=

1
V

∫
V

εi j (x)dv. (24)

Let us consider a volume of the equivalent homogeneous material that coincides with the RVE and is
loaded with the forces f j (x)= nk(x)σk j (x) on its surface �. Here σk j (x) is the stress tensor, ni is the
external normal to � . The surface integral ∫

�

f j (x)xi d�

may be transformed in a volume integral using the Gauss theorem as follows∫
�

f j (x)xi d�=

∫
�

nk(x)σk j (x)xi d�=

∫
V

∂k
[
σk j (x)xi

]
dv =

∫
V

[
∂kσk j (x)

]
xi dv+

∫
V

σi j (x)dv.

Because of the equilibrium equation for the stress tensor σk j (x)
(
∂kσk j (x)= 0

)
, the first integral in

the right hand side of this equation disappears, and for the mean stress field
〈
σi j
〉

over the cube V we
obtain 〈

σi j
〉
=

1
V

∫
V

σi j (x)dv =
1
V

∫
�

f j (x)xi d�. (25)

It follows from this equation that in the case of the beam structure, the mean stress tensor inside the
cubic RVE may be calculated as follows〈

σi j
〉
=

1
8

∑
x (k)⊂�

F (k)j x (k)i , (26)

where F (k)j is the vector of the concentrated force acting in the surface node x (k). It is taken into account
that the volume of the cube V is equal to 8.

For the affine surface deformation Equation (22), the mean strain tensor
〈
εi j
〉

defined in Equation (24)
coincides with the tensor εi j presented in boundary conditions Equation (22). Thus, using (23) and (26)
one can calculate the components of the tensor C∗

i jkl (tensor of the effective elastic modules) if the forces

F (k)j in the surface nodes are obtained from the solution of the elasticity problem for the considered beam
structure.

Application of other boundary conditions on the surface of the cube V faces additional computational
difficulties. For instance, one can define the forces F (k)j and the moments at all the surface nodes and
calculate the mean strain tensor from Equation (26). For a homogeneous material, the mean strain field
defined in Equation (24) may be transformed in a surface integral〈

εi j
〉
=

1
V

∫
V

εi j (x)dv =
1
V

∫
�

n(i (x)u j)(x)d�. (27)
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Here εi j (x)= ∂(i u j)(x), ui (x) is the displacement vector, parentheses in indices mean symmetrization.
Thus, for calculation of the mean strain field one has to calculate the integral in the right hand side of
Equation (27) from the solution of the elasticity problem for the beam structure. Note that the FEM
provides the values of displacements u j only in a finite number of the surface nodes. Thus, in order
to find the mean strain field

〈
εi j
〉

from Equation (27), one has to interpolate function u(x) on all the
points of surface �, and after that, to calculate the surface integral in the right hand side of Equation (27)
numerically. Such interpolation and integration are sources of additional numerical errors that cannot be
avoided if the force boundary conditions on � are used.

Very often in the literature, for the numerical solution of the homogenization problems, periodic
boundary conditions on the surface of the RVE are applied. Note that for the cubic volume element
discussed in Section 2, such conditions cannot be imposed. In the framework of the beam FEM, the
periodic conditions are to be formulated in a finite number of surface nodes. But the position of the
nodes on the opposite sides of cube V are not symmetric, and strictly speaking, the periodic boundary
conditions cannot be formulated. On the other hand, one can consider a tesselation process using not
mirror but periodic continuation of the seed points S(0,0,0) inside the cube V on all three-dimensional
space. In this case, the Voronoii or Laguerre polyhedra corresponded to the original seed point set S(0,0,0)
inside V will compose not a cubic region, but a region with a rather complex, nonplane surface. The
calculation of the mean strain field over such a region using Equation (27) faces an additional difficulty
of definition of the external normal n(x) at all the points of such a surface. The latter contains many angle
points where normals are not defined. Note that the displacement vectors are calculated at the nodes that
are the vertices of the polyhedra. Thus, for the calculation of the mean strain field over the region V , one
has to interpolate the displacement field onto all points of a nonplane surface �, and then to calculate the
integral in the right hand side of Equation (27) numerically. Both operations are connected with some
numerical errors. That is why in this study, only kinematic boundary conditions (22) are considered.

Let us go to the problem of definition of the number N of cells inside the RVE that are sufficient to
obtain reliable values of the effective elastic constants of the foam material. In the series of numerical
experiments, the Voronoii tessellation procedure was used for generation of the foam microstructures.
The seed points were independently and homogeneously distributed inside the cube by the condition that
these points cannot be closer than a distance h from each other. The distance h was chosen in order to
generate the set of seed points in a reasonable time. Circular, cylindrical, ligaments with parameters:
a1 = 100, a3 = 0 were considered; parameter a2 depends on the volume concentration of the hard phase.
The material of the ligaments was taken to be isotropic with the Young modulus E and the Poisson ratio
ν = 0.3.

We have considered the increasing number of the cells from one hundred to fifteen hundreds. For
the calculation of the effective elastic moduli, the following six different kinematic boundary condi-
tions were used. Extension of the cube in the direction of x1, x2 or x3-axes (ε(1)i j = δ1iδ1 j , ε

(2)
i j = δ2iδ2 j ,

ε
(3)
i j = δ3iδ3 j ), and three independent shear deformations on the cube surface:

ε
(4)
i j = δ1(iδ2 j), ε

(5)
i j = δ1(iδ3 j), ε

(6)
i j = δ2(iδ3 j).

We calculate the effective elastic Young and shear moduli in the directions of the coordinate axes for the
increasing number of the cells inside V . We also evaluate anisotropy of the effective moduli with respect
to tension and shear deformations. Because for an isotropic material, the Young E∗ and shear µ∗ moduli
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are connected by the equation

µ∗ =
E∗

2(1 + ν∗)
, (28)

one can introduce anisotropy parameter α defined by the equation

α =
2(1 + ν∗)µ∗

E∗

, (29)

and the closer to 1 the value of α, the closer to isotropy the symmetry of the tensor of the effective elastic
moduli C∗ of the cubic RVE.

Another parameter β

β =
1

〈E∗〉

√〈
(E∗ − 〈E∗〉)

2〉 (30)

characterizes the dispersion of the effective Young modulus over the realizations of the foam structures.
Here the average is taken over three directions and over the realizations of the random microstructures
for a fixed number of cells inside the RVE.

In Figures 10, 11, and 12, the dependences of the reduced effective Young ER and shear µR moduli
of the RVE on the number N of cells inside the RVE are presented. The reduced moduli are defined by
the equations

ER =
E∗

p2 E
, µR =

µ∗

p2µ
, p =

ρ∗

ρ
. (31)

Here E, µ, ρ are the Young modulus, shear modulus, and density of the foam hard phase, ρ∗ is the
density of the foam, p is the volume concentration of the hard phase. The graphs in Figure 10 correspond
to the volume concentration of the hard phase p = 0.01, in Figure 11 to p = 0.05, and in Figure 12 to
p = 0.1.The same dependences for the Poisson ratio ν∗ are presented in Figure 13. Dependences of the
anisotropy coefficient α and dispersion coefficient β on the number N of cells in the RVE are in Figures
14 and 15 for p = 0.01. The vertical bars in these figures show the dispersions of the numerical results
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Figure 10. The dependences of the reduced Young ER and shear µR moduli (Equation
(31)) on the number N of cells in the RVE for the volume concentration of the hard
phase p = 0.01.
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Figure 11. The same graphs as in Figure 10 for p = 0.05.
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Figure 12. The same graphs as in Figure 10 for p = 0.1.
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Figure 13. The dependence of the Poisson ratio ν∗ of the foam on the number N of cells
in the RVE.
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Figure 14. The dependence of the isotropy parameter α (Equation (29)) on the number
N of cells in the RVE, p = 0.01.

among the realizations of the microstructures with fixed values of the cell number N . For every value of
N , 5–7 realizations of the random structures were taken.

The main conclusion that can be made up from these graphs is that the RVE should contain about
900–1000 cells in order to obtain reliable values of the effective elastic properties of the open-cell foam
materials. For such a number of cells in the RVE (N = 1000), the dependences of the relative effective
Young modulus E∗/E of the foams on the volume concentration p of the hard phase are presented in
Figure 16. Square points in this figure are experimental data of Gibson and Ashby [1982], triangle points
are the data of Liderman [1971], and circles are the data of Hagiwara and Green [1987] . The line with
black dotes is the result of our simulations for the foam with circular cylindrical ligaments (a−1

1 = 0), and
the line with black triangles corresponds to the foams with triangle cylindrical ligaments (a−1

1 = 0.5).
Note that the detailed information about the ligament shapes is absent in the mentioned experimental
works.

If the number of cells inside the RVE is taken smaller than indicated above, dispersion of the numerical
values of the effective elastic constants for different realizations of the foam microstructures increases
(Figure 15). It is necessary also to emphasize that the mean value of these constants over the realizations
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Figure 15. The dependence of the dispersion coefficient β of the effective Young mod-
ulus (Equation (30)) on the number N of cells in the RVE, p = 0.01.
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Figure 16. The dependences of the relative effective Young modulus (E∗/E) on the
volume concentration p of the hard phase of the foam. Triangle points correspond to the
data from [Liderman 1971]; square points from [Gibson and Ashby 1982]; circle points
from [Hagiwara and Green 1987]; the line with dots are theoretical predictions for the
foams with circular cylindrical ligaments (a−1

1 = 0, a3 = 0), the line with triangles is the
prediction for triangular cylindrical ligaments a−1

1 = 0.5, a3 = 0).

does not coincide with the mean values of the constants for the RVE with a sufficiently large number of
cells (Figure 16). The same fact was noted in [Kanit et al. 2003], where the problem of the appropriate
size of the RVE for random polycrystalline materials was considered.
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Figure 17. The dependence of the reduced effective Young modulus ER on the shape
of the cross-section (parameter a1) for cylindrical ligaments a3 = 0.
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Figure 18. The dependence of the reduced effective Young modulus ER on the ligament
axial altering (parameter a3) for triangle ligaments (a−1

1 = 0.5).
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Figure 19. The dependences of the relative effective Young modulus (E∗/E) on the law
of distribution of cell diameters and the volume concentration p of the hard phase for
the foams with circular cylindrical ligaments (a−1

1 = 0, a3 = 0). The line with black
rhombs correspond to approximately equivalent cell diameters, the line with triangles
to a homogeneous distribution of cell diameters, and the line with squares to a linear
distribution of the diameters.

6. Dependences of elastic properties of open-cell foams on the ligament shapes and the law of the
cell size distribution

The effective Young moduli of the foams with ligaments of various shapes were calculated according to
the proposed algorithm. The results of such calculations are presented in Figures 17 and 18. As it was
indicated in Section 2, the parameter a1 (0< a−1

1 < 0.5) describes the shape of the cross-sections of the
ligament, and parameter a3 defines the altering of the ligament cross-section along its axis (0< a3 < 4,
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a3 = 0 corresponds to a cylindrical ligament). As it is seen from these graphs, the reduced Young modulus
ER is more sensitive to the parameter a3 altering than to altering the parameter a1.

The dependences of relative Young modulus E∗/E of the foams on the distribution of cell diameters
inside the RVE and on the volume concentration p of the hard phase are presented in Figure 19. In this
figure, the line with black rhombs corresponds to the foams with almost equal diameters of the cells (the
distribution function of the cell diameters is presented in Figure 6 also by the line with black rhombs),
the line with triangles corresponds to the homogeneous distribution of cell diameters in the interval
(0.5 〈d〉 , 1.5 〈d〉), and the line with squares correspond to the linear distribution of the cell diameters
in the interval (0.3 〈d〉 , 1.2 〈d〉) (the corresponding distribution functions are in Figure 6). As it is seen
from these graphs, for a fixed volume concentration of the hard phase, the foams with a wide distribution
of cell diameters have lower elastic modules than the foams with approximately the same diameters of
cells.

7. Conclusion

This work proposes a method of calculating the effective elastic properties of open-cell foam materials
in two stages: simulation of the microstructure of the foam inside a RVE of such a material, and appli-
cation of a specific version of the FEM for the calculation of stresses and stains in the ligaments of the
foam structure. The Laguerre tesselation algorithm adapted in this work allows us to simulate the foam
microstructures with any prescribed cell size distribution law. But this algorithm is more complex than
the conventional Voronoii algorithm. It requires carrying out the procedure of close packing of spheres
with the given distribution of the diameters inside the RVE. The coordinates of the centers of the spheres
obtained after the packing, and the diameters of the spheres associated with every center, are initial data
for the Laguerre tesselation process.

The size of the RVE is a crucial problem for the numerical simulation of the properties of the open-cell
foams. As is shown in this work, the size of the RVE, or the minimal number N of the calls inside the
RVE that is necessary to obtain reliable values of the effective elastic constants, depends on the volume
concentration p of the hard phase. For small volume concentrations (p = 0.01) this number turns out to
be about 900–1000, and the value of N decreases when p increases: N is about 800 for p = 0.05, and
about 400 for p = 0.1.

The influence of the form of the ligaments on the effective elastic properties is essential, but altering
the ligament cross sections along the ligament axes affects the values of the effective elastic moduli more
strongly than altering the shape of the cross sections.

The influence of the cell diameter distributions on the effective elastic properties of the foams is also
notable. For the foams with a wide distribution of cell diameters, the effective Young moduli turn out to
be less than the modules of the foams with approximately equal cells, and the difference grows with the
volume concentration p of the hard phase. It was also indicated that for the same volume concentration
of the hard phase, the foams with a linear distribution of cell diameters have lower Young moduli than
the foams with homogeneous distribution of cell diameters.
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ELASTIC WANNIER–STARK LADDERS IN TORSIONAL WAVES

GUILLERMO MONSIVAIS, RAFAEL A. MÉNDEZ-SÁNCHEZ, ALFREDO DÍAZ DE ANDA,
JORGE FLORES, LUIS GUTIÉRREZ AND ALEJANDRO MORALES

We study the normal modes of torsional waves in an elastic beam consisting of a set of N cuboids of
varying heights. We present experimental, theoretical, and numerical results. We show that some analo-
gies to the Wannier–Stark ladders resonances, originally introduced by Wannier in 1962, are exhibited
by this classical system. The original ladders studied by Wannier consist of a series of equidistant energy
levels for the electrons in a crystal in the presence of a static external electric field with the nearest-
neighbor level spacing proportional to the intensity of the external field. For the case of torsional waves
in the beam we have observed a similar behavior, namely, the vibrations of the beam show resonances of
equidistant frequencies with the nearest-neighbor spacing proportional to parameter γ associated with
the geometry of the beam analogously to the electric field. However, this analogy is not perfect; we
address the origin of the differences.

1. Introduction

Since the discovery of the wavelike behavior of particles whose size is on the order of atomic dimensions
or smaller, several analogies between quantum systems, that is, systems whose dynamics is governed
by quantum mechanics, and classical systems have been observed. This is particularly true when the
undulatory properties of the particles are important and interference phenomena play the relevant role.
Thus, one frequently finds analogies in optics, electromagnetism, acoustics, elasticity and the like. It is
in the case of optics where more analogies have been studied; see [Monsivais et al. 1990; Sheng 1995;
Joannopoulos et al. 1995; Soukoulis 1996; de Sterke et al. 1998; Sapienza et al. 2003; Agarwal et al. 2004]
and references therein. In some cases the analogies are not exact, and new and interesting characteristic
effects appear for each field. In other cases the classical systems that potentially can present analogies,
do not exist in a natural way, but can be built from an appropriate combination of other systems.

In this paper we study the analogy of the quantum mechanical phenomenon known as Wannier–Stark
Ladder Resonances (WSLR) in a special type of classical elastic system. The study includes experimental,
theoretical and numerical results. The existence of WSLR and their associated Bloch Oscillations (BO)
in quantum mechanics have been controversial for many years, but by now some of their properties seem
to be theoretically on firm ground. The BO were predicted by Bloch [1928]; see also [Zener 1934; James
1949; Wannier 1955]. They consist of a counterintuitive behavior of electrons in a crystal, which is under
the action of a static external electric field. According to Bloch, this static field produces an oscillatory
movement of the electrons inside the crystal. This strange prediction was a controversial matter for more
than 60 years [Hart and Emin 1988]. The controversy waxed due to Wannier’s 1962 discovery [Wannier
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1962; 1969; Zak 1968; 1969]. This discovery establishes that the electronic energy spectrum consists of
a series of energies E1, E2, . . . such that the nearest-neighbor level spacing is constant and proportional
to the intensity of the external field. This set of energies forms the so called Wannier–Stark ladder.
These amazing characteristics contrast with what occurs in a nonelectrified crystal, where the electrons
travel through the whole periodic structure (Bloch waves) and where the constructive and destructive
interferences give rise to an energy band spectrum, which consists of bands of allowed energy and
regions where no values of the energy are permissible, forbidden bands or gaps [Brillouin 1946]. Thus,
according to Bloch and Wannier, when the electric field modifies the periodic potential, the band structure
is destroyed and states are localized.

These predictions were very important since the band structure is the basis of electronic devices.
However, when Bloch and Wannier made their predictions it was impossible to test them experimentally.
On the one hand, the BO are difficult to observe because the electrons lose their coherence in times
shorter than the expected period of the oscillations. On the other hand, the Wannier–Stark ladders are
difficult to observe because the width of the levels is larger than the separation between levels. Obviously
both effects are related since a short lifetime of a state implies a wider associated energy level. The first
confirmation of the Bloch–Wannier model came from the observations of the WSLR that appeared first in
numerical experiments [Rabinovitch 1977; Banavar and Coon 1978], and thereafter from the laboratory
[Méndez et al. 1988]. This was around 20 years after the prediction of Wannier. Later on, in 1992, the
BO were also observed [Feldmann et al. 1992; Leo et al. 1992; Dekorsy et al. 1994; Lyssenko et al.
1998]. This occurred when the semiconductor superlattices were built [Esaki and Tsu 1970], since in
these systems the period of BO is shorter. Actually, there exists considerable literature on the WSLR
and the BO, and now it is recognized that the original ideas of Bloch and Wannier are essentially correct.
The BO are due to the fact that when an electron in the crystal is accelerated by the electric field, its
velocity is increased until it reaches the end of the Brillouin zone, where it is dispersed and its velocity
decreases. This effect continues until the velocity is equal to zero and changes sign returning to the
original position inside the crystal. Then, the electron is again accelerated by the field and the cycle is
repeated. Under these circumstances the wave functions are localized in the zones where the oscillatory
movement occurs. We should mention, however, that there always exists a probability that the electron
tunnels to other regions of the crystal (Zener tunneling). Whenever this probability is small, the BO can
be present.

The origin of the WSLR can be understood as follows. Consider the time independent Schrödinger’s
equation for an electron of charge e in a one-dimensional crystal in the presence of a static external
electric field F ,

−
1
2

d2ψ

dx2 + V (x)ψ = Eψ, (1)

where we are using a system of units in which the electron mass and Plank’s constant are set to 1.
The function V (x) is the potential acting on the electron, E is the energy of the electron and e|ψ |

2 is
the charge density. In our case V (x) has the form V (x) = Vp(x)+ eFx , where Vp(x) is the periodic
potential due to the atoms of the crystal, that is Vp(x) = Vp(x + np), p being the period and n an
arbitrary integer. When F = 0, the potential is periodic and the system will show a band structure
[Brillouin 1946]. However, when F 6= 0, the periodicity is broken and the potential acquires the crucial
property V (x + np) = V (x)+ neFp. Making the change of variable x = x ′

+ np and using the above
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property of V (x), Equation (1) becomes

−
1
2

d2ϕ(x ′)

dx ′2 +V (x ′
+np)ϕ(x ′)= Eϕ(x ′) H⇒ −

1
2

d2ϕ(x ′)

dx ′2 +V (x ′)ϕ(x ′)= (E −neFp)ϕ(x ′), (2)

where ϕ(x ′) = ψ(x ′
+ np). Comparing Equations (1) and (2), we see that if E is an eigenvalue, then

E − neFp is also an eigenvalue. The difference between two consecutive eigenvalues is eFp and the
Wannier–Stark ladder is formed. We should mention, however, that the simple mathematical derivation
just described above is rather subtle [Zak 1968; 1969; Wannier 1969; Rabinovitch and Zak 1971] and a
rigorous description is very difficult. For this reason, as mentioned before, the existence of the Wannier–
Stark ladder in quantum mechanics was a controversial matter for many years. Actually, one finds that
the energies forming a ladder are indeed a set of resonances embedded in a continuous energy spectrum.
This is why the Wannier–Stark ladders are called WSLR.

Several systems whose behavior is governed by classical physics and which present analogous phe-
nomena to the band structure, BO, and WSLR, have been studied up to now. For example, an elec-
tromagnetic wave traveling through a structure with a dielectric function that varies periodically will
exhibit a band structure, which in turn gives rise to photonic crystals. Applications of photonic crystals
in light flow control have been described by Joannopoulos et al. [1995]. In an elastic structure with a
specific impedance that varies periodically, the transmission spectra of elastic waves will also show a band
structure [Esquivel-Sirvent and Cocoletzi 1994]. For theoretical studies of the BO and WSLR analogies
see [Monsivais et al. 1990; Mateos and Monsivais 1994; de Sterke et al. 1998; Monsivais et al. 2003]
and references therein. However, there are relatively few experimental studies [Sapienza et al. 2003;
Agarwal et al. 2004], and it is just in this context that this paper is placed. We show experimentally that
it is possible to find a WSLR-like structure in the spectrum of frequencies associated with torsional waves
of special beams. We also use a numerical model whose predictions are in excellent agreement with our
measurements. We have used our numerical model to show that the separation between the frequencies
depends linearly on the parameter that plays the role of the static external electric field. However, we
will see that the analogies are not exact.

2. The physical system

The system analyzed in this paper is a special elastic beam described below. It is well known that in
any elastic system there exist several types of waves. However, for the case of beams, and in the range
of frequencies and wave lengths used in this work, it can be assumed that only three types of vibrations
exist: compressional, torsional and flexural; see Figure 1. For the present study we have considered only
torsional vibrations.

TORSIONAL

COMPRESSIONAL

FLEXURAL

TORSIONAL

COMPRESSIONAL

FLEXURAL

TORSIONAL

COMPRESSIONAL

FLEXURAL

Figure 1. Three types of vibrations in a beam: compressional, torsional and flexural.
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h(i)

lw

Figure 2. Beam used to obtain Wannier–Stark ladder resonances. Cuboids have same
length l = 5 cm and width w = 1.905 cm, but different heights. v(i) = (1 + iγ )v, i =

1, 2, . . . , 15 with v = 2027.3 m/s and γ = 0.02786. The width, height, and length of the
small cuboids are w′

= 5 mm, h′
= 5 mm, and l ′ = 6 mm, respectively.

The elastic system is depicted in Figure 2. It was constructed by machining a solid aluminum piece
whose original shape was a beam with rectangular cross section. The result of the machining is a set
on N cuboids or subbeams of constant width w and constant length l. They have different heights h(i),
with w, h(i) � l for i = 1, 2, . . . , N . These cuboids are separated by other small cuboids of dimensions
w′, l ′, h′

� l, where w′
= h′. We have observed that the behavior of machined systems is different from

the behavior of similar systems constructed by welding their different parts. This property can be used
to carry out nondestructive tests on the systems.

We now discuss the rule used to assign the values of the heights h(i). The procedure is different from
the formulation used by Wannier just discussed above because the torsional waves are described by an
equation different from the one describing the electrons in an electrified crystal. To design the beam we
are guided by a qualitative analysis of what could be called an independent beam model in which each
body oscillates independently form the rest.

It is well known that torsional waves are described by the equation [Graff 1975]

∂2θ

∂x2 −

(
1
v

)2
∂2θ

∂t2 = 0,

where v is the velocity of the waves and θ = θ(x, t) the angle of rotation of the cross section at point x
and time t . The x-axis lies on the axis of the beam. We now apply this equation to the torsional normal
modes of the i-th cuboid, for i = 1, 2, . . . , N , with free ends. If we denote by nn the number of nodes
of this mode and by ω(i)nn its angular frequency, the above equation becomes

∂2θ

∂x2 +
(
k(i)nn

)2
θ = 0,

where k(i)nn is the wave number of the mode given by k(i)nn = ω
(i)
nn /v

(i)
= 2π/λ(i)nn , where λ(i)nn is the wave

length and v(i) the velocity of the waves in the i-th cuboid. It is clear that the length l of a cuboid with
free ends is related to λ(i)nn via l = λ

(i)
nn nn/2, which implies that the angular frequency ω(i)nn is given by

ω(i)nn
= πv(i)nn/ l. (3)

To obtain a set of equidistant frequencies (for a given value of nn) we look for a set of velocities {v(i)}

such that v(i) = (1 + iγ )v, where v is an arbitrary constant velocity. The parameter γ is dimensionless.
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We then obtain

ω(i)nn
=
πv(1 + iγ )

l
nn, 1nn ≡1ω(i)nn

=
πvγ

l
nn, (4)

for the frequencies and their differences (for a given value of nn)1ω(i)nn =ω
(i)
nn −ω

(i−1)
nn . Since the latter are

independent of i , we have dropped the index i and defined 1nn . In this model of independent beams, we
therefore obtain sets of equidistant frequencies for each value of nn . The required set of velocities {v(i)}

can be obtained by taking appropriate values for the heights h(i) as described below. We should mention
that this procedure is not possible for cylindrical bars, since the torsional wave velocity in cylindrical
bars is independent of the radius.

There is, however, another possibility to have equidistant frequencies. It consists in taking different
lengths l(i) for the different subbeams in Equation (3), with l(i) = l/(1 + iγ ), but this possibility will not
be considered here. The corresponding analysis has been published recently [Gutiérrez et al. 2006].

To obtain the velocities {v(i)} we have used the expression derived by Navier [1827] for the torsional
velocity in the i-th cuboid

v(i) =

√
G
ρ

√
α(i)

I (i)
,

where I (i) = (h(i)w3
+ [h(i)]3w)/12 is the moment of inertia with respect to the axis of the system, ρ is

the density, G is the shear modulus, and α(i) is given by

α(i) =
256
π6

∞∑
m=0

∞∑
p=0

1
(2m + 1)2(2p + 1)2

h(i)w
[(2m + 1)/h(i)]2 + [(2p + 1)/w]2 .

We can solve these equations to obtain the values of h(i) such that v(i) take the required value (1+ iγ )v.
Figure 3 shows a plot of v as a function of h for particular values of the parameters w and

√
G/ρ. This

figure also shows a comparison with experimental results.
We now return to discuss the properties of the whole beam constructed by machining a solid piece as

shown in Figure 2. We have used the above procedure to calculate the N heights {h(i)} of the cuboids or
subbeams forming the beam. When the parameter γ is equal to zero, a locally periodic beam is formed.
This kind of locally periodic beams shows a discrete band spectrum [Morales et al. 2002]. If we break
the periodicity by setting γ 6= 0, a completely different spectrum occurs. The discrete band structure
disappears and the new spectrum resembles the WSLR. We see from Equation (4) that γ here plays the
role of the electric field F for the quantum mechanical ladders.

Before presenting the calculations of the normal modes for this system and showing numerical and
experimental results, let us make a qualitative analysis to see what type of spectrum could be expected
from the independent beam model. At the lowest frequencies, the wavelength λ is of the same order of
magnitude as L ≈ l N and the whole beam is excited. When ω increases and λ becomes of the order
of l, the length of the subbeams, the state equivalent to its lowest normal mode is excited. This occurs
at the first subbeam since it has the smallest velocity v(1) = (1 + γ )v; furthermore, this corresponds to
the subbeam with the smallest h(i); see Figure 3. The rest of the subbeams are out of resonance, so
the amplitude decreases as one moves away from subbeam 1. Therefore, the state is localized around
the latter. In some sense this was to be expected since we are disturbing a periodic structure to obtain
a disordered one-dimensional system, which always shows localized wave amplitudes. Increasing the
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exciting frequency by 11, the subbeam with velocity v(2) = (1 + 2γ )v, that is, subbeam 2, will now be
excited and the rest will be out of resonance. The amplitude of the vibrations therefore decreases as the
distance from subbeam 2 increases. The wave amplitude is again localized but now around subbeam 2;
it has a similar shape as the wave amplitude that subbeam 1 had previously. The same arguments apply
when subbeam i of velocity v(i) = (1 + iγ )v is excited.

What we have done is to produce a finite Wannier–Stark ladder, that is, N localized states with constant
difference in frequency given by Equation (4). However, more ladders exist since normal modes with
two or more nodes can also be excited in each subbeam. For instance, taking nn = 2 in Equation (4), a
second ladder is obtained. This ladder is different from the first one because the frequency difference is
now twice the one of the lower ladder, as can be seen from Equation (4). The states are again localized
and all have similar shape. A third ladder exists with 13 = 311 and so on for the other values of nn . The
difference between the quantum-mechanical WSLR [Thommen et al. 2004] and the ladders discussed
here is that in the latter the spacing between resonances is not the same for different ladders.

To measure normal modes frequencies and amplitudes we have used an Electromagnetic Acoustic
Transducer (EMAT) which has been recently developed [Morales et al. 2001; 2002]. This EMAT is
versatile and operates at low frequencies. It can selectively excite or detect compressional, flexural
or torsional vibrations. We have also calculated these quantities using the transfer matrix method for
torsional waves with the following boundary conditions between the different sections of the beam

θ (i)(x)
∣∣
x=xi

= θ (i+1)(x)
∣∣
x=xi

, β(i)
dθ (i)(x)

dx

∣∣∣∣
x=xi

= β(i+1) dθ
(i+1)(x)
dx

∣∣∣∣
x=xi

,

Figure 3. Navier prediction for velocity v as a function of height h for cuboids (contin-
uous line). Experimental values (points) fit the prediction. Here

√
G/ρ = 3190 m/s and

w = 1.905 cm.
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Figure 4. Normal mode angular frequencies of beam in Figure 2 yielding the elastic
Wannier–Stark effect: (a) nn = 1, (b) nn = 2, (c) nn = 3. In each figure, left column
shows frequencies from the independent beam model, middle column — from the trans-
fer matrix model, right column — measured in the laboratory.

where β(i) is the square of the cross-section area of the i-th beam. Free end boundary conditions were
used as discussed by Morales et al. [2002]. Our calculation shows explicitly that the frequency difference
1nn is proportional to the parameter γ . Furthermore, as mentioned above, for γ = 0 a discrete band
spectrum appears, and as γ grows the levels of each band separate to form the WSLR. In Figure 4 we
show the theoretical normal mode frequencies and the values obtained from the independent beam model
of the system shown in Figure 2 for γ = 0.02786. We see that this model provides a rather good first
approximation. As also shown in this figure, the experimental values are very well reproduced by the
theoretical values.
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Figure 5. Two wave amplitudes for torsional waves of beam in Figure 2 associated with
the second ladder nn = 2, the left one localized on the tenth subbeam, the right one on the
third. Double small vertical lines along beam axis indicate the position of small cuboids.
Points are experimental values, while solid line gives calculated values.
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Figure 6. Logarithmic plot of the absolute value of wave amplitudes shown in Figure 5.
Points are experimental values, while solid line gives calculated values.

One can clearly see from Figure 4 that the states form a set of WSLR. The first band composed by
extended modes is not displayed in this graph. Notice that the frequencies in the extremes of each ladder
do not have the same frequency difference as those in the middle of the ladder. This is due to a border
effect in the wave amplitudes localized near the free ends [Gutiérrez et al. 2006].

In Figure 5 we show as an example the comparison between theoretical and experimental wave ampli-
tudes for two states of the second WSLR. These are localized around particular subbeams. For example,
in Figure 5 (left) the tenth subbeam resonates while in Figure 5 (right) the third subbeam resonates. Both
wave amplitudes have the same form and, as expected, the amplitudes show two nodes at the resonating
subbeams. Note that we again have excellent agreement between experiment and theory, where we have
used the one-dimensional transfer method in spite of the fact that w and h(i) are not much smaller than
l as required by the method. We have also calculated the wave amplitudes for states of the first ladder.
Localization is again observed, and the amplitudes show one node at the resonating subbeams.

In Figure 6 we show the theoretical and experimental values of the logarithm of the wave amplitude
corresponding to the states of Figure 5. The plots show that the envelopes of the amplitudes of the normal
modes are exponentially localized.

3. Conclusions

In this paper we have constructed an elastic analogue of the WSLR in the torsional frequency spectra of
some special beams. Starting with the independent beam model, we find the appropriate geometry of the
bars in order to have the WSLR. The geometry is related to the cross section of the subbeams forming
the whole beam, as indicated by the Navier formula, which we tested experimentally for the first time.
In contrast. In contrast with the optical analogue of [Sapienza et al. 2003; Agarwal et al. 2004], we have
observed the WSLR directly. Furthermore, we have measured the wave amplitudes, including phases,
which show exponential localization. We also observed higher WSLR. Our numerical studies are in
close agreement with experimental results. The elastic WSLR have potential applications in the design
of systems with localized vibrations.
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A NEW VARIABLE DAMPING SEMIACTIVE DEVICE FOR SEISMIC RESPONSE
REDUCTION OF CIVIL STRUCTURES

ORLANDO CUNDUMI AND LUIS E SUÁREZ

A semiactive mechanism, called a VDSA (variable damping semiactive device), is proposed to reduce
the seismic response of structures. It is composed of two fixed-orifice viscous fluid dampers installed in
the form of a V whose top ends are attached to a floor and their lower ends to a collar that moves along
a vertical rod. By varying the VDSA position one obtains an optimal instantaneous damping added to
the structure. The position of the moving end is calculated with an algorithm based on a variation of
the instantaneous optimal control theory which includes a generalized LQR (linear quadratic regulator)
scheme. This modified algorithm, referred to as Qv, is based on the minimization of a performance index
J quadratic in the state vector, the control force vector, and an absolute velocity vector. Two variants
of the algorithm are used to present numerical simulations of the controlled seismic response of a single
and a MDOF (multi-degree-of-freedom) structure.

1. Introduction

Civil engineering structures are typically designed to rely on their strength and ductility to withstand
the large forces imposed on them by strong earthquakes. A number of modern mechanical devices have
been proposed in the last two decades to reduce the structural response. They are known collectively as
protective devices and they include added viscoelastic dampers, viscous fluid dampers, frictional dampers,
tuned-mass dampers, and base isolation systems. The devices themselves and their design methodology
are referred to as passive control systems. At the highest level of sophistication for seismic protection are
the so called active control systems. Although these devices provide in theory the uppermost response
reduction, they also required a large amount of energy to operate and their robustness and reliability are
questionable.

In between these passive and active systems are the semiactive devices which, as the name indicates,
combine the features of the former two protective systems. The force (and thus the energy) required to
operate a semiactive device is much less than for an active system. To calculate the control forces that
operate the passive devices, it is necessary to know the response of the structure by measuring it with
sensors. A proper numerical algorithm processes this information and calculates how the properties of
the (formerly) passive device should be modified.

Semiactive control systems have only recently been considered for applications to large civil structures.
We believe that the application of these systems to civil engineering structures was first reported by
Hrovat et al. [1983]. Several devices that can deliver changeable variable damping such as variable
orifice dampers [Symans and Constantinou 1997; Kurata et al. 1999; Kurata et al. 2000] and hydraulics
dampers [Kawashima et al. 1992; Patten et al. 1993; Sack et al. 1994; Patten et al. 1996] have been

Keywords: semiactive systems, control algorithms, earthquake engineering, seismic response, added damping.
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proposed. Variable stiffness devices have also been proposed by Kobori et al. [1993], Nagarajaiah and
Mate [1998], and Gluck et al. [2000]. Furthermore, numerous algorithms have been developed for
selecting the appropriate damping coefficient [Yang et al. 1987; Soong 1990; Sadeck and Mohraz 1998;
Cundumi 2005; Cundumi and Suárez 2006b]. The list of references is meant only to provide a few
relevant examples; a comprehensive review of these systems is beyond the scope of this discussion.

The present paper describes the implementation of a VDSA device. In contrast to semiactive dampers
described in the technical literature, the damper coefficient c is not controlled by modifying the size of
an orifice in the piston, but by changing the position of the damper. The required damping coefficient is
calculated by means of two instantaneous optimal control algorithms: the (closed-loop control and the
closed-open-loop control). It is shown that both algorithms are effective in reducing the response. The
damping coefficient c(t) during the response can be adjusted between an upper limit cmax and a lower
value cmin.

This paper contains in detail the formulation and the results of a paper presented at the 9th Pan
American Congress of Applied Mechanics, in Mérida, Mexico [Cundumi and Suárez 2006a].

2. The modified algorithm Qv

It is well known that the equations of motion of a structure modeled as a MDOF system and subjected
to a base acceleration ẍg(t) at all its supports are given by

[M]n×n{ẍ(t)} + [C]n×n{ẋ(t)} + [K ]n×n{x(t)} = − [M]n×n{E}ẍg(t), (1)

where [M], [C] and [K ] are the mass, damping and stiffness matrix, respectively, the vectors {ẍ(t)},
{ẋ(t)} and {x(t)} contain the relative (with respect to the foundation) acceleration, velocity and displace-
ment of each dynamic degree of freedom of the structure, {E} is the vector of influence coefficients, and
n is the number of degrees of freedom. If all the degrees of freedom of the structural model coincide
with the direction of the applied ground motion, then the vector {E} is simply a vector with ones {I }.

If the structure is outfitted with r semiactive dampers, the previous equations of motion must be
changed as follows:

[M]n×n{ẍ(t)} + [C]n×n{ẋ(t)} + [K ]n×n{x(t)} = − [M]n×n{E}ẍg(t)+ [D]n×r {u(t)}. (2)

The matrix [D] defines the locations of the controllers, r is the number of controllers and {u(t)} is the
r -dimensional control force vector. The location of the controllers (or the VDSA devices in our case) will
be determined via a trial and error process by trying to maximize the effect of the devices. No attempt
is made to determine the optimal position of the devices in an analytical way.

To solve the system of equations of motion, Equation (2), by transforming them into a set of uncoupled
equations, it is convenient to change into a system of 2n first order differential equations. In Linear
System Theory this method is referred to as the state-space representation. Introducing the following
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response vector and matrices,

{z(t)} =

{
{x(t)}
{ẋ(t)}

}
, [A] =

[
0 I

−M−1K −M−1C

]
,

[B] =

[ 0
M−1 D

]
, [H ] =

[ 0
−E

]
.

Equation (2) can be written in the form:

{ż(t)}2n×1 = [A]2n×2n{z(t)} + [B]2n×2r {u(t)} + [H ]2n×1 ẍg(t).

To define the variation of the control forces in {u(t)} one needs to select a control algorithm. In this
study, two algorithms (closed-loop control and closed-open-loop control) have been developed based on
the instantaneous optimal control theory. They are referred to here as the modified algorithms Qv. As
usual, this type of algorithm is based on the minimization of a performance index J quadratic in the state
vector {z(t)} and in the control force {u(t)}. However, in the modified algorithm a quadratic form of the
absolute velocity {ẋa(t)} is added to J . A penalty on the state vector is imposed through a matrix Q, on
the control vector through a matrix R and on the absolute velocity vector through a matrix Qv. Q and
Qv are two symmetric positive semidefinite weighting matrices of size 2n × 2n and n × n, respectively,
and R is an r × r positive definite weighting matrix. The performance index takes the form:

J =

t f∫
0

[
{z(t)}T

[ Q]{z(t)} + {ẋa(t)}T
[ Qv]{ẋa(t)} + {u(t)}T

[R]{u(t)}
]
dt,

where t f is the duration of excitation. Usually the excitation is not included in the definition of perfor-
mance indices. However, it was found that for a semiactive device with variable damping such as the
one presented in this work, including the excitation in the definition of J through the absolute velocity
has a beneficial effect on the effectiveness of the device.

The absolute velocity vector is computed as

{ẋa(t)} = [Av]n×2n{z(t)} + {Sv}n×1 ẋg(t),

where [Av] = [0 | I ], {Sv} = {1}, [I ] is an n × n identity matrix, {1} is a vector of 1’s of length n, and
ẋg(t) is the ground velocity.

The procedure to define the control and response vectors in the modified algorithm Qv can be found
in [Cundumi 2005]. Here only the final results are reported.

For the closed-loop control case, the variables {u(t)} and {z(t)} can be obtained as follows:

{u(t)} = −
1t
2

[R]
−1

[B]
T [

[A2]{z(t)} + [A3]ẋg(t)
]
,

{z(t)}=
[
[I ]+

1t2

4
[B][R]

−1
[B]

T
[A2]

]−1[
[T ]{d(t−1t)}−

1t2

4
[B][R]

−1
[B]

T
[A3]ẋg(t)+

1t
2

[H ]ẍg(t)
]
,

where 1t is the constant time step, [A2] = [Q]+[Av]T
[Qv][Av], [A3] = [Av]T

[Qv][Sv] and {d(t −1t)}
contains the displacement x and the velocity ẋ at time t −1t .
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For the closed-open-loop control case, {u(t)} and {z(t)} are calculated with the following equations:

{u(t)} =
1t
4

[R]
−1

[B]
T [

[P]{z(t)} + {p(t)}
]
, (3)

{z(t)}=
[
[I ]−

1t2

8
[B][R]

−1
[B]

T
[P]

]−1[
[T ]{d(t−1t)}+

1t2

8
[B][R]

−1
[B]

T
{p(t)}+

1t
2

[H ]ẍg(t)
]
.

(4)
In Equations (3) and (4), [P] is the Riccati matrix and {p(t)} represents the open-loop control.

[P] = −
[
[Q] + 2[Av]T

[Qv][Av]
][

[I ] +
1t2

8
[Q][B][R]

−1
[B]

T
]−1

{p(t)} = −

[
1t2

8
[Q][B][R]

−1
[B]

T
+ [I ]

]−1[
[Q]

[
[T ]{d(t −1t)} +

1t
2

[H ]ẍg(t)
]

+ 2[Av]T
[Qv]{Sv}ẋg(t)

]
. (5)

3. Equations of motion of SDOF structures controlled with the VDSA device

The system considered is shown schematically in Figure 1. It consists of a single degree of freedom
structure (SDOF) with the proposed variable damping system installed. The dampers have fixed-constant
damping coefficient CoA and CoB . The structure consists of a mass m distributed at the roof level, a
massless frame that provides stiffness k to the system, and the natural (inherent) damping of the structure
is represented by a damper with constant Cs . This coefficient can be defined as 2ξmωn where ξ is the
inherent (original) damping ratio and ωn is the natural frequency of the SDOF system. This model may be
considered as an idealization of a one-story structure. In reality, each structural member (column, beam)
of the structure contributes to the inertial (mass), elastic (stiffness), and energy dissipation (damping)

Figure 1. Single degree of freedom model of a structure with a VDSA device.
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properties of the structure. In the idealized system, however, these properties are concentrated in three
separate, pure components: a lumped mass, a linear spring, and a linear viscous damper.

To move the common lower end of the two dampers one needs to use an actuator, for instance a
hydraulic actuator with fast reaction. The information required to determine the movement of the VDSA
device includes the relative displacement and velocity of the mass m and the ground velocity ẋg(t).

Figure 2 displays the velocities that govern the forces produced by the dampers: ẋ(t) is the relative
velocity of the floor and ẇ(t) is the velocity of the bottom end of the dampers. As shown in the Figure
2, the damping force is proportional to the difference between the components of the velocities ẋ(t) and
ẇ(t) along the axis of the dampers A and B of the VDSA device.

Using Figures 1 and 2, it can be shown that the equation of motion for the SDOF structure subjected
to the horizontal component of an earthquake-induced ground acceleration is

mẍ(t)+
(
Cs + (CoA + CoB ) cos2 θ(t)

)
ẋ(t)+ kx(t)= − mẍg(t)+

1
2
(CoA − CoB ) sin 2θ(t)ẇ(t), (6)

where

cos2 θ(t)=
a2

a2 + [H −w(t)]2 , sin 2θ(t)=
2a[H −w(t)]

a2 + [H −w(t)]2 , a =
L
2
,

and a, H , and L are the dimensions shown in Figure 1.
For a structure with two dampers in a fixed position, the second term in the right hand side of the

equation of motion, Equation (6), vanishes. This term arises due to the component of the velocity of
the lower end of the dampers in the direction of the axis of the device. Rewriting Equation (6) in a
space-state representation leads to{

ż1(t)
ż2(t)

}
=

[
0 1

−m−1k −m−1
(
Cs + (CoA + CoB ) cos2 θ(t)

)] { z1(t)
z2(t)

}
+

[
0

1
2 m−1(CoA − CoB ) sin 2θ(t)

]
ẇ(t)+

[ 0
−1

]
ẍg(t),

where z1(t)= x(t) and z2(t)= ẋ(t).

Figure 2. End velocities of the VDSA device installed in an SDOF structure.
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These state-space equations can be solved by decoupling them with the complex eigenvectors of the
matrix in the right hand side, provided that the displacement w(t) of the bottom support of the dampers
is known. The term w(t) is determined by using one of the two modified algorithms Qv described in
the previous section.

For practical reasons, the position w(t) of the common joint of the VDSA device (which governs
the damping provided to the structure), must be bounded between two limiting values wmin and wmax.
Thus the effective instantaneous damping in the structure can be represented by a dashpot with a variable
coefficient given by

C(t)=


Cs + (CoA + CoB )

a2

a2+[H−wmin]2 , for w(t) < wmin,

Cs + (CoA + CoB )
a2

a2+[H−w(t)]2 , for wmin <w(t) < wmax,

Cs + (CoA + CoB )
a2

a2+[H−wmax]2 , for w(t) > wmax.

(7)

4. Equations of motion of MDOF structures controlled with the VDSA device

The application of the VDSA device to MDOF systems is similar to the SDOF case. When the VDSA
device is installed between the i th and i +1th building floors (and above the first level), the damping force
generated by the VDSA device is related to the velocities ẋi (t), ẋi+1(t) and ẇ(t) as shown in Figure 3.

The equation of motion for a MDOF system with the device installed between the i th and (i + 1)th
floor is

[M]{ẍ(t)} +
(
[Cs] + [C1] + [C2]

)
{ẋ(t)} + [K ]{x(t)} = − [M]{r}ẍg(t)− {D}ẇ(t). (8)

Figure 3. End velocities of the VDSA device installed between two floors of an MDOF building.
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The matrices [C1] and [C2] and the vector {D} are defined in terms of three vectors with only one or
two nonzero elements. The vectors {e1}, {e2} and {e3}, with length n, are:

{e1}
T

= [0, 0, . . . , 0, 1, 0, . . . , 0] with 1 at column i + 1

{e2}
T

= [0, 0, . . . , 0,−1, 0, . . . , 0] with −1 at column i

{e3}
T

= [0, 0, . . . , 0,−1, 1, . . . , 0] with −1 at column i, 1 at column i + 1. (9)

Using the three vectors in Equation (9), the matrices [C1] and [C2] and the vector {D} can be written
as:

[C1] =
(
CoA + CoB

)
cos2 θ(t){e1}{e3}

T ,

[C2] =
(
CoA + CoB

)
cos2 θ(t){e2}{e1}

T ,

{D} =
1
2
(CoA − CoB ) sin 2θ(t){e1}.

(10)

Substituting Equation (10) into Equation (8) and solving for {ẍ(t)} leads to

{ẍ(t)} = − [M]
−1(

[Cs] + [C1] + [C2]
)
{ẋ(t)} − [M]

−1
[K ]{x(t)} − [M]

−1
{D}ẇ(t)− {r}ẍg(t). (11)

Defining four matrices [Ac], [Bc], [Dc], and [Ec] as follows

[Ac] = − [[M]
−1

[K ]],

[Bc] = −
[
[M]

−1([Cs] + [C1] + [C2])
]
,

[Dc] = − [[M]
−1

{D}],

[Ec] = [{r}],

and introducing the components of a state vector{z1(t)} = {x(t)}, {z2(t)} = {ẋ(t)}, Equation (11) can be
written as:

{ż2(t)} = [Ac]{z1(t)} + [Bc]{z2(t)} + [Dc]ẇ(t)− [Ec]ẋg(t). (12)

To obtain the equations of motion in the state-space form, Equation (12) is supplemented with the
following identity:

{ż1(t)} = {z2(t)}. (13)

Equation (12) and Equation (13) can now be combined into the following equation of motion in the
state-space: {

ż1(t)
ż2(t)

}
=

[
[Oc] [Ic]

[Ac] [Bc]

]{
z1(t)
z2(t)

}
+

[
[Oc]

[Dc]

]
ẇ(t)−

[
[Oc]

[Ec]

]
{ẋg(t)}.

The vertical position of the lower end of the VDSA device w(t) required in each instant of time, along
with the damping coefficient for the coupled system, can be computed with Equation (7) using one of
the two modified algorithms Qv.

5. Numerical examples

Two examples are presented in this paper to illustrate the effectiveness of the VDSA device in reducing
the seismic response: an SDOF system and an MDOF structure. The response obtained by applying the
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Figure 4. Left: relative displacement of the SDOF system due to the El Centro record
for uncontrolled versus VDSA; right: fixed damper versus VDSA (closed-loop control).

closed-loop control modified algorithm Qv and the closed-open-loop control modified algorithm Qv are
compared against the response of the uncontrolled structures. In addition, the response of the structures
fitted with passive dampers is included in the comparisons. The structures are subjected to the horizontal
component of three different earthquakes. First, the record of the well-known El Centro earthquake in the
Imperial Valley, California on May 18, 1940, is considered. This record had a peak ground acceleration
(PGA) of 0.348 g. Next, the record of the San Fernando, California earthquake of February 9, 1971, with
a PGA of 1.007 g is used. Finally, the record of the Friuli, Italy earthquake of May 6, 1976, with a PGA
of 0.4788 g is applied to the structures. The accelerations are sampled at equal time intervals of 0.02 sec.

Example 1. The first example is a SDOF frame with a weight of 13,630 kip and natural period of 0.20 sec.
The damping coefficient of the dampers A and B of the VDSA device were 20 kip·sec/in and 10 kip·sec/in,
respectively. The results obtained are compared with those of the uncontrolled structure with a damping
ratio of 5%. The weighting matrix Q is selected as [I ] × 102, where [I ] is the identity matrix. The
matrices Qv and R become scalars with values equal to 101 and 10−4, respectively. The original damping
ratio of the structure in which the VDSA system was installed was taken to be 2%. For this case of
passive damping, the damping ratio was set equal to 30%, and the damping coefficient of the dampers is
40 kip·sec/in.

The response of the SDOF system to the base acceleration of the El Centro earthquake is presented first.
Figure 4 shows a comparison of the relative displacement time histories for the uncontrolled structure
(left), the structure with fixed dampers, and the structure controlled with the VDSA device (right). Only
the first twenty-seven seconds of the response are shown. Figure 5 (left) presents the total shear force at
the base of the structure as a function of time for the uncontrolled structure and the structure controlled
with the VDSA device. The time variation of the position of the lower end of the VDSA device, w(t),
is presented in Figure 5 (right). In this case the graph shows the variation of the position of the device
for the full duration of the earthquake excitation.

It can be noticed from Figure 5 (right) that the displacement w(t) of the lower end of the VDSA
device needs to change quite rapidly, actually in fractions of a second. This may pose a problem if a
hydraulic actuator is used to push or pull the VDSA device because it may require an actuator with very
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Figure 5. Left: uncontrolled versus VDSA-controlled base shear of the SDOF system.
Right: variation of the position of the VDSA device for the El Centro record (closed-loop
control).

high performance characteristics. In any case, for future work, and before an experimental verification of
the proposed protective system is undertaken, one would ideally include a model of a nonideal actuator
to study its effect on the response reduction.

The fact that the VDSA device continues to move even when the excitation diminishes (Figure 5
(right)) may be intriguing at first sight. The reason for this behavior is that both control algorithms try to
minimize the response even if its magnitude is not large. In other words, during the strong motion part
of the ground acceleration the semiactive control system reduces the response of the structure by about
the same degree than during the final phase of the excitation. In theory, to avoid this behavior one could
use in the definition of the performance index weighting matrices that vary with time. However, this
will considerably increase the required computational time which may, in turn, create other problems
due to the time lag between the response measurement and the actuator engagement. The effect on the

Figure 6. Relative displacement of the SDOF system for the San Fernando record for
(left) uncontrolled versus VDSA, and (right) fixed damper versus VDSA (closed-loop
control).
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Figure 7. Left: uncontrolled versus VDSA-controlled base shear of the SDOF system.
Right: variation of the position of the VDSA device for the San Fernando record (closed-
loop control).

structure of the feature portrayed in Figure 5 (right) during low intensity seismic motions should be
studied experimentally.

The previous response calculations were repeated with the San Fernando record. The responses com-
pared are those obtained with the original (uncontrolled) structure, with fixed dampers and with the
VDSA device. Figure 6 shows the time variation of the displacements for the three conditions whereas
Figure 7 (left) displays the base shear time histories. The first forty-two seconds of the response is shown.
Figure 7 (right) shows the variation of the height of the lower end of the device w(t) for the San Fernando
earthquake. Similar observations to those made for the El Centro earthquake can also be repeated here
regarding the nature of the time variation of w(t).

Figure 8. Relative displacement of the SDOF system for the Friuli record for (left)
uncontrolled versus VDSA, and (right) fixed damper versus VDSA (closed-loop con-
trol).
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Displacement Total base shear
Earthquake Uncont. Fixed damper VDSA Uncont. Damper Fixed VDSA

[in] [in] [in] [kip] [kip] [kip]
El Centro 0.2536 0.2049 0.0630 8828.0 7133.1 2192.1

San Fernando 0.7219 0.7072 0.1848 25132.0 24620.0 6435.3
Friuli 0.3315 0.3019 0.0696 11540.0 10509.0 2424.3

Table 1. Maximum response of the SDOF structure without control and with a passive
and semiactive system (closed-loop control).

The next set of results corresponds to the 1976 Friuli accelerogram. Again, the responses compared are
the relative displacement of the mass, and the sum of the shear forces in the columns, in both uncontrolled
and controlled mode with fixed dampers and with the VDSA device. The results are presented in Figure
8 and 9 (left) for the first twenty seconds of the response. Figure 9 (right), shows the variation of the
position of the VDSA device.

Table 1 shows a summary of the maximum responses obtained for the SDOF structure of Section 5
when the closed-loop modified algorithm Qv was used. Table 2 is similar to Table 1 but displays the con-
trolled response using the closed-open-loop control algorithm. Both tables demonstrate the advantages
of using the VDSA device. In addition, the tables show that both the closed-loop and closed-open-loop
control modified algorithms Qv provide almost the same results. The fact that both algorithms yielded
similar results coincides with the results observed in the area of active structural control whenever the
closed-loop and closed-open loop control formulations are used.

Example 2. A six-story building was selected to show, via a numerical simulation, the implementation
of the VDSA device and to illustrate its effectiveness in reducing the seismic response of a MDOF
structure. For simplicity, the structure is modeled as a shear building with one DOF per floor (the lateral

Figure 9. Left: uncontrolled versus VDSA-controlled base shear of the SDOF system.
Right: variation of the position of the VDSA device for the Friuli record (closed-loop
control).
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Displacement Total base shear
Earthquake Uncont. Fixed damper VDSA Uncont. Fixed damper VDSA

[in] [in] [in] [kip] [kip] [kip]
El Centro 0.2536 0.2049 0.0616 8828.0 7133.1 2144.5

San Fernando 0.7219 0.7072 0.1816 25132.0 24620.0 6322.2
Friuli 0.3315 0.3019 0.0678 11540.0 10509.0 2361.6

Table 2. Maximum response of the SDOF structure without control and with a passive
and semiactive system (closed-open-loop control).

displacement). The total lateral stiffness coefficients of the columns are ki = 5, 315 kip/in and the floor
weights are Wi = 2, 205 kip. The damping ratio of the uncontrolled structure is assumed to be 5% for all
the modes. For the case where the dampers are installed in a fixed position, the damping ratio provided
by them is selected to be 30% for the first mode. The damping coefficients of the dampers of the VDSA
device are 25 kip·sec/in and 10 kip·sec/in for the dampers A and B, respectively. The results obtained
are compared with those obtained for the uncontrolled structure and also with the response calculated
with fixed dampers. In the latter case three configurations, identified as I, II and III, were considered.
Each corresponds to increasing number of fixed dampers: in case I, a single damper was installed at
the first floor; in case II three dampers were placed on the three lower floors and in case III a damper
was installed at each of the six floors. The VDSA device was assumed to be installed in the fourth floor.
This position was found to be the best one by a simple trial and error process. For closed-loop and
closed-open-loop control algorithms Qv the weighting matrices Q and Qv were selected as [I ]× 104

and [I ] × 102, respectively, where [I ] is an identity matrix. Matrix R is, in this case, a scalar with a
value equal to 10−1.

The first result for the MDOF structure is the response to the ground acceleration due to the 1940
El Centro earthquake. The relative displacements computed for the uncontrolled structure are compared
with a similar response quantity but for the structure controlled with the VDSA device. The time trace of

Figure 10. Relative displacements of the 6-story building for the El Centro record, (left)
first floor, and (right) top floor — uncontrolled versus VDSA (closed-loop control).
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Figure 11. Left: maximum floor displacements for all cases. Right: variation of the
position of the VDSA device — El Centro record (closed-loop control).

the relative displacements of the first and six floors are presented in Figure 10 (left and right, respectively).
The maximum relative displacements in the six floors for all the cases considered are shown in Figure
11 (left). There are five cases considered: the original structure, the structure with a single VDSA device
in the fourth floor, and the three fixed damper configurations I, II and III, previously described. Clearly,
the response reduction achieved by the VDSA system is remarkable, even when compared to the case
in which all floors are provided with viscous dampers at the maximum practical range. The variation of
the control device position for the El Centro record is presented in Figure 11 (right).

The previous analyses were repeated for the San Fernando ground motion. Figure 12 displays the time
variation of the displacement response for the first and top floor of the original structure and controlled
with the VDSA device. The next set of results displayed in Figure 13 is the maximum relative displace-
ments of the six floors for all cases studied (left) and the vertical position of the lower end of the device
(right).

Figure 12. Relative displacements of the 6-story building for the San Fernando record,
(left) first floor, and (right) top floor — uncontrolled versus VDSA (closed-loop control).
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Figure 13. Left: maximum floor displacements for all cases. Right: variation of the
position of the VDSA — San Fernando record (closed-loop control).

The last set of results corresponds to the response of the 6-story building subjected to the acceleration
of the Friuli earthquake. Only the first twenty seconds of the response is shown. Figure 14 displays
the relative displacement time histories of the structure in uncontrolled mode (left) and controlled mode
(right) with the variable dampers for the first and top floor. Figure 15 shows the maximum relative
displacements of the six floors for the five cases analyzed (left) and the variation of the position of the
VDSA device (right).

Here also the maximum responses obtained using the closed-loop and closed-open-loop control al-
gorithms were practically the same. Only small differences in the form that varies the position of the
VDSA device were found [Cundumi 2005].

A summary of the response of the structure in three conditions: a) uncontrolled, b) fitted with fixed
(passive) dampers using the configurations I, II and III, and c) controlled with the proposed semiactive
device, are compared in Tables 3–5. These tables present the maximum relative displacement for all
floors when the El Centro, San Fernando, and Friuli ground motions were applied at the base. It can be

Figure 14. Relative displacements of the 6-story building for the Friuli record, (left)
first floor, and (right) top floor — uncontrolled versus VDSA (closed-loop control).
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Figure 15. Left: maximum floor displacements for all cases. Right: variation of the
position of the VDSA — Friuli record (closed-loop control).

noticed that the VDSA device is effective in reducing the relative displacements and shear forces. The
results presented in this paper correspond to the VDSA device installed in the fourth floor where the best
response reduction was obtained. However, although it is not presented here, comparable reductions were
obtained with the VDSA device positioned in other floors. As expected, the best results obtained with
passive control were for case III in which the dampers were installed in all six floors of the building. In this
passive case the fixed dampers were assigned a damping coefficient equal to the maximum recommended
practical limit. The reduction in the maximum displacements of the building with the VDSA device
compared to the passive control (case III) ranges from 50–80%. When the maximum displacement
reduction achieved with the proposed system is compared with the original structure, the decrease in the
top floor response varies from 88–93%.

Finally, the effectiveness in the response reduction in MDOF structures with the VDSA device con-
trolled by the modified closed-loop and closed-open-loop control algorithm Qv was observed to be the
same. In other words, in terms of performance, there was no advantage in using one methodology over
the other.

Displacement
Floor Uncont. Fixed damper Case I Fixed damper Case II Fixed damper Case III VDSA

[in] [in] [in] [in] [in]
6th 2.939 2.894 2.732 1.529 0.352
5th 2.786 2.742 2.586 1.448 0.252
4th 2.483 2.443 2.301 1.296 0.141
3rd 2.036 2.000 1.881 1.069 0.273
2nd 1.454 1.427 1.340 0.769 0.320
1st 0.762 0.747 0.700 0.405 0.215

Table 3. Maximum displacements of the 6-story building without control and with a
passive and semiactive system for the El Centro record (closed-loop control).
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Displacement
Floor Uncont. Fixed damper Case I Fixed damper Case II Fixed damper Case III VDSA

[in] [in] [in] [in] [in]
6th 7.528 7.321 6.650 3.731 1.178
5th 7.066 6.873 6.244 3.485 0.800
4th 6.185 6.018 5.467 3.035 0.519
3rd 4.957 4.823 4.380 2.432 0.585
2nd 3.463 3.371 3.057 1.715 0.701
1st 1.785 1.738 1.575 0.897 0.519

Table 4. Maximum displacements of the 6-story building without control and with a
passive and semiactive system for the San Fernando record (closed-loop control).

Displacement
Floor Uncont. Fixed damper Case I Fixed damper Case II Fixed damper Case III VDSA

[in] [in] [in] [in] [in]
6th 5.951 5.689 4.877 1.850 0.428
5th 5.617 5.369 4.602 1.759 0.271
4th 4.960 4.741 4.063 1.579 0.132
3rd 4.010 3.832 3.283 1.307 0.210
2nd 2.813 2.688 2.304 0.946 0.269
1st 1.452 1.383 1.184 0.505 0.186

Table 5. Maximum displacements of the 6-story building without control and with a
passive and semiactive system for the Friuli record (closed-loop control).

6. Conclusions

The results presented in Tables 1 and 2 for the SDOF structure, selected as the first example, indicate that
the maximum relative displacements due to the El Centro, San Fernando, and Friuli accelerograms were
reduced by 75.2%, 74.4%, and 79.0%, respectively, compared to the case when the structure had its origi-
nal 5% damping ratio. The results were obtained by using the modified closed-loop control algorithm Qv.
When the modified closed-open-loop control algorithm Qv was used to define the position of the VDSA
device, the reductions were 75.7%, 74.8% and 79.6%, that is, practically the same. When compared to
the case in which the SDOF system was fitted with fixed dampers, the peak relative displacements were
reduced by 19.2%, 2.0%, and 8.9% for the El Centro, San Fernando, and Friuli earthquakes.

In another example a 6-story shear building was used to numerically examine the performance of the
proposed semiactive dampers. The maximum relative displacements of all floors for the three seismic
records were presented in Table 3, 4 and 5, respectively. The reductions obtained with the VDSA device
in the top floor displacements were 88.0% (for El Centro), 84.4% (for San Fernando) and 92.8% (for
Friuli). Both algorithms led to the same results. To compare the effectiveness of the VDSA device
with viscous dampers in a fixed position, three configurations were selected for the latter case. The



A NEW VARIABLE DAMPING SEMIACTIVE DEVICE FOR SEISMIC RESPONSE REDUCTION 1655

best results were observed when the structure had passive dampers installed in all floors (a configuration
identified as Case III). In this case the reduction in the peak displacement at the top floor was 48%,
50.4%, and 68.9% for the El Centro, San Fernando and Friuli accelerograms. The reduction in the
displacements of the lower floors is not as dramatic as in the top floor. However, the proposed device
was capable of achieving a notable decrease even for the lowest floor. For example, the reductions in the
peak displacements of the first floor obtained with the VDSA device were 71.3%, 70.9%, and 87.2% for
El Centro, San Fernando and Friuli record, respectively. These percentages should be compared with the
46.8%, 49.8%, and 65.2% reduction obtained by installing fixed dampers in all the floors.

The objective of this paper was to introduce the concept of a novel variable damping device in which
the damping provided to the structure can be changed by varying the orientation of two dampers with
constant coefficients. A preliminary verification of the performance of the proposed device was done via
numerical simulations. However, it is recognized that there are still many issues that need to be studied
analytically and even more importantly, experimentally. For instance, the actuator was assumed to be
ideal, that is, no actuator dynamics were included in the simulations. The final corroboration of the
concept must be done through a thorough experimental program.
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