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EFFECT OF NONHOMOGENEITY ON THE CONTACT OF AN ISOTROPIC
HALF-SPACE AND A RIGID BASE WITH AN AXIALLY SYMMETRIC RECESS

SAKTI PADA BARIK, MRIDULA KANORIA AND PRANAY KUMAR CHAUDHURI

We study an axially symmetric frictionless contact problem between a nonhomogeneous elastic half-
space and a rigid base that has a small axisymmetric surface recess. We reduce the problem to solving
Fredholm integral equations, solve these equations numerically, and establish a relationship between the
applied pressure and the gap radius. We find and graph the effects of nonhomogeneity on the normal
pressure, critical pressure and on the surface displacement.

1. Introduction

When two bodies are placed in contact, they touch either at a point, along a line, over a surface or in
a combination thereof. While the initial contact is determined by the geometric features of the bodies,
the extent generally changes when the bodies are deformed by applied forces, changes in temperature
or other sources of stress. In the study of contact problems, a class of problems is considered when two
bodies are in contact without a bond, so that the region of contact is not known. Here, determining the
contact region, which depends on geometric features as well the load distribution, presents an additional
task for finding the stress distribution. Contact problems have been studied extensively in the literature,
but in most cases the study was confined to isotropic and homogeneous solids. With the increasing use
of functionally graded materials or anisotropic materials in industry, the study needs to be extended to
these materials also.

A comprehensive list of work by earlier investigators has been provided in [Sneddon and Lowengrub
1969] and also [Gladwell 1980]. Among the recent works on the contact problems, notable are the works
of Civelek et al. [1978], Schmuesre et al. [1980], Gecit [1981], Selvanduri [1983], Loboda and Tauchert
[1985], Martynyak [1985], Fabrikant [1986], Li and Dempsey [1988], Wu and Yen [1994], Shvets et al.
[1996], Argatov [2000], Brock and Georiadis [2001], Kit and Monastyrsky [2001], Argatov [2004], and
Barik et al. [2006].

The very important class of contact problems known as receding contact problems is the subject of
study for many investigators. If the contact area diminishes as the load is applied, the contact is called
receding. The analytical studies involving receding contact in homogeneous and graded media can be
found in [Hussain et al. 1968; Noble and Hussain 1969; Weitsman 1969; Pu and Hussain 1970; Keer et al.
1972; Gecit 1986; Nowell and Hills 1988; Chaudhuri and Ray 1998; Birinci and Erdol 1999; Chaudhuri
and Ray 2003; Comez et al. 2004; El-Borgi et al. 2006]. Numerical studies based either on the finite
element method or on the boundary element method can be found in [Jing and Liao 1990; Garrido et al.
1991; Paris et al. 1995; Satish Kumar et al. 1996; Garrido and Lorenzana 1998].
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Figure 1. The semiinfinite solid with recess considered here.

In a recent paper, Kit and Monastyrsky [2001] discussed an axially symmetric problem of frictionless
contact between an elastic half space and a rigid base with a small surface recess. The elastic material
considered was isotropic and homogeneous. The present investigation aims at studying a similar problem,
but in an nonhomogeneous elastic medium.

The nonhomogeneity arises because the rigidity modulus varies with distance in the medium. Al-
though in the homogeneous case the displacement components are expressible in terms of potential
functions, the solution of the governing equations is not so simple here, because of the nonhomogeneous
modulus. Following the technique discussed in [Ozturk and Erdogan 1993], we have found the displace-
ment components and, using the boundary conditions, have obtained a pair of dual integral equations
Further manipulation yields Fredholm integral equations, which we solve numerically. We have done
numerical computations to show the effect of the nonhomogeneity. Finally, we have checked that results
of [Kit and Monastyrsky 2001] are recovered from ours by zeroing the nonhomogeneous parameter.

2. Formulating the problem

Let a semiinfinite solid of nonhomogeneous isotropic material with a flat surface lie on a semiinfinite
solid of rigid material. The boundary of the solid of rigid material is everywhere planar except for a
geometrical defect, which is shallow axisymmetric recess, as seen in Figure 1. We put the origin at the
common boundary of the half spaces and point the z1-axis of the cylindrical coordinate system (r1, θ, z1)

into the elastic medium along the recess’s axis of symmetry. We represent the bounding surface of the
rigid base containing the recess by the equations

z1 = f1(r1)=

 − h0

(
1 −

r2
1

b2

)3/2
, 0< r1 ≤ b,

0, r1 > b.

We shall assume that contact is smooth. In the absence of applied pressure on the solids, contact is made
along the plane z1 = 0, except for the central area | r1 |< b. Applying the normal pressure p at infinity
will cause the contact surface to increase. Let a1(p) be the radius of the gap, that is, the region in which
there is no contact, as an as-yet unknown function of p, as shown in Figure 2. Before proceeding, it
will be convenient to adopt dimensionless variables by rescaling all lengths by the problem’s only length



EFFECT OF NONHOMOGENEITY ON CONTACT 3

ρρ  ρ ρ

ρρ

ρρ

o
r

z

�

o
r

z

�����

�

Figure 2. The first contact point a1 moves inward as the pressure p increases.

scale b:

r =
r1

b
, z =

z1

b
, h =

h0

b
, a =

a1

b
, σ̂i, j =

σi, j

µ0
, ûi =

ui

b
,

where here and in the following i, j = r, θ, z. In the dimensionless variables, the surface with recess
becomes

z = f (r)=

{
− h

(
1 − r2

)3/2
, r ≤ 1,

0, r > 1.
(1)

In the analysis below, for notational convenience, we shall use only dimensionless variables and politely
remove their hats ˆ .

We suppose that the elastic material is nonhomogeneous by assuming the rigidity modulus µ varies
along the z-axis as

µ= µ0eαz, (2)

where α is the nonhomogeneity parameter. Because of axisymmetry, the field variables are independent
of θ and the displacement vector (u, 0, w) is a function of r and z only. Using the strain displacement
relations

err =
∂u
∂r
, eθθ =

u
r
,

ezz =
∂w

∂z
, 2er z =

∂u
∂z

+
∂w

∂r
,

and Hooke’s law

σi j =
λ

µ0
ekkδi j + 2

µ

µ0
ei j ,

where λ and µ are the Lame’s constants and δi j is the Kronecker delta, the equations of equilibrium

0 =
∂σrr

∂r
+
∂σr z

∂z
+
σrr − σθθ

r
,

0 =
∂σr z

∂r
+
∂σzz

∂z
+
σr z

r
,

(3)
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may be expressed in terms of displacements components u and w as:

0 = (κ + 1)
(
∂2u
∂r2 +

1
r
∂u
∂r

−
u
r2

)
+ 2

∂2w

∂r∂z
+ (κ − 1)

∂2u
∂z2 + (κ − 1)α

(
∂u
∂z

+
∂w

∂r

)
,

0 = (κ + 1)
∂2w

∂z2 +
2
r
∂u
∂z

+ 2
∂2u
∂r∂z

+ (κ − 1)
(
∂2w

∂r2 +
1
r
∂w

∂r

)
+ (3 − κ)α

(
∂u
∂r

+
u
r

)
+ (κ + 1)α

∂w

∂z
,

(4)

where κ = 3 − 4ν and ν is Poisson’s ratio.
The boundary conditions for the problem are

lim
z−∞

σzz(r, z)= −
p
µ0
,

lim
z−∞

σr z(r, z)= 0,
(5)

σzz(r, 0)= 0, 0< r < a,

σr z(r, 0)= 0, 0< r <∞,

w(r, 0)= f (r), a < r <∞,

(6)

In addition to conditions Equation (6) we should have the condition

σzz(a, 0)= 0, 0 ≤ a ≤ 1 (7)

which follows from the smoothness of f (r) ∈ [0, 1).
The boundary condition of Equations (5) and (7) can also be written as

σzz(r, 0)[w(r, 0)− f (r)] = 0,

σzz(r, 0)≤ 0, w(r, 0)≤ f (r), 0≤ r ≤ 1

σr z(r, 0)= 0, 0 ≤ r <∞,

w(r, 0)= f (r), 1 ≤ r <∞.

3. Solving the problem

Now we will describe the strained state of the elastic body and the relation between the gap geometry
and ambient pressure. We will also find the critical value at which the gap disappears. To this end, we
divide the solutions into two parts:

σ = σ (1) + σ (2), u = u(1) + u(2). (8)

The first terms, σ (1) and u(1), are solutions of the problem of the contact of an elastic body and rigid
base with flat surface. The second terms correspond to the perturbed stressed-strained state caused by
geometric nonhomogeneity of the surface.
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Because the perturbations are local, we can write

lim
(r,z)→∞

σ (2)(r, z)= 0, lim
(r,z)→∞

u(2)(r, z)= 0.

The first solution may be obtained in the form

σ (1)zz = −
p
µ0
, σ (1)rr = 0, σ (1)r z = 0,

u(1) =
ν

E
pr, w(1) =

ν

αE
pz.

(9)

Using the boundary conditions of Equations (5) and (6) and using Equations (8) and (9), the boundary
conditions for the perturbed fields become

lim
z→∞

σ (2)zz (r, z)= 0

lim
z→∞

σ (2)r z (r, z)= 0,

σ (2)zz (r, 0)=
p
µ0
, 0< r < a,

σ (2)r z (r, 0)= 0, 0< r <∞,

w(2)(r, 0)= f (r), a < r <∞

(10)

To solve for the perturbed field, we assume the solution of Equation (3) in the form

u(2)(r, z)=

∫
∞

0
dρ F1(z, ρ)ρ J1(rρ),

w(2)(r, z)=

∫
∞

0
dρ F2(z, ρ)J0(rρ),

(11)

where J0 and J1 are Bessel functions of first kind of orders zero and one, respectively. Substituting
Equation (11) into Equation (4) and inverting the related Hankel transforms, we find[

(κ − 1)D2
+α(κ − 1)D − (κ + 1)ρ2] F1 − [2D +α(κ − 1)] F2 = 0[

(κ + 1)D2
+α(κ + 1)D − (κ − 1)ρ2] F2 + ρ2 [2D +α(3 − κ)] F1 = 0,

(12)

where D =
d
dz . In deriving this, the following relationships have been used:(

∂2

∂r2 +
1
r
∂

∂r
−

1
r2

)
J1(rρ)= − ρ2 J1(rρ),(

∂

∂r
+

1
r

)
J1(rρ)= ρ J0(rρ),

∂2

∂r2 J0(rρ)=
ρ

r
J1(rρ)− ρ2 J0(rρ).
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The solutions of the system of differential equations (12) are found to be

F1(z, ρ)=

4∑
k=1

Ak(ρ)emk z,

F2(z, ρ)=

4∑
k=1

ak(ρ)Ak(ρ)emk z,

(13)

where the functions Ak , k = 1, . . . , 4, are unknowns, and mk , k = 1, . . . , 4, are the roots of the charac-
teristic equation

m4
+ 2αm3

+ (α2
− 2ρ2)m2

− 2αρ2m +α2ρ2 3 − κ

1 + κ
+ ρ4

= 0, (14)

and the coefficients ak , k = 1, . . . , 4, are given by

ak(ρ)= − ρ2 2mk +α(3 − κ)

(1 + κ)m2
k + (1 + κ)αmk − (κ − 1)ρ2

. (15)

The characteristic Equation (14) may easily be rewritten as(
m2

+αm − ρ2)2
+α2ρ2 3 − κ

1 + κ
= 0,

from which it follows that

m3 = m1 =
−α+β

2
, m4 = m2 = −

α+β

2

where

β =

√
α2 + 4ρ2 + i4αρ

√
3 − κ

1 + κ
,

After solving for mk , k = 1, . . . , 4, the expressions for the coefficients ak in Equation (15) may be
simplified as follows:

ak(ρ)= − ρ
2mk +α(3 − κ)

2ρ+ iα
√
(3 − κ)(1 + κ)

,

ak+2 = ak,

for k = 1, 2. We observe that <m1, <m3 > 0 and <m2, <m4 < 0, so, to satisfy the regularity condition
at z = ∞ in the solution given by Equation (13), we must put A1 = A3 = 0 for z > 0. Thus the problem
may be considered as that of an elastic upper half space with rigid base involving only two unknowns
A2 and A4, and, for z > 0, we have

F1(z, ρ)= A2(ρ)em2z
+ A4(ρ)em4z,

F2(z, ρ)= a2(ρ)A2(ρ)em2z
+ a4(ρ)A4(ρ)em4z.
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The unknowns A2 and A4 may be determined from the mixed boundary conditions of Equation (6).
Hence, the dimensionless displacement and stress components can be written in terms of A2 and A4 as

u(2)(r, z)=

∫
∞

0
dρ

(
A2em2z

+ A4em4z) ρ J1(rρ)

w(2)(r, z)=

∫
∞

0
dρ

(
a2 A2em2z

+ a4 A4em4z) J0(rρ)

σ (2)r z (r, z)=
µ

µ0

∫
∞

0
dρ

(
(m2 − a2)A2em2z

+ (m4 − a4)A4em4z) ρ J1(rρ)

σ (2)zz (r, z)=
µ

µ0

∫
∞

0
dρ

[
κ + 1
κ − 1

(
m2a2 A2em2z

+ m4a4 A4em4z)
+

3 − κ

κ + 1

(
A2em2z

+ A4em4z) ρ2
]

J0(rρ)

(16)

Using the second boundary condition of Equation (10) yields

A4(ρ)= −
m2 − a2

m4 − a4
A2(ρ), (17)

and the remaining two mixed boundary conditions, with the help of the last two of Equation (16) and
Equation (17), give a pair of dual integral equations∫

∞

0
dρ A∗

2(ρ)J0(rρ)= f (r), a < r <∞,∫
∞

0
dρ G1(ρ)A∗

2(ρ)J0(rρ)=
κ − 1
µ0

p, 0< r < a, (18)

where

A∗

2(ρ)=
a2m4 − a4m2

m4 − a4
A2(ρ),

G1(ρ)=
1

a2m4 − a4m2

[
(κ + 1)

(
|m2|

2(a2 − a4)− |a2|
2(m2 − m4)

)
+ (3 − κ)(a2 − a4 + m4 − m2)ρ

2] .
(19)

Denoting

a2(ρ)= A(ρ)+ i B(ρ),

m2(ρ)= −
α+ c(ρ)

2
− i

d(ρ)
2
,

we get G1(ρ) in the form

G1(ρ)=
(κ + 1)

(
2|m2|

2 B(ρ)− |a2|
2d(ρ)

)
+ (3 − κ)ρ2 (2B(ρ)+ d(ρ))

A(ρ)d(ρ)− (α+ c(ρ)) B(ρ)
.

If we write
A∗

2(ρ)= C∗(ρ)+ D∗(ρ),
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where

D∗(ρ)= ρ

∫
∞

0
dr J0(rρ)r f (r), (20)

then the dual integral equations of Equation (18) transform into∫
∞

0
dρ C∗(ρ)J0(rρ)= 0, a < r <∞,∫

∞

0
dρ G1(ρ)C∗(ρ)J0(rρ)= g(r), 0< r < a, (21)

where

g(r)=
κ − 1
µ0

p −

∫
∞

0
dρ G1(ρ)D∗(ρ)J0(rρ). (22)

Substituting the expression for f (r) from Equation (1) into Equation (20) we get

D∗(ρ)= − 3h
√
π

2
ρ−3/2 J5/2(ρ)

If we write

C∗(ρ)=

∫ a

0
dt φ(t) sin(tρ), (23)

where φ(t) is an unknown integrable function, then the first of Equation (21) is automatically satisfied.
Substitution of Equation (23) in the second of Equation (21) leads to the equation

r
∫ a

0
dt φ(t)

∫
∞

0
dρ

G1(ρ)

ρ
J1(rρ) sin(tρ)=

∫ r

0
ds sg(s)≡ g1(r), (24)

for determining the unknown function φ. We note that for large ρ,

G1(ρ)

ρ
= χ1 + O(ρ−1), where χ1 = 4

1 − κ

1 + κ
.

Equation (24) may be reduced to a standard integral equation by rewriting it in the form

r
∫ a

0
dt φ(t)

∫
∞

0
dρ J1(rρ) sin(tρ)

[
χ1 +

(
G1(ρ)

ρ
−χ1

)]
= g1(r). (25)

Using the properties of Bessel function, this equation is finally reduced to a Fredholm integral equation
of the second kind;

χ1φ(r)+
∫ a

0
dt K (r, t)φ(t)=

2
π

∫ r

0
dy

y g(y)√
r2 − y2

, 0< r < a, (26)

where the kernel K (r, t) is given by

K (r, t)=
2
π

∫
∞

0
dρ G2(ρ) sin(rρ) sin(tρ), (27)

and
G2(ρ)=

G1(ρ)

ρ
−χ1.

We shall discuss the integral equation (26) and its kernel K (r, t) in the next section.
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Equations (16), (17), (19), (23), and (26) determine that the deformed state of the elastic half-space,
the normal displacement w(2), and the pressure on its surface are given by

w(2)(r, 0)=


∫ a

0 dt φ(t)H2(t, r)+ f (r), 0< r < a,

f (r), r > a,
(28)

where

H2(t, r)=

∫
∞

0
dρ sin(tρ)J0(rρ)

and

σ (2)zz (r, 0)=



p
µ0
, 0< r < a,

1
κ−1

[
H1(r)−

3hπχ1
4

(
1 −

3
2r2

]
)]
, a < r ≤ 1,

1
κ−1

[
H1(r)+

hχ1
5r3 2

F1
( 3

2 ,
3
2 ;

7
2 ,

1
r2

)]
, r > 1,

(29)

where

H1(r)=

∫ a

0
dt φ(t)

∫
∞

0
dρ G2(ρ)J0(ρ) sin(tρ)− 3h

√
π

2

∫
∞

0
dρ ρ−1/2G2(ρ)J0(ρ)J5/2(ρ)

−χ1
φ(a)

√
r2 − a2

+χ1
φ(0)

r
+χ1φ

′(a) sin−1(a/r)−χ1

∫ a

0
dt φ′′(t) sin−1(t/r) . (30)

Finally, putting Equations (9), (28), and (29) into Equation (8), we get the expressions for w(r, 0) and
σzz(r, 0):

w(r, 0)=

{∫ a
0 dt φ(t)H2(t, r)+ f (r), 0< r < a,

f (r), r > a,
(31)

σzz(r, 0)=


p
µ0

0< r < a

1
κ−1

[
H1(r)−

3hπχ1
4 (1 −

3
2r2)

]
, a < r ≤ 1

1
κ−1

[
H1(r)+

hχ1
5r3 2F1

(3
2 ,

3
2 ;

7
2 ,

1
r2

)]
, r > 1.

(32)

The boundary condition Equation (7) demands that

φ(a)= 0. (33)

Putting this and Equation (22) into Equation (26) yields

p
µ0

=
1

a(κ − 1)

[
π

2

∫ a

0
dt K (a, t)φ(t)+

∫
∞

0
dρ

G1(ρ)

ρ
D∗(ρ) sin(aρ)

]
. (34)

This equation gives a relationship between the dimensionless applied pressure p/µ0 and the dimension-
less radius a of the gap. For a given p/µ0, the equation determining a is nonlinear. From this equation,
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it is easy to obtain the critical pressure p? at which gap disappears, that is, at which a = 0. The value of
p∗ is obtained as

p?

µ0
=

1
κ − 1

∫
∞

0
dρG1(ρ)D∗(ρ). (35)

It should be noted as an important check on our results that if we take α = 0—that is, if we assume
the upper half space is homogeneous and isotropic—then the expressions for p and p? reduce to those
obtained by Kit and Monastyrsky [2001].

4. Determining φ(r)

The infinite integral K (r, t) in Equation (27) is smooth except possibly at ρ = 0 and ρ = ∞. We may
check that

G2(ρ)=
ψ(ρ)

ρ2 −χ1 as ρ → 0, (36)

where ψ(ρ) is regular in the neighborhood of ρ = 0. This implies that

lim
ρ→0

G2(ρ) sin(tρ) sin(rρ)= a finite quantity, (37)

so ρ = 0 is not a singularity for that integral.
Now, for large ρ, G2(ρ)= O(ρ−1). From Gradshteyn and Ryzhik [1963],∫

∞

0
dρ

sin(tρ) sin(rρ)
ρ

=
1
2

log
∣∣∣∣r + t
r − t

∣∣∣∣ , r 6= t, (38)

and it follows that the behavior of the integral as ρ → ∞ is not smooth for r = t , so determination of
φ(r) from Equation (26) could be a problem. However, this difficulty may be easily overcome by writing
Equation (25) in the form ∫ a

0
dt

[
1

t − r
+ L(r, t)

]
φ(t)= g1(r) (39)

where

L(r, t)= χ1L0(r, t)+ L1(r, t)−
1

t − r
,

L0(r, t)= r
∫

∞

0
dρ J1(rρ) sin(tρ)=


t

√
r2 − t2

, t < r,

0, t ≥ r,

L1(r, t)= r
∫

∞

0
dρ

(
G1(ρ)

ρ
−χ1

)
J1(rρ) sin(tρ),

(40)

Using the rescalings

t (u)=
a
2
(1 + u), r(x)=

a
2
(1 + x), (41)

and the notations
φ∗(u)= φ (t (u)) , g∗(x)= g (r(x)) , (42)
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Equation (39) is transformed into a singular integral equation∫ 1

−1
du φ∗(u)

[
1

u − x
+

a
2

L∗(u, x)
]

du = g∗

1(x), where L∗(u, x)= L
(a

2
(1 + u),

a
2
(1 + x)

)
. (43)

This integral equation can be evaluated by using Gauss–Chebyshev method. It may be noted that
u = −1 corresponds to t = 0 and u = 1 corresponds to t = a. Since the contact is smooth, neither
the point t = 0 (that is, u = −1) nor the point t = a (that is, u = 1) is a singularity of the function φ.
Following [Erdogan and Gupta 1972], we take the solution φ∗(u) of integral equation Equation (43) in
the form

φ∗(u)=

√
1 − u2 G(u), −1 ≤ u ≤ 1,

where G(u) is a bounded unknown function. Now, using Gauss–Chebyshev formula, we express the
integral equation (43) in discretized form as

N∑
k=1

π

√
1 − u2

k

N + 1
G(uk)

[
1

uk − x j
+

a
2

L∗(uk, x j )

]
= g1(x j ), (44)

where j = 1, . . . , N + 1, and uk and x j are given by

uk = cos
(

kπ
N + 1

)
and x j = cos

(
π

j − 1/2
N + 1

)
.

Equation (44) gives a set of (N + 1) linear equations—one for each collocation point x j —in the
N unknowns G(u1), . . . ,G(uN ). To determine the G(uk), we may ignore one collocation point, say
the midpoint xN/2+1 when N is even, and let the remaining N equations determine G(uk). This linear
algebraic system can be solved by gaussian eliminations.

We note here that although Equation (26) is not quite suitable for numerical evaluation of φ(r), it is
very much useful for determining the applied pressures p and p∗ in relatively simple forms (see Equations
(34) and (35)). Also, evaluating the integral∫ a

0
dt K (a, t)φ(t) (45)

in Equation (34) will not pose any problem here, since φ(a)= 0.

5. Numerical results and discussions

We have noted that zero is not a singularity for the infinite integrals in Equations (27) and (30), and,
because the integrals are regular for finite ρ, we will, in numerically evaluating these integrals, study
only their behavior at infinity. We find that G2(ρ) can be asymptotically represented for large ρ as

G2(ρ)=
χ2

ρ
+
χ3

ρ2 +
χ4

ρ3 + · · · . (46)

The coefficients χ2, χ3, and χ4 are given in Appendix A.
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To examine the convergence of the improper integrals in Equations (27) and (30), let us take any one,
say, the improper integral ∫

∞

0
dρ G2(ρ) J0(ρ) sin(tρ) (47)

in Equation (30). We write∫
∞

0
dρ G2(ρ) J0(ρ) sin(tρ)= lim

A→∞

∫ A

0
dρ G2(ρ) J0(ρ) sin(tρ). (48)

For large ρ, we write the integral ∫ A

0
dρ G2(ρ) J0(ρ) sin(tρ) (49)

as the sum of two integrals I1 and I2(A) such that

I1 =

∫ ζ

0
dρ G2(ρ) J0(ρ) sin(tρ),

I2(A)=

∫ A

ζ

dρ G2(ρ) J0(ρ) sin(tρ),
(50)

where ζ is a suitably chosen cutoff point. The first integral I1 is numerically evaluated using gaussian
quadratures. Noting the asymptotic behavior of G2(ρ) from Equation (46) and shown in Figure 3, it is
expected that for sufficiently large A, the integral I2 should converge. This is numerically checked and
shown in Table 1.

Thus, for a given tolerance ε, the upper limit A can be determined numerically, and the value of the
integral I2(∞) can then be approximated as I2(A) at tolerance level ε. For example, from Table 1, for
ζ = 25 and ε = 10−5, we have A = 205.

We can then determine φ numerically by the method described in Section 4. Finally, we find w(r, 0),
σzz(r, 0), p/µ0, and p∗/µ0 from Equations (31), (32), (34), and (35).

The dimensionless gap radius a depends on p/µ0 as well as on the nonhomogeneity parameter α.
From Equation (2), it is clear that as α increases, the material becomes harder. This implies in turn that if
α is larger, a larger pressure p/µ0 will be required to produce same change in a. Also, it is expected that

� ���

���

�
� � ���

���
	
ρρ �

ρρ

Figure 3. A plot of G2(ρ).
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A I2(A)

30 –0.00077027
35 –0.00056793
40 –0.00162461
45 –0.00070269
50 –0.00114482
55 –0.00090488
60 –0.00077959
65 –0.00129027
70 –0.00085225

A I2(A)

75 –0.00162461
80 –0.00095082
85 –0.00084971
90 –0.00118899
95 –0.00090935

100 –0.00105012
105 –0.00097268
110 –0.00088441
115 –0.00110913

A I2(A)

120 –0.00093715
125 –0.00103405
130 –0.00098509
135 –0.00090544
140 –0.00107440
145 –0.00095260
150 –0.00102384
155 –0.00099292
160 –0.00091986

A I2(A)

165 –0.00105215
170 –0.00096191
175 –0.00101668
180 –0.00099818
185 –0.00093061
190 –0.00103696
195 –0.00096784
200 –0.00101127
205 -0.00100183

Table 1. I2(A) for t = 0.5 and cutoff point ζ=25.

as p/µ0 increases, a should decrease. To check the expected behavior we have computed from Equation
(34), we compute p/µ0 for different a and α. The results are graphed in Figure 4. In Figure 5, we show
how dimensionless critical pressure p∗/µ0 varies with nonhomogeneity parameter α. As expected, the
critical pressure increases with α.

From Equation (1), we find that the function f (r) is not differentiable at r = 1. Because the geometrical
structure of the recess is expected to contribute to the behavior of surface stress distribution, we have
evaluated the surface stress σzz(r, 0) as r → 1. We find that there is a finite discontinuity in the normal
stress σzz(r, 0) in the neighborhood of r = 1. The values of σzz(r, 0) have been plotted against the
nonhomogeneity parameter α and the gap radius a in Figures 6 and 7, respectively. In Figures 8 and 9,
we show how w(r, 0) varies with a and α.

µµ

α.α.

�

��� �

�

� � � � � �
�
	

µµ 00

�

α=0α=0 α=.1α=.1

α=.2α=.2 α=.4α=.4

α=.5α=.5 α=.6α=.6

µµ

αα

µµ

αα

Figure 4. Variation of ambient pressure p/µ0 with the first contact radius a for different
values of the nonhomogeneity parameter α.



14 SAKTI PADA BARIK, MRIDULA KANORIA AND PRANAY KUMAR CHAUDHURI

µµ

α.α.

µµ 00

α=0α=0 α=.1α=.1

α=.2α=.2 α=.4α=.4

α=.5α=.5 α=.6α=.6
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�

�

�
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�
	��
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Figure 5. Variation of dimensionless critical pressure p∗/µ0 for different values of the
nonhomogeneity parameter α.
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Figure 6. Variation of dimensionless normal stress σzz(r, 0) with r (> a) for various
values of the nonhomogeneity parameter α.
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Figure 7. Variation of dimensionless normal stress σzz(r, 0) with r (> a) for different
values of a.
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Figure 8. Variation of dimensionless normal displacement w(r, 0) with r for different
values of a.
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Figure 9. Variation of dimensionless normal displacement w(r, 0) with r < a for various
values of the nonhomogeneity parameter α.

Appendix A

χ2 = 2
b1α (χ1 + 2(κ + 1))+ 2b2 (χ1 + 2(κ − 1))+ A1d1 (2(κ + 1)−χ1)

α
√
(3 − κ)(κ + 1)

,

χ3 =
1
p2

[4d1α
2(1 − κ − κ2)

κ + 1
− 4A2α

√
(3 − κ)(κ + 1)− 2α(κ + 1)b2

+ (κ + 1)d1(A2
1 + 2A2 + b2

1)
]
+

1
p2

2

(
p1 p2χ2 − p2

1χ1 + p2 p3χ1
)
,

χ4 =
1
p2

2
[(κ + 1) (p2(u4 +w4)− p1(u1 +w1))+ (3 − κ) (2p2b4 − p1(2b3 − d2))] ,

(A.1)
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where

2p1/d1 = κ2
+ κ − 4)α,

p2/d1 = κ + 1,

p3/d1 =
(κ3

− κ − 2)α
4(κ + 1)

+ (κ + 2)A2,

A1 =
α(κ − 2)

2
,

A2 =
α2

4(κ + 1)
(2 − κ(κ + 1)(3 − κ)) ,

A3 =
α3

8
(2 − κ)(κ + 1)(3 − κ),

u1 =
4b1

κ + 1
α2

+ 2αb2 + 2b3,

u4 =
4b2

κ + 1
α2

+ 2αb3 + 2b4 +
α3b1

κ + 1
,

w1/d1 = (A2
1 + 2A2 + b2

1)−
α2

2(κ + 1)
,

w4/d1 = (2A1 A2 + 2A3 + 2b1b2)− 2A1
α2

2(κ + 1)
,

b1 = −
κd1

2
,

b2 = −
(κ + 1)A1d1

2
,

b3 = −
α

2
A2

√
(3 − κ)(κ + 1)+

α2

4(κ + 1)
d1,

b4 =
α4

16
(κ − 2) 3

√
(κ + 1)(3 − κ),

d1 = α

√
3 − κ

κ + 1
,

d2 = −
α2

2(κ + 1)
d1.
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