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The recently established ion cut technology enables accurate fabrication of silicon-on-insulator (SOI)
wafers and has found some other significant applications. We study fracture mechanics of the technology
when directly cutting a wafer into a desired surface morphology. First, we describe integral transform-
based methods for calculating the stress intensity factors of subsurface cracks embedded in a semiinfinite
solid. Because the crack and the free surface interact, the crack tip fields are generally of I-II mixed mode.
We derive solutions for plane-strain or axisymmetrical configurations. We then analyze the suggested
three-dimensional ion cut method using the fracture criterion for kinking propagation of a mixed-mode
crack. To illustrate the approach, we consider circular hole and straight groove surface patterns.

1. Introduction

Silicon-on-insulator (SOI) wafers have been used extensively as the starting materials for ultralarge-
scale integration (ULSI) device structures. A typical SOI system consists of a thin layer of single-crystal
silicon supported by an underlying insulator (for example, SiO2 and sapphire). SOI wafer structures
have important advantages over bulk or epitaxial starting wafers for a wide range of ULSI applications
[Colinge 1991; Haisma and Spierings 2002]. SOI wafers potentially offer fast circuit performance and
packing density, immunity from latch-up, low power consumption, high resistance to ionizing radiation,
and simplified processing compared to bulk or epitaxial silicon. Hence, they appear ideal for making
leading edge integrated circuits with high speed and transistor count but also low voltage and power
operation, leading to better performance in battery operated systems, such as portable logic or micro-
processor ICs. Two conventional and commercially-available methods for making SOI wavers are the
separation-by-implanted oxygen (SIMOX) method and the bonded silicon-on-insulator (BSOI) method
[Colinge 1991]. However, neither is suited to industrial-scale production.

In 1995, Bruel [1995; 1996], Aspar et al. [1996], and Aspar et al. [1999] at LETI developed a novel
technique, Smart-Cut™, a registered trademark of SOITEC, for fabricating high-quality SOI systems.
This process skillfully combines hydrogen implantation and wafer bonding, and involves four main
steps: (1) Through hydrogen ion implantation, a wafer A capped with a dielectric layer (for example,
SiO2) is imparted a thin layer of sufficiently dense hydrogen ions. (2) The wafer A is then bonded with
a handle wafer B. (3) The bonded wafer is then split and annealed through two stages of heating, first
at medium-temperature (400–600◦ C), and then at high-temperature (about 1100◦ C). In the first heating
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stage, numerous microcracks appear at the depth of the maximum hydrogen ion concentration. The wafer
A then splits into two parts, yielding an SOI structure and the remainder of wafer A. (4) The SOI layer
is polished using a chemical-mechanical method to produce a high-quality surface.

The basic principle behind the Smart-Cut technology applies for fabricating single-crystal silicon or
semiconductor films transferred onto different types of substrates (for example, glass and metals) [Bruel
1995; Bruel 1996; Aspar et al. 1996; Aspar et al. 1999; Tong and Bower 1998]. This technique has
several significant advantages over traditional SOI synthesis methods such as SIMOX and BSOI. First,
the Smart-Cut process helps ensure the wafers are accurate in thickness to less than 4 nm, compared to
(20–30 nm) for conventional methods. Second, the SOI systems have high crystalline quality from using
medium implantation doses of the smallest ion (H+) and the final fine polishing. Third, ULSI devices
based on the Smart-Cut wafers exhibit electrical characteristics comparable to or better than those made
on bulk silicon wafers. Fourth, the Smart-Cut process can be performed using the standard equipment
of microelectronics facilities, an important consideration for large-scale industrial production.

Since it was first published by Bruel [1995], the Smart-Cut technology has attracted considerable
attention and found various applications. Using the technique, Tong and Bower [1998] transformed Si,
Ge, and SiC films on substrates of a high melting temperature glass. Aspar et al. [1999] and Jalaguier et al.
[1998] obtained some new structures with thin films of Si, GaAs or InP on silicon substrates by combining
the Smart-Cut process with metal bonding. Di Cioccio et al. [1997] used the Smart-Cut technology to
make silicon carbide-on-insulator structures. By implanting erbium into the top layer of a Smart-Cut
SOI wafer, Gad et al. [2003] fabricated single-mode SOI waveguides with good optical quality. Recently,
Feng and Huang [2004] studied the fundamental physics and mechanics of the Smart-Cut technology.

The previous Smart-Cut process synthesizes smooth SOI wafers that are highly uniform in thickness.
Some wafer patterns, such as grooves and holes, still need to be prepared using more complicated
manufacturing procedures. In this paper, we suggest extending the Smart-Cut technique to produce
three-dimensional patterns. Hydrogen ions are not implanted into the whole wafer, but instead directed
to localized regions by a specialized metal mask. In the heating stages, microcracks will still form to
remove the unwanted material, leaving the designed surface pattern.

In the present paper, we analyze theoretically the three-dimensional ion cut method using linear elastic
fracture mechanics. In Section 2, we present integral transform methods for finding the stress intensity
factors (SIFs) for subsurface cracks in a semiinfinite space. We discuss two typical classes of crack
configurations, plane strain and axisymmetrical problems. In Section 3, we apply the above integral
transform methods to generate the feasibility conditions for pattern cutting by hydrogen ion implantation.

2. Integral transform methods for subsurface cracks

Engineers are generally interested in near-surface or subsurface cracks because they appear in a variety
of engineered structures [Spence and Sharp 1985; Hutchinson and Suo 1992]. Subsurface cracks may
form for various reasons, for example, thermal or residual stresses due to welding or other processes,
contact fatigue stresses, preexisting defects beneath subsurfaces, or relatively weak interfaces in layered
or laminated structures. Srivastava and Singh [1969] analyzed the effect of a penny-shaped crack on the
stress field in a semiinfinite solid. Other researchers have studied the fracture mechanisms of subsurface
cracks under different loading conditions, for example, contact, wear, and indentation [Komvopoulos
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1996; Ma and Hwang 1996; Goshima and Soda 1997; Dyskin et al. 2000; Zhang et al. 2002; 2005;
Feng and Xu 2006]. Fleming and Suh [1977] studied how surface traction helped propagate a horizontal
subsurface crack. Cao [2002] presented a finite element model to determine subsurface median cracking
in a trilayer sandwich subjected to contact loading. Bunger and Detournay [2005] and Zhang et al.
[2002; 2005] studied the asymptotic behaviors of penny-shaped hydraulic cracks. Dyskin et al. [2000]
employed the beam and dipole asymptotic approaches to analyze the interaction of a crack with parallel
free boundaries. Despite the extensive interest, however, the community has not produced efficient
methods for deriving the SIFs of subsurface cracks due to the crack-free surface interaction [Ma et al.
2005]. Therefore, with the aim of extending the ion cut method to surface pattern formation, we present
in this section a method for calculating the SIFs of subsurface cracks using singular integral equation
methods based on integral transforms. For illustration, we consider several typical subsurface crack
configurations, although the presented methods may work for other configurations as well.

2.1. Axisymmetrical problems. Consider a circular crack beneath and parallel to the free surface of a
semiinfinite body and subjected to an internal pressure p, as shown in Figure 1. Denote the crack radius
as c, and its distance from the free surface as h. Refer to a cylindrical coordinate system (r, θ, z). For
axisymmetrical problems, the stress equilibrium equations read

∂σrr

∂r
+

∂σr z

∂z
+

σrr − σθθ

r
= 0,

∂σr z

∂r
+

∂σzz

∂z
+

σr z

r
= 0, (2–1)

and the strain-displacement relations are

εrr =
∂u
∂r

, εθθ =
u
r
, εr z =

1
2

(
∂u
∂z

+
∂w

∂r

)
, εzz =

∂w

∂z
, (2–2)

where σi j denote the stresses, εi j denote the strains, u = ur and w = uz are the nonzero displacements.
Since the constitutive relation of single crystalline silicon is of weak anisotropy, the material is assumed
throughout the paper to be linearly elastic and isotropic, with Young’s modulus E and Poisson’s ratio ν.
Using Equation (2–2) and Hooke’s law, the equilibrium equations in Equation (2–1) can be reexpressed
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Figure 1. A circular subsurface crack beneath the free surface of a semiinfinite body.
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in terms of the displacement components u and w as

(κ + 1)

(
∂2u
∂r2 +

1
r

∂u
∂r

−
u
r2 +

∂2w

∂r∂z

)
+ (κ − 1)

(
∂2u
∂z2 −

∂2w

∂r∂z

)
= 0,

(κ + 1)

(
∂2u
∂r∂z

+
1
r

∂u
∂z

+
∂2w

∂z2

)
− (κ − 1)

(
∂2u
∂r∂z

−
∂2w

∂r2

)
−

κ − 1
r

(
∂u
∂z

−
∂w

∂r

)
= 0,

(2–3)

where κ = 3 − 4ν.
To solve Equation (2–3), introduce in the radial variable the Hankel transforms ũ and w̃ of the dis-

placements u and w by

u(r, z) =

∞∫
0

ũ(z, ρ)ρ J1(rρ)dρ, w(r, z) =

∞∫
0

w̃(z, ρ)ρ J0(rρ)dρ, (2–4)

where J0 and J1 are Bessel functions.
Substituting Equation (2–4) into the partial differential equations in Equation (2–3) yields the ordinary

differential equations

(κ + 1)ũρ2
− 2

∂w̃

∂z
ρ + (κ − 1)

∂2ũ
∂z2 = 0,

(κ − 1)w̃ρ2
− 2

∂ ũ
∂z

ρ − (κ + 1)
∂2w̃

∂z2 = 0.

(2–5)

The general solution of Equation (2–5) can be written as


ũ1(z, ρ) = (A1 + z A2)e−ρz

+ (A3 + z A4)eρz, (z ≥ 0),

w̃1(z, ρ) =

[
A1 +

(κ

ρ
+ z

)
A2

]
e−ρz

+

[
−A3 +

(κ

ρ
− z

)
A4

]
eρz, (z ≥ 0),


ũ2(z, ρ) = (A5 + z A6)eρz, (z ≤ 0),

w̃2(z, ρ) =

[
−A5 +

(κ

ρ
− z

)
A6

]
eρz, (z ≤ 0),

(2–6)

where the subscripts 1 and 2 of ũ and w̃ label the regions z ≥ 0 and z < 0, respectively, and Aα (α =

1, . . . , 6) are integral constants to be determined from the specific boundary conditions and the continuity
conditions. We could obtain expressions for the stress and strain fields by substituting the above solutions
into Equation (2–2) and using Hooke’s law. We omit these for short. However, the stresses on the crack
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surfaces are

σr z(r, 0−) = µ

∞∫
0

[
2ρ2 J1(rρ)A5 + ρ J1(rρ)(1 − κ)A6

]
dρ,

σzz(r, 0−) = −

∞∫
0

ρ J0(rρ)
[
2µρ A5 + (λ + 2µ)(1 − κ)A6

]
dρ,

(2–7)

where λ and µ are the Lame’s constants of elasticity.
Now, define two dislocation density functions g1(r) and g2(r) associated with the crack opening

displacements by

g1(r) =
∂

∂r
(w1 − w2)

∣∣
z=0, g2(r) =

1
r

∂

∂r
(ru1 − ru2)

∣∣
z=0. (2–8)

We noted that the displacement w has its maximum at the center of the crack, and u is continuous at the
crack tip. Therefore, g1 and g2 must satisfy the following auxiliary conditions:

g1(r)
∣∣
r=0 = 0,

c∫
0

rg2(r)dr = 0. (2–9)

For the crack configuration in Figure 1, the free surface of the semiinfinite body is traction-free and
the crack is subjected to an internal pressure p. Thus, the boundary conditions are

σr z(r, h) = 0, σzz(r, h) = 0, (0 < r < ∞)

σr z(r, 0+) = σr z(r, 0−) = 0, σzz(r, 0+) = σzz(r, 0−) = −p, (r < c).
(2–10)

In addition, the continuity conditions of stresses and displacements at z = 0 require that

σr z(r, 0+) = σr z(r, 0−),

σzz(r, 0+) = σzz(r, 0−),

u(r, 0+) = u(r, 0−),

w(r, 0+) = w(r, 0−),

(2–11)

for r ≥ c. Using Equations (2–6)–(2–11), the parameters A5 and A6 become

A5 =
111 X + 112Y

1
, A6 =

121 X + 122Y
1

, (2–12)
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where

1 = 8ρ3(κ − 1)(1 − κ2)(λ + µ)(λ + 2µ)e2ρh,

111 = 4ρ2(κ − 1)(λ + 2µ)
[
(e2ρh

− 1)(κ − 1)2(λ + µ) + 4µρh(1 − κ) + 8µρ2h2
]
,

112 = 4ρ2(1 + κ)
[
(e2ρh

− 1)(κ − 1)2(λ + µ)(λ + 2µ) − 4λµρh(1 − κ)−8µ2ρh(1 − κ) − 8µ2ρ2h2
]
,

121 = 8ρ3(κ − 1)(λ + 2µ)
[
(e2ρh

− 1)(κ − 1)(λ + µ) − 4µρh
]
,

122 = 8ρ3µ(1 + κ)
[
(e2ρh

− 1)(κ − 1)(λ + µ) + 4µρh
]
,

and

X =

∞∫
0

rg1(r)J1(ρr)dr , Y =

∞∫
0

rg2(r)J0(ρr)dr . (2–13)

Substituting Equation (2–12) into (2–7) and using the following relation of Bessel functions

∞∫
0

ρ J0(ρr)J1(ρs)dρ = −
1
π

[
1

s − r
+

1
s + r

+
2M(s, r) − 2s

s2 − r2

]
, (2–14)

we obtain the singular integral equations

µ

2π(1 − ν)

c∫
0

[
1

s − r
+

1
s + r

+
M1(s, r) − 1

s − r
+

M1(s, r) − 1
s + r

]
g1(s)ds

+

c∫
0

D11(s, r)g1(s)ds +

c∫
0

D12(s, r)g2(s)ds

= σzz(r, 0−) = −p, for 0 < r < c,

µ

2π(1 − ν)

c∫
0

[
1

s − r
−

1
s + r

+
M2(s, r) − 1

s − r
−

M2(s, r) − 1
s + r

]
g2(s)ds

+

c∫
0

D21(s, r)g1(s)ds +

c∫
0

D22(s, r)g2(s)ds

= σr z(r, 0−) = 0, for 0 < r < c, (2–15)

where

M(s, r) =


r
s

E(r/s), for r < s,

r2

s2 E(r/s) −
r2

− s2

s2 K (r/s), for r > s,
(2–16)
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D11(r, s) = −s

∞∫
0

(
−2µρ111 + (λ + 2µ)(κ − 1)121

1
+

µ

2(1 − ν)

)
ρ J0(ρr)J1(ρs)dρ,

D12(r, s) = −s

∞∫
0

−2µρ112 + (λ + 2µ)(κ − 1)122

1
ρ J0(ρr)J1(ρs)dρ,

D21(r, s) = −µs

∞∫
0

2ρ111 + (1 − κ)121

1
ρ J1(ρr)J1(ρs)dρ,

D22(r, s) = s

∞∫
0

[
µ

2ρ112 + (1 − κ)122

1
+

µ

2(1 − ν)

]
ρ J1(ρr)J0(ρs)dρ,

(2–17)

with K (x) and E(x) being the elliptical integrals of the first and the second kind.
We next adopt dimensionless variables t = (2s−c)/c and x = (2r −c)/c, and Equation (2–15) becomes

µ

2π(1 − ν)

1∫
−1

[
1

t − x
+

1
t + x + 2

+
M1(t, x) − 1

t − x
+

M1(t, x) − 1
t + x + 2

]
g1(t)dt

+

1∫
−1

D11(t, x)g1(t)
c
2

dt +

1∫
−1

D12(t, x)g2(t)
c
2

dt = −p, for − 1 < t < 1,

µ

2π(1 − ν)

1∫
−1

[
1

t − x
−

1
t + x + 2

+
M2(t, x) − 1

t − x
−

M2(t, x) − 1
t + x + 2

]
g2(t)dt

+

1∫
−1

D21(t, x)g1(t)
c
2

dt +

1∫
−1

D22(t, x)g2(t)
c
2

dt = 0, for − 1 < t < 1. (2–18)

Let us assume

H1(t) = g1(t)
√

1 − t2, H2(t) = g2(t)
√

1 − t2. (2–19)

To solve the singular integral equations in Equation (2–9), expand the functions H1(t) and H2(t) in series

H1(t) =

∞∑
n=0

AnTn(t), H2(t) =

∞∑
n=0

BnTn(t), (2–20)
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where Tn(t) is the Chebyshev polynomial of the first kind. Then, after truncating the series after N terms,
Equations (2–18) and (2–9) become

µ

2(1 − ν)

N∑
α=1

[
1

tα − xm
+

1
tα + xm + 2

+
M1(tα, xm) − 1

tα − xm

+
M1(tβ, xm) − 1

tβ + xm + 2
+

πc
2

D11(tβ, xm)

]
H1(tl)

N
+

N∑
β=1

πc
2

D12(tβ, x j )H2(tβ) = −p,

µ

2(1 − ν)

N∑
α=1

[
1

tα − x j
−

1
tα + x j + 2

+
M2(tα, x j ) − 1

tα − x j

−
M2(tα, x j ) − 1

tα + x j + 2
+

πc
2

D22(tα, x j )

]
H2(tα)

N
+

N∑
β=1

πc
2

D21(tβ, xm)
H1(tβ)

N
= 0,

H1(tN ) = 0,

N∑
β=1

1 + tβ
2

H1(tβ) = 0,
(2–21)

where tα and xm are defined by

tα = cos
2α − 1

2N
(l = 1, . . . , N ),

xm = cos
mπ

N
(m = 1, . . . , N − 1). (2–22)

The system (2–21) comprises 2N linear algebraic equations in 2N unknowns H1(tα) and H2(tα). They
can be solved numerically. By increasing N , the result tends to the exact solution; in our experience,
some 50 terms yield a highly accurate solution. In this way, the stresses, strains, and displacements in
the crack system can all be determined.

Finally, using the definitions of the mode-I and mode-II SIFs, we find

KI = lim
r→c+

√
2π(r − c)σzz(r, 0) = −

µc
√

π

2
√

2(1 − ν)
H1(1),

KII = lim
r→c+

√
2π(r − c)σr z(r, 0) = −

µc
√

π

2
√

2(1 − ν)
H2(1).

(2–23)

In Figure 2, we illustrate. For the circular subsurface crack subjected to an internal pressure p (Figure
1), we plot both the mode-I and mode-II SIFs KI and KII as a function of c/h, the ratio between the
crack radius and its distance from the upper surface. The reference value K0 = 2p

√
c/π is the mode-I

SIF of a circular crack embedded in an infinite body (that is, c/h → 0) and subjected to internal pressure
p. For a fixed crack size c, both the absolute values of KI and KII vary against increasing relative depth,
h/c. For a crack near the free surface of a semiinfinite body, KII is relatively high because the crack
interacts with the surface. For a deeply embedded crack (that is, c/h → 0), KI tends to K0, and KII is
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Figure 2. SIFs of a circular subsurface crack under internal pressure.

negligible. Also, for a very large ratio c/h, the aperture’s square root tip behavior is confined to a very
small region. For more detailed discussion of the asymptote’s changing nature, the reader may refer to
[Dyskin et al. 2000]. Additionally, we note that the values of KII in Figure 2 differ by a factor of about 2
from those of [Bunger and Detournay 2005], while the respective values of KI agree, approximately. We
attribute the discrepancy to Bunger and Detournay [2005]’s assumption of a linear distribution of radial
stress, which is not exact near the crack front at the plate boundary.

2.2. Plane strain problems. To illustrate plane strain problems, we consider a semiinfinite body con-
taining a straight planar crack in parallel with the upper surface and subjected to an internal pressure p.
Establish a Cartesian coordinate system (o − xyz), as shown in Figure 3. The crack has length 2c in the
x-direction and is infinite in the z-direction. The stress equilibrium equations are satisfied automatically
when the stress components are expressed from the Airy stress function F as

σxx =
∂2 F
∂y2 , σyy =

∂2 F
∂x2 , σxy = −

∂2 F
∂x∂y

. (2–24)

Substituting Equation (2–24) into the isotropic elastic constitutive relations and the result into the strain
compatibility condition, we find that F must satisfy the biharmonic equation

∇
2
∇

2 F(x, y) = 0. (2–25)

 

c xo

y

ph

Figure 3. A subsurface Griffith crack beneath the free surface of a semiinfinite body.
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For Section 2.1’s axisymmetrical case, we used the Hankel transform. For plane strain problems, we
use the Fourier transform instead. After Fourier transforming in x , Equation (2–25) becomes an ordinary
differential equation

d4

dy4 F̃ − 2ξ 2 d2

dy2 F̃ + ξ 4 F̃ = 0. (2–26)

It has the general solution

F̃1 = A1e|ξ |y
+ A2 ye|ξ |y

+ A3e−|ξ |y
+ A4 ye−|ξ |y, for y ≥ 0, (2–27)

F̃2 = A5e|ξ |y
+ A6 ye|ξ |y, for y < 0, (2–28)

where Aα (α = 1, . . . , 6) are integral constants as before.
Analogously to Equation (2–8), we define two dislocation density functions gi=1,2(x),

gi (x) =
∂

∂x

[
ui (x, 0+) − ui (x, 0−)

]
, (2–29)

where ui (x, y), i = 1, 2 denote the displacement components in the x- and y-directions, respectively.
The gi (x) satisfy the auxiliary conditions

c∫
−c

gi (x)dx = 0. (2–30)

As we did in Equation (2–18), we then derive the following singular integral equations for the crack
configuration in Figure 3:

µ

2π(1 − ν)

[
−c

+1∫
−1

D11(t, r)g1(t)dt +

+1∫
−1

g1(t)
t − r

dt − 2c

+1∫
−1

D12(t, r)g2(t)dt

]
= −p,

µ

2π(1 − ν)

[
−c

+1∫
−1

D22(t, r)g2(t)dt +

+1∫
−1

g2(t)
t − r

dt + 2c

+1∫
−1

D21(t, r)g1(t)dt

]
= 0,

(2–31)

where t = x/c is the dimensionless coordinate in the x-direction, and

D11(t, r) =

+∞∫
0

(1 + 2ξh + 2ξ 2h2)e−2ξh sin ξ [(t − r)c]dξ,

D12(t, r) = D21(t, r) =

+∞∫
0

ξ 2h2e−2ξh cos ξ [(t − r)c]dξ,

D22(t, r) =

+∞∫
0

(1 − 2ξh + 2ξ 2h2)e−2ξh sin ξ [(t − r)c]dξ .

(2–32)
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Now define Hi=1,2 by Hi (t) = gi (t)
√

1 − t2. By expanding Hi (t) as a truncated series of first kind
Chebyshev polynomials, as in Equation (2–20), we obtain the system of linear equations

µ

2(1 − ν)

[
−c

N∑
l=1

D11(tl, xm)
H1(tl)

N
+

N∑
l=1

H1(tl)
N (ti , x j )

− 2c
N∑

i=1

D12(ti , x j )
H2(ti )

N

]
= −p,

µ

2(1 − ν)

[
−c

N∑
i=1

D22(ti , x j )
H2(ti )

N
+

N∑
i=1

H2(ti )
N (ti − x j )

+ 2c
N∑

l=1

D21(tl, xm)
H1(tl)

N

]
= 0,

N∑
l=1

Hi (tl) = 0, (2–33)

These we solve easily using numerical matrix methods, and hence determine the fields of stresses, strains
and displacements.

Finally, the SIFs are

KI = lim
x→c+

√
2π(x − c)σy(x, 0) = lim

r→1+

√
πc(r − 1)

+1∫
−1

g(s)
s − r

ds = α
√

πcH1(1) (2–34)

KII = lim
x→c+

√
2π(x − c)τxy(x, 0)= lim

r→1+

√
πc(r − 1)

+1∫
−1

f (s)
s − r

ds = α
√

πcH2(1). (2–35)

We plot the calculated KI and KII in Figure 4, where K0 = p
√

πc is the SIF of a Griffith crack in an
infinite solid and subjected to an internal pressure p. Both the absolute values of KI and KII increase
with c/h. For a deeply embedded crack (that is, c/h → 0), KI and KII tend to K0 and zero.

Another important plane strain problem consists of a semiinfinite body containing a periodic array of
interacting Griffith cracks in parallel with the upper surface and subjected to a uniform internal pressure
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Figure 4. SIFs of a subsurface Griffith crack, (a) KI and (b) KII.
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Figure 5. A periodic array of plane-strain subsurface Griffith cracks.

p, as shown in Figure 5. All cracks have length 2c, and the spacing between neighboring cracks is 2l.
The singular integral transform method described above extends readily to this problem. Omitting the
detailed derivation, this problem reduces to solving the singular integral equations

µ

2(1 − ν)

{
−

1
π

+c∫
−c

[
D0

11 +

a0∑
n=1

(D−

11 + D+

11)

]
g1(t)dt +

1
2l

+c∫
−c

cotan
(
π

t − x
2l

)
g1(t)dt

−
2
π

+c∫
−c

[
D0

12 +

a0∑
n=1

(D−

12 + D+

12)

]
g2(t)dt

}
= −p,

µ

2(1 − ν)

{
−

1
π

+c∫
−c

[
D0

22 +

a0∑
n=1

(
D−

22 + D+

22

)]
g2(t)dt +

1
2l

+c∫
−c

cotan
(
π

t − x
2l

)
g2(t)dt

+
2
π

+c∫
−c

[
D0

21 +

a0∑
n=1

(
D−

21 + D+

21

)]
g1(t)dt

}
= 0, (2–36)

where

D0
11(t, x) = D11(t, x), D0

12(t, x) = D12(t, x), D0
22(t, x) = D22(t, x),

D±

11(t, x) =

+∞∫
0

(1 + 2ξh + 2ξ 2h2)e−2ξh sin ξ(t − x ± 2nl)dξ,

D±

12(t, x) = D±

21 + (t, x) =

+∞∫
0

ξ 2h2e−2ξh cos ξ(t − x ± 2nl)dξ,

D±

22(t, x) =

+∞∫
0

(1 − 2ξh + 2ξ 2h2)e−2ξh sin ξ(t − x ± 2nl)dξ.

(2–37)

We show the calculated mode-I and mode-II SIFs KI and KII in Figure 6. For a small crack spacing
in the range 1 < l/c < 2, crack interaction significantly influences the SIF solutions. For a larger spacing
l/c > 3, the interaction effect is negligible, and the SIFs tend to the solutions for a single crack, shown in
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Figure 6. SIFs of a periodic array of subsurface cracks, (a) KI and (b) KII.

Figure 3. In addition, the crack interaction may shield the SIFs under some combinations of geometric
parameters (for example, in the range 1.2 < l/c < 1.6 with h/c = 0.5, as shown in Figure 6), though the
interaction effect usually enhances the SIFs [Feng and Yu 2002].

3. Analysis of three-dimensional ion cut

As mentioned in the introduction, the Smart-Cut technology allows production of various SOI wafers with
highly uniform thickness. However, metal wires and distributed device elements in integrated circuits
require imposing patterns, for example, straight grooves and circular holes, on wafer surfaces. Here,
we suggest using the ion cut method to carve three-dimensional surface directly. See Figure 7 for a
schema of the basic procedure. The wafer is covered with a specialized metal mask and exposed to
an appropriate dose of hydrogen ions at room-temperature [Feng and Huang 2004]. The mask’s holes
conform to the required wafer surface pattern, and it is thick enough so that hydrogen ions cannot pass

 (a) Hydrogen ions

Metal mask

WaferDamaged layer

(b)
External pressure

Internal pressure

(c)

 (a) Hydrogen ions

Metal mask

WaferDamaged layer

(b)
External pressure

Internal pressure

(c)

 (a) Hydrogen ions

Metal mask

WaferDamaged layer

(b)
External pressure

Internal pressure

(c)

Figure 7. Schematics of the three-dimensional ion cut method: (a) hydrogen ion implan-
tation, (b) thermal annealing and wafer splitting, and (c) the final wafer with a designed
surface pattern.
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through it, ensuring that hydrogen ions are implanted only in the holes. The masked wafer is next exposed
to thermal annealing including two stages of heating, a medium-temperature stage (400–600◦ C) and a
high-temperature stage (about 1100◦ C). Pressure applied to the mask controls the crack propagation
path. During the first stage of annealing, a thin damaged layer appears at the depth of the maximum
hydrogen ion concentration. The cracks propagate by kinks, which form as microcrack coalesce within
the damaged layer. This removes the unwanted material and creates the desired surface morphology.
The subsequent high-temperature thermal treatment removes the remaining hydrogen ions and radiation
defects.

Repeating the integral transform methods of Section 2, we next analyze the kink propagation of subsur-
face cracks and subsequent creation of several representative surface patterns, including shallow circular
holes and straight grooves.

3.1. Ion cut of a circular hole. To determine how kinks propagate in a mixed-mode crack, we adopt
the following fracture criterion, based on the maximum circumferential tensile stress [Lawn 1993]:

1
2

[
KI(1 + cos α) − 3KII sin α

]
cos

α

2
= K I c, (3–1)

where K I c is the fracture toughness of the material, and α is the kinking angle measured from the crack
direction. In the stress fields of a mixed-mode crack, the angle α is determined from

KI sin α + KII(3 cos α − 1) = 0. (3–2)

For the configuration in Figure 1, where the upper surface of the system is traction free and the crack
is subjected to an internal pressure, the mode-II SIF KII is generally much smaller than that of KI.
Substituting the calculated values for KI and KII values ( in Figure 2) into Equation (3–2), we conclude
that the kinking angle α is generally smaller than 25◦ if the upper surface of the body is traction free.
Therefore, external surface pressure is necessary to produce a hole with a greater α value. Such pressure,
applied through the metal mask, can be modeled either as a linear force q distributed along a circle
(Figure 8a) or as a distributed surface force. We present only the first case here due to its particular
significance, but the second case proceeds similarly.

According to the superposition principle, the crack problem in Figure 8(a) decomposes into sum of
the two subproblems of Figures 8(b) and 8(c). In the first, the semiinfinite body has no crack but is
subjected to the distributed force q along a circle on the upper surface. The corresponding stress fields
can be derived from the well-known Boussinesq solution as

σ̄zz(r, 0) = −
3ql0h3

π

π∫
0

dθ(
l2
0 + r2

0 − 2l0r cos θ + h2
)5/2 ,

τ̄zr (r, 0) = −
3ql0h2

π

π∫
0

(l0 cos θ − r)dθ(
l2
0 + r2 − 2l0r cos θ + h2

)5/2 ,

(3–3)

where c is the crack radius, l0 the radius where the linear force q is applied, and h is the distance of the
crack from the upper surface. Other axisymmetric problems of a semiinfinite body subjected to surface
forces can be solved easily by integrating the stress fields in Equation (3–3). In the second subproblem
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(Figure 8c), the upper surface of the body is traction free but the crack surfaces are subjected to the
tractions

σzz(r, 0) = −σ̄zz(r, 0) − p =
3ql0h3

π

π∫
0

dθ(
l2
0 + r2

0 − 2l0r cos θ + h2
)5/2 − p,

τzr (r, 0) = τ̄zr (r, 0) =
3ql0h2

π

π∫
0

(l0 cos θ − r)dθ(
l2
0 + r2 − 2l0r cos θ + h2

)5/2 .

(3–4)

The two cracks in Figures 8(a) and 8(c) share SIF values, but we can solve latter problem more easily
using the integral transform method in Section 2.1. Omitting the detailed derivation, we obtain a system
of linear equations, similar to Equation (2–20):

µ

2(1 − ν)

N∑
l=1

[
1

tl − xm
+

1
tl + xm + 2

+
M1(tl, xm) − 1

tl − xm
+

M1(tl, xm) − 1
tl + xm + 2

+
πc
2

D11(tl, xm)

]
H1(tl)

N

+

N∑
i=1

πc
2

D12(ti , x j )H2(ti ) =
3ql0h3

π

π∫
0

dθ(
l2
0 + c2x2

m − 2l0cxm cos θ + h2
)5/2 − p,

µ

2(1 − ν)

N∑
i=1

[
1

ti − x j
−

1
ti + x j + 2

+
M2(ti , x j ) − 1

ti − x j
−

M2(ti , x j ) − 1
ti + x j + 2

+
πc
2

D22(ti , x j )

]
H2(ti )

N

+

N∑
l=1

πc
2

D21(tl, xm)
H1(tl)

N
=

3ql0h2

π

π∫
0

(l0 cos θ − cx j )dθ(
l2
0 + c2x2

j − 2l0cx j cos θ + h2
)5/2 ,

H1(tN ) = 0,

N∑
l=1

1 + tl
2

H1(tl) = 0. (3–5)

Using the calculated stress fields, we calculate the SIFs KI and KII using Equation (2–23), and plot the
results in Figure 9 as linear functions of the loading ratio, q/2cp. The ratio of SIFs KII/KI increases with
the increase in the externally applied force q . In Figure 10, we show the kinking angle α as a function of
q/2cp. One may control the propagating kink angle, and hence the shape of the hole, by adjusting the
force q. A large kinking angle requires a sufficiently large q; however, since the mode-I SIF decreases
linearly with q, the crack will close and cease to propagate if q is too large. We note that the internal
pressure p depends mainly upon the dose of implanted hydrogen ions and the temperature [Feng and
Huang 2004]. Therefore, in order to cut a circular hole, an appropriate force q should be chosen from
Figure 10 to conform to the required hole depth. Finally, we note that the hole’s diameter and depth is
limited by the ion implantation machine to the order of microns. The hydrogen ion penetration depth
varies approximately linearly with the implantation energy and does not depend on the implantation dose
[Feng and Huang 2004].
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Figure 8. Superposition method for solving a subsurface crack.
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3.2. Ion cut of a long straight groove. To cut a long, straight surface groove on a wafer, hydrogen ions
are implanted into a long square zone left uncovered by a metal mask. We assume that the groove is much
longer than its width, c, so the ion cut process simplifies to a plane strain problem. The corresponding
crack model can also represented by Figure 8, but without the same plane strain assumption. We again
employ superposition. In this case, the tractions on the crack faces in Figure 8(c) become

σ̄yy(x, 0) =
2qh3

π

{
1[

h2 + (l0 + x)2
]2 +

1[
h2 + (l0 − x)2

]2
}

− p,

τ̄xy(x, 0) =
2qh2

π

{
l0 + x[

h2 + (l0 + x)2
]2 +

x − l0[
h2 + (l0 − x)2

]2
}

,

(3–6)

where q is the magnitude of the distributed force per unit length along the z-axis direction. In deriving
Equation (3–6), we again used the Boussinesq solution under the plane strain condition [Timoshenko
and Goodier 1970].

Substituting Equation (3–6) into the boundary conditions along the crack faces, we obtain the follow-
ing singular integral equation system, similar to Equation (2–31):

µ

2π(1 − ν)

[
−c

+1∫
−1

D11(s, r)g1(s)ds +

+1∫
−1

g1(s)
s − r

ds − 2c

+1∫
−1

D12(s, r)g2(s)ds

]

=
2qh3

π

{
1

[h2 + (l0 + cr)2]2 +
1

[h2 + (l0 − cr)2]2

}
− p,

µ

2π(1 − ν)

[
−c

1∫
−1

D22(s, r)g2(s)ds +

1∫
−1

g2(s)
s − r

ds + 2c

1∫
−1

D21(s, r)g1(s)ds

]

=
2qh2

π

{
l0 + cr

[h2 + (l0 + cr)2]2 +
cr − l0

[h2 + (l0 − cr)2]2

}
,

+1∫
−1

g1,2(r)dr = 0, (3–7)

which we solved easily using the method in Section 2.2. We plot the results for SIFs KI and KII and the
kinking angle α in Figures 11 and 12. As for the circular hole, we find that both the SIF ratio KII/KI and
the kinking angle α increase with the externally applied force q. Therefore, one can direct propagating
kinks by varying the force q . If KI ≤ 0, the crack will close, not propagate. This limits the kinking angle
α to 70◦, that is, the shape of the cut groove.

3.3. Ion cut of an array of periodic grooves. Finally, we analyze the ion cut method for an array of
periodic long straight grooves. We model the ion cut process using the crack configuration in Figure
13. Here q is the distributed force per unit area. We solve by superposition, as shown analogously in
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Figure 11. SIFs of a subsurface Griffith crack, (a) KI and (b) KII.
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Figure 12. Kinking angle of a subsurface Griffith crack.

Figure 8. Accordingly, the crack SIFs in Figure 13 are those of a semiinfinite space, where the upper
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Figure 13. Crack model for cutting of a periodic array of straight grooves.
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surface of the body is traction free and the tractions on the crack surfaces are given by

σ̄yy(x, 0) =
2qh3

π

{
∞∑

n=0

−2(n+1)l+a∫
−2nl−a

dx2

[(x − x2)2 + h2]2 +

∞∑
n=0

2(n+1)l−a∫
2nl+a

dx2

[(x − x2)2 + h2]2

}
− p,

τ̄xy(x, 0) = −
2qh2

π

{
∞∑

n=0

−2(n+1)l+a∫
−2nl−a

(x − x2)dx2

[(x − x2)2 + h2]2 +

∞∑
n=0

2(n+1)l−a∫
2nl+a

(x − x2)dx2

[(x − x2)2 + h2]2

}
,

(3–8)

where we use again the plane-strain Boussinesq solution. The integral transform method leads to a
singular integral equation system for the crack configuration in Figure 13:

−α

(
−c

N0∑
q=1

{
D0

11(sq , rm) +

a0∑
n=1

[D−

11(sq , rm) + D+

11(sq , rm)]

}
H1(sq)

N0

+
πc
2l

N0∑
q=1

[
cot
(

π
sq − rm

2l
c
)

−
1

π
sq−rm

2l c

]
H1(sq)

N0
+

N0∑
q=1

H1(sq)

(sq − rm)N0

−2c
N0∑

i=1

{
D0

12(si , rm) +

a0∑
n=1

[
D−

12(si , rm) + D+

12(si , rm)
]}H2(si )

N0

)

=
2qh3

π

{
∞∑

n=0

−2(n+1)l+c∫
−2nl−c

dx2[
(crm − x2)2 + h2

]2 +

∞∑
n=0

2(n+1)l−c∫
2nl+c

dx2[
(crm − x2)2 + h2

]2
}

− p,
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Figure 14. Kinking angle of a periodic array of subsurface cracks, where l0 = 1.1c.
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α

(
−c

N0∑
i=1

{
D0

22(si , r j ) +

a0∑
n=1

[
D−

22(si , r j ) + D+

22(si , r j )
]}H2(si )

N0

+
πc
2l

N0∑
i=1

[
cot
(

π
si − r j

2l
c
)

−
1

π
si −r j

2l c

]
H2(si )

N0
+

N0∑
i=1

H2(si )

(si − r j )N0

+2c
N0∑

q=1

{
D0

21(sq , r j ) +

a0∑
n=1

[
D−

21(sq , r j ) + D+

21(sq , r j )
]}H1(sq)

N0

)

=
2qh2

π

{
∞∑

n=0

−2(n+1)l+c∫
−2nl−c

(cr j − x2)dx2[
(cr j − x2)2 + h2

]2 +

∞∑
n=0

2(n+1)l−c∫
2nl+c

(cr j − x2)dx2[
(cr j − x2)2 + h2

]2
}

,

N∑
l=1

H1(tl) = 0,

N∑
i=1

H2(ti ) = 0.

Thus we determine the stress fields and the SIFs KI and KII. For brevity, we plot in Figure 14 only
the kinking angle α as a function of the loading ratio q/p. This function can be implicitly solved for q,
so that, for a desired value of α and internal pressure p (determined by the dose of implanted hydrogen
ions), we know the correct force q to apply.

4. Conclusions

We suggest using the ion cut technology to cut directly the surface patterns onto wafers bound for inte-
grated circuits. In the present work, we analyzed the three-dimensional ion cut method using fracture
mechanics theory and demonstrated that patterns can be transferred from a mask to an Si or SOI substrate.
We presented a convenient method based on integral transforms for calculating the SIFs of subsurface
cracks. The Hankel and Fourier integral transforms lent themselves to the axisymmetric and planar-
symmetric crack configurations, respectively. Cracks near a surface are generally of mixed-mode because
of the nonsymmetric geometry. We gave selected, important solutions for the SIFs of subsurface cracks,
but the method can solve many other crack configurations. This method is comparatively easier than
the finite element method, and yields the mode-I and II SIFs with higher accuracy. We analyzed the
conditions for successfully using the three-dimensional ion cut method. An externally applied force is
then required to cut the desired surface morphology. One may vary the kinking direction of subsurface
cracks by specifying the ratio of the applied surface force and the internal pressure induced by the
implanted hydrogen.
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