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STONELEY SIGNALS IN PERFECTLY BONDED DISSIMILAR
THERMOELASTIC HALF-SPACES WITH AND WITHOUT THERMAL

RELAXATION

LOUIS MILTON BROCK

The governing equations for each of two perfectly bonded, dissimilar thermoelastic half-spaces include
as special cases the Fourier heat conduction model and models with either one or two thermal relaxation
times. An exact solution in transform space for the problem of line loads applied in one half-space is
obtained.

Study of the Stoneley function shows that conditions for existence of roots are more restrictive than in
the isothermal case, and that both real and imaginary roots are possible. For the limit case of line loads
applied to the interface, an analytical expression for the time transform of the corresponding residue
contribution to interface temperature change is derived.

Asymptotic expressions for the inverses that are valid for either very long or very short times after load-
ing occurs show that long-time behavior obeys Fourier heat conduction. Short-time results are sensitive
to thermal relaxation effects. In particular, a time step load produces a propagating step in temperature
for the Fourier and double-relaxation time models, but a propagating impulse for the single-relaxation
time model.

1. Introduction

Joined dissimilar elastic materials occur in geological formations [Cagniard 1962] and as structural el-
ements [Jones 1999]. Transient analyses [Stoneley 1924; Cagniard 1962] show that dynamic loading
of these can produce, in addition to dilatational and rotational waves, interface (Stoneley) waves. Such
waves are similar to Rayleigh surface waves [Lamb 1904] and so may be important in assessing interface
integrity.

Studies such as [Stoneley 1924; Cagniard 1962] focus on isothermal materials. Studies such as [Brock
1997a; 1997b] consider both Stoneley and Rayleigh waves for materials that satisfy equations for coupled
thermoelasticity [Chadwick 1960]. However, the equations are based on classical Fourier heat conduction
[Carrier and Pearson 1988], and the Stoneley and Rayleigh signals are examined for times after the
application of loading that greatly exceed the thermoelastic characteristic time.

Joseph and Preziosi [1989] have surveyed models that include the phenomenon of thermal relaxation in
heat conduction. Lord and Shulman [1967], Green and Lindsay [1972] and Chandrasekharia [1986] have
included thermal relaxation in formulations for coupled thermoelasticity. Sharma and Sharma [2002]
have applied such formulations to homogeneous plates. Based on all this work, and on an effort in
(nontransient) dynamic steady-state analysis of two joined half-spaces governed by the Fourier model
[Brock and Georgiadis 1999], this article considers two perfectly bonded, dissimilar elastic half-spaces

Keywords: coupled thermolasticity, Fourier heat conduction, thermal relaxation, transforms, Stoneley roots and signals, waves.
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that are subject to thermal-mechanical line loads applied to the interface. Both half-spaces obey equations
for coupled thermoelasticity that include the Fourier model [Chadwick 1960], and the single- and double-
relaxation time models of Lord and Shulman [1967] and Green and Lindsay [1972], respectively, as
special cases.

The study begins with construction of the exact solution in transform space for the general case of line
loads applied in one of the half-spaces. The solution exhibits a Stoneley function that is more complicated
in form than its isothermal counterpart [Cagniard 1962]. Conditions for the existence of Stoneley roots
are determined, and found to be more restrictive than those for the isothermal case. Expressions for these
roots, analytic to within a single integration, are developed, and found to give both real and imaginary
values, again in contrast to the isothermal case. An exact formula for the time transform of the change in
interface temperature when the line loads are applied to the interface is developed. Analytical expressions
for the change itself, valid for either very long or very short times after loading is applied, are obtained
for each of the three models. Consistent with previous observation [Brock 2004] the long-time results all
have the character of the Fourier model, and describe a temperature change wave. The short-time results,
on the other hand, are sensitive to the particular model but the Stoneley signals are again in the form of
waves.

2. Statement of general problem and governing equations

In terms of Cartesian coordinates (x, y, z) two half-spaces of dissimilar isotropic, homogeneous, linear
thermoelastic material are perfectly bonded along the plane y = 0. For time t ≤ 0, both are at rest
at the uniform ambient (absolute) temperature T0 when, at t = 0, thermal-mechanical disturbances are
introduced along the line x = 0, y = L . The disturbances may be time-dependent, but do not vary along
the line, so that a state of plane strain is generated. For half-space 1(y > 0) the field equations for t > 0
are

(
∇

2
− s2

r1
∂2

∂t2

)
(ux1, u y1)+

( ∂
∂x
,
∂

∂y

)
(m111 −αv1 D I I

1 θ1)=
1
µ1
(Fx , Fy)δ(x)δ(y − L), (1a)

h1∇
2θ1 − sr1

∂

∂t

(
ε1

αv1
D111 − D I

1θ1

)
= FT δ(x)δ(y − L), (1b)

1
µ1
(σx1, σy1, σz1)= (m1 − 1)11 −αv1 D I I

1 θ1 + 2
(
∂ux1

∂x
,
∂u y1

∂y
, 0
)
, (1c)

1
µ1
σxy1 =

∂ux1

∂y
+
∂u y1

∂x
. (1d)

In (1) (ux1, u y1,11, θ1) are, respectively, displacement components, dilatation and change in tem-
perature from T0, and (σx1, σy1, σz1, σxy1) are stress components. These vary with (x, y, t). In (1a),
(1b) (Fx , Fy, FT ) are the t-dependent line loads, and δ is the Dirac function. For the Fourier model F
[Chadwick 1960] and single- and double-relaxation time model I [Lord and Shulman 1967] and II [Green
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and Lindsay 1972], respectively,

F : (D1, D I
1 , D I I

1 )= 1 (2a)

I : D I I
1 = 1, (D1, D I

1)= 1 + τ I
1
∂

∂t
(2b)

II : (D1, D I I
1 )= 1 + τ I I

1
∂

∂t
, D I

1 = 1 + τ I
1
∂

∂t
. (2c)

Constants τ I
1 > τ

I I
1 ≥ 0 are thermal relaxation times, and it is noted that model II serves to introduce

thermal relaxation explicitly in constitutive Equation (1c), (1d). In (1)

m1 =
1

1 − 2ν1
, a1 = 2

1 − ν1

1 − 2ν1
, (3a)

ε1 =
µ1T0

ρ1cv1
α2

1v, h1 = vr1τ
h
1 , sr1 =

1
vr1

(3b)

τ h
1 =

k1

µ1cv1
, vr1 =

√
µ1

ρ1
. (3c)

In (1) and (3) (ν1, µ1, ρ1, αv1, cv1, k1) are, respectively, Poisson’s ratio, shear modulus, mass density,
coefficient of volumetric thermal expansion, specific heat at constant volume and thermal conductivity.
In turn (ε1, h1, sr1, vr1, τ

h
1 ) are, respectively, the thermal coupling constant, thermoelastic characteristic

length, rotational wave slowness, rotational wave speed, and thermoelastic characteristic time. For half-
space 2(y < 0) Equation (1)–(3) again hold, except that subscript 1 is replaced by 2 and (1a), (1b) are
homogeneous. Data in a number of sources [Chadwick 1960; Achenbach 1973; Davis 1998; Sharma
and Sharma 2002] suggests that in both half-spaces, that is, n = (1, 2), we find

vrn ≈ O(103)m/s, mn ≥ 2, εn ≈ O(10−2),

hn ≈ O(10−9)m, (τ I
n , τ

I I
n )≈ O(10−13) s.

(4)

These values indicate in turn that τ h
n � τ I

n > τ
I I
n .

For y 6= 0 the initial (t ≤ 0) conditions are

(unx , uny, θn)≡ 0, n = (1, 2). (5)

For t > 0 the interface (y = 0) conditions are

ux1 − ux2 = 0, u y1 − u y2 = 0, θ1 − θ2 = 0

σxy1 − σxy2 = 0, σy1 − σy2 = 0, k1
∂θ1

∂y
− k2

∂θ2

∂y
= 0. (6)

Equation (1a), (1b) imply for (y = L , t > 0) that

[ux1] = 0, [u y1] = 0, [θ1] = 0

µ1

[
∂ux1

∂y

]
= Fxδ(x), µ1a1

[
∂u y1

∂y

]
= Fyδ(x), h1cv1

[
∂θ1

∂y

]
= FT δ(x). (7)
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Here [F] denotes the jump in function F for a given (x, t) as one moves from y = L −0 to y = L +0. For
t > 0(ux1, u y1, θ1) and (ux2, u y2, θ2) should vanish as y → ∞ and y → −∞, respectively, and singular
behavior may occur at (x = 0, y = L). By explicitly imposing (7), homogeneous forms of (1a), (1b)
can be addressed in both half-space 1 and 2. Decomposition of these in view of (5) gives for n = (1, 2),
y 6= (0, L)

∇
2(an1n −αvn D I I

n θn
)
− s2

rn
∂21n

∂t2 = 0,
(
∇

2
− s2

rn
∂2

∂t2

)
rxyn = 0 (t > 0) (8a)

(1n, θn, rxyn)≡ 0 (t ≤ 0). (8b)

In (8), Equation (2) holds, and rxyn is rotation in plane strain.

3. Transform solution for general problem

Unilateral and bilateral [Sneddon 1972] Laplace transforms over (t, x) are

F̂(x)=

∞∫
0

F(x, t) exp(−pt)dt, F̃ =

∞∫
−∞

F̂(x) exp(−pqx)dq. (9)

Here p is positive and real, and q is imaginary. Application of (9) to (8) gives eigenfunctions and
eigenvalues

exp(±p A+

n y), exp(±p A−

n y), exp(±pBn y) (10a)

A+

n (q
2)=

√
s+2

n − q2, A−

n (q
2)=

√
s−2

n − q2, Bn(q2)=

√
s2

rn − q2. (10b)

In (10) the branch points are defined by (3) and for n = (1, 2)

s±

n = k±

n sdn, sdn =
srn
√

an
(11a)

2k±

n =

√√√√(1 +

√
and I

n

τ h
n p

)2

+
εndn

τ h
n p

±

√√√√(1 −

√
and I

n

τ h
n p

)2

+
εndn

τ h
n p

. (11b)

Here sdn is the isothermal dilatational wave slowness, and from (2), (5) and (9)

F : (dn, d I
n )= 1,

I : (dn, d I
n )= 1 + τ I

n p,

II : (dn, d I I
n )= 1 + τ I I

n p, d I
n = 1 + τ I

n p.

(12)
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It can be shown in view of (4) for all three models that k+
n > 1 > k−

n > 0 and thus (s+
n , srn) > s−

n for
positive real p. Inequality s+

n > srn(k+
n >

√
an) also holds when

F : p < 1 +
εn

mn
,

I : p <
mn + εn

mnτ h
n − (mn + εn)τ I

n
,

II : p <
mn + εn

mn(τ h
n − τ I

n )− εnτ I I
n
.

(13)

Application of (9) to the homogeneous versions of (1a), (1b) in light of (5) and using (10) and (12) gives
transforms (ũ1x , ũ1y, θ̃1) for y > 0, y 6= L and (ũ2x , ũ2y, θ̃2) for y < 0 as linear combinations of (10a).
Operating on (1c), (1d), (6) and (7) with (9) then gives the equations required to find the coefficients of
the linear combinations. For present purposes it is sufficient to display results for half-space 2:

ũ2x

ũ2y

θ̃2

=

 q q 1
A+

2 A−

2 −q
ω2η

+

2 ω2η
−

2 0

C+ exp(p A+

2 y)
C− exp(p A−

2 y)
CB exp(pB2 y)

 (14a)

C+

C−

CB

=
1

pS

 M+

+ M+

− ω1q M+

B
M−

+ M−

− ω1q M−

B
q M+ q M− MB

F+

F−

FB

 . (14b)

For n = (1, 2) in view of (11) and (12),

ωn =
s2

rn p
αvndn

, η±

n = 1 − k±2
n (15a)

η+

n η
−

n = −
εndn

τ h
n p

,

η−

n − η+

n = ηn =

√√√√[1 +
1
τ h

n p
(and I

n + εndn)

]2

− 4

√
and I

n

τ h
n p

.

(15b)

For ωn parameter dn is defined by

I,F : dn = 1, II : (dn, d I I
n )= 1 + τ I I

n p. (16)

In (15b), however, it is defined by (12). Introduction of branch cuts Im(q) = 0, |Re(q)| > s±
n and

Im(q)= 0, |Re(q)|> srn such that Re(A±
n , Bn)≥ 0 in the cut q-plane guarantees that (14a) is bounded



1728 LOUIS MILTON BROCK

as y → −∞ for positive real p. In (14b)

F+ =

[
ω1η

−

1 (q F̂x + A−

1 F̂y)−
F̂T

h1cv1

]
exp(−p A+

1 L) (17a)

F− =

[
ω1η

+

1 (q F̂x + A+

1 F̂y)−
F̂T

h1cv1

]
exp(−p A−

1 L) (17b)

FB = (q F̂y − B1 F̂x) exp(−pB1L). (17c)

The matrix coefficients in (14b) are given by

M+

+
=
ω1η

+

1 k1

ρ1
S2−

1−
−ω2η

−

2 Q B(K −

1 + K −

2 ), M+

−
= ω2η

−

2 Q B(K +

1 + K −

2 )−
ω1η

−

1 k1

ρ1
S2−

1+
, (18a)

M+

B =ω2η
−

2

[
η−

1 Q+

1 (K
−

1 +K −

2 )−η
+

1 Q−

1 (K
+

1 +K −

2 )
]
+
ω1ε1d1

τ h
1 ρ1 p

(K −

1 −K +

1 )
(
T2T12−µ12T1K −

2 B2
)
, (18b)

M−

−
=
ω1η

−

1 k1

ρ1
S2+

1+
−ω2η

+

2 Q B(K +

1 + K +

2 ), M−

+
= ω2η

+

2 Q B(K −

1 + K +

2 )−
ω1η

+

1 k1

ρ1
S2+

1−
, (19a)

M−

B =ω2η
+

2

[
η+

1 Q−

1 (K
+

1 +K +

2 )−η
−

1 Q+

1 (K
−

1 +K +

2 )
]
+
ω1ε1d1

τ h
1 ρ1 p

(K +

1 −K −

1 )
(
T2T12−µ12T1K +

2 B2
)
, (19b)

M+ = ω2
[
η−

2 Q+

2 (K
−

1 + K −

2 )− η
+

2 Q−

2 (K
−

1 + K +

2 )
]
+
ω1η

+

1

ρ1
(K +

2 − K −

2 )
(
T1T12 −µ12T2K −

1 B1
)
, (20a)

M− = ω2
[
η+

2 Q−

2 (K
−

1 + K +

2 )− η
−

2 Q+

2 (K
−

1 + K −

2 )
]
+
ω1η

−

1

ρ1
(K +

2 − K −

2 )
(
T1T12 −µ12T2K +

1 B1
)
, (20b)

MB = ω1ω2
[
η+

1 η
+

2 (K
+

1 + K +

2 )Q
2−

1−
+ η−

1 η
−

2 (K
−

1 + K −

2 )Q
2+

1+

]
−ω1ω2

[
η+

1 η
−

2 (K
+

1 + K −

2 )Q
2+

1−
+ η−

1 η
+

2 (K
−

1 + K +

2 )Q
2−

1+

]
−

(
ρ1ω

2
2

k2ε2d2

τ h
2 p

+
ω2

1k1ε1d1

τ h
1 ρ1 p

T1T2

)
(K +

1 − K −

1 )(K
+

2 − K −

2 ). (20c)

Denominator term S is given by

S = −Q B

(
ρ2

k1ω
2
1ε1d1

τ h
1 p

+ ρ1
k2ω

2
2ε2d2

τ h
2 p

)
(A+

1 − A−

1 )(A
+

2 − A−

2 )

+ω1ω2
[
η+

1 η
+

2 (K
+

1 + K +

2 )S
2−

1−
+ η−

1 η
−

2 (K
−

1 + K −

2 )S
2+

1+

]
−ω1ω2

[
η+

1 η
−

2 (K
+

1 + K −

2 )S
2+

1−
+ η−

1 η
+

2 (K
−

1 + K +

2 )S
2−

1+

]
. (21)
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Equation (12) defines dn in (18)–(21) and in (18)–(20) functions

S2±

1±
= q2 Q±

1 Q±

2 + Q B Q2±

1±
, K ±

η = kηA±

η , η = (1, 2), (22a)

Q2±

1±
= T2 A±

1 + T1 A±

2 , Q B(q2)= T2 B1 + T1 B2 (22b)

Q±

1 (q
2)= T12 +µ12 A±

1 B2, Q±

2 (q
2)= T12 +µ12 A±

2 B1, (22c)

µ12 = 2(µ2 −µ1) (22d)

T1 = ρ1 +µ12q2, T2 = ρ2 −µ12q2, (22e)

T12 = ρ1 − ρ2 +µ12q2. (22f)

If s±
n in A±

n is replaced by the isothermal dilatational wave slowness sdn , then (S2+

1+
, . . .) all assume the

form of the Stoneley function Si for isothermal half-spaces [Cagniard 1962]. Thus S is the Stoneley
function for the present case, and is now discussed.

4. Stoneley function

For positive real p, S has branch cuts Im(q)= 0, |Re(q)|> s∗, where in view of (13),

s∗ = min(s−

1 , s−

2 ), s∗
= max(s+

1 , s+

2 , sr1, sr2). (23)

Study of (21) shows that

S(q)≈ −2(ω1η1s2
d1)(ω2n2s2

d2)Mq2
√

0 − q2, |q| → ∞, (24a)

S(0)= (ρ2sr1 + ρ1sr2)
(
M12ω1ω2 − M1ω

2
1 − M2ω

2
2
)
. (24b)

In (24), (M,M1,M2,M12) are defined by

M = (k1 + k2)(µ1 + m2µ2)(µ2 + m1µ1), (25a)

(M1,M2)=

(
ρ2

k1ε1d1

τ h
1 p

, ρ1
k2ε2d2

τ h
2 p

)
(s+

1 − s−

1 )(s
+

2 − s−

2 ), (25b)

M12 = η+

1 η
+

2 (k1s+

1 + k2s+

2 )(ρ2s−

1 + ρ1s−

2 )+ η
−

1 η
−

2 (k1s−

1 + k2s−

2 )(ρ2s+

1 + ρ1s+

2 )

− η+

1 η
−

2 (k1s+

1 + k2s−

2 )(ρ2s−

1 + ρ1s+

2 )− η
−

1 η
+

2 (k1s−

1 + k2s+

2 )(ρ2s+

1 + ρ1s−

2 ). (25c)

Equation (12) holds in (25b), and in view of (15) quantities (M,M1,M2,M12) > 0 for positive real p.
Study of (25a) shows for the isothermal case that Si (0) > 0, and that this guarantees roots q = ±si

0, si
0 >

s∗
r = max(sr1, sr2) for Si whenever Si (±s∗

r ) < 0. As noted in Appendix A, the sign of S(0) depends on
parameter P− defined by (A3) and the dimensionless ratio ω1/ω2. In addition (22) and (25) show that
S is real-valued at q = ±s∗ but pure imaginary for q = ±s∗ and |q| → ∞, Im(q) = ±0, respectively.
The signs of the imaginary values depend on the side of the branch cut. Study of (21), (24), (25), these
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observations, and argument theory [Hille 1959] applied in the manner of [Brock 1997b] show that three
cases arise.

Case A : S(0) > 0,
S(s∗

± i0)
S(|q| ± i0)

,
S(−s∗

± i0)
S(−|q| ± i0)

−→ −0, |q| → ∞, (26a)

Case B : S(0) > 0,
S(s∗

± i0)
S(|q| ± i0)

,
S(−s∗

± i0)
S(−|q| ± i0)

−→ +0, |q| → ∞, (26b)

Case C : S(0) < 0. (26c)

For Case A, S exhibits roots q = ±s0, s0 > 0. For Case B no roots arise in the cut q-plane. For Case C,
S exhibits roots q = ±iτ0, τ0 > 0.

Following [Norris and Achenbach 1984] and [Brock 1998] an expression for s0 that is analytic to
within a single integration is obtained. We introduce function

G(q)=
S(q)

C∗ω1ω2 M(η1s2
d1)(η2s2

d2)

1
s2

0 − q2
, C∗

=

√
s∗2

− q2. (27)

It has branch cuts Im(q)= 0, s∗ < |Re(q)|< s∗, approaches unity as |q| → ∞, and has no roots or zeros
in the cut q-plane. After [Noble 1958], it factors as the product of functions G± that are analytic in the
overlapping strips Re(q) >−s∗ and Re(q) < s∗, respectively. These are given by

ln G±(q)=
1
π

s∗∫
s∗

tan−1 Im S(u + i0)
Re S(u + i0)

du
u ± q

. (28)

Setting G = G+G− in (27) and evaluating it at q = 0 gives the formula

s0 =
1

G±(0)

√
ρ2sr1 + ρ1sr2

s∗M(η1s2
d1)(η2s2

d2)

√
M12 − M1

ω1

ω2
− M2

ω2

ω1
. (29)

Replacing s2
0 by the term −τ 2

0 in (27) gives (28) again, but (29) is replaced by

τ0 =
1

G±(0)

√
ρ2sr1 + ρ1sr2

s∗M(η1s2
d1)(η2s2

d2)

√
M1
ω1

ω2
+ M2

ω2

ω1
− M12. (30)

Formula (28) shows that both G+ and G− are analytic at q = ±(s∗ − 0) and q = ±(s∗
+ 0). Thus setting

G = G+G− in (27) and evaluating at these locations shows by way of a check that S(0) and S(±s∗)

have the same sign, and that the limit in (26b) is achieved whenever S(0) < 0. Because Case A and B
are analogous to the isothermal problem, the results obtained so far are used to study Stoneley effects in
interface temperatures for these cases. For simplicity, the limit problem of interface line loads (L = 0)
is considered.
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5. Interface temperature change when L = 0

When (Fx , Fy, FT ) act on the interface y = 0 itself (L = 0), (14) and (16) give the transform of the
temperature change on the interface

(θ̃1, θ̃2)= θ̃12 =
ω1ω2

S

(
q Mx

F̂x

p
+ My

F̂y

p
+ MT

F̂T

ρ1 p

)
. (31)

In (49) the coefficients

Mx = ω2η
+

1 η
−

1 (K
+

1 − K −

1 )
[
η−

2 (Q B − Q+

2 B2)− η
+

2 (Q B − Q−

2 B2)
]

+ω1η
+

2 η
−

2 (K
+

2 − K −

2 )
[
η−

1 (Q B + Q+

1 B1)− η
+

1 (Q B + Q−

1 B1)
]

(32a)

My = ω2η
+

1 η
−

1 (K
+

1 − K −

1 )
[
η+

2 (q
2 Q−

2 + Q B A−

2 )− η
−

2 (q
2 Q+

2 + Q B A+

2 )
]

+ω1η
+

2 η
−

2 (K
+

2 − K −

2 )
[
η+

1 (q
2 Q−

1 − Q B A−

1 )− η
−

1 (q
2 Q+

1 − Q B A+

1 )
]

(32b)

MT = η+

1 η
−

2 S2+

1−
+ η−

1 η
+

2 S2−

1+
− η+

1 η
+

2 S2−

1−
− η−

1 η
−

2 S2+

1+
. (32c)

The inverse of the bilateral Laplace transform [Sneddon 1972] in (9) can be written as

F̂(x)=
p

2π i

∫
F̃ exp (pqx) dq. (33)

Integration is over a Bromwich contour which, for Case A, can be taken as the entire Im(q)-axis. How-
ever, (24a) and (32) show that

S ≈ O(q2
√

−q2), Mx ≈ O(1), (34)

My ≈ O(
√

−q2), MT ≈ O(q2), |q| → ∞. (35)

Therefore, substitution of (31) in (33) gives integrands that vanish as |q| → ∞ for all x(Mx ,My) and
x 6= 0(MT ). The (Mx ,MT )-contribution can then by Cauchy theory be obtained as principal value
integrals about segment Im(q) = 0,Re(q) < −s∗(x > 0) or Im(q) = 0,Re(q) > s∗(x < 0). Similarly,
the My-contribution becomes an integral about segment Im(q) = 0,−s∗ < Re(q) < −s∗(x > 0) or
Im(q)= 0, s∗ < Re(q) < s∗(x < 0) and the pole residue

θ̂ S
12 =

F̂y

2s0 p
v2

d1v
2
d2 Ny exp(−ps0|x |)

η1η2 MG0

√
s2

0 − s∗2
(36a)

ln G0 =
2
π

s∗∫
s∗

tan−1 Im S(u + i0)
Re S(u + i0)

udu
u2 − s2

0
(36b)
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Ny =
ε1d1

τ h
1
(κ+

1 − κ−

1 )ω2
[
η−

2 (s
2
0 T +

2 −α+

2 Tβ)− η+

2 (s
2
0 T −

2 −α−

2 Tβ)
]

+
ε2d2

τ h
2
(κ+

2 − κ−

2 )ω1
[
η−

1 (s
2
0 T +

1 +α+

1 Tβ)− η+

1 (s
2
0 T −

1 +α−

1 Tβ)
]
. (36c)

Equation (12) governs dn in (36c), and

(T ±

1 , T ±

2 )= ρ1 − ρ2 +µ12s2
0 −µ12(α

±

1 β2, α
±

2 β1) (37a)

Tβ = (ρ2 −µ12s2
0)β1 + (ρ1 +µ12s2

0)β2 (37b)

α±

n =

√
s2

0 − s±2
n , κ±

n = knα
±

n , βn =

√
s2

0 − s2
rn, n = (1, 2). (37c)

Study of (36a) in view of (10a), (11), (12), (20)–(24) and (37) shows that θ̂ S
12 appropriately vanishes

when the half-space materials are the same. For Case B a term such as (36a) does not arise. Inversion
of (36a) is now sought for Case A for the three models. To allow more insight into behavior, analytical
results are achieved with asymptotic versions of the transforms that are valid for very long or very short
times after the line loads are applied.

6. Inversion for long times

A robust asymptotic result for long times, here defined for all three models as

t � max(τ h
1 , τ

h
2 ) (38)

is obtained by inverting an approximate transform valid for max(τ h
1 p, τ h

2 p)� 1. It is noted that all Dn-
operators (and thus corresponding dn-factors) become unity, that is, all three models behave as Fourier
model F. For n = (1, 2) Equation (11)–(13) yield

k+

n ≈

√
aεn
τ h

n p
, η+

n ≈ −
aεn
τ h

n p
, k−

n ≈

√
aεn
an
, η−

n ≈
εn

an
, aεn = an + εn (39a)

s+

n ≈
λεn
√

p
, s−

n ≈
srn
√

aεn
= sεn =

1
vεn
, ωn ≈

s2
rn p
αvn

, λεn =
aεnsrn

anhn
. (39b)

In light of (11) and (39), s+
n � srn > s−

n and it is noted that (vεn, sεn) are the thermoelastic dilatational
wave speed and slowness [Brock and Georgiadis 1999]. For purposes of illustration we choose materials
so that, in view of (39),

s−

1 < s−

2 < sr1 < sr2 � s+

1 < s+

2 . (40)

From Appendix A and (24) it can be shown that requirements for Case A are met if

s2
r2(ρ1 + ρ2 − 2µ1s2

r2)
2
−β1

[
(ρ2 − 2µ1s2

r2)
2α1 + ρ1ρ2α2

]
> 0 (41a)

αn =

√
s2

r2 − sε2n , n = (1, 2), β1 =

√
s2

r2 − s2
r1. (41b)
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If (41b) does hold then (29), (36a) and a standard table [Sneddon 1972] give

s0 ≈

√
ρ2sε1 + ρ1sε2

√
ρ2sr1 + ρ1sr2

√
k1λ

ε
1 + k2λ

ε
2√

λε1λ
ε
2

exp(9F (0))
sε2
√

Msε1sr2
> sr2 (42a)

θ S
12 ≈

NF

2M
√

s2
0 − s2

r2

exp(−29F (s0))Fy(t − s0|x |)H(t − s0|x |) (42b)

NF =
k1ε1a2v

ε2
1

τ h
1 αv2

(
1 −

α0
2

s0

)(
s2

0 T 0
1 +α0

1 T 0
β

)
+

k2ε2aε1v
ε2
2

τ h
2 αv1

(
1 −

α0
1

s0

)(
s2

0 T 0
2 −α0

2 T 0
β

)
. (42c)

Here H is the Heaviside function, function 9F is defined by (B1) in Appendix B and

(T 0
1 , T 0

2 )= ρ1 − ρ2 +µ12s2
0 −µ12(α

0
1β

0
2 , α

0
2β

0
1 ) (43a)

T 0
β = (ρ2 −µ12s2

0)β
0
1 + (ρ1 +µ12s2

0)β
0
2 (43b)

α0
n =

√
s2

0 − sε2n , β0
n =

√
s2

0 − s2
rn, n = (1, 2). (43c)

7. Inversion for short times: model F

The short time range for Fourier model F is defined as

t � min(τ h
1 , τ

h
2 ). (44)

A robust asymptotic result can therefore be obtained from a transform approximation valid for

min(τ h
1 p, τ h

2 p)� 1.

It can be shown that for n = (1, 2)

k+

n ≈ 1, η+

n ≈
−εn

τ h
n p
, k−

n ≈

√
an

τ h
n p
, η−

n ≈ 1 (45a)

s+

n ≈ sdn, s−

n ≈
λn
√

p
, ωn =

s2
rn p
αvn

, λn =
srn

hn
. (45b)

From (11) and (45) it follows that now srn > s+
n � s−

n . For purposes of illustration the materials are
chosen such that

s−

1 < s−

2 � s+

1 < s+

2 < sr1 < sr2. (46)

From Appendix A and (21) it can be shown that conditions for Case A are met if (38) is satisfied, but
with (α1, α2) in (41b) replaced by

αn =

√
s2

r2 − s2
dn, n = (1, 2). (47)
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If (41a) and (47) do hold then it can be shown that

s0 ≈
√
ρ2sd1 + ρ1sd2

√
ρ2sr1 + ρ1sr2

√
k1λ1 + k2λ2

√
k1k2

exp(9F (0))
sd2

√
sd1sr2 M

> sr2, (48a)

θ S
12 ≈

NF

2M
√

s2
0 − s2

r2

exp(−29F (s0))Fy(t − s0|x |)H(t − s0|x |), (48b)

NF =
k1ε1a2v

2
d1

τ h
1 αv2

(
1 −

α0
2

s0

)(
s2

0 T 0
1 +α0

1 T 0
β

)
+

k2ε2a1v
2
d2

τ h
2 αv1

(
1 −

α0
1

s0

)(
s2

0 T 0
2 −α0

2 T 0
β

)
. (48c)

Function 9F is now given by (B3) in Appendix B.

8. Inversion for short times: model I

For the single-relaxation time model, valid results are obtained for

t � min(τ I
1 , τ

I
2 ) (49)

with approximate transforms valid for max(τ I
1 p, τ I

2 p)� 1. Then for n = (1, 2)

2k±

n ≈

√(
1 +

√
anl I

n

)2
+ εnl I

n ±

√(
1 −

√
anl I

n

)2
+ εnl I

n , l I
n =

τ I
n

τ h
n

� 1 (50a)

ωn ≈
s2

rn p
αnv

, η+

n η
−

n ≈ −εnl I
n . (50b)

It is noted that l I
n is a dimensionless ratio of characteristic times. In light of (13) inequality srn > s+

n
holds, and one can again consider the situation (46). However, each s-parameter is now a constant, that
is, wave slowness, so that a difference of scale between s+

n and s−
n would be due to material mismatch.

Use of Appendix A, (24) and (50) shows that Case A arises only if

z− <
s2

r1αv2

s2
r2αv1

< z+, MI < 0. (51)

Parameters z± are given by (A6) in Appendix A, with (50) understood and

(M1,M2)≈ (k1ε1l I
1ρ2, k2ε2l I

2ρ1)(s+

1 − s−

1 )(s
+

2 − s−

2 ). (52)

Parameter MI is defined as

MI = η+

1 η
+

2 (κ
+

1 + κ+

2 )M
2−

1−
+ η−

1 η
−

2 (κ
−

1 + κ−

2 )M
2+

1+

− η+

1 η
−

2 (κ
+

1 + κ−

2 )M
2+

1−
− η−

1 η
+

2 (κ
−

1 + κ+

2 )M
2−

1+
, (53a)

M2±

1±
= s2

r2T 2
12 − (T 2

2 α
±

1 + ρ1ρ2α
±

2 ), (53b)

α±

n =

√
s2

r2 − s±2
n , κ±

η = κηα
±

η1
, n = (1, 2), β1 =

√
s2

r2 − s2
r1. (53c)
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Here (10b) and (22e) govern with argument u2. For Case A (29) is valid, with

s∗
= sr2, G±(0)≈ exp9I (0). (54)

Inversion of (36a) then produces in light of (37)

θ S
12 ≈

1
2s0

NI exp(−29I (s0))

Mη1η2

√
s2

0 − s2
r2

Ḟy(t − s0|x |)H(t − s0|x |), (55a)

NI = ε1l I
1 (κ

+

1 − κ−

1 )
a2v

2
d1

αv2

[
η−

2 (s
2
0 T +

2 −α+

2 Tβ)− η+

2 (s
2
0 T −

2 −α−

2 Tβ)
]

+ ε2l I
2 (κ

+

2 − κ−

2 )
a1v

2
d2

αv1

[
η−

1 (s
2
0 T +

1 +α+

1 Tβ)− η+

1 (s
2
0 T −

1 +α−

1 Tβ)
]
. (55b)

The superposed dot signifies time differentiation; 9I is defined by (C1) in Appendix C.

9. Inversion for short times: model II

For the double-relaxation time model, valid results for

t <min(τ I I
1 , τ I I

2 ) (56)

are obtained by examining approximate transforms valid for min(τ I I
1 p, τ I I

2 p) � 1. For n = (1, 2)
asymptotic results are

2k±

n ≈

√(
1 +

√
anl I

n

)2
+ εnl I I

n ±

√(
1 −

√
anl I

n

)2
+ εnl I I

n ,

l I I
n =

τ I I
n

τ h
n
< l I

n � 1,

(57a)

ωn ≈
s2

rn

αvnτ I I
n
, η+

n η
−

n ≈ −εnl I I
n . (57b)

As with model I each s-parameter is wave slowness, and situation (46) can again be considered, with
the understanding that any difference in scale is due to material mismatch. Use of Appendix A, (24) and
(57) shows that Case A arises only when

z− <
s2

r1αv2τ
I I
2

s2
r2αv1τ

I I
1
< z+, MI I < 0. (58)

Again (A6) in Appendix A holds, but now

(M1,M2)≈
(
κ1ε1l I I

1 ρ2, κ2ε2l I I
2 ρ1

)
(s+

1 − s−

1 )(s
+

2 − s−

2 ), (59a)

MI I = MI − (ρ2 −µ12s2
r2)β1(κ

+

1 − κ−

1 )(κ
+

2 − κ−

2 )�I I , (59b)

�I I = κ1µ1ε2s2
r2l I I

2
αv1

αv2
+ κ2µ2ε1s2

r1l I I
1
αv2

αv1
. (59c)
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It is understood that (57) now holds for all quantities, including MI . If (58) is satisfied then (29) holds,
with

s∗
= sr2, G0 ≈ exp9I I (0). (60)

Inversion of (36a) then gives

θ S
12 ≈

1
2s0

NI I exp(−29I I (s0))

η1η2

√
s2

0 − s2
r2

Fy(t − s0|x |)H(t − s0|x |), (61a)

NI I = ε1l I I
1 (κ

+

1 − κ−

1 )
s2

r2

αv2τ
I I
2

[
η−

2

(
s2

0 T +

2 −α+

2 Tβ
)
− η+

2

(
s2

0 T −

2 −α−

2 Tβ
)]

+ ε2l I I
2 (κ

+

2 − κ−

2 )
s2

r1

αv1τ
I I
1

[
η−

1

(
s2

0 T +

1 +α+

1 Tβ
)
− η+

1

(
s2

0 T −

1 +α−

1 Tβ
)]
. (61b)

Here (57) governs and function 9I I is defined in Appendix D.

10. Some observations

Equation (21) shows that a Stoneley function arises in transform space in a dynamic study of perfectly
bonded thermoelastic half-spaces. The function includes a linear combination of four terms, each (22a)
of which has the form of an isothermal Stoneley function. Condition (26) for existence of thermoelastic
Stoneley roots is similar to those for the isothermal case, but more restrictive. Expressions (29) and
(30) for the roots, analytic to within a single integration, may depend on the unilateral Laplace (time)
transform variable p, that is, not correspond to, as in the isothermal case, a constant Stoneley wave
slowness. Moreover, a root can for positive real p be real (29) or imaginary (30).

It is found that a line load force applied directly to the interface and acting normal to it produces, from
the residue of the real root, contribution (36a) to the time transform of the interface temperature change.
The contribution has an analytical form, and asymptotic versions of this, valid for long times or short
times after the line load is applied, can be inverted analytically.

Inversion (42b) shows that the residue contribution behaves for long times as if the half-spaces obey
classical Fourier theory [Chadwick 1960] even when thermal relaxation [Lord and Shulman 1967; Green
and Lindsay 1972] is present. Conditions for existence of the Stoneley root (in asymptotic form) are
always met, and the root (42a) is a constant. As a result, (42b) describes a temperature change wave.

For short times, a constant real root (48a), (29) and (54), and (29) and (60) arises for, respectively, the
Fourier and single- and double-relaxation time models, and the contribution of the residue to the interface
temperature change for each model again defines a wave. However, existence conditions (51) and (58)
for the relaxation time models are more restrictive than condition (41a) and (47) for the Fourier model.
Moreover, contribution (48b) and (61a) for the Fourier and double-relaxation time models are propor-
tional to line load function Fy . Contribution (55a) for the single-relaxation time model is proportional
to the time derivative of Fy .

The observation that τ h
n � τ I

n >τ
I I
n , n = (1, 2) made in connection with (4) shows in view of (38), (44),

(49) and (56) that asymptotic result (42a) and (42b) are the most robust. Nevertheless, work in fluids
[Fan and Lu 2002] shows that behavior for very short times after a load is applied can be distinctive.
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As noted just above, this is the case here. Specifically, if Fy is a step (Heaviside) function in time, the
Stoneley contribution to interface temperature for long times is a propagating step function whose form is
the same for all three models. For short times, the contribution for the Fourier (F) and double-relaxation
(II) time models are propagating step functions that are not identical, while the single-relaxation (I) time
model gives a propagating impulse.

In summary, the present analysis shows the sensitivity of Stoneley signals in perfectly bonded thermoe-
lastic half-spaces to the nature of the heat conduction model that governs. It is hoped that the results given
here may prove useful in the transient study of solids that consist of dissimilar thermoelastic materials.

Appendix A

The sign of S(0) in (24b) is determined by the second factor on its right-hand side. Equation (15) indicates
that (ω1, ω2) for positive real p is positive, so that this factor can be studied in terms of the quadratic

M12z − M1z2
− M2, z =

ω1

ω2
> 0. (A1)

Its discriminant and the location of its maximum value are

M2
12 − 4M1 M2, z =

M12

2M1
, (M1,M2,M12) > 0. (A2)

The former can be factored as

(k+

1 − k−

1 )
2(k+

2 − k−

2 )
2 P+ P−, P± = C1ρ1sd2 + C2ρ2sd1 ± 2C3

√
ρ1sd2ρ2sd1. (A3)

Term P± is quadratic in (
√
ρ1sd2,

√
ρ2sd1) and (C1,C2,C3) are quadratic in (

√
k1sd1,

√
k2sd2):

C1 = C11k1sd1 + C12k2sd2,

C2 = C21k1sd1 + C22k2sd2,
(A4a)

C11 = (k+2
1 + k+

1 k−

1 + k−2
1 )(1 + k+

2 k−

2 ),

C12 = k+

2 k−

2 (k
+

1 + k−

1 )(k
+

2 + k−

2 ),
(A4b)

C22 = (k+2
2 + k+

2 k−

2 + k−2
2 )(1 + k+

1 k−

1 ),

C21 = k+

1 k−

2 (k
+

1 + k−

1 )(k
+

2 + k−

2 ),
(A4c)

C3 =
1
p

√
d1ε1d2ε2

√
k1ε1sd1

τ h
1

√
k2ε2sd2

τ h
2

. (A4d)

Equation (12) holds in (A4d) and because k+
n > 1 > k−

n > 0, n = (1, 2), terms (C1,C2,C3, P+) > 0.
Therefore if P− > 0 the quadratic in (A2) has a positive maximum and two positive real roots. If P− < 0
the quadratic in (A2) is itself negative for all ω1/ω2 > 0. It follows that

P− > 0 : S(0) > 0
(
z− <

ω1

ω2
< z+

)
, S(0) < 0

(
0<

ω1

ω2
< z−,

ω1

ω2
> z+

)
, (A5a)



1738 LOUIS MILTON BROCK

P− < 0 : S(0) < 0
(ω1

ω2
> 0

)
. (A5b)

In (A5a) the terms z± are given by

z± =
1

2M1

(
M12 ±

√
M2

12 − 4M1 M2

)
. (A6)

Study of P− is aided by several observations: its discriminant is

−C11C21k2
1s2

d1 − C22C12k2
2s2

d2 +

[
2
p

√
ε1d1ε2d2

τ h
1 τ

h
2

− C11C22 − C12C21

]
k1sd1k2sd2. (A7)

This quadratic in turn has discriminant

D+D−, D± =
ε1d1ε2d2

τ h
1 τ

h
2 p2

−
1
2

(√
C11C22 ±

√
C12C22

)2
. (A8)

The first term in D± can be written in light of (15) as

(1 − k+2
1 )(1 − k−2

1 )(1 − k+2
2 )(1 − k−2

2 ). (A9)

Thus if (k±

1 , k±

2 ) have values for positive real p such that D+D−<0, then (A7) is negative in (k1sd1, k2sd2),
and P− > 0 in (

√
ρ1sd2,

√
ρ2sd1). If D+D− > 0 however, (A7) exhibits (k±

1 , k±

2 )-dependent roots in on
the sd1/sd2-axis and its sign depends on (k1sd1, k2sd2). Then, when it is positive the sign of P− depends
on (

√
ρ1sd2,

√
ρ2sd1).

Appendix B

Function 9F that appears in (47) is defined as

ln9F (q)=
1
π

( sε2∫
sε1

ψ1udu
u2 − q2 +

sr1∫
sε2

ψ2udu
u2 − q2 +

sr2∫
sr1

ψ3udu
u2 − q2

)
, (B1a)

ψ1 = tan−1 1
α1

(ρ1ρ2 B1 + T 2
1 B2)A2 + u2T 2

12

ρ1ρ2 B2 + (T 2
2 +µ2

12 A2 B2)B1
, (B1b)

ψ2 = tan−1 u2 T 2
12 −µ2

12α1 B1α2 B2

T 2
1 α2 B2 + T 2

2 α1 B1 + ρ1ρ2(α1 B2 +α2 B1)
, (B1c)

ψ3 = tan−1 1
B2

u2T 2
12 − (T 2

2 α1 + ρ1ρ2α2)β1

(T 2
1 −µ2

12u2α1β1)α2 + ρ1ρ2α1
. (B1d)

Here (10b), (22e) and (45) hold, with argument u2, and

αn =

√
u2 − sε2n , n = (1, 2), β1 =

√
u2 − s2

r1. (B2)
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In Equation (48a) and (48b) function 9F is given by

9F (q)=
1
π

( sd2∫
sd1

ψ1udu
u2 − q2 +

sr1∫
sd2

ψ2udu
u2 − q2 +

sr2∫
sr1

ψ3udu
u2 − q2

)
. (B3)

Equation (B1) and (B2) again hold but with modification

αn =

√
u2 − s2

dn, n = (1, 2). (B4)

Appendix C

Function 9I that appears in (55) is defined by

9I (q)=
1
π

( s−

2∫
s−

1

ψ1udu
u2 − q2 +

s+

1∫
s−

2

ψ2udu
u2 − q2 +

s+

2∫
s+

1

ψ3udu
u2 − q2 +

sr1∫
s+

2

ψ4udu
u2 − q2 +

sr2∫
sr1

ψ5udu
u2 − q2

)
, (C1a)

ψ1 = tan−1 α−

1
N1

D1
, ψ2 = tan−1 1

D2
(α−

1 N21 +α−

2 N22), ψ3 = tan−1 N3

D3
, (C1b)

ψ4 = tan−1 u2 N4

D4
, ψ5 = tan−1 N5

B2 D5
. (C1c)

Equation (C1b) and (C1c) employ the quantities

N1 = η−

1

(
η−

2 S2+

1+
− η+

2 S2−

1+

)
+ η+

1

[
η+

2 (K
+

1 + K +

2 )U2− − η−

2 (K
+

1 + K −

2 )U2+

]
, (C2a)

D1 = η−

1

(
η+

2 A+

2 S2−

1+
− η−

2 A−

2 S2+

1+

)
+ η+

1

[
η−

2 (K
+

1 + K −

2 )V2+ − η+

2 (K
+

1 + K +

2 )V2−

]
, (C2b)

N21 = η−

1 η
−

2 S2+

1+
+ η+

1 η
+

2 (K
+

1 + K +

2 )(ρ1ρ2 B2 + T 2
2 B1)− k1η

+

1 η
−

2 A+

1 U2+ − k1η
−

1 η
+

2 V1+, (C3a)

N22 = η−

2 η
−

1 S2+

1+
+ η+

2 η
+

1 (K
+

1 + K +

2 )(ρ1ρ2 B1 + T 2
1 B2)− k2η

+

2 η
−

1 A+

2 U1+ − k2η
−

2 η
+

1 V2+, (C3b)

D2 = η+

1 η
−

2 (A
+

1 V2+ −α−

1 k−

2 U2+)+ η
−

1 η
+

2 (A
+

2 V1+ − k−

1 α
−

2 U1+), (C3c)

N3 = η−

2

[
η−

1 (κ
−

1 + κ−

2 )− η
+

1 (κ
+

1 + κ−

2 )
]

+ η+

2

[
η+

1

(
u2α+

1 V 2−

1−
+ A+

2 U 2−

1−

)
+ η−

1

(
u2k−

1 V 2−

1+
− k+

2 U 2−

1+

)]
, (C4a)

D3 = η−

2

[
η−

1 α
+

1 (η
−

1 + κ+

2 )+ V2+ − η+

1 α
−

1

(
η−

1 κ
+

1 − κ−

2

)
U2+

]
+ η+

2

[
η−

1

(
u2K +

2 V 2−

1+
− κ−

1 U 2−

1+

)
− η+

1

(
u2K +

2 V 2−

1−
− κ+

1 U 2−

1−

)]
, (C4b)
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N4 = η+

1 η
−

2 (κ
+

1 +κ−

2 )V
2+

1−
+η−

1 η
+

2 (κ
−

1 +κ+

2 )V
2−

1+
−η+

1 η
+

2 (κ
+

1 +κ+

2 )V
2−

1−
−η−

1 η
−

2 (κ
−

1 +κ−

2 )V
2+

1+
, (C5a)

D4 = η+

1 η
+

2 (κ
+

1 +κ+

2 )U
2−

1−
+η−

1 η
−

2 (κ
−

1 +κ−

2 )U
2+

1+
+η+

1 η
−

2 (κ
+

1 +κ−

2 )U
2+

1−
+η−

1 η
+

2 (κ
−

1 +κ+

2 )U
2−

1+
, (C5b)

(N5, D5)= η+

1 η
+

2 (κ
+

1 + κ+

2 )(X
2−

1−
, Y 2−

1−
)+ η−

1 η
−

2 (κ
−

1 + κ−

2 )(X
2+

1+
, Y 2+

1+
)

+ η+

1 η
−

2 (κ
+

1 + κ−

2 )(−X2+

1−
, Y 2+

1−
)− η−

1 η
+

2 (κ
−

1 + κ+

2 )(−X2−

1+
, Y 2−

1+
). (C6)

In (C2)–(C6) Equation (10b), (22a), (22e) and (49) hold, with argument u2, and

U2± = T 2
2 B1 + (ρ1ρ2 +µ2

12u2 A±

2 B1)B2,

V2± = u2T 2
12 + (ρ1ρ2 B1 + T 2

1 B2)A±

2 ,
(C7a)

U1+ = T 2
1 B2 + (ρ1ρ2 +µ2

12u2 A+

1 B2)B1,

V1+ = u2T 2
12 + (ρ1ρ2 B2 + T 2

2 B1)A+

1 ,
(C7b)

U 2±

1±
= T 2

2 α
±

1 B1 + T 2
1 α

±

2 B2 + ρ1ρ2(α
±

1 B2 +α±

2 B1),

V 2±

1±
= T 2

12 −µ2
12α

±

1 B1α
±

2 B2,
(C7c)

X2±

1±
= u2T 2

12 − (T 2
2 α

±

1 + ρ1ρ2α
±

2 )β1,

Y 2±

1±
= T 2

1 α
±

2 + (ρ1ρ2 −µ2
12u2α±

2 β1)α
±

1 .
(C7d)

Appendix D

Function 9I I that appears in (61) has the same form as that given for 9I by (C1a). However, (C1b) and
(C1c) are modified:

ψ1 = tan−1 α−

1
N1 +�12 Q B(A+

2 − A−

2 )

D1 +�12 Q B A+

1 (A
+

2 − A−

2 )
, (D1a)

ψ2 = tan−1 α
−

1 N21 +α−

2 N22 +�12 Q B(α
−

1 A+

2 +α−

2 A+

1 )

D2 +�12 Q B(A+

1 A+

2 −α−

1 α
−

2 )
, (D1b)

ψ3 = tan−1 N3 +�12 Q Bα
−

2 (α
+

1 −α−

1 )

D3 −�12 Q B A+

2 (α
+

1 −α−

1 )
, (D1c)

ψ4 = tan−1 u2 N4

D4 +�12 Q B(α
+

1 −α−

1 )(α
+

2 −α−

2 )
, (D1d)

ψ5 = tan−1 1
B2

N5 −�12T2β1(α
+

1 −α−

1 )(α
+

2 −α−

2 )

D5 +�12T1(α
+

1 −α−

1 )(α
+

2 −α−

2 )
. (D1e)
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In Equation (C2)–(C6) in Appendix C, (D1), (10b), (22a), (22e), (C2), (56) and (58) now hold, with
argument u2.
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