Journal of Mechanics of Materials and Structures

STONELEY SIGNALS IN PERFECTLY BONDED DISSIMILAR

 THERMOELASTIC HALF-SPACES WITH AND WITHOUT THERMALRELAXATION RELAXATION

Louis Milton Brock

STONELEY SIGNALS IN PERFECTLY BONDED DISSIMILAR THERMOELASTIC HALF-SPACES WITH AND WITHOUT THERMAL RELAXATION

Louis Milton Brock

The governing equations for each of two perfectly bonded, dissimilar thermoelastic half-spaces include as special cases the Fourier heat conduction model and models with either one or two thermal relaxation times. An exact solution in transform space for the problem of line loads applied in one half-space is obtained.

Study of the Stoneley function shows that conditions for existence of roots are more restrictive than in the isothermal case, and that both real and imaginary roots are possible. For the limit case of line loads applied to the interface, an analytical expression for the time transform of the corresponding residue contribution to interface temperature change is derived.

Asymptotic expressions for the inverses that are valid for either very long or very short times after loading occurs show that long-time behavior obeys Fourier heat conduction. Short-time results are sensitive to thermal relaxation effects. In particular, a time step load produces a propagating step in temperature for the Fourier and double-relaxation time models, but a propagating impulse for the single-relaxation time model.

1. Introduction

Joined dissimilar elastic materials occur in geological formations [Cagniard 1962] and as structural elements [Jones 1999]. Transient analyses [Stoneley 1924; Cagniard 1962] show that dynamic loading of these can produce, in addition to dilatational and rotational waves, interface (Stoneley) waves. Such waves are similar to Rayleigh surface waves [Lamb 1904] and so may be important in assessing interface integrity.

Studies such as [Stoneley 1924; Cagniard 1962] focus on isothermal materials. Studies such as [Brock 1997a; 1997b] consider both Stoneley and Rayleigh waves for materials that satisfy equations for coupled thermoelasticity [Chadwick 1960]. However, the equations are based on classical Fourier heat conduction [Carrier and Pearson 1988], and the Stoneley and Rayleigh signals are examined for times after the application of loading that greatly exceed the thermoelastic characteristic time.

Joseph and Preziosi [1989] have surveyed models that include the phenomenon of thermal relaxation in heat conduction. Lord and Shulman [1967], Green and Lindsay [1972] and Chandrasekharia [1986] have included thermal relaxation in formulations for coupled thermoelasticity. Sharma and Sharma [2002] have applied such formulations to homogeneous plates. Based on all this work, and on an effort in (nontransient) dynamic steady-state analysis of two joined half-spaces governed by the Fourier model [Brock and Georgiadis 1999], this article considers two perfectly bonded, dissimilar elastic half-spaces

[^0]that are subject to thermal-mechanical line loads applied to the interface. Both half-spaces obey equations for coupled thermoelasticity that include the Fourier model [Chadwick 1960], and the single- and doublerelaxation time models of Lord and Shulman [1967] and Green and Lindsay [1972], respectively, as special cases.

The study begins with construction of the exact solution in transform space for the general case of line loads applied in one of the half-spaces. The solution exhibits a Stoneley function that is more complicated in form than its isothermal counterpart [Cagniard 1962]. Conditions for the existence of Stoneley roots are determined, and found to be more restrictive than those for the isothermal case. Expressions for these roots, analytic to within a single integration, are developed, and found to give both real and imaginary values, again in contrast to the isothermal case. An exact formula for the time transform of the change in interface temperature when the line loads are applied to the interface is developed. Analytical expressions for the change itself, valid for either very long or very short times after loading is applied, are obtained for each of the three models. Consistent with previous observation [Brock 2004] the long-time results all have the character of the Fourier model, and describe a temperature change wave. The short-time results, on the other hand, are sensitive to the particular model but the Stoneley signals are again in the form of waves.

2. Statement of general problem and governing equations

In terms of Cartesian coordinates (x, y, z) two half-spaces of dissimilar isotropic, homogeneous, linear thermoelastic material are perfectly bonded along the plane $y=0$. For time $t \leq 0$, both are at rest at the uniform ambient (absolute) temperature T_{0} when, at $t=0$, thermal-mechanical disturbances are introduced along the line $x=0, y=L$. The disturbances may be time-dependent, but do not vary along the line, so that a state of plane strain is generated. For half-space $1(y>0)$ the field equations for $t>0$ are

$$
\begin{gather*}
\left(\nabla^{2}-s_{r 1}^{2} \frac{\partial^{2}}{\partial t^{2}}\right)\left(u_{x 1}, u_{y 1}\right)+\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)\left(m_{1} \Delta_{1}-\alpha_{v 1} D_{1}^{I I} \theta_{1}\right)=\frac{1}{\mu_{1}}\left(F_{x}, F_{y}\right) \delta(x) \delta(y-L), \tag{1a}\\
h_{1} \nabla^{2} \theta_{1}-s_{r 1} \frac{\partial}{\partial t}\left(\frac{\varepsilon_{1}}{\alpha_{v 1}} D_{1} \Delta_{1}-D_{1}^{I} \theta_{1}\right)=F_{T} \delta(x) \delta(y-L) \tag{1b}\\
\frac{1}{\mu_{1}}\left(\sigma_{x 1}, \sigma_{y 1}, \sigma_{z 1}\right)=\left(m_{1}-1\right) \Delta_{1}-\alpha_{v 1} D_{1}^{I I} \theta_{1}+2\left(\frac{\partial u_{x 1}}{\partial x}, \frac{\partial u_{y 1}}{\partial y}, 0\right) \tag{1c}\\
\frac{1}{\mu_{1}} \sigma_{x y 1}=\frac{\partial u_{x 1}}{\partial y}+\frac{\partial u_{y 1}}{\partial x} . \tag{1d}
\end{gather*}
$$

In (1) $\left(u_{x 1}, u_{y 1}, \Delta_{1}, \theta_{1}\right)$ are, respectively, displacement components, dilatation and change in temperature from T_{0}, and ($\sigma_{x 1}, \sigma_{y 1}, \sigma_{z 1}, \sigma_{x y 1}$) are stress components. These vary with (x, y, t). In (1a), (1b) $\left(F_{x}, F_{y}, F_{T}\right)$ are the t-dependent line loads, and δ is the Dirac function. For the Fourier model F [Chadwick 1960] and single- and double-relaxation time model I [Lord and Shulman 1967] and II [Green
and Lindsay 1972], respectively,

$$
\begin{align*}
& \mathrm{F}:\left(D_{1}, D_{1}^{I}, D_{1}^{I I}\right)=1 \tag{2a}\\
& \mathrm{I}: D_{1}^{I I}=1, \quad\left(D_{1}, D_{1}^{I}\right)=1+\tau_{1}^{I} \frac{\partial}{\partial t} \tag{2b}\\
& \mathrm{II}:\left(D_{1}, D_{1}^{I I}\right)=1+\tau_{1}^{I I} \frac{\partial}{\partial t}, \quad D_{1}^{I}=1+\tau_{1}^{I} \frac{\partial}{\partial t} . \tag{2c}
\end{align*}
$$

Constants $\tau_{1}^{I}>\tau_{1}^{I I} \geq 0$ are thermal relaxation times, and it is noted that model II serves to introduce thermal relaxation explicitly in constitutive Equation (1c), (1d). In (1)

$$
\begin{align*}
& m_{1}=\frac{1}{1-2 \nu_{1}}, \quad a_{1}=2 \frac{1-v_{1}}{1-2 \nu_{1}}, \tag{3a}\\
& \varepsilon_{1}=\frac{\mu_{1} T_{0}}{\rho_{1} c_{v 1}} \alpha_{1 v}^{2}, \quad h_{1}=v_{r 1} \tau_{1}^{h}, \quad s_{r 1}=\frac{1}{v_{r 1}} \tag{3b}\\
& \tau_{1}^{h}=\frac{k_{1}}{\mu_{1} c_{v 1}}, \quad v_{r 1}=\sqrt{\frac{\mu_{1}}{\rho_{1}}} . \tag{3c}
\end{align*}
$$

In (1) and (3) ($\left.\nu_{1}, \mu_{1}, \rho_{1}, \alpha_{v 1}, c_{v 1}, k_{1}\right)$ are, respectively, Poisson's ratio, shear modulus, mass density, coefficient of volumetric thermal expansion, specific heat at constant volume and thermal conductivity. In turn $\left(\varepsilon_{1}, h_{1}, s_{r 1}, v_{r 1}, \tau_{1}^{h}\right)$ are, respectively, the thermal coupling constant, thermoelastic characteristic length, rotational wave slowness, rotational wave speed, and thermoelastic characteristic time. For halfspace $2(y<0)$ Equation (1)-(3) again hold, except that subscript 1 is replaced by 2 and (1a), (1b) are homogeneous. Data in a number of sources [Chadwick 1960; Achenbach 1973; Davis 1998; Sharma and Sharma 2002] suggests that in both half-spaces, that is, $n=(1,2)$, we find

$$
\begin{align*}
v_{r n} & \approx O\left(10^{3}\right) \mathrm{m} / \mathrm{s},
\end{align*} \quad m_{n} \geq 2, \quad \varepsilon_{n} \approx O\left(10^{-2}\right),
$$

These values indicate in turn that $\tau_{n}^{h} \gg \tau_{n}^{I}>\tau_{n}^{I I}$.
For $y \neq 0$ the initial $(t \leq 0)$ conditions are

$$
\begin{equation*}
\left(u_{n x}, u_{n y}, \theta_{n}\right) \equiv 0, \quad n=(1,2) \tag{5}
\end{equation*}
$$

For $t>0$ the interface $(y=0)$ conditions are

$$
\begin{align*}
u_{x 1}-u_{x 2} & =0, & u_{y 1}-u_{y 2} & =0,
\end{align*} r \theta_{1}-\theta_{2}=0 ~ 子 ~ \sigma_{x y 1}-\sigma_{x y 2}=0, ~ \sigma_{y 1}-\sigma_{y 2}=0, \quad k_{1} \frac{\partial \theta_{1}}{\partial y}-k_{2} \frac{\partial \theta_{2}}{\partial y}=0 .
$$

Equation (1a), (1b) imply for ($y=L, t>0$) that

$$
\begin{gather*}
{\left[u_{x 1}\right]=0, \quad\left[u_{y 1}\right]=0, \quad\left[\theta_{1}\right]=0} \\
\mu_{1}\left[\frac{\partial u_{x 1}}{\partial y}\right]=F_{x} \delta(x), \quad \mu_{1} a_{1}\left[\frac{\partial u_{y 1}}{\partial y}\right]=F_{y} \delta(x), \quad h_{1} c_{v 1}\left[\frac{\partial \theta_{1}}{\partial y}\right]=F_{T} \delta(x) \tag{7}
\end{gather*}
$$

Here $[F]$ denotes the jump in function F for a given (x, t) as one moves from $y=L-0$ to $y=L+0$. For $t>0\left(u_{x 1}, u_{y 1}, \theta_{1}\right)$ and $\left(u_{x 2}, u_{y 2}, \theta_{2}\right)$ should vanish as $y \rightarrow \infty$ and $y \rightarrow-\infty$, respectively, and singular behavior may occur at $(x=0, y=L)$. By explicitly imposing (7), homogeneous forms of (1a), (1b) can be addressed in both half-space 1 and 2. Decomposition of these in view of (5) gives for $n=(1,2)$, $y \neq(0, L)$

$$
\begin{gather*}
\nabla^{2}\left(a_{n} \Delta_{n}-\alpha_{v n} D_{n}^{I I} \theta_{n}\right)-s_{r n}^{2} \frac{\partial^{2} \Delta_{n}}{\partial t^{2}}=0, \quad\left(\nabla^{2}-s_{r n}^{2} \frac{\partial^{2}}{\partial t^{2}}\right) r_{x y n}=0 \quad(t>0) \tag{8a}\\
\left(\Delta_{n}, \theta_{n}, r_{x y n}\right) \equiv 0 \quad(t \leq 0) \tag{8b}
\end{gather*}
$$

In (8), Equation (2) holds, and $r_{x y n}$ is rotation in plane strain.

3. Transform solution for general problem

Unilateral and bilateral [Sneddon 1972] Laplace transforms over (t, x) are

$$
\begin{equation*}
\hat{F}(x)=\int_{0}^{\infty} F(x, t) \exp (-p t) d t, \quad \tilde{F}=\int_{-\infty}^{\infty} \hat{F}(x) \exp (-p q x) d q \tag{9}
\end{equation*}
$$

Here p is positive and real, and q is imaginary. Application of (9) to (8) gives eigenfunctions and eigenvalues

$$
\begin{array}{cc}
\exp \left(\pm p A_{n}^{+} y\right), \quad \exp \left(\pm p A_{n}^{-} y\right), & \exp \left(\pm p B_{n} y\right) \\
A_{n}^{+}\left(q^{2}\right)=\sqrt{s_{n}^{+2}-q^{2}}, \quad A_{n}^{-}\left(q^{2}\right)=\sqrt{s_{n}^{-2}-q^{2}}, & B_{n}\left(q^{2}\right)=\sqrt{s_{r n}^{2}-q^{2}} . \tag{10b}
\end{array}
$$

In (10) the branch points are defined by (3) and for $n=(1,2)$

$$
\begin{gather*}
s_{n}^{ \pm}=k_{n}^{ \pm} s_{d n}, \quad s_{d n}=\frac{s_{r n}}{\sqrt{a_{n}}} \tag{11a}\\
2 k_{n}^{ \pm}=\sqrt{\left(1+\sqrt{\frac{a_{n} d_{n}^{I}}{\tau_{n}^{h} p}}\right)^{2}+\frac{\varepsilon_{n} d_{n}}{\tau_{n}^{h} p}} \pm \sqrt{\left(1-\sqrt{\frac{a_{n} d_{n}^{I}}{\tau_{n}^{h} p}}\right)^{2}+\frac{\varepsilon_{n} d_{n}}{\tau_{n}^{h} p}} \tag{11b}
\end{gather*}
$$

Here $s_{d n}$ is the isothermal dilatational wave slowness, and from (2), (5) and (9)

$$
\begin{align*}
& \mathrm{F}:\left(d_{n}, d_{n}^{I}\right)=1 \\
& \mathrm{I}:\left(d_{n}, d_{n}^{I}\right)=1+\tau_{n}^{I} p \tag{12}\\
& \mathrm{II}:\left(d_{n}, d_{n}^{I I}\right)=1+\tau_{n}^{I I} p, \quad d_{n}^{I}=1+\tau_{n}^{I} p
\end{align*}
$$

It can be shown in view of (4) for all three models that $k_{n}^{+}>1>k_{n}^{-}>0$ and thus $\left(s_{n}^{+}, s_{r n}\right)>s_{n}^{-}$for positive real p. Inequality $s_{n}^{+}>s_{r n}\left(k_{n}^{+}>\sqrt{a_{n}}\right)$ also holds when

$$
\begin{align*}
& \mathrm{F}: p<1+\frac{\varepsilon_{n}}{m_{n}}, \\
& \mathrm{I}: p<\frac{m_{n}+\varepsilon_{n}}{m_{n} \tau_{n}^{h}-\left(m_{n}+\varepsilon_{n}\right) \tau_{n}^{I}}, \tag{13}\\
& \mathrm{II}: p<\frac{m_{n}+\varepsilon_{n}}{m_{n}\left(\tau_{n}^{h}-\tau_{n}^{I}\right)-\varepsilon_{n} \tau_{n}^{I I}} .
\end{align*}
$$

Application of (9) to the homogeneous versions of (1a), (1b) in light of (5) and using (10) and (12) gives transforms $\left(\tilde{u}_{1 x}, \tilde{u}_{1 y}, \tilde{\theta}_{1}\right)$ for $y>0, y \neq L$ and $\left(\tilde{u}_{2 x}, \tilde{u}_{2 y}, \tilde{\theta}_{2}\right)$ for $y<0$ as linear combinations of (10a). Operating on (1c), (1d), (6) and (7) with (9) then gives the equations required to find the coefficients of the linear combinations. For present purposes it is sufficient to display results for half-space 2 :

$$
\begin{align*}
& {\left[\begin{array}{c}
\tilde{u}_{2 x} \\
\tilde{u}_{2 y} \\
\tilde{\theta}_{2}
\end{array}\right]=\left[\begin{array}{ccc}
q & q & 1 \\
A_{2}^{+} & A_{2}^{-} & -q \\
\omega_{2} \eta_{2}^{+} & \omega_{2} \eta_{2}^{-} & 0
\end{array}\right]\left[\begin{array}{l}
C_{+} \exp \left(p A_{2}^{+} y\right) \\
C_{-} \exp \left(p A_{2}^{-} y\right) \\
C_{B} \exp \left(p B_{2} y\right)
\end{array}\right]} \tag{14a}\\
& {\left[\begin{array}{c}
C_{+} \\
C_{-} \\
C_{B}
\end{array}\right]=\frac{1}{p S}\left[\begin{array}{ccc}
M_{+}^{+} & M_{-}^{+} & \omega_{1} q M_{B}^{+} \\
M_{+}^{-} & M_{-}^{-} & \omega_{1} q M_{B}^{-} \\
q M_{+} & q M_{-} & M_{B}
\end{array}\right]\left[\begin{array}{l}
F_{+} \\
F_{-} \\
F_{B}
\end{array}\right]} \tag{14b}
\end{align*}
$$

For $n=(1,2)$ in view of (11) and (12),

$$
\begin{align*}
\omega_{n} & =\frac{s_{r n}^{2} p}{\alpha_{v n} d_{n}}, \quad \eta_{n}^{ \pm}=1-k_{n}^{ \pm 2} \tag{15a}\\
\eta_{n}^{+} \eta_{n}^{-} & =-\frac{\varepsilon_{n} d_{n}}{\tau_{n}^{h} p} \\
\eta_{n}^{-}-\eta_{n}^{+} & =\eta_{n}=\sqrt{\left[1+\frac{1}{\tau_{n}^{h} p}\left(a_{n} d_{n}^{I}+\varepsilon_{n} d_{n}\right)\right]^{2}-4 \sqrt{\frac{a_{n} d_{n}^{I}}{\tau_{n}^{h} p}}} \tag{15b}
\end{align*}
$$

For ω_{n} parameter d_{n} is defined by

$$
\begin{equation*}
\mathrm{I}, \mathrm{~F}: d_{n}=1, \quad \mathrm{II}:\left(d_{n}, d_{n}^{I I}\right)=1+\tau_{n}^{I I} p \tag{16}
\end{equation*}
$$

In (15b), however, it is defined by (12). Introduction of branch cuts $\operatorname{Im}(q)=0,|\operatorname{Re}(q)|>s_{n}^{ \pm}$and $\operatorname{Im}(q)=0,|\operatorname{Re}(q)|>s_{r n}$ such that $\operatorname{Re}\left(A_{n}^{ \pm}, B_{n}\right) \geq 0$ in the cut q-plane guarantees that (14a) is bounded
as $y \rightarrow-\infty$ for positive real p. In (14b)

$$
\begin{align*}
& F_{+}=\left[\omega_{1} \eta_{1}^{-}\left(q \hat{F}_{x}+A_{1}^{-} \hat{F}_{y}\right)-\frac{\hat{F}_{T}}{h_{1} c_{v 1}}\right] \exp \left(-p A_{1}^{+} L\right) \tag{17a}\\
& F_{-}=\left[\omega_{1} \eta_{1}^{+}\left(q \hat{F}_{x}+A_{1}^{+} \hat{F}_{y}\right)-\frac{\hat{F}_{T}}{h_{1} c_{v 1}}\right] \exp \left(-p A_{1}^{-} L\right) \tag{17b}\\
& F_{B}=\left(q \hat{F}_{y}-B_{1} \hat{F}_{x}\right) \exp \left(-p B_{1} L\right) \tag{17c}
\end{align*}
$$

The matrix coefficients in (14b) are given by

$$
\begin{aligned}
& M_{+}^{+}=\frac{\omega_{1} \eta_{1}^{+} k_{1}}{\rho_{1}} S_{1-}^{2-}-\omega_{2} \eta_{2}^{-} Q_{B}\left(K_{1}^{-}+K_{2}^{-}\right), \quad M_{-}^{+}=\omega_{2} \eta_{2}^{-} Q_{B}\left(K_{1}^{+}+K_{2}^{-}\right)-\frac{\omega_{1} \eta_{1}^{-} k_{1}}{\rho_{1}} S_{1+}^{2-} \\
& M_{B}^{+}=\omega_{2} \eta_{2}^{-}\left[\eta_{1}^{-} Q_{1}^{+}\left(K_{1}^{-}+K_{2}^{-}\right)-\eta_{1}^{+} Q_{1}^{-}\left(K_{1}^{+}+K_{2}^{-}\right)\right]+\frac{\omega_{1} \varepsilon_{1} d_{1}}{\tau_{1}^{h} \rho_{1} p}\left(K_{1}^{-}-K_{1}^{+}\right)\left(T_{2} T_{12}-\mu_{12} T_{1} K_{2}^{-} B_{2}\right) \\
& M_{-}^{-}=\frac{\omega_{1} \eta_{1}^{-} k_{1}}{\rho_{1}} S_{1+}^{2+}-\omega_{2} \eta_{2}^{+} Q_{B}\left(K_{1}^{+}+K_{2}^{+}\right), \quad M_{+}^{-}=\omega_{2} \eta_{2}^{+} Q_{B}\left(K_{1}^{-}+K_{2}^{+}\right)-\frac{\omega_{1} \eta_{1}^{+} k_{1}}{\rho_{1}} S_{1-}^{2+}
\end{aligned}
$$

$$
\begin{equation*}
M_{B}^{-}=\omega_{2} \eta_{2}^{+}\left[\eta_{1}^{+} Q_{1}^{-}\left(K_{1}^{+}+K_{2}^{+}\right)-\eta_{1}^{-} Q_{1}^{+}\left(K_{1}^{-}+K_{2}^{+}\right)\right]+\frac{\omega_{1} \varepsilon_{1} d_{1}}{\tau_{1}^{h} \rho_{1} p}\left(K_{1}^{+}-K_{1}^{-}\right)\left(T_{2} T_{12}-\mu_{12} T_{1} K_{2}^{+} B_{2}\right) \tag{19b}
\end{equation*}
$$

$$
\begin{equation*}
M_{+}=\omega_{2}\left[\eta_{2}^{-} Q_{2}^{+}\left(K_{1}^{-}+K_{2}^{-}\right)-\eta_{2}^{+} Q_{2}^{-}\left(K_{1}^{-}+K_{2}^{+}\right)\right]+\frac{\omega_{1} \eta_{1}^{+}}{\rho_{1}}\left(K_{2}^{+}-K_{2}^{-}\right)\left(T_{1} T_{12}-\mu_{12} T_{2} K_{1}^{-} B_{1}\right) \tag{20a}
\end{equation*}
$$

$$
\begin{equation*}
M_{-}=\omega_{2}\left[\eta_{2}^{+} Q_{2}^{-}\left(K_{1}^{-}+K_{2}^{+}\right)-\eta_{2}^{-} Q_{2}^{+}\left(K_{1}^{-}+K_{2}^{-}\right)\right]+\frac{\omega_{1} \eta_{1}^{-}}{\rho_{1}}\left(K_{2}^{+}-K_{2}^{-}\right)\left(T_{1} T_{12}-\mu_{12} T_{2} K_{1}^{+} B_{1}\right) \tag{20b}
\end{equation*}
$$

$$
\begin{align*}
& M_{B}=\omega_{1} \omega_{2}\left[\eta_{1}^{+} \eta_{2}^{+}\left(K_{1}^{+}+K_{2}^{+}\right) Q_{1-}^{2-}\right.\left.+\eta_{1}^{-} \eta_{2}^{-}\left(K_{1}^{-}+K_{2}^{-}\right) Q_{1+}^{2+}\right] \\
&-\omega_{1} \omega_{2}\left[\eta_{1}^{+} \eta_{2}^{-}\left(K_{1}^{+}+K_{2}^{-}\right) Q_{1-}^{2+}+\eta_{1}^{-} \eta_{2}^{+}\left(K_{1}^{-}+K_{2}^{+}\right) Q_{1+}^{2-}\right] \\
&-\left(\rho_{1} \omega_{2}^{2} \frac{k_{2} \varepsilon_{2} d_{2}}{\tau_{2}^{h} p}+\frac{\omega_{1}^{2} k_{1} \varepsilon_{1} d_{1}}{\tau_{1}^{h} \rho_{1} p} T_{1} T_{2}\right)\left(K_{1}^{+}-K_{1}^{-}\right)\left(K_{2}^{+}-K_{2}^{-}\right) \tag{20c}
\end{align*}
$$

Denominator term S is given by

$$
\begin{align*}
S=-Q_{B}\left(\rho_{2} \frac{k_{1} \omega_{1}^{2} \varepsilon_{1} d_{1}}{\tau_{1}^{h} p}+\rho_{1} \frac{k_{2} \omega_{2}^{2} \varepsilon_{2} d_{2}}{\tau_{2}^{h} p}\right) & \left(A_{1}^{+}-A_{1}^{-}\right)\left(A_{2}^{+}-A_{2}^{-}\right) \\
& +\omega_{1} \omega_{2}\left[\eta_{1}^{+} \eta_{2}^{+}\left(K_{1}^{+}+K_{2}^{+}\right) S_{1-}^{2-}+\eta_{1}^{-} \eta_{2}^{-}\left(K_{1}^{-}+K_{2}^{-}\right) S_{1+}^{2+}\right] \\
& -\omega_{1} \omega_{2}\left[\eta_{1}^{+} \eta_{2}^{-}\left(K_{1}^{+}+K_{2}^{-}\right) S_{1-}^{2+}+\eta_{1}^{-} \eta_{2}^{+}\left(K_{1}^{-}+K_{2}^{+}\right) S_{1+}^{2-}\right] \tag{21}
\end{align*}
$$

Equation (12) defines d_{n} in (18)-(21) and in (18)-(20) functions

$$
\begin{gather*}
S_{1 \pm}^{2 \pm}=q^{2} Q_{1}^{ \pm} Q_{2}^{ \pm}+Q_{B} Q_{1 \pm}^{2 \pm}, \quad K_{\eta}^{ \pm}=k_{\eta} A_{\eta}^{ \pm}, \eta=(1,2), \tag{22a}\\
Q_{1 \pm}^{2 \pm}=T_{2} A_{1}^{ \pm}+T_{1} A_{2}^{ \pm}, \quad Q_{B}\left(q^{2}\right)=T_{2} B_{1}+T_{1} B_{2} \tag{22b}\\
Q_{1}^{ \pm}\left(q^{2}\right)=T_{12}+\mu_{12} A_{1}^{ \pm} B_{2}, \quad Q_{2}^{ \pm}\left(q^{2}\right)=T_{12}+\mu_{12} A_{2}^{ \pm} B_{1} \tag{22c}\\
\mu_{12}=2\left(\mu_{2}-\mu_{1}\right) \tag{22d}\\
T_{1}=\rho_{1}+\mu_{12} q^{2}, \quad T_{2}=\rho_{2}-\mu_{12} q^{2} \tag{22e}\\
T_{12}=\rho_{1}-\rho_{2}+\mu_{12} q^{2} . \tag{22f}
\end{gather*}
$$

If $s_{n}^{ \pm}$in $A_{n}^{ \pm}$is replaced by the isothermal dilatational wave slowness $s_{d n}$, then $\left(S_{1+}^{2+}, \ldots\right)$ all assume the form of the Stoneley function S_{i} for isothermal half-spaces [Cagniard 1962]. Thus S is the Stoneley function for the present case, and is now discussed.

4. Stoneley function

For positive real p, S has branch cuts $\operatorname{Im}(q)=0,|\operatorname{Re}(q)|>s_{*}$, where in view of (13),

$$
\begin{equation*}
s_{*}=\min \left(s_{1}^{-}, s_{2}^{-}\right), \quad s^{*}=\max \left(s_{1}^{+}, s_{2}^{+}, s_{r 1}, s_{r 2}\right) \tag{23}
\end{equation*}
$$

Study of (21) shows that

$$
\begin{align*}
& S(q) \approx-2\left(\omega_{1} \eta_{1} s_{d 1}^{2}\right)\left(\omega_{2} n_{2} s_{d 2}^{2}\right) M q^{2} \sqrt{0-q^{2}}, \quad|q| \rightarrow \infty \tag{24a}\\
& S(0)=\left(\rho_{2} s_{r 1}+\rho_{1} s_{r 2}\right)\left(M_{12} \omega_{1} \omega_{2}-M_{1} \omega_{1}^{2}-M_{2} \omega_{2}^{2}\right) \tag{24b}
\end{align*}
$$

In (24), $\left(M, M_{1}, M_{2}, M_{12}\right)$ are defined by

$$
\begin{align*}
M & =\left(k_{1}+k_{2}\right)\left(\mu_{1}+m_{2} \mu_{2}\right)\left(\mu_{2}+m_{1} \mu_{1}\right), \tag{25a}\\
\left(M_{1}, M_{2}\right) & =\left(\rho_{2} \frac{k_{1} \varepsilon_{1} d_{1}}{\tau_{1}^{h} p}, \rho_{1} \frac{k_{2} \varepsilon_{2} d_{2}}{\tau_{2}^{h} p}\right)\left(s_{1}^{+}-s_{1}^{-}\right)\left(s_{2}^{+}-s_{2}^{-}\right), \tag{25b}
\end{align*}
$$

$$
\begin{align*}
M_{12}=\eta_{1}^{+} \eta_{2}^{+}\left(k_{1} s_{1}^{+}+\right. & \left.k_{2} s_{2}^{+}\right)\left(\rho_{2} s_{1}^{-}+\rho_{1} s_{2}^{-}\right)+\eta_{1}^{-} \eta_{2}^{-}\left(k_{1} s_{1}^{-}+k_{2} s_{2}^{-}\right)\left(\rho_{2} s_{1}^{+}+\rho_{1} s_{2}^{+}\right) \\
& -\eta_{1}^{+} \eta_{2}^{-}\left(k_{1} s_{1}^{+}+k_{2} s_{2}^{-}\right)\left(\rho_{2} s_{1}^{-}+\rho_{1} s_{2}^{+}\right)-\eta_{1}^{-} \eta_{2}^{+}\left(k_{1} s_{1}^{-}+k_{2} s_{2}^{+}\right)\left(\rho_{2} s_{1}^{+}+\rho_{1} s_{2}^{-}\right) \tag{25c}
\end{align*}
$$

Equation (12) holds in (25b), and in view of (15) quantities (M, M_{1}, M_{2}, M_{12}) >0 for positive real p. Study of (25a) shows for the isothermal case that $S_{i}(0)>0$, and that this guarantees roots $q= \pm s_{0}^{i}, s_{0}^{i}>$ $s_{r}^{*}=\max \left(s_{r 1}, s_{r 2}\right)$ for S_{i} whenever $S_{i}\left(\pm s_{r}^{*}\right)<0$. As noted in Appendix A, the sign of $S(0)$ depends on parameter P_{-}defined by (A3) and the dimensionless ratio ω_{1} / ω_{2}. In addition (22) and (25) show that S is real-valued at $q= \pm s_{*}$ but pure imaginary for $q= \pm s^{*}$ and $|q| \rightarrow \infty, \operatorname{Im}(q)= \pm 0$, respectively. The signs of the imaginary values depend on the side of the branch cut. Study of (21), (24), (25), these
observations, and argument theory [Hille 1959] applied in the manner of [Brock 1997b] show that three cases arise.

$$
\begin{array}{ll}
\text { Case A }: S(0)>0, & \frac{S\left(s^{*} \pm i 0\right)}{S(|q| \pm i 0)}, \frac{S\left(-s^{*} \pm i 0\right)}{S(-|q| \pm i 0)} \longrightarrow-0, \quad|q| \rightarrow \infty \\
\text { Case B }: S(0)>0, & \frac{S\left(s^{*} \pm i 0\right)}{S(|q| \pm i 0)}, \frac{S\left(-s^{*} \pm i 0\right)}{S(-|q| \pm i 0)} \longrightarrow+0, \quad|q| \rightarrow \infty \tag{26b}
\end{array}
$$

Case C : $S(0)<0$.

For Case A, S exhibits roots $q= \pm s_{0}, s_{0}>0$. For Case B no roots arise in the cut q-plane. For Case C, S exhibits roots $q= \pm i \tau_{0}, \tau_{0}>0$.

Following [Norris and Achenbach 1984] and [Brock 1998] an expression for s_{0} that is analytic to within a single integration is obtained. We introduce function

$$
\begin{equation*}
G(q)=\frac{S(q)}{C^{*} \omega_{1} \omega_{2} M\left(\eta_{1} s_{d 1}^{2}\right)\left(\eta_{2} s_{d 2}^{2}\right)} \frac{1}{s_{0}^{2}-q^{2}}, \quad C^{*}=\sqrt{s^{*^{2}}-q^{2}} \tag{27}
\end{equation*}
$$

It has branch cuts $\operatorname{Im}(q)=0, s_{*}<|\operatorname{Re}(q)|<s^{*}$, approaches unity as $|q| \rightarrow \infty$, and has no roots or zeros in the cut q-plane. After [Noble 1958], it factors as the product of functions $G_{ \pm}$that are analytic in the overlapping strips $\operatorname{Re}(q)>-s_{*}$ and $\operatorname{Re}(q)<s_{*}$, respectively. These are given by

$$
\begin{equation*}
\ln G_{ \pm}(q)=\frac{1}{\pi} \int_{s_{*}}^{s^{*}} \tan ^{-1} \frac{\operatorname{Im} S(u+i 0)}{\operatorname{Re} S(u+i 0)} \frac{d u}{u \pm q} \tag{28}
\end{equation*}
$$

Setting $G=G_{+} G_{-}$in (27) and evaluating it at $q=0$ gives the formula

$$
\begin{equation*}
s_{0}=\frac{1}{G_{ \pm}(0)} \sqrt{\frac{\rho_{2} s_{r 1}+\rho_{1} s_{r 2}}{s^{*} M\left(\eta_{1} s_{d 1}^{2}\right)\left(\eta_{2} s_{d 2}^{2}\right)}} \sqrt{M_{12}-M_{1} \frac{\omega_{1}}{\omega_{2}}-M_{2} \frac{\omega_{2}}{\omega_{1}}} . \tag{29}
\end{equation*}
$$

Replacing s_{0}^{2} by the term $-\tau_{0}^{2}$ in (27) gives (28) again, but (29) is replaced by

$$
\begin{equation*}
\tau_{0}=\frac{1}{G_{ \pm}(0)} \sqrt{\frac{\rho_{2} s_{r 1}+\rho_{1} s_{r 2}}{s^{*} M\left(\eta_{1} s_{d 1}^{2}\right)\left(\eta_{2} s_{d 2}^{2}\right)}} \sqrt{M_{1} \frac{\omega_{1}}{\omega_{2}}+M_{2} \frac{\omega_{2}}{\omega_{1}}-M_{12}} \tag{30}
\end{equation*}
$$

Formula (28) shows that both G_{+}and G_{-}are analytic at $q= \pm\left(s_{*}-0\right)$ and $q= \pm\left(s^{*}+0\right)$. Thus setting $G=G_{+} G_{-}$in (27) and evaluating at these locations shows by way of a check that $S(0)$ and $S\left(\pm s_{*}\right)$ have the same sign, and that the limit in (26b) is achieved whenever $S(0)<0$. Because Case A and B are analogous to the isothermal problem, the results obtained so far are used to study Stoneley effects in interface temperatures for these cases. For simplicity, the limit problem of interface line loads ($L=0$) is considered.

5. Interface temperature change when $L=0$

When $\left(F_{x}, F_{y}, F_{T}\right)$ act on the interface $y=0$ itself $(L=0)$, (14) and (16) give the transform of the temperature change on the interface

$$
\begin{equation*}
\left(\tilde{\theta}_{1}, \tilde{\theta}_{2}\right)=\tilde{\theta}_{12}=\frac{\omega_{1} \omega_{2}}{S}\left(q M_{x} \frac{\hat{F}_{x}}{p}+M_{y} \frac{\hat{F}_{y}}{p}+M_{T} \frac{\hat{F}_{T}}{\rho_{1} p}\right) . \tag{31}
\end{equation*}
$$

In (49) the coefficients

$$
\begin{align*}
& M_{x}=\omega_{2} \eta_{1}^{+} \eta_{1}^{-}\left(K_{1}^{+}-K_{1}^{-}\right)\left[\eta_{2}^{-}\left(Q_{B}-Q_{2}^{+} B_{2}\right)-\eta_{2}^{+}\left(Q_{B}-Q_{2}^{-} B_{2}\right)\right] \\
&+\omega_{1} \eta_{2}^{+} \eta_{2}^{-}\left(K_{2}^{+}-K_{2}^{-}\right)\left[\eta_{1}^{-}\left(Q_{B}+Q_{1}^{+} B_{1}\right)-\eta_{1}^{+}\left(Q_{B}+Q_{1}^{-} B_{1}\right)\right] \tag{32a}
\end{align*}
$$

$$
\begin{align*}
M_{y}=\omega_{2} \eta_{1}^{+} \eta_{1}^{-}\left(K_{1}^{+}-K_{1}^{-}\right) & {\left[\eta_{2}^{+}\left(q^{2} Q_{2}^{-}+Q_{B} A_{2}^{-}\right)-\eta_{2}^{-}\left(q^{2} Q_{2}^{+}+Q_{B} A_{2}^{+}\right)\right] } \\
& +\omega_{1} \eta_{2}^{+} \eta_{2}^{-}\left(K_{2}^{+}-K_{2}^{-}\right)\left[\eta_{1}^{+}\left(q^{2} Q_{1}^{-}-Q_{B} A_{1}^{-}\right)-\eta_{1}^{-}\left(q^{2} Q_{1}^{+}-Q_{B} A_{1}^{+}\right)\right] \tag{32b}\\
M_{T} & =\eta_{1}^{+} \eta_{2}^{-} S_{1-}^{2+}+\eta_{1}^{-} \eta_{2}^{+} S_{1+}^{2-}-\eta_{1}^{+} \eta_{2}^{+} S_{1-}^{2-}-\eta_{1}^{-} \eta_{2}^{-} S_{1+}^{2+} \tag{32c}
\end{align*}
$$

The inverse of the bilateral Laplace transform [Sneddon 1972] in (9) can be written as

$$
\begin{equation*}
\hat{F}(x)=\frac{p}{2 \pi i} \int \tilde{F} \exp (p q x) d q \tag{33}
\end{equation*}
$$

Integration is over a Bromwich contour which, for Case A, can be taken as the entire $\operatorname{Im}(q)$-axis. However, (24a) and (32) show that

$$
\begin{align*}
S & \approx O\left(q^{2} \sqrt{-q^{2}}\right), \quad M_{x} \approx O(1), \tag{34}\\
M_{y} & \approx O\left(\sqrt{-q^{2}}\right), \quad M_{T} \approx O\left(q^{2}\right), \quad|q| \rightarrow \infty \tag{35}
\end{align*}
$$

Therefore, substitution of (31) in (33) gives integrands that vanish as $|q| \rightarrow \infty$ for all $x\left(M_{x}, M_{y}\right)$ and $x \neq 0\left(M_{T}\right)$. The $\left(M_{x}, M_{T}\right)$-contribution can then by Cauchy theory be obtained as principal value integrals about segment $\operatorname{Im}(q)=0, \operatorname{Re}(q)<-s_{*}(x>0)$ or $\operatorname{Im}(q)=0, \operatorname{Re}(q)>s_{*}(x<0)$. Similarly, the M_{y}-contribution becomes an integral about segment $\operatorname{Im}(q)=0,-s^{*}<\operatorname{Re}(q)<-s_{*}(x>0)$ or $\operatorname{Im}(q)=0, s_{*}<\operatorname{Re}(q)<s^{*}(x<0)$ and the pole residue

$$
\begin{align*}
\hat{\theta}_{12}^{S} & =\frac{\hat{F}_{y}}{2 s_{0} p} \frac{v_{d 1}^{2} v_{d 2}^{2} N_{y} \exp \left(-p s_{0}|x|\right)}{\eta_{1} \eta_{2} M G_{0} \sqrt{s_{0}^{2}-s^{*^{2}}}} \tag{36a}\\
\ln G_{0} & =\frac{2}{\pi} \int_{s_{*}}^{s^{*}} \tan ^{-1} \frac{\operatorname{Im} S(u+i 0)}{\operatorname{Re} S(u+i 0)} \frac{u d u}{u^{2}-s_{0}^{2}} \tag{36b}
\end{align*}
$$

$$
\begin{align*}
& N_{y}=\frac{\varepsilon_{1} d_{1}}{\tau_{1}^{h}}\left(\kappa_{1}^{+}-\kappa_{1}^{-}\right) \omega_{2}\left[\eta_{2}^{-}\left(s_{0}^{2} T_{2}^{+}-\alpha_{2}^{+} T_{\beta}\right)-\eta_{2}^{+}\left(s_{0}^{2} T_{2}^{-}-\alpha_{2}^{-} T_{\beta}\right)\right] \\
&+\frac{\varepsilon_{2} d_{2}}{\tau_{2}^{h}}\left(\kappa_{2}^{+}-\kappa_{2}^{-}\right) \omega_{1}\left[\eta_{1}^{-}\left(s_{0}^{2} T_{1}^{+}+\alpha_{1}^{+} T_{\beta}\right)-\eta_{1}^{+}\left(s_{0}^{2} T_{1}^{-}+\alpha_{1}^{-} T_{\beta}\right)\right] \tag{36c}
\end{align*}
$$

Equation (12) governs d_{n} in (36c), and

$$
\begin{align*}
\left(T_{1}^{ \pm}, T_{2}^{ \pm}\right) & =\rho_{1}-\rho_{2}+\mu_{12} s_{0}^{2}-\mu_{12}\left(\alpha_{1}^{ \pm} \beta_{2}, \alpha_{2}^{ \pm} \beta_{1}\right) \tag{37a}\\
T_{\beta} & =\left(\rho_{2}-\mu_{12} s_{0}^{2}\right) \beta_{1}+\left(\rho_{1}+\mu_{12} s_{0}^{2}\right) \beta_{2} \tag{37b}\\
\alpha_{n}^{ \pm} & =\sqrt{s_{0}^{2}-s_{n}^{ \pm 2}}, \quad \kappa_{n}^{ \pm}=k_{n} \alpha_{n}^{ \pm}, \quad \beta_{n}=\sqrt{s_{0}^{2}-s_{r n}^{2}}, \quad n=(1,2) \tag{37c}
\end{align*}
$$

Study of (36a) in view of (10a), (11), (12), (20)-(24) and (37) shows that $\hat{\theta}_{12}^{S}$ appropriately vanishes when the half-space materials are the same. For Case B a term such as (36a) does not arise. Inversion of (36a) is now sought for Case A for the three models. To allow more insight into behavior, analytical results are achieved with asymptotic versions of the transforms that are valid for very long or very short times after the line loads are applied.

6. Inversion for long times

A robust asymptotic result for long times, here defined for all three models as

$$
\begin{equation*}
t \gg \max \left(\tau_{1}^{h}, \tau_{2}^{h}\right) \tag{38}
\end{equation*}
$$

is obtained by inverting an approximate transform valid for $\max \left(\tau_{1}^{h} p, \tau_{2}^{h} p\right) \ll 1$. It is noted that all $D_{n^{-}}$ operators (and thus corresponding d_{n}-factors) become unity, that is, all three models behave as Fourier model F. For $n=(1,2)$ Equation (11)-(13) yield

$$
\begin{align*}
& k_{n}^{+} \approx \sqrt{\frac{a_{n}^{\varepsilon}}{\tau_{n}^{h} p}}, \quad \eta_{n}^{+} \approx-\frac{a_{n}^{\varepsilon}}{\tau_{n}^{h} p}, \quad k_{n}^{-} \approx \sqrt{\frac{a_{n}^{\varepsilon}}{a_{n}}}, \quad \eta_{n}^{-} \approx \frac{\varepsilon_{n}}{a_{n}}, \quad a_{n}^{\varepsilon}=a_{n}+\varepsilon_{n} \tag{39a}\\
& s_{n}^{+} \approx \frac{\lambda_{n}^{\varepsilon}}{\sqrt{p}}, \quad s_{n}^{-} \approx \frac{s_{r n}}{\sqrt{a_{n}^{\varepsilon}}}=s_{n}^{\varepsilon}=\frac{1}{v_{n}^{\varepsilon}}, \quad \omega_{n} \approx \frac{s_{r n}^{2} p}{\alpha_{v n}}, \quad \lambda_{n}^{\varepsilon}=\frac{a_{n}^{\varepsilon} s_{r n}}{a_{n} h_{n}} . \tag{39b}
\end{align*}
$$

In light of (11) and (39), $s_{n}^{+} \gg s_{r n}>s_{n}^{-}$and it is noted that $\left(v_{n}^{\varepsilon}, s_{n}^{\varepsilon}\right)$ are the thermoelastic dilatational wave speed and slowness [Brock and Georgiadis 1999]. For purposes of illustration we choose materials so that, in view of (39),

$$
\begin{equation*}
s_{1}^{-}<s_{2}^{-}<s_{r 1}<s_{r 2} \ll s_{1}^{+}<s_{2}^{+} . \tag{40}
\end{equation*}
$$

From Appendix A and (24) it can be shown that requirements for Case A are met if

$$
\begin{gather*}
s_{r 2}^{2}\left(\rho_{1}+\rho_{2}-2 \mu_{1} s_{r 2}^{2}\right)^{2}-\beta_{1}\left[\left(\rho_{2}-2 \mu_{1} s_{r 2}^{2}\right)^{2} \alpha_{1}+\rho_{1} \rho_{2} \alpha_{2}\right]>0 \tag{41a}\\
\alpha_{n}=\sqrt{s_{r 2}^{2}-s_{n}^{\varepsilon 2}}, \quad n=(1,2), \quad \beta_{1}=\sqrt{s_{r 2}^{2}-s_{r 1}^{2}} . \tag{41b}
\end{gather*}
$$

If (41b) does hold then (29), (36a) and a standard table [Sneddon 1972] give

$$
\begin{align*}
s_{0} & \approx \sqrt{\rho_{2} s_{1}^{\varepsilon}+\rho_{1} s_{2}^{\varepsilon}} \sqrt{\rho_{2} s_{r 1}+\rho_{1} s_{r 2}} \frac{\sqrt{k_{1} \lambda_{1}^{\epsilon}+k_{2} \lambda_{2}^{\epsilon}}}{\sqrt{\lambda_{1}^{\epsilon} \lambda_{2}^{\epsilon}}} \frac{\exp \left(\Psi_{F}(0)\right)}{s_{2}^{\varepsilon} \sqrt{M s_{1}^{\varepsilon} s_{r 2}}}>s_{r 2} \tag{42a}\\
\theta_{12}^{S} & \approx \frac{N_{F}}{2 M \sqrt{s_{0}^{2}-s_{r 2}^{2}}} \exp \left(-2 \Psi_{F}\left(s_{0}\right)\right) F_{y}\left(t-s_{0}|x|\right) H\left(t-s_{0}|x|\right) \tag{42b}\\
N_{F} & =\frac{k_{1} \varepsilon_{1} a_{2} v_{1}^{\varepsilon 2}}{\tau_{1}^{h} \alpha_{v 2}}\left(1-\frac{\alpha_{2}^{0}}{s_{0}}\right)\left(s_{0}^{2} T_{1}^{0}+\alpha_{1}^{0} T_{\beta}^{0}\right)+\frac{k_{2} \varepsilon_{2} a_{1}^{\varepsilon} v_{2}^{\varepsilon 2}}{\tau_{2}^{h} \alpha_{v 1}}\left(1-\frac{\alpha_{1}^{0}}{s_{0}}\right)\left(s_{0}^{2} T_{2}^{0}-\alpha_{2}^{0} T_{\beta}^{0}\right) . \tag{42c}
\end{align*}
$$

Here H is the Heaviside function, function Ψ_{F} is defined by (B1) in Appendix B and

$$
\begin{align*}
\left(T_{1}^{0}, T_{2}^{0}\right) & =\rho_{1}-\rho_{2}+\mu_{12} s_{0}^{2}-\mu_{12}\left(\alpha_{1}^{0} \beta_{2}^{0}, \alpha_{2}^{0} \beta_{1}^{0}\right) \tag{43a}\\
T_{\beta}^{0} & =\left(\rho_{2}-\mu_{12} s_{0}^{2}\right) \beta_{1}^{0}+\left(\rho_{1}+\mu_{12} s_{0}^{2}\right) \beta_{2}^{0} \tag{43b}\\
\alpha_{n}^{0} & =\sqrt{s_{0}^{2}-s_{n}^{\varepsilon 2}}, \quad \beta_{n}^{0}=\sqrt{s_{0}^{2}-s_{r n}^{2}}, \quad n=(1,2) \tag{43c}
\end{align*}
$$

7. Inversion for short times: model \mathbf{F}

The short time range for Fourier model F is defined as

$$
\begin{equation*}
t \ll \min \left(\tau_{1}^{h}, \tau_{2}^{h}\right) \tag{44}
\end{equation*}
$$

A robust asymptotic result can therefore be obtained from a transform approximation valid for

$$
\min \left(\tau_{1}^{h} p, \tau_{2}^{h} p\right) \gg 1
$$

It can be shown that for $n=(1,2)$

$$
\begin{array}{ll}
k_{n}^{+} \approx 1, \quad \eta_{n}^{+} \approx \frac{-\varepsilon_{n}}{\tau_{n}^{h} p}, \quad k_{n}^{-} \approx \sqrt{\frac{a_{n}}{\tau_{n}^{h} p}}, \quad \eta_{n}^{-} \approx 1 \\
s_{n}^{+} \approx s_{d n}, \quad s_{n}^{-} \approx \frac{\lambda_{n}}{\sqrt{p}}, \quad \omega_{n}=\frac{s_{r n}^{2} p}{\alpha_{v n}}, \quad \lambda_{n}=\frac{s_{r n}}{h_{n}} . \tag{45b}
\end{array}
$$

From (11) and (45) it follows that now $s_{r n}>s_{n}^{+} \gg s_{n}^{-}$. For purposes of illustration the materials are chosen such that

$$
\begin{equation*}
s_{1}^{-}<s_{2}^{-} \ll s_{1}^{+}<s_{2}^{+}<s_{r 1}<s_{r 2} \tag{46}
\end{equation*}
$$

From Appendix A and (21) it can be shown that conditions for Case A are met if (38) is satisfied, but with $\left(\alpha_{1}, \alpha_{2}\right)$ in (41b) replaced by

$$
\begin{equation*}
\alpha_{n}=\sqrt{s_{r 2}^{2}-s_{d n}^{2}}, \quad n=(1,2) . \tag{47}
\end{equation*}
$$

If (41a) and (47) do hold then it can be shown that

$$
\begin{align*}
& s_{0} \approx \sqrt{\rho_{2} s_{d 1}+\rho_{1} s_{d 2}} \sqrt{\rho_{2} s_{r}+\rho_{1} s_{r 2}} \frac{\sqrt{k_{1} \lambda_{1}+k_{2} \lambda_{2}}}{\sqrt{k_{1} k_{2}}} \frac{\exp \left(\Psi_{F}(0)\right)}{s_{d 2} \sqrt{s_{d 1} s_{r 2} M}}>s_{r 2}, \tag{48a}\\
& \theta_{12}^{S} \approx \frac{N_{F}}{2 M \sqrt{s_{0}^{2}-s_{r 2}^{2}}} \exp \left(-2 \Psi_{F}\left(s_{0}\right)\right) F_{y}\left(t-s_{0}|x|\right) H\left(t-s_{0}|x|\right), \tag{48b}\\
& N_{F}=\frac{k_{1} \varepsilon_{1} a_{2} v_{d 1}^{2}}{\tau_{1}^{h} \alpha_{v 2}}\left(1-\frac{\alpha_{2}^{0}}{s_{0}}\right)\left(s_{0}^{2} T_{1}^{0}+\alpha_{1}^{0} T_{\beta}^{0}\right)+\frac{k_{2} \varepsilon_{2} a_{1} v_{d 2}^{2}}{\tau_{2}^{h} \alpha_{v 1}}\left(1-\frac{\alpha_{1}^{0}}{s_{0}}\right)\left(s_{0}^{2} T_{2}^{0}-\alpha_{2}^{0} T_{\beta}^{0}\right) . \tag{48c}
\end{align*}
$$

Function Ψ_{F} is now given by (B3) in Appendix B.

8. Inversion for short times: model I

For the single-relaxation time model, valid results are obtained for

$$
\begin{equation*}
t \ll \min \left(\tau_{1}^{I}, \tau_{2}^{I}\right) \tag{49}
\end{equation*}
$$

with approximate transforms valid for $\max \left(\tau_{1}^{I} p, \tau_{2}^{I} p\right) \gg 1$. Then for $n=(1,2)$

$$
\begin{align*}
2 k_{n}^{ \pm} & \approx \sqrt{\left(1+\sqrt{a_{n} l_{n}^{I}}\right)^{2}+\varepsilon_{n} l_{n}^{I}} \pm \sqrt{\left(1-\sqrt{a_{n} l_{n}^{I}}\right)^{2}+\varepsilon_{n} l_{n}^{I}}, \quad l_{n}^{I}=\frac{\tau_{n}^{I}}{\tau_{n}^{h}} \ll 1 \tag{50a}\\
\omega_{n} & \approx \frac{s_{r n}^{2} p}{\alpha_{n v}}, \quad \eta_{n}^{+} \eta_{n}^{-} \approx-\varepsilon_{n} l_{n}^{I} \tag{50b}
\end{align*}
$$

It is noted that l_{n}^{I} is a dimensionless ratio of characteristic times. In light of (13) inequality $s_{r n}>s_{n}^{+}$ holds, and one can again consider the situation (46). However, each s-parameter is now a constant, that is, wave slowness, so that a difference of scale between s_{n}^{+}and s_{n}^{-}would be due to material mismatch. Use of Appendix A, (24) and (50) shows that Case A arises only if

$$
\begin{equation*}
z_{-}<\frac{s_{r 1}^{2} \alpha_{v 2}}{s_{r 2}^{2} \alpha_{v 1}}<z_{+}, \quad M_{I}<0 \tag{51}
\end{equation*}
$$

Parameters $z_{ \pm}$are given by (A6) in Appendix A, with (50) understood and

$$
\begin{equation*}
\left(M_{1}, M_{2}\right) \approx\left(k_{1} \varepsilon_{1} l_{1}^{I} \rho_{2}, k_{2} \varepsilon_{2} l_{2}^{I} \rho_{1}\right)\left(s_{1}^{+}-s_{1}^{-}\right)\left(s_{2}^{+}-s_{2}^{-}\right) \tag{52}
\end{equation*}
$$

Parameter M_{I} is defined as

$$
\begin{align*}
& M_{I}=\eta_{1}^{+} \eta_{2}^{+}\left(\kappa_{1}^{+}+\kappa_{2}^{+}\right) M_{1-}^{2-}+\eta_{1}^{-} \eta_{2}^{-}\left(\kappa_{1}^{-}+\right.\left.\kappa_{2}^{-}\right) \\
& M_{1+}^{2+} \tag{53a}\\
&-\eta_{1}^{+} \eta_{2}^{-}\left(\kappa_{1}^{+}+\kappa_{2}^{-}\right) M_{1-}^{2+}-\eta_{1}^{-} \eta_{2}^{+}\left(\kappa_{1}^{-}+\kappa_{2}^{+}\right) M_{1+}^{2-} \tag{53b}\\
& M_{1 \pm}^{2 \pm}= s_{r 2}^{2} T_{12}^{2}-\left(T_{2}^{2} \alpha_{1}^{ \pm}+\rho_{1} \rho_{2} \alpha_{2}^{ \pm}\right) \tag{53c}\\
& \alpha_{n}^{ \pm}=\sqrt{s_{r 2}^{2}-s_{n}^{ \pm 2}}, \quad \kappa_{\eta}^{ \pm}=\kappa_{\eta} \alpha_{\eta_{1}}^{ \pm}, \quad n=(1,2), \quad \beta_{1}=\sqrt{s_{r 2}^{2}-s_{r 1}^{2}}
\end{align*}
$$

Here (10b) and (22e) govern with argument u^{2}. For Case A (29) is valid, with

$$
\begin{equation*}
s^{*}=s_{r 2}, \quad G_{ \pm}(0) \approx \exp \Psi_{I}(0) \tag{54}
\end{equation*}
$$

Inversion of (36a) then produces in light of (37)

$$
\begin{align*}
& \theta_{12}^{S} \approx \frac{1}{2 s_{0}} \frac{N_{I} \exp \left(-2 \Psi_{I}\left(s_{0}\right)\right)}{M \eta_{1} \eta_{2} \sqrt{s_{0}^{2}-s_{r 2}^{2}}} \dot{F}_{y}\left(t-s_{0}|x|\right) H\left(t-s_{0}|x|\right) \tag{55a}\\
& N_{I}=\varepsilon_{1} l_{1}^{I}\left(\kappa_{1}^{+}-\kappa_{1}^{-}\right) \frac{a_{2} v_{d 1}^{2}}{\alpha_{v 2}}\left[\eta_{2}^{-}\left(s_{0}^{2} T_{2}^{+}-\alpha_{2}^{+} T_{\beta}\right)-\eta_{2}^{+}\left(s_{0}^{2} T_{2}^{-}-\alpha_{2}^{-} T_{\beta}\right)\right] \\
& \quad+\varepsilon_{2} l_{2}^{I}\left(\kappa_{2}^{+}-\kappa_{2}^{-}\right) \frac{a_{1} v_{d 2}^{2}}{\alpha_{v 1}}\left[\eta_{1}^{-}\left(s_{0}^{2} T_{1}^{+}+\alpha_{1}^{+} T_{\beta}\right)-\eta_{1}^{+}\left(s_{0}^{2} T_{1}^{-}+\alpha_{1}^{-} T_{\beta}\right)\right] \tag{55b}
\end{align*}
$$

The superposed dot signifies time differentiation; Ψ_{I} is defined by (C1) in Appendix C.

9. Inversion for short times: model II

For the double-relaxation time model, valid results for

$$
\begin{equation*}
t<\min \left(\tau_{1}^{I I}, \tau_{2}^{I I}\right) \tag{56}
\end{equation*}
$$

are obtained by examining approximate transforms valid for $\min \left(\tau_{1}^{I I} p, \tau_{2}^{I I} p\right) \gg 1$. For $n=(1,2)$ asymptotic results are

$$
\begin{align*}
2 k_{n}^{ \pm} & \approx \sqrt{\left(1+\sqrt{a_{n} l_{n}^{I}}\right)^{2}+\varepsilon_{n} l_{n}^{I I}} \pm \sqrt{\left(1-\sqrt{a_{n} l_{n}^{I}}\right)^{2}+\varepsilon_{n} l_{n}^{I I}} \\
l_{n}^{I I} & =\frac{\tau_{n}^{I I}}{\tau_{n}^{h}}<l_{n}^{I} \ll 1 \tag{57a}\\
\omega_{n} & \approx \frac{s_{r n}^{2}}{\alpha_{v n} \tau_{n}^{I I}}, \quad \eta_{n}^{+} \eta_{n}^{-} \approx-\varepsilon_{n} l_{n}^{I I} . \tag{57b}
\end{align*}
$$

As with model I each s-parameter is wave slowness, and situation (46) can again be considered, with the understanding that any difference in scale is due to material mismatch. Use of Appendix A, (24) and (57) shows that Case A arises only when

$$
\begin{equation*}
z_{-}<\frac{s_{r 1}^{2} \alpha_{v 2} \tau_{2}^{I I}}{s_{r 2}^{2} \alpha_{v 1} \tau_{1}^{I I}}<z_{+}, \quad M_{I I}<0 \tag{58}
\end{equation*}
$$

Again (A6) in Appendix A holds, but now

$$
\begin{align*}
\left(M_{1}, M_{2}\right) & \approx\left(\kappa_{1} \varepsilon_{1} l_{1}^{I I} \rho_{2}, \kappa_{2} \varepsilon_{2} l_{2}^{I I} \rho_{1}\right)\left(s_{1}^{+}-s_{1}^{-}\right)\left(s_{2}^{+}-s_{2}^{-}\right) \tag{59a}\\
M_{I I} & =M_{I}-\left(\rho_{2}-\mu_{12} s_{r 2}^{2}\right) \beta_{1}\left(\kappa_{1}^{+}-\kappa_{1}^{-}\right)\left(\kappa_{2}^{+}-\kappa_{2}^{-}\right) \Omega_{I I} \tag{59b}\\
\Omega_{I I} & =\kappa_{1} \mu_{1} \varepsilon_{2} s_{r 2}^{2} l_{2}^{I I} \frac{\alpha_{v 1}}{\alpha_{v 2}}+\kappa_{2} \mu_{2} \varepsilon_{1} s_{r 1}^{2} l_{1}^{I I} \frac{\alpha_{v 2}}{\alpha_{v 1}} \tag{59c}
\end{align*}
$$

It is understood that (57) now holds for all quantities, including M_{I}. If (58) is satisfied then (29) holds, with

$$
\begin{equation*}
s^{*}=s_{r 2}, \quad G_{0} \approx \exp \Psi_{I I}(0) \tag{60}
\end{equation*}
$$

Inversion of (36a) then gives

$$
\begin{equation*}
\theta_{12}^{S} \approx \frac{1}{2 s_{0}} \frac{N_{I I} \exp \left(-2 \Psi_{I I}\left(s_{0}\right)\right)}{\eta_{1} \eta_{2} \sqrt{s_{0}^{2}-s_{r 2}^{2}}} F_{y}\left(t-s_{0}|x|\right) H\left(t-s_{0}|x|\right) \tag{61a}
\end{equation*}
$$

$$
\begin{align*}
N_{I I}=\varepsilon_{1} l_{1}^{I I}\left(\kappa_{1}^{+}-\kappa_{1}^{-}\right) \frac{s_{r 2}^{2}}{\alpha_{v 2} \tau_{2}^{I I}} & {\left[\eta_{2}^{-}\left(s_{0}^{2} T_{2}^{+}-\alpha_{2}^{+} T_{\beta}\right)-\eta_{2}^{+}\left(s_{0}^{2} T_{2}^{-}-\alpha_{2}^{-} T_{\beta}\right)\right] } \\
& +\varepsilon_{2} l_{2}^{I I}\left(\kappa_{2}^{+}-\kappa_{2}^{-}\right) \frac{s_{r 1}^{2}}{\alpha_{v 1} \tau_{1}^{I I}}\left[\eta_{1}^{-}\left(s_{0}^{2} T_{1}^{+}+\alpha_{1}^{+} T_{\beta}\right)-\eta_{1}^{+}\left(s_{0}^{2} T_{1}^{-}+\alpha_{1}^{-} T_{\beta}\right)\right] \tag{61b}
\end{align*}
$$

Here (57) governs and function $\Psi_{I I}$ is defined in Appendix D.

10. Some observations

Equation (21) shows that a Stoneley function arises in transform space in a dynamic study of perfectly bonded thermoelastic half-spaces. The function includes a linear combination of four terms, each (22a) of which has the form of an isothermal Stoneley function. Condition (26) for existence of thermoelastic Stoneley roots is similar to those for the isothermal case, but more restrictive. Expressions (29) and (30) for the roots, analytic to within a single integration, may depend on the unilateral Laplace (time) transform variable p, that is, not correspond to, as in the isothermal case, a constant Stoneley wave slowness. Moreover, a root can for positive real p be real (29) or imaginary (30).

It is found that a line load force applied directly to the interface and acting normal to it produces, from the residue of the real root, contribution (36a) to the time transform of the interface temperature change. The contribution has an analytical form, and asymptotic versions of this, valid for long times or short times after the line load is applied, can be inverted analytically.

Inversion (42b) shows that the residue contribution behaves for long times as if the half-spaces obey classical Fourier theory [Chadwick 1960] even when thermal relaxation [Lord and Shulman 1967; Green and Lindsay 1972] is present. Conditions for existence of the Stoneley root (in asymptotic form) are always met, and the root (42a) is a constant. As a result, (42b) describes a temperature change wave.

For short times, a constant real root (48a), (29) and (54), and (29) and (60) arises for, respectively, the Fourier and single- and double-relaxation time models, and the contribution of the residue to the interface temperature change for each model again defines a wave. However, existence conditions (51) and (58) for the relaxation time models are more restrictive than condition (41a) and (47) for the Fourier model. Moreover, contribution (48b) and (61a) for the Fourier and double-relaxation time models are proportional to line load function F_{y}. Contribution (55a) for the single-relaxation time model is proportional to the time derivative of F_{y}.

The observation that $\tau_{n}^{h} \gg \tau_{n}^{I}>\tau_{n}^{I I}, n=(1,2)$ made in connection with (4) shows in view of (38), (44), (49) and (56) that asymptotic result (42a) and (42b) are the most robust. Nevertheless, work in fluids [Fan and Lu 2002] shows that behavior for very short times after a load is applied can be distinctive.

As noted just above, this is the case here. Specifically, if F_{y} is a step (Heaviside) function in time, the Stoneley contribution to interface temperature for long times is a propagating step function whose form is the same for all three models. For short times, the contribution for the Fourier (F) and double-relaxation (II) time models are propagating step functions that are not identical, while the single-relaxation (I) time model gives a propagating impulse.

In summary, the present analysis shows the sensitivity of Stoneley signals in perfectly bonded thermoelastic half-spaces to the nature of the heat conduction model that governs. It is hoped that the results given here may prove useful in the transient study of solids that consist of dissimilar thermoelastic materials.

Appendix A

The sign of $S(0)$ in (24b) is determined by the second factor on its right-hand side. Equation (15) indicates that $\left(\omega_{1}, \omega_{2}\right)$ for positive real p is positive, so that this factor can be studied in terms of the quadratic

$$
\begin{equation*}
M_{12} z-M_{1} z^{2}-M_{2}, \quad z=\frac{\omega_{1}}{\omega_{2}}>0 \tag{A1}
\end{equation*}
$$

Its discriminant and the location of its maximum value are

$$
\begin{equation*}
M_{12}^{2}-4 M_{1} M_{2}, \quad z=\frac{M_{12}}{2 M_{1}}, \quad\left(M_{1}, M_{2}, M_{12}\right)>0 \tag{A2}
\end{equation*}
$$

The former can be factored as

$$
\begin{equation*}
\left(k_{1}^{+}-k_{1}^{-}\right)^{2}\left(k_{2}^{+}-k_{2}^{-}\right)^{2} P_{+} P_{-}, \quad P_{ \pm}=C_{1} \rho_{1} s_{d 2}+C_{2} \rho_{2} s_{d 1} \pm 2 C_{3} \sqrt{\rho_{1} s_{d 2} \rho_{2} s_{d 1}} \tag{A3}
\end{equation*}
$$

Term $P_{ \pm}$is quadratic in $\left(\sqrt{\rho_{1} s_{d 2}}, \sqrt{\rho_{2} s_{d 1}}\right)$ and $\left(C_{1}, C_{2}, C_{3}\right)$ are quadratic in $\left(\sqrt{k_{1} s_{d 1}}, \sqrt{k_{2} s_{d 2}}\right)$:

$$
\begin{align*}
C_{1} & =C_{11} k_{1} s_{d 1}+C_{12} k_{2} s_{d 2}, \\
C_{2} & =C_{21} k_{1} s_{d 1}+C_{22} k_{2} s_{d 2}, \tag{A4a}\\
C_{11} & =\left(k_{1}^{+2}+k_{1}^{+} k_{1}^{-}+k_{1}^{-2}\right)\left(1+k_{2}^{+} k_{2}^{-}\right), \\
C_{12} & =k_{2}^{+} k_{2}^{-}\left(k_{1}^{+}+k_{1}^{-}\right)\left(k_{2}^{+}+k_{2}^{-}\right), \tag{A4b}\\
C_{22} & =\left(k_{2}^{+2}+k_{2}^{+} k_{2}^{-}+k_{2}^{-2}\right)\left(1+k_{1}^{+} k_{1}^{-}\right), \tag{A4c}\\
C_{21} & =k_{1}^{+} k_{2}^{-}\left(k_{1}^{+}+k_{1}^{-}\right)\left(k_{2}^{+}+k_{2}^{-}\right), \\
C_{3} & =\frac{1}{p} \sqrt{d_{1} \epsilon_{1} d_{2} \epsilon_{2}} \sqrt{\frac{k_{1} \varepsilon_{1} s_{d 1}}{\tau_{1}^{h}}} \sqrt{\frac{k_{2} \varepsilon_{2} s_{d 2}}{\tau_{2}^{h}}} \tag{A4d}
\end{align*}
$$

Equation (12) holds in (A4d) and because $k_{n}^{+}>1>k_{n}^{-}>0, n=(1,2)$, terms $\left(C_{1}, C_{2}, C_{3}, P_{+}\right)>0$. Therefore if $P_{-}>0$ the quadratic in (A2) has a positive maximum and two positive real roots. If $P_{-}<0$ the quadratic in (A2) is itself negative for all $\omega_{1} / \omega_{2}>0$. It follows that

$$
\begin{equation*}
P_{-}>0: S(0)>0\left(z_{-}<\frac{\omega_{1}}{\omega_{2}}<z_{+}\right), \quad S(0)<0\left(0<\frac{\omega_{1}}{\omega_{2}}<z_{-}, \frac{\omega_{1}}{\omega_{2}}>z_{+}\right) \tag{A5a}
\end{equation*}
$$

$$
\begin{equation*}
P_{-}<0: S(0)<0\left(\frac{\omega_{1}}{\omega_{2}}>0\right) \tag{A5b}
\end{equation*}
$$

In (A5a) the terms $z_{ \pm}$are given by

$$
\begin{equation*}
z_{ \pm}=\frac{1}{2 M_{1}}\left(M_{12} \pm \sqrt{M_{12}^{2}-4 M_{1} M_{2}}\right) \tag{A6}
\end{equation*}
$$

Study of P_{-}is aided by several observations: its discriminant is

$$
\begin{equation*}
-C_{11} C_{21} k_{1}^{2} s_{d 1}^{2}-C_{22} C_{12} k_{2}^{2} s_{d 2}^{2}+\left[\frac{2}{p} \sqrt{\frac{\varepsilon_{1} d_{1} \varepsilon_{2} d_{2}}{\tau_{1}^{h} \tau_{2}^{h}}}-C_{11} C_{22}-C_{12} C_{21}\right] k_{1} s_{d 1} k_{2} s_{d 2} \tag{A7}
\end{equation*}
$$

This quadratic in turn has discriminant

$$
\begin{equation*}
D_{+} D_{-}, \quad D_{ \pm}=\frac{\varepsilon_{1} d_{1} \varepsilon_{2} d_{2}}{\tau_{1}^{h} \tau_{2}^{h} p^{2}}-\frac{1}{2}\left(\sqrt{C_{11} C_{22}} \pm \sqrt{C_{12} C_{22}}\right)^{2} \tag{A8}
\end{equation*}
$$

The first term in $D_{ \pm}$can be written in light of (15) as

$$
\begin{equation*}
\left(1-k_{1}^{+2}\right)\left(1-k_{1}^{-2}\right)\left(1-k_{2}^{+2}\right)\left(1-k_{2}^{-2}\right) \tag{A9}
\end{equation*}
$$

Thus if $\left(k_{1}^{ \pm}, k_{2}^{ \pm}\right)$have values for positive real p such that $D_{+} D_{-}<0$, then (A7) is negative in $\left(k_{1} s_{d 1}, k_{2} s_{d 2}\right)$, and $P_{-}>0$ in $\left(\sqrt{\rho_{1} s_{d 2}}, \sqrt{\rho_{2} s_{d 1}}\right)$. If $D_{+} D_{-}>0$ however, (A7) exhibits $\left(k_{1}^{ \pm}, k_{2}^{ \pm}\right)$-dependent roots in on the $s_{d 1} / s_{d 2}$-axis and its sign depends on $\left(k_{1} s_{d 1}, k_{2} s_{d 2}\right)$. Then, when it is positive the sign of P_{-}depends on $\left(\sqrt{\rho_{1} s_{d 2}}, \sqrt{\rho_{2} s_{d 1}}\right)$.

Appendix B

Function Ψ_{F} that appears in (47) is defined as

$$
\begin{align*}
\ln \Psi_{F}(q) & =\frac{1}{\pi}\left(\int_{s_{1}^{\varepsilon}}^{s_{2}^{\varepsilon}} \frac{\psi_{1} u d u}{u^{2}-q^{2}}+\int_{s_{2}^{\varepsilon}}^{s_{r 1}} \frac{\psi_{2} u d u}{u^{2}-q^{2}}+\int_{s_{r 1}}^{s_{r 2}} \frac{\psi_{3} u d u}{u^{2}-q^{2}}\right) \tag{B1a}\\
\psi_{1} & =\tan ^{-1} \frac{1}{\alpha_{1}} \frac{\left(\rho_{1} \rho_{2} B_{1}+T_{1}^{2} B_{2}\right) A_{2}+u^{2} T_{12}^{2}}{\rho_{1} \rho_{2} B_{2}+\left(T_{2}^{2}+\mu_{12}^{2} A_{2} B_{2}\right) B_{1}} \tag{B1b}\\
\psi_{2} & =\tan ^{-1} u^{2} \frac{T_{12}^{2}-\mu_{12}^{2} \alpha_{1} B_{1} \alpha_{2} B_{2}}{T_{1}^{2} \alpha_{2} B_{2}+T_{2}^{2} \alpha_{1} B_{1}+\rho_{1} \rho_{2}\left(\alpha_{1} B_{2}+\alpha_{2} B_{1}\right)} \tag{B1c}\\
\psi_{3} & =\tan ^{-1} \frac{1}{B_{2}} \frac{u^{2} T_{12}^{2}-\left(T_{2}^{2} \alpha_{1}+\rho_{1} \rho_{2} \alpha_{2}\right) \beta_{1}}{\left(T_{1}^{2}-\mu_{12}^{2} u^{2} \alpha_{1} \beta_{1}\right) \alpha_{2}+\rho_{1} \rho_{2} \alpha_{1}} \tag{B1d}
\end{align*}
$$

Here (10b), (22e) and (45) hold, with argument u^{2}, and

$$
\begin{equation*}
\alpha_{n}=\sqrt{u^{2}-s_{n}^{\varepsilon 2}}, \quad n=(1,2), \quad \beta_{1}=\sqrt{u^{2}-s_{r 1}^{2}} \tag{B2}
\end{equation*}
$$

In Equation (48a) and (48b) function Ψ_{F} is given by

$$
\begin{equation*}
\Psi_{F}(q)=\frac{1}{\pi}\left(\int_{s_{d 1}}^{s_{d 2}} \frac{\psi_{1} u d u}{u^{2}-q^{2}}+\int_{s_{d 2}}^{s_{r 1}} \frac{\psi_{2} u d u}{u^{2}-q^{2}}+\int_{s_{r 1}}^{s_{r 2}} \frac{\psi_{3} u d u}{u^{2}-q^{2}}\right) \tag{B3}
\end{equation*}
$$

Equation (B1) and (B2) again hold but with modification

$$
\begin{equation*}
\alpha_{n}=\sqrt{u^{2}-s_{d n}^{2}}, \quad n=(1,2) \tag{B4}
\end{equation*}
$$

Appendix C

Function Ψ_{I} that appears in (55) is defined by

$$
\begin{gather*}
\Psi_{I}(q)=\frac{1}{\pi}\left(\int_{s_{1}^{-}}^{s_{2}^{-}} \frac{\psi_{1} u d u}{u^{2}-q^{2}}+\int_{s_{2}^{-}}^{s_{1}^{+}} \frac{\psi_{2} u d u}{u^{2}-q^{2}}+\int_{s_{1}^{+}}^{s_{2}^{+}} \frac{\psi_{3} u d u}{u^{2}-q^{2}}+\int_{s_{2}^{+}}^{s_{r 1}} \frac{\psi_{4} u d u}{u^{2}-q^{2}}+\int_{s_{r 1}}^{s_{r 2}} \frac{\psi_{5} u d u}{u^{2}-q^{2}}\right) \tag{C1a}\\
\psi_{1}=\tan ^{-1} \alpha_{1}^{-} \frac{N_{1}}{D_{1}}, \quad \psi_{2}=\tan ^{-1} \frac{1}{D_{2}}\left(\alpha_{1}^{-} N_{21}+\alpha_{2}^{-} N_{22}\right), \quad \psi_{3}=\tan ^{-1} \frac{N_{3}}{D_{3}} \tag{C1b}\\
\psi_{4}=\tan ^{-1} u^{2} \frac{N_{4}}{D_{4}}, \quad \psi_{5}=\tan ^{-1} \frac{N_{5}}{B_{2} D_{5}} \tag{C1c}
\end{gather*}
$$

Equation (C1b) and (C1c) employ the quantities

$$
\begin{gather*}
N_{1}=\eta_{1}^{-}\left(\eta_{2}^{-} S_{1+}^{2+}-\eta_{2}^{+} S_{1+}^{2-}\right)+\eta_{1}^{+}\left[\eta_{2}^{+}\left(K_{1}^{+}+K_{2}^{+}\right) U_{2-}-\eta_{2}^{-}\left(K_{1}^{+}+K_{2}^{-}\right) U_{2+}\right], \tag{C2a}\\
D_{1}=\eta_{1}^{-}\left(\eta_{2}^{+} A_{2}^{+} S_{1+}^{2-}-\eta_{2}^{-} A_{2}^{-} S_{1+}^{2+}\right)+\eta_{1}^{+}\left[\eta_{2}^{-}\left(K_{1}^{+}+K_{2}^{-}\right) V_{2+}-\eta_{2}^{+}\left(K_{1}^{+}+K_{2}^{+}\right) V_{2-}\right], \tag{C2b}\\
N_{21}=\eta_{1}^{-} \eta_{2}^{-} S_{1+}^{2+}+\eta_{1}^{+} \eta_{2}^{+}\left(K_{1}^{+}+K_{2}^{+}\right)\left(\rho_{1} \rho_{2} B_{2}+T_{2}^{2} B_{1}\right)-k_{1} \eta_{1}^{+} \eta_{2}^{-} A_{1}^{+} U_{2+}-k_{1} \eta_{1}^{-} \eta_{2}^{+} V_{1+}, \tag{C3a}\\
N_{22}=\eta_{2}^{-} \eta_{1}^{-} S_{1+}^{2+}+\eta_{2}^{+} \eta_{1}^{+}\left(K_{1}^{+}+K_{2}^{+}\right)\left(\rho_{1} \rho_{2} B_{1}+T_{1}^{2} B_{2}\right)-k_{2} \eta_{2}^{+} \eta_{1}^{-} A_{2}^{+} U_{1+}-k_{2} \eta_{2}^{-} \eta_{1}^{+} V_{2+}, \tag{C3b}\\
D_{2}=\eta_{1}^{+} \eta_{2}^{-}\left(A_{1}^{+} V_{2+}-\alpha_{1}^{-} k_{2}^{-} U_{2+}\right)+\eta_{1}^{-} \eta_{2}^{+}\left(A_{2}^{+} V_{1+}-k_{1}^{-} \alpha_{2}^{-} U_{1+}\right), \tag{C3c}
\end{gather*}
$$

$$
\begin{align*}
N_{3}=\eta_{2}^{-}\left[\eta_{1}^{-}\left(\kappa_{1}^{-}+\kappa_{2}^{-}\right)-\eta_{1}^{+}\left(\kappa_{1}^{+}\right.\right. & \left.\left.+\kappa_{2}^{-}\right)\right] \\
& +\eta_{2}^{+}\left[\eta_{1}^{+}\left(u^{2} \alpha_{1}^{+} V_{1-}^{2-}+A_{2}^{+} U_{1-}^{2-}\right)+\eta_{1}^{-}\left(u^{2} k_{1}^{-} V_{1+}^{2-}-k_{2}^{+} U_{1+}^{2-}\right)\right] \tag{C4a}
\end{align*}
$$

$$
\begin{align*}
D_{3}=\eta_{2}^{-}\left[\eta_{1}^{-} \alpha_{1}^{+}\left(\eta_{1}^{-}+\kappa_{2}^{+}\right)+V_{2+}\right. & \left.-\eta_{1}^{+} \alpha_{1}^{-}\left(\eta_{1}^{-} \kappa_{1}^{+}-\kappa_{2}^{-}\right) U_{2+}\right] \\
& +\eta_{2}^{+}\left[\eta_{1}^{-}\left(u^{2} K_{2}^{+} V_{1+}^{2-}-\kappa_{1}^{-} U_{1+}^{2-}\right)-\eta_{1}^{+}\left(u^{2} K_{2}^{+} V_{1-}^{2-}-\kappa_{1}^{+} U_{1-}^{2-}\right)\right] \tag{C4b}
\end{align*}
$$

$$
\begin{align*}
& N_{4}=\eta_{1}^{+} \eta_{2}^{-}\left(\kappa_{1}^{+}+\kappa_{2}^{-}\right) V_{1-}^{2+}+\eta_{1}^{-} \eta_{2}^{+}\left(\kappa_{1}^{-}+\kappa_{2}^{+}\right) V_{1+}^{2-}-\eta_{1}^{+} \eta_{2}^{+}\left(\kappa_{1}^{+}+\kappa_{2}^{+}\right) V_{1-}^{2-}-\eta_{1}^{-} \eta_{2}^{-}\left(\kappa_{1}^{-}+\kappa_{2}^{-}\right) V_{1+}^{2+}, \tag{C5a}\\
& D_{4}=\eta_{1}^{+} \eta_{2}^{+}\left(\kappa_{1}^{+}+\kappa_{2}^{+}\right) U_{1-}^{2-}+\eta_{1}^{-} \eta_{2}^{-}\left(\kappa_{1}^{-}+\kappa_{2}^{-}\right) U_{1+}^{2+}+\eta_{1}^{+} \eta_{2}^{-}\left(\kappa_{1}^{+}+\kappa_{2}^{-}\right) U_{1-}^{2+}+\eta_{1}^{-} \eta_{2}^{+}\left(\kappa_{1}^{-}+\kappa_{2}^{+}\right) U_{1+}^{2-},
\end{align*}
$$

$$
\begin{align*}
\left(N_{5}, D_{5}\right)=\eta_{1}^{+} \eta_{2}^{+}\left(\kappa_{1}^{+}+\kappa_{2}^{+}\right)(& \left.X_{1-}^{2-}, Y_{1-}^{2-}\right)+\eta_{1}^{-} \eta_{2}^{-}\left(\kappa_{1}^{-}+\kappa_{2}^{-}\right)\left(X_{1+}^{2+}, Y_{1+}^{2+}\right) \\
& +\eta_{1}^{+} \eta_{2}^{-}\left(\kappa_{1}^{+}+\kappa_{2}^{-}\right)\left(-X_{1-}^{2+}, Y_{1-}^{2+}\right)-\eta_{1}^{-} \eta_{2}^{+}\left(\kappa_{1}^{-}+\kappa_{2}^{+}\right)\left(-X_{1+}^{2-}, Y_{1+}^{2-}\right) \tag{C6}
\end{align*}
$$

In (C2)-(C6) Equation (10b), (22a), (22e) and (49) hold, with argument u^{2}, and

$$
\begin{align*}
U_{2 \pm} & =T_{2}^{2} B_{1}+\left(\rho_{1} \rho_{2}+\mu_{12}^{2} u^{2} A_{2}^{ \pm} B_{1}\right) B_{2}, \\
V_{2 \pm} & =u^{2} T_{12}^{2}+\left(\rho_{1} \rho_{2} B_{1}+T_{1}^{2} B_{2}\right) A_{2}^{ \pm} \tag{C7a}\\
U_{1+} & =T_{1}^{2} B_{2}+\left(\rho_{1} \rho_{2}+\mu_{12}^{2} u^{2} A_{1}^{+} B_{2}\right) B_{1}, \\
V_{1+} & =u^{2} T_{12}^{2}+\left(\rho_{1} \rho_{2} B_{2}+T_{2}^{2} B_{1}\right) A_{1}^{+}, \tag{C7b}\\
U_{1 \pm}^{2 \pm} & =T_{2}^{2} \alpha_{1}^{ \pm} B_{1}+T_{1}^{2} \alpha_{2}^{ \pm} B_{2}+\rho_{1} \rho_{2}\left(\alpha_{1}^{ \pm} B_{2}+\alpha_{2}^{ \pm} B_{1}\right), \tag{C7c}\\
V_{1 \pm}^{2 \pm} & =T_{12}^{2}-\mu_{12}^{2} \alpha_{1}^{ \pm} B_{1} \alpha_{2}^{ \pm} B_{2}, \\
X_{1 \pm}^{2 \pm} & =u^{2} T_{12}^{2}-\left(T_{2}^{2} \alpha_{1}^{ \pm}+\rho_{1} \rho_{2} \alpha_{2}^{ \pm}\right) \beta_{1}, \\
Y_{1 \pm}^{2 \pm} & =T_{1}^{2} \alpha_{2}^{ \pm}+\left(\rho_{1} \rho_{2}-\mu_{12}^{2} u^{2} \alpha_{2}^{ \pm} \beta_{1}\right) \alpha_{1}^{ \pm} . \tag{C7d}
\end{align*}
$$

Appendix D

Function $\Psi_{I I}$ that appears in (61) has the same form as that given for Ψ_{I} by (C1a). However, (C1b) and (C1c) are modified:

$$
\begin{align*}
& \psi_{1}=\tan ^{-1} \alpha_{1}^{-} \frac{N_{1}+\Omega_{12} Q_{B}\left(A_{2}^{+}-A_{2}^{-}\right)}{D_{1}+\Omega_{12} Q_{B} A_{1}^{+}\left(A_{2}^{+}-A_{2}^{-}\right)} \tag{D1a}\\
& \psi_{2}=\tan ^{-1} \frac{\alpha_{1}^{-} N_{21}+\alpha_{2}^{-} N_{22}+\Omega_{12} Q_{B}\left(\alpha_{1}^{-} A_{2}^{+}+\alpha_{2}^{-} A_{1}^{+}\right)}{D_{2}+\Omega_{12} Q_{B}\left(A_{1}^{+} A_{2}^{+}-\alpha_{1}^{-} \alpha_{2}^{-}\right)} \tag{D1b}\\
& \psi_{3}=\tan ^{-1} \frac{N_{3}+\Omega_{12} Q_{B} \alpha_{2}^{-}\left(\alpha_{1}^{+}-\alpha_{1}^{-}\right)}{D_{3}-\Omega_{12} Q_{B} A_{2}^{+}\left(\alpha_{1}^{+}-\alpha_{1}^{-}\right)} \tag{D1c}\\
& \psi_{4}=\tan ^{-1} \frac{u^{2} N_{4}}{D_{4}+\Omega_{12} Q_{B}\left(\alpha_{1}^{+}-\alpha_{1}^{-}\right)\left(\alpha_{2}^{+}-\alpha_{2}^{-}\right)} \tag{D1d}\\
& \psi_{5}=\tan ^{-1} \frac{1}{B_{2}} \frac{N_{5}-\Omega_{12} T_{2} \beta_{1}\left(\alpha_{1}^{+}-\alpha_{1}^{-}\right)\left(\alpha_{2}^{+}-\alpha_{2}^{-}\right)}{D_{5}+\Omega_{12} T_{1}\left(\alpha_{1}^{+}-\alpha_{1}^{-}\right)\left(\alpha_{2}^{+}-\alpha_{2}^{-}\right)} \tag{D1e}
\end{align*}
$$

In Equation (C2)-(C6) in Appendix C, (D1), (10b), (22a), (22e), (C2), (56) and (58) now hold, with argument u^{2}.

References

[Achenbach 1973] J. D. Achenbach, Wave propagation in elastic solids, North-Holland, Amsterdam, 1973.
[Brock 1997a] L. M. Brock, "Some results for Rayleigh and Stoneley signals in thermoelastic solids", Indian J. Pure Ap. Mat. 28:6 (1997), 835-850. MR 1461194 (98e:73014)
[Brock 1997b] L. M. Brock, "Transient three-dimensional rayleigh and stoneley signal effects in thermoelastic solids", Int. J. Solids Struct. 34:12 (1997), 1463-1478. MR 1442859 (98b:73015)
[Brock 1998] L. M. Brock, "Analytic results for roots of two irrational functions in elastic wave propagation", J. Aust. Math. Soc. B 40:1 (1998), 72-79. MR 1707766 (2000d:74037)
[Brock 2004] L. M. Brock, "Dynamic contact and fracture: some results for transversely isotropic solids", pp. 50-60 in Proceedings of the 7th National Congress on Mechanics (Chania, Crete), edited by A. Kounadis et al., Hellenic Society for Theoretical and Applied Mechanics, 2004.
[Brock and Georgiadis 1999] L. M. Brock and H. G. Georgiadis, "Response of welded thermoelastic solids to the rapid motion of thermomechanical sources parallel to the interface", Int. J. Solids Struct. 36:10 (1999), 1503-1521.
[Cagniard 1962] L. Cagniard, Reflection and refraction of progressive seismic waves, McGraw-Hill, New York, 1962. (E. A. Flinn and C. H. Dix, translators).
[Carrier and Pearson 1988] G. F. Carrier and C. E. Pearson, Partial differential equations: theory and technique, Academic Press, Boston, 1988. MR 952148 (89j:35001)
[Chadwick 1960] P. Chadwick, "Thermoelasticity. The dynamical theory", pp. 263-328 in Progress in solid mechanics, vol. 1, edited by I. N. Sneddon and R. Hill, North-Holland Publishing, Amsterdam, 1960. MR 0113406 (22 \#4244)
[Chandrasekharia 1986] D. S. Chandrasekharia, "Thermoelasticity with second sound", Appl. Mech. Rev. 39 (1986), 355-376.
[Davis 1998] J. R. Davis (editor), Metals handbook: desk edition, edited by J. R. Davis, ASM International, Metals Park, OH, 1998.
[Fan and Lu 2002] Q.-M. Fan and W.-Q. Lu, "A new numerical method to simulate the non-fourier heat conduction in a single-phase medium", Int. J. Heat Mass Tran. 45:13 (2002), 2815-2821.
[Green and Lindsay 1972] A. E. Green and K. A. Lindsay, "Thermoelasticity", J. Elasticity 2:1 (1972), 1-7.
[Hille 1959] E. Hille, Analytic function theory, vol. 1, Introduction to higher mathematics, Ginn, Boston, 1959. MR 0107692 (21 \#6415)
[Jones 1999] R. M. Jones, Mechanics of composite materials, Taylor and Francis, New York, 1999.
[Joseph and Preziosi 1989] D. D. Joseph and L. Preziosi, "Heat waves", Rev. Mod. Phys. 61:1 (1989), 41-73. MR 977943 (89k:80001)
[Lamb 1904] H. Lamb, "On the propagation of tremors over the surface of an elastic solid", Philos. T. Roy. Soc. A 203 (1904), 1-42.
[Lord and Shulman 1967] H. W. Lord and Y. Shulman, "A generalized dynamical theory of thermoelasticity", J. Mech. Phys. Solids 15:5 (1967), 299-309.
[Noble 1958] B. Noble, Methods based on the Wiener-Hopf technique for the solution of partial differential equations, vol. 7, International series of monographs on pure and applied mathematics, Pergamon Press, New York, 1958. MR 0102719 (21 \#1505)
[Norris and Achenbach 1984] A. N. Norris and J. D. Achenbach, "Elastic wave diffraction by a semi-infinite crack in a transversely isotropic material", Q. J. Mech. Appl. Math. 37:4 (1984), 565-580. MR 774907 (86a:73014)
[Sharma and Sharma 2002] J. N. Sharma and P. K. Sharma, "Free vibration analysis of homogeneous transversely isotropic thermoelastic cylindrical panel", J. Therm. Stresses 25:2 (2002), 169-182.
[Sneddon 1972] I. N. Sneddon, The use of integral transforms, McGraw-Hill, New York, 1972.
[Stoneley 1924] R. Stoneley, "Elastic waves at the surface of separation of two solids", P. Roy. Soc. Lond. A Mat. 106:738 (1924), 416-428.

Received 15 Sep 2006. Accepted 8 Mar 2007.
Louis Milton Brock: brock@engr.uky.edu
Mechanical Engineering, University of Kentucky, 265 RGAN, Lexington, KY 40506-0503, United States

[^0]: Keywords: coupled thermolasticity, Fourier heat conduction, thermal relaxation, transforms, Stoneley roots and signals, waves.

