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The development of full displacement field measurements as an alternative to the optical lever technique
to measure the mechanical response for microelectro-mechanical systems components in their environ-
ment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displacements).
As these phenomena usually arise from species adsorption, adsorbate modification or surface reconstruc-
tion, they are surface-related by nature and thus require some dedicated mechanical modeling. The
accompanying mechanical modeling proposed herein is intended to represent the chemical part of the
system free energy and its dependence on the surface amount. It is solved in the cantilever case thanks
to an asymptotic analysis, and an approached closed-form solution is obtained for the interfacial stress
field. Finally, some conclusions regarding the transducer efficiency of cantilevers are drawn from the
energy balance in the accompanying model, highlighting the role of surface functionalization parameters
in micromechanical sensors engineering.

1. Introduction

The increasing interest in microelectro-mechanical systems (MEMS) has raised the issue of several spe-
cific mechanical phenomena. Decreasing the size of mechanical objects down to the 1–100 micrometer
range significantly enhances the surface-driven aspect of the mechanical behavior, so that these objects
are used in a wide range of sensing applications [Lavrik et al. 2004]. In particular, the use of func-
tionalized microcantilevers as environmental sensors has become very popular during the last decade.
However, the basic understanding of the involved phenomena remains controversial because of numer-
ous experimental parameters to control, and because of the lack of reliable spatially resolved mechanical
information. For example, the basic understanding of the mechanisms involved in the mechanical effect
induced by DNA hybridization at a cantilever surface remains an open issue [Fritz et al. 2000; Wu
et al. 2001; Hansen et al. 2001; McKendry et al. 2002; Hagan et al. 2002], as well as the modeling of
coupled phenomena such as electrocapillarity [Marichev 2005]. To overcome the latter difficulty, several
authors [Amiot et al. 2003; 2006; Helm et al. 2005; Mertens et al. 2005; Amiot and Roger 2006] have
proposed using full displacement field measurements instead of the optical lever technique to measure the
microcantilever deformation. This has several advantages, depending on the way the displacement field
is used; namely, averaging the displacement field across the cantilever allows one to increase the signal-
to-noise ratio, if one is interested in a uniformly coated cantilever, and to achieve the selective readout
of cantilevers functionalized in a heterogeneous manner. Moreover, the use of full-field measurements
leads to a significantly increased amount of information, which has to be compared to suitable mechanical
models of surface phenomena. In particular, the widely used Stoney’s equation [Stoney 1909] (which is
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obtained by assuming that the cantilever is subjected to a uniform mechanical effect) has to be enriched
to describe the experimentally obtained displacement fields.

The goal of this paper is to propose such a modeling, taking into account the finite size of the function-
alized area to obtain a full displacement field instead of a mean curvature. The first section is devoted to
deriving such a mechanical modeling using thermodynamics arguments. Focusing on cantilever sensors,
the chemical environment effect is represented by a mechanical layer, referred to as “the membrane”
(bonded to the cantilever surface), whose thickness tends to zero. In Section 2, the solution for the
interfacial shear-stress field is obtained by using the asymptotic expansion method [Lions 1973; Klarbring
1991; Geymonat and Krasucki 1997]. A general closed form is proposed for the derived shear-stress field,
which depends on only three physical parameters. Last, a parametric study is carried out to provide some
trends and perspectives to improve the efficiency of environmental sensors.

2. Mechanical modeling for chemically-actuated cantilevers

The accompanying mechanical modeling intended to represent the chemical part of the system free energy
and its dependence on the surface amount is described in the first section.

2.1. Definition of the accompanying mechanical modeling. Let us consider a representative interface
element whose size is:

• small enough to satisfy the definiteness of partial derivatives involved in continuum mechanics;

• large enough to provide a representative description of the surface mechanical behavior.

These requirements are referred to as scale separation conditions in the following. For polycrystalline
thin films, a representative element should then include at least 100 grains. Three phases are classically
distinguished inside this interfacial element:

• a liquid phase, whose volume is V at pressure p. Several other state variables, denoted by the set
{nα

L}, represent the amount of species α in the liquid phase, and thus describe its composition;

• the interphase, whose surface is Si and composition is described by the set {nα
S};

• the solid phase, whose surface is Si , described by its stress field σ .

This system is assumed to be closed, in equilibrium with an external thermostat. The system is described
by its Gibbs’ free enthalpy G. If the scale separation conditions are met, then the state variables set
{T, p, {nα

L/V }, {nα
S/Si }, σ } describes the local interfacial state. In particular, the initial state corresponds

to the sets {
nα

L,0
}

and
{
nα

S,0
}
.

As one deals with a closed system, the conservation conditions lead to

dnα
L = −βα, dnα

S = βα,

where βα is the processed quantity for species α by the reaction

αliquid
βα

−−−−−−−→ αinterphase.
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The system free enthalpy G reads

G = GL + GS + Gm = Gc + Gm. (1)

where GL is the liquid phase contribution, GS is the interphase one, and Gm arises from the solid substrate.
Both of the first two terms are formally merged into Gc, which represents the chemical part in G. Each
free enthalpy contribution is expressed as a function of the state variables:

• The liquid phase is assumed to be an ideal solution, so that, considering a unit volume, GL reads

GL

(
p, T,

{
nα

L

V

})
=

∑
α

nα
L

V

[
µα

L ,0(p, T ) + RT log
(

nα
L

V

)]
, (2)

where µα
L ,0(p, T ) is the reference chemical potential at temperature T and pressure p for species

α, R the molar gas constant.

• For the sake of generality, a general form for an elementary interphase portion is considered:

GS

(
p, T,

{
nα

S

Si

})
= g

(
T,

{
nα

S

Si

})
+

∑
α

[
nα

S

Si
µα

S,0(p, T )

]
,

where the function g
(
T,
{
nα

S/Si
})

has to be chosen to represent the evolution of the adsorbate’s free
enthalpy as a function of the surface concentration. For instance, a noninteracting adsorbate would
lead to choosing an expression gni for g similar to the one used in Equation (2):

gni

(
T,

{
nα

S

Si

})
= RT

∑
α

nα
S

Si
log

(
nα

S

Si

)
. (3)

Setting Si = S0 + d S, the chemical part of the overall free enthalpy reads

Gc(Si ) =

∑
α

[nα
L,0 − βα

V

[
µα

L ,0(p, T ) + RT log
(nα

L,0 − βα

V

)]
+

nα
S,0 + βα

S0 + d S
µα

S,0(p, T )

]
+ g

(
T,

{nα
S,0 + βα

S0 + d S

})
.

The chemical contribution to the free enthalpy depends on the available surface amount. Considering
small area variations,

Gc(Si ) ' Gc(S0) +
1
S0

∑
α

−

(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

)
 d S

S0

+

(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
nα

S
Si

+
1

2S0

∂2g

∂
(

nα
S

Si

)2

(d S
S0

)2

+ o
(

d S
S0

)3

. (4)

Finally, both Gc and Gm depend on the available surface area. To include this shared dependence in
the mechanical modeling of cantilevers, it is assumed that there is a virtual layer bonded to the surface
under scrutiny, so that this surface and the virtual layer are constrained to deform together.
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Moreover, it is considered that the virtual layer is subjected to a free strain εL. This local free strain
value is identified by minimizing the free enthalpy, assuming that no mechanical constraint acts on
the virtual layer, that is by minimizing the chemical term Gc with respect to the surface variation d S.
Assuming that expansion (4) holds, εL satisfies

2 × εL ×

∑
α

(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

) +
1

2S0

∂2g

∂
(

nα
S

Si

)2


−

∑
α

(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

)
= 0. (5)

If one prescribes, by any external means, the virtual layer strain to be εL + δε, its free enthalpy variation
reads

1Gc =

(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

) +
1

2S0

∂2g

∂
(

nα
S

Si

)2

 (δε)2 . (6)

By analogy with the strain energy of a membrane, one is able to represent chemical effects by a bonded
virtual membrane, whose thickness is ev, whose Young’s modulus Ev reads

Ev =
2

ev S0

(nα
S,0 + βα)µα

S,0(p, T ) +
∂g

∂
(

nα
S

Si

) +
1

2S0

∂2g

∂
(

nα
S

Si

)2

 , (7)

and whose free-strain satisfies (5). Equations (5) and (7) thus define, for a given membrane thickness
ev, an energetically equivalent mechanical modeling for the chemical effects. In addition to this energy
equivalence, to account for the two-dimensional nature of the phenomena under scrutiny, it is assumed
that the virtual membrane thickness is small compared with that of the considered substrate. Conse-
quently, the chemical effects are described by a virtual membrane whose thickness is small compared
with the others, and which is constrained to deform together with the substrate surface, thus defining an
accompanying mechanical modeling.

2.2. Initial problem. The system is modeled as described in Figure 1. The parameters related to the
beam are denoted with the subscript 1, whereas those related to the thin layer (the membrane) are denoted
with the subscript 2. The behavior of both the phases is assumed to be linear elastic. The beam obeys an
Euler–Bernoulli kinematics and has Young’s modulus E1, width b, length L , and thickness e1. This beam
is then subjected to an axial free strain εL1(x). A thin membrane (having Young’s modulus E2, width b,
length l < L , and thickness e2) is constrained to deform together with beam 1 along the interface 0 when
subjected to a free strain field εL2(x) with −

l
2 < x < l

2 (one sets x = 0 at the center of the membrane
area). Denoting by σ1 the Cauchy stress tensor in cantilever 1, the interactions between the two beams
are then represented by the scalar field τ(x) (shear-stress)

σ1y = τ(x)x,
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Figure 1. Schematic view of the accompanying mechanical model.

where x denotes the unit vector in the cantilever’s direction and y the outgoing normal to its upper surface.
The equilibrium conditions read

d N1

dx
+ τb = 0,

d M1

dx
− τb

e1

2
= 0,

(8)

for cantilever 1 and
d N2

dx
− τb = 0,

for membrane 2, where Ni is the normal force in phase i and Mi the bending moment. It should be noted
that the proposed modeling is expected to somehow fail to represent the mechanical effect induced by
adsorbates subjected to strong in-plane interactions such as electrostatic interactions, since this would
require to take the adsorbate’s bending stiffness into account. The tension and bending problems are
assumed to be decoupled for the cantilever 1, so that the constitutive law reads

M1 = E1 I1
d2w

dx2 , (9)

where E1 I1 is the bending stiffness for cantilever 1 in the middle of the cross-section (homogeneous
cantilever), and w(x) is the out-of-plane displacement field of the assembly. At this point, it should be
underlined that using a beam or membrane theory corresponds to specific forms for the Cauchy stress
tensor and displacement (strain) fields inside the phases. According to Saint-Venant’s principle, the
computed fields will then be correctly predicted “far enough” from the loading application points, that is,
in the described case, “far enough” from the interface. As a consequence, to describe the displacement at
the interface, it is required to take into account the “local” contribution of the displacement field (that is,
close to the interface) in addition to the long-range displacement field provided by beam or membrane
theories. A closed-form solution to this local contribution is obtained using Kolossov–Muskhelishvili
potentials [Muskhelishvili 1953] and expanding the shear-stress field in a Legendre polynomial basis

τ(x) =

∞∑
k=0

τk Pk

(
2x
l

)
,

where Pk(x) is Legendre polynomial of order k, and {τk} the projection of τ(x) onto the Legendre basis.
The calculation of the in-plane displacement field v(x) as the sum of the contributions vk(x) induced by
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the elementary shear-stress field Pk (2x/ l) is detailed in Appendix A, assuming the cantilever’s material
behavior to be isotropic. For the sake of simplicity, let us consider uniform free strain fields

εLi (x) = εLi , i ∈ {1, 2}.

The plane displacement on the interface for both the cantilever 1 and the membrane 2 reads

u1(x) − u1

(
−

l
2

)
= εL1 ×

(
x +

l
2

)
+

∫ x

−
l
2

N1(ζ )

be1 E1
dζ −

e1

2

∫ x

−
l
2

d2w

dζ 2 (ζ )dζ +

∞∑
k=0

τkvk(x),

u2(x) − u2

(
−

l
2

)
= εL2 ×

(
x +

l
2

)
+

∫ x

−
l
2

N2(ζ )

be2 E2
dζ +

e2

2

∫ x

−
l
2

d2w

dζ 2 (ζ )dζ .

The kinematic compatibility condition at the interface reads

u1(x) − u1

(
−

l
2

)
= u2(x) − u2

(
−

l
2

)
, (10)

and has to be satisfied for all x such that −
l
2 < x < l

2 . Differentiating Equation (10) three times yields

−

(
1

e1 E1
+

1
e2 E2

+
be1(e1 + e2)

4I1 E1

)
τ ′(x) +

∞∑
k=0

τkv
′′′

k (x) = 0, (11)

so that, from Equation (11), it is proved that neglecting the local contribution to the interface plane
displacement leads one to prescribe τ ′(x) = 0. Consequently, the equilibrium of the membrane is sat-
isfied if and only if the shear stress field vanishes. This result underlines the fact that it is necessary
to describe the mechanical fields close to the interface in a much more detailed manner than classical
phenomenological methods (see for instance [Cammarata 1994]).

3. Variational formulation and asymptotic analysis

The aim of this section is to provide a suitable formulation of the problem to be solved to get the shear-
stress field representing the environmental effect on the cantilever.

3.1. Complementary energy calculation for the initial problem. The shear-stress field is found as the
minimizer of the complementary energy of the overall structure. By assuming that there is no mechanical
action on the membrane except the interaction with the beam, the set V of statically admissible shear-
stress fields reads

V =

{
φ ∈ L2

([
−

l
2
,

l
2

])
,

∫ l
2

−
l
2

φ(ζ )dζ = 0

}
.

Denoting by ξ the ratio between the thicknesses of the membrane and the beam,

ξ =
e2

e1
,
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one defines the family of initial problems Pξ as finding the shear-stress field τs(x) minimizing the com-
plementary energy Iξ :

Pξ :

{
τs(x) ∈ V,

Iξ (τs) ≤ Iξ (φ), for all φ ∈ V,
(12)

with
Iξ (φ) = 1σ1(φ) + 1σ2,ξ (φ),

where 1σ1(φ) and 1σ2,ξ (φ) are the complementary energies for the cantilever and membrane. These
are given by

1σ1(φ) =
1
2

∫
�1

σ1,xx(φ)ε1,xx(φ)dV −

∫
0

φ(ζ )

(
u2(ζ, z) − u2

(
−

l
2
, z
))

d S + Edτ (φ),

1σ2,ξ (φ) =
1
2

∫
�2,ξ

σ2,xx(φ)ε2,xx(φ)dV −

∫
0

φ(ζ )

(
u1(ζ, z) − u1

(
−

l
2
, z
))

d S,

where εi,xx is the linearized xx strain component in phase i and Edτ (φ) is the strain energy in the
localized deformation mode. It should be underlined that Iξ (φ) (through the 1σ2,ξ term) is defined over
a domain that depends on ξ . Iξ (φ) is rewritten as

Iξ (φ) = aξ (φ, φ)− L(φ),

where the quadratic and linear forms aξ and L read

aξ (φ, φ) = 3Edτ (φ) +

(
ξ−1 1

2E2be1
+

1
2E1be1

+
2

E1be1

)∫ l
2

−
l
2

N 2
1 (φ)dx

+

(
ξ−1 1

e1 E2
+

1
e1 E1

+
be2

1(1 + ξ)

E1 I1

)∫ l
2

−
l
2

φ

∫ x

−
l
2

N1(φ)dζdx,

L(φ) = b(εL2 − εL1)

∫ l
2

−
l
2

φ

(
x +

l
2

)
dx .

The coercivity condition on the quadratic form aξ is lost when ξ → 0. Consequently,

• from a practical point of view, the initial problem cannot be accurately solved by standard (that is,
three-dimensional) finite element formulations;

• from a theoretical point of view, formulation (12) falls out of the framework of the Lax–Milgram
theorem, meaning that existence and uniqueness of its solution cannot be directly ensured.

Formulation (12) thus needs to be modified to get a reliable solution for the shear-stress field.

3.2. Scaled problem. To transform Pξ into a new problem defined on a fixed domain [Klarbring 1991;
Geymonat and Krasucki 1997] (that is, on independent of ξ ), one maps the domain

�2,ξ = {x0 + ξ yy, y ∈ [0, e1], x0 ∈ 0}

onto
�2 = {x0 + ỹy, ỹ ∈ [0, e1], x0 ∈ 0} .
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The displacement fields in both phases, as well as the interfacial shear-stress field, remain unscaled. It is
then straightforward to check that if τs is a solution for Equation (12), then τs,ξ is a solution for problem
P̂:

P̂ :

{
τs,ξ (x) ∈ V

Îξ (τs,ξ ) ≤ Îξ (φ), for all φ ∈ V,
(13)

where Îξ reads
Îξ (φ) = âξ (φ, φ)− L(φ),

with the new quadratic form

âξ (φ, φ) =

(
ξ

1
E2be1

+
1

E1be1
+

4e2
1

E1 I1

)
1
2

aN (φ, φ)

+

(
ξ−1

e1 E2
+

1
e1 E1

+
(1 + ξ)be2

1

E1 I1

)
1
2

ad(φ, φ)+
3b
2

×
1
2

aτ (φ, φ),

where

aN (τ, φ) =

∫ l
2

−
l
2

N1(τ )N1(φ)dx,

1
2

ad(τ, φ) =
1
2

{∫ l
2

−
l
2

τ

∫ x

−
l
2

N1(φ)dζdx +

∫ l
2

−
l
2

φ

∫ x

−
l
2

N1(τ )dζdx

}
,

1
2

aτ (τ, φ) =
1
2

{∫ l
2

−
l
2

φ(x)v(τ )(x)dx +

∫ l
2

−
l
2

τ(x)v(φ)(x)dx

}
.

According to Equation (7), it is assumed that the product ξ E2 tends to a finite value K2 when ξ tends to
zero:

E2 = K2ξ
−1,

so that this new quadratic form âξ satisfies the Lax–Milgram conditions, and solving problem P̂ consists
in finding the solution τs,ξ (x) ∈ V for the linear system(

ξ 2 1
K2be1

+
1

E1be1
+

4e2
1

E1 I1

)
aN (τs,ξ , φ +

(
1

e1K2
+

1
e1 E1

+
(1 + ξ)be2

1

E1 I1

)
ad(τs,ξ , φ)

+
3b
2

aτ (τs,ξ , φ)− L(φ) = 0, for all φ ∈ V. (14)

The solution τs,ξ is then sought as a formal asymptotic expansion [Lions 1973]

τs,ξ =
0τ + ξ ×

1τ + ξ 2
×

2τ + . . . . (15)

Putting (15) into the stationarity conditions of (14) leads to a separate linear system for each ξ order.
The leading term 0τ ∈ V is found to satisfy

a0(
0τ, φ)− L(φ) = 0, for all φ ∈ V, (16)
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Figure 2. Convergence of the computed shear-stress field with the space dimension N .

with

a0(τ, φ) =

(
1

E1be1
+

4e2
1

E1 I1

)
aN (τ, φ)+

(
1

e1K2
+

1
e1 E1

+
be2

1

E1 I1

)
ad(τ, φ)+

3b
2

aτ (τ, φ)

A finite dimension space V is chosen, described by the orthogonal basis of Legendre polynomials

Pn, n ∈ {1, . . . N },

so that,

0τ(x) =

N∑
k=1

0τk Pk

(
2x
l

)
. (17)

System (16) then yields a square linear system, which is solved to provide the shear-stress field 0τ(x)

along the interface 0 as its expansion (17).

4. Data reduction and parametric study

Even though describing the shear stress field by its expansion in Legendre polynomials is natural from the
mathematical point of view (see Appendix A), this is of little practical interest. After demonstrating the
convergence of the computed shear-stress field with the space dimension N , a closed-form solution for
the interfacial stress field is provided, and from the above results some practical conclusions concerning
the transducer efficiency are derived.

4.1. Convergence and data reduction. By using the variational formulation obtained above, the (normal-
ized) shear-stress field is calculated as a function of three physical parameters, namely, the geometrical
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parameter s = l/e1; the modulus ratio r = E1/K2; and the Poisson’s ratio ν. Figure 2 shows the shear-
stress field computed under plane strain conditions when N = {10, 18, 616} and the parameters s = 0.1,
r = 1 and ν = 0.3 are chosen. The reference solution is obtained with about 400–500 terms. All the
even terms (that is, Legendre polynomials of even orders) vanish, since the solution is an odd function of
the position. The shear-stress field is linear with the position at the center of the interval and drastically
increases (in norm) close to the edges, but remains bounded. This reference shear-stress field, expressed
as a series of Legendre’s polynomials, is denoted τre f in the following.

To make these results useful, the shear stress field is modeled by using a closed-form solution τ(2x/ l):

1
E1(εL2 − εL1)

τ

(
2x
l

)
= Tt tan

(
C

πx
l

)
+ Tl

2x
l

, (18)

where the constants C , Tt and Tl have to be identified from the computed shear-stress fields τre f (2x/ l).
The reference shear-stress field has thus been computed in the following parameter ranges: 0.1 ≤ ν ≤ 0.5,
10−3

≤ r ≤ 103, and 0 ≤ s ≤ 1. The local displacement contributions vk have been obtained assuming the
membrane’s length to be small compared to the cantilever’s thickness (see Appendix A). As the “local”
contribution is significant over a depth which scales as l under the interphase, the upper bound for the s
range is chosen to comply with the validity domain for the in-plane displacement field calculation, that
is, s ≤ 1. The range for ν and r is supposed to cover most practical cases. An approached closed-form
solution τ(2x/ l) for the shear-stress field is obtained by minimizing

χ2
=

∫
(τ ( 2x

l ) − τre f (
2x
l ))2dx∫

τre f (
2x
l )2dx

over the set {C, Tt , Tl}. The identified values are recast as

C = (−1.47 × 10−2ν2
− 3.71 × 10−3ν + 0.9957) + 10−4

× (29.4ν2
+ 3.87ν + 4.92)t0.3217−6.23×10−2ν,

Tt = (1.72 × 10−1ν2
− 4.73 × 10−3ν + 5.5 × 10−2)

+10−3
× (−45.3ν2

+ 4.09ν − 7.01)t0.313−5.47×10−2ν−6.38×10−2ν2
,

Tl = (−8.93 × 10−1ν2
− 3.36 × 10−2ν − 3.61 × 10−1)

+10−2
× (11.9ν2

+ 0.182ν + 1.41)t (4.52−1.71ν)×10−1
,

with

t = s(75 + 2r).

The maximum relative deviation |χ | between the reference solution τre f and the proposed closed form
solution τ is found to be less than 7% over the entire parameter range, thereby proving the close agreement
between the reference and closed-form solutions. For practical stress estimations, it is worth noting that
all stresses, including the interfacial shear-stress, scale as the longitudinal stress for the 1D inclusion
problem |εL2 − εL1|E1 . From closed-form solution (18), the curvature field is obtained by using the
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second of Equation (8) and (9):

1
E1(εL2 − εL1)

d2w

dx2 = −
e1b

2E1 I1

{
Tt l
Cπ

ln

∣∣∣∣∣cos
(Cπx

l

)
cos

(Cπ
2

) ∣∣∣∣∣+ Tl

(
l
4

−
x2

l

)}
, (19)

which is integrated using polylogarithm functions to provide the out-of plane displacement field. Consid-
ering a single functionalized area, this integration obviously yields the fact that the longer the distance
between the membrane and the cantilever’s edge, the greater the end-point displacement. It is worth
noting that, similarly to the well-known shear-lag problem [Volkersen 1938; Cox 1952; Lemaitre et al.
1992], the above described stress-field doesn’t vanish near the membrane edges, since the whole interface
is subjected to shear-stress. On the other hand, this stress field exhibits a rather different form than the
one obtained with the shear-lag problem: the former diverges as tan(x) while the latter behaves as exp(x).
This is thought to be the consequence of rather different interface conditions:

• the kinematic compatibility is ensured through a thin adhesion layer (typically a glue layer between
two plies of a composite material) for the shear-lag problems;

• no adhesion layer is considered here, but the kinematic compatibility at the interface is ensured
considering the local elastic displacement field to enrich the beam kinematic description.

4.2. Transducer efficiency. Moving back to the thermodynamic grounds of the modeling, and focusing
on the sensing applications, the total energy in the accompanying model Etot is decomposed as the
following:

Etot = E1,flex + E1,tens + E1,surf + E2, (20)

where

• E1,flex is the strain energy located in the bending mode of the cantilever, so that it represents the
useful part of the energy when the detection scheme relies on the cantilever bending;

• E1,tens is the strain energy located in the tension mode of the cantilever;

• E1,surf is the strain energy transferred to the “local” (surface) deformation mode of the cantilever;

• E2 is the strain energy of the membrane, and thus represents, according to the equivalence principle
which lead to the Equations (5), (6) and (7), the chemical energy stored in the system.

The sensing problem can then be expressed as converting the stored chemical energy E2 into some
bending strain energy E1,flex. The transducer efficiency η is thus defined as

η =
E1,flex

Etot
. (21)

η is then the ratio of the energy used to produce the signal in most sensing applications [Lavrik et al. 2004]
to the available energy. The ratio η is virtually independent of ν, and its change with the parameters r and
s is shown in Figure 3 when ν = 0.3. Let us first consider that any typical length for the functionalized area
is attainable for any considered cantilever’s material using suitable functionalization techniques. This
statement implies that any point in the (r, s) plane described in Figure 3 is achievable. The change of η

with the parameter r is intuitive, namely, for a given K2, decreasing r = E1/K2 is a way of improving the
sensor efficiency, as was utilized with the development of polymeric cantilevers [Johansson et al. 2005].
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Figure 3. Overall transducer efficiency η as a function of the parameters r and s (log
scales) when ν = 0.3.

It should be underlined that if this trend is verified, the transducer efficiency does not vary significantly
with r when r ≤ 1, thus setting a limit to the transducer efficiency improvement one could achieve by
reducing the cantilever’s material stiffness. This optimal efficiency is then about 0.4, obtained when
r → 0 and s → 1. The drastic efficiency loss when r � 1 is the result of the large amount of chemically
“stored” (or blocked) energy in this range. The latter is monitored through the ratio %, defined as

% =
E2

Etot
. (22)

Figure 4 shows the ratio % of the stored chemical energy (that is, the final strain energy in the membrane
E2) over the total system energy as a function of the parameters r and s when ν = 0.3. For instance, this
ratio is found to be around 0.85 for r = 103 and s = 1, meaning that only 15% of the available chemical
energy is used to produce a mechanical effect, and only part of this “mechanical” energy is used to bend
the cantilever, the rest being mainly spent in the local deformation mode. This argument should be used
carefully, especially if one is interested in noninvasive sensing applications. If the monitored chemical
system is supposed to interact with some low concentration reagents, there is a balance between the
transducer efficiency and the amount of energy taken from the chemical system to bend the cantilever
to ensure the measurement’s noninvasiveness, that is to ensure the energy used to bend the cantilever is
small enough compared to the stored chemical energy.

The change of η with the size parameter s, described in Figure 3, is less intuitive. It should be noted
that the cantilever’s length (or the ratio of the membrane’s length to the cantilever’s) is not involved at
this stage. The possibility of converting more chemical energy into a mechanical one by extending the
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Figure 4. Ratio % of the blocked chemical energy over the total system energy as a
function of the parameters r and s (log scales) for ν = 0.3.

functionalized area is thus not considered here. For a given value of the membrane’s size l, decreasing
the cantilever’s thickness e1 increases the transducer efficiency. This results from the fact the surface
deformation mode extends over a depth l under the surface (see Appendix A). The described coupling
efficiency change is only related to the fact that the thinner the cantilever (that is, . the higher the s
parameter), the more efficiently the strain energy located in the “local” (that is, surface) deformation
mode (which is not monitored so far) is converted into strain energy located into the cantilever bending
mode (which is usually monitored using optical or piezoresistive read-out). This scaling effect is thus
distinct from the lowering of the bending stiffness obtained by decreasing the cantilever’s thickness. This
raises comments regarding both the engineering and the basic understanding of the involved phenomena:

• In the previous discussion it was assumed that it is possible to move independently along both the
axis of Figure 3 and Figure 4. From a practical point of view, this is false since chemical patterning
techniques are substrate-dependent. Moreover, there is no experimental evidence that the K2 value
is not substrate dependent. Consequently, all the regions in those figures are not attainable, and
tailoring a cantilever based sensor requires balancing transducer efficiency and sensor invasiveness
in the available parameters.

• The widely used alkanethiols adsorption on gold is known to follow a two-step adsorption process,
namely a random adsorption process followed by a reorganization step [Damos et al. 2005]. The
typical length describing the thiol-modified surface is then supposed to grow during the adsorption
process. The transducer efficiency η dependence on the membrane’s size may then play a key role
in the inception of the observed mechanical effects, and the observed gap between the kinetics of
the optical and the mechanical effects induced by this adsorption process [Godin et al. 2003].
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Finally, both of these comments raise the need for the simultaneous experimental description of the
functionalization pattern and the observed mechanical effect.

5. Conclusion

A thermodynamics-based modeling of chemically-induced mechanical loadings was described. The ef-
fect of the environment is described by an accompanying mechanical modeling representing the chemical
part of the system free energy and its dependence on the surface amount. A dedicated variational formu-
lation was proposed to solve this model for the surface stress, which is finally described by an approached
closed-form expression depending on three parameters. The curvature field is also expressed as a closed-
form solution, allowing for future comparisons with experimentally obtained fields. Finally, a parametric
study was carried out, highlighting the need for both the engineering and basic understanding point of
view to control the functionalization pattern.

Appendix A: Inplane displacement field calculation

The aim of this appendix is to compute the in-plane displacement field of the surface induced by a
heterogeneous shear-stress field applied to the surface of a homogeneous half-space. To comply with
the cantilever case (that is, a one-dimensional model), the calculation is restricted to the (x, y) plane,
by considering the elastic half-plane y < 0. For the sake of simplicity, its behavior is described by its
Young’s modulus E and its Poisson’s ratio ν. This half-plane is loaded along the line y = 0, −1 < x < 1
by an elementary shear-stress field

σxy(x, 0) =

{
Pk(x), if − 1 ≤ x ≤ 1,

0, if 1 < |x |,

where Pk is Legendre polynomial of order k. Moving to the complex plane and setting z = x + iy, the
derivatives 8 and Y of the Kolossov–Muskhelishvili potentials [Muskhelishvili 1953] ϕ and 9 read

8k(z) =
1

2π

∫ 1

−1

Pk(r)

r − z
dr , Yk(z) = −

1
π

{∫ 1

−1

Pk(r)

r − z
dr +

z
2

∫ 1

−1

Pk(r)

(r − z)2 dr
}

.

Using the properties of Legendre functions of first Pk(z) and second kinds Qk(z) (see for instance [Grad-
stein and Ryzhik 1980]), and extending the definition of Qk(z) to the y = 0, −1 < x < 1 segment by
continuity from the y < 0 side, one gets

8k(z) = −
1
π

Qk(z),

Yk(z) = −
1
π

{
−2Qk(z) +

z
2

(
−

1
1 − z

−
(−1)k

1 + z
−2

k−2l−1≥0∑
l=0

(2k − 4l − 1)Qk−2l−1(z)

)}
.

From [Muskhelishvili 1953], the complex displacement field reads

2µU = κϕ − zϕ′ − 9,

with
µ = E/(2 + 2ν),
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and κ is defined by

κ =

{
3 − 4ν, for plane strain,
3−ν
1+ν

, for plane stress.

The plane component of the strain fields is obtained using

2µv′

k(z) = <

[
2µ

dU
dz

]
= <

[
(κ − 1)8k(z) − z8′

k(z) − Yk(z)
]
.

The strain field is found to extend to a depth of the order of l, so that this local solution should be
used for systems where l is less than the substrate thickness (l ≤ e1). The in-plane displacement field of
the interface vk is then obtained by setting z ∈ [−1, 1] and assuming vk(−1) = 0:

2πµv1 = − (1 + κ)

{
Q2 − Q0

3
−

P0

2

}
,

2πµv2 = − (1 + κ)

{
Q3 − Q1

5
+

P0

6

}
,

2πµv3 = − (1 + κ)

{
Q4 − Q2

7

}
+ P1 + (13 + κ)

P0

12
,

2πµv4 = − (1 + κ)

{
Q5 − Q3

9
+

P0

20

}
,

2πµv2p+1 = − (1 + κ)

{
Q2p+2 − Q2p

4p + 3

}
−

Q2 − Q0

3
+

p∑
k=1

θk,p P2(p−k)+1 + θ̃p P0, if p > 1,

2πµv2p = − (1 + κ)

{
Q2p+1 − Q2p−1

4p + 1

}
+

p∑
k=1

λk,p P2(p−k), if p > 2,

where

θ1,p =
d1,p

4p − 3
,

θp,p = −
dp−1,p

5
+

1
p + 1

+ bp,p −

p−1∑
l=0

4(p − l) + 1
2(p − l)(2(p − l) + 1)

,

θk,p =
dk,p

4(p − k) + 1
−

dk−1,p

4(p − k) + 5
, if 1 < k < p,

θ̃p =
1 + κ

(2p + 1)(2p + 2)
+

1
2

+
1

p + 1
+ bp,p −

p−1∑
l=0

4(p − l) + 1
2(p − l)(2(p − l) + 1)

,

λ1,p =
c1,p

4p − 5
,

λp,p = −
1 + κ

2p(2p + 1)
−

cp−1,p

3
,

λk,p =
ck,p

4(p − k) − 1
−

ck−1,p

4(p − k) + 3
, if 1 < k < p,
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with the constants

ar,p =

r−1∑
k=0

{
(4(p − k) − 3) (4(p − r) − 1)

(2(r − k) − 1) (2p − r − k − 1)
−

(4(p − k) − 1) (4(p − r) − 1)

(2k + 1)(2p − k)

}
,

br,p =

r−1∑
k=0

{
(4(p − k) − 1) (4(p − r) + 1)

(2(r − k) − 1) (2p − r − k)
−

(4(p − k) + 1) (4(p − r) + 1)

(2k + 1)(2p + 1 − k)

}
,

cr,p =
4(p − r) + 1

2p − r
+ ar,p −

4(p − r) − 1
2(p − r)

−

r∑
k=1

(4(p − k) + 3) (4(p − r) − 1)

2 (2(p − k) + 1) (p − k + 1)
,

dr,p =
4(p − r) + 1
2p + 1 − r

+ br,p −
4(p − r) + 1
2(p − r) + 1

−

r−1∑
k=0

(4(p − k) + 1) (4(p − r) + 1)

2 (2(p − k) + 1) (p − k)
.
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