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A single foreign inclusion perfectly embedded in an elastic plate is considered as a bimaterial setup
for finding the interface shape that minimizes the energy increment in a homogeneous shear stress field
given at infinity. While simple in concept, this optimization problem is very hard computationally. For
tractability, we limit our focus to a narrowed set of curves which can be conformally mapped onto a
circle by an analytic function with only one nonzero Laurent term. The resultant one-parameter shape
optimization problem with an integral objective functional is then accurately solved using an enhanced
complex variable approach. This scheme, though seemingly restrictive, provides good qualitative insight
into the optimal solution and bridges the gap between the limiting cases of the energy-minimal hole and
the rigid inclusion solved previously.

1. Introduction

Elastostatic analysis and optimization of fiber-reinforced composites is of current interest in various
fields of structural engineering, from the traditional mechanical industry [Ibrahim et al. 1991; Bull 1996]
to modern nanotechnology [Ovid’ko and Sheinerman 2005] and phononics [Gazonas et al. 2006]. The
fibers’ shape is of much less practical importance than their volume fraction, though they do significantly
influence the overall mechanical behavior. This results in an optimization problem: to maximize struc-
tural rigidity of a matrix, determine the shape of a fixed volume of fibers that minimizes the strain energy
increment induced in a given homogeneous stress state.

As in other branches of continuum mechanics, the stress-strain analysis of bimaterial structures has
advanced much further than the optimization of their mechanical properties. This is true even for the sim-
plest linear two-dimensional case considered here. Closed-form optima such as the equistress inclusion
shapes [Vigdergauz 1989] are extremely rare, whereas numerical schemes require a computationally dif-
ficult repetitive solution of the fourth-order elasticity equations in the phases domains with a successively
modified mutual boundary. The resulting chain of direct boundary value problems becomes especially
challenging in a multiconnected domain when a reinforcing phase is arranged into a set of interacting
inclusions. This manifests itself in unstable, inaccurate, and too time-consuming computations. It should
be pointed out that the difficulties emerge precisely from the computational repetitiveness of the opti-
mization process even though, for any given inclusion shape, the stresses and strains can be effectively
determined by a wide variety of methods.

Clearly, the optimization is simplified by neglecting fiber interaction. Motivated by this, we consider
here the relatively simple but nontrivial case of a single inclusion perfectly embedded into an unbounded
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and homogeneous medium that maintains at infinity the elastic fields σ∞
xx = P, σ∞

yy = Q, σ∞
xy = 0. The

exact formulation reads:
Given the single inclusion matrix topology, uniform static far-field loading, and the elastic properties

of both materials, find from among all admissible continuous curves the interface shape that minimizes
the ratio of the induced energy increment δW to the inclusion area.

For definiteness, the applied stresses are usually taken as either bulk load, that is, P = Q, or pure
shear, that is, P = − Q. The first case is much simpler than the second. For the bulk load, one may
use the principle of equistress boundary [Cherepanov 1974; Vigdergauz 1989] to reduce the matrix-
inclusion interaction along the optimal interface to a uniform normal pressure. The energy-minimizing
inclusion is then a circle regardless of elastic moduli of the phases. This principle does not apply to
anisotropy induced by shear loading. Instead, one may resort to a complex variable technique to perform
semianalytical optimization in the limiting cases of a hole [Vigdergauz and Cherkayev 1986; Vigdergauz
2006] and infinitely-rigid inclusion [Vigdergauz 2007]. Numerically, this approach leads to a resolving
system of linear algebraic equations with closed form coefficients obtained through the following steps:

(i) The biharmonic Airy function in the matrix region is equivalently replaced with a pair of complex-
valued holomorphic functions, the Kolosov–Muskhelishvili potentials [Muskhelishvili 1975].

(ii) This region is conformally mapped onto the exterior of a circle with the Laurent terms of the mapping
function serving as the optimizing design variables. In practice, they are necessarily truncated after
a small number of nonzero terms.

(iii) As a result, the KM potentials are transformed into new holomorphic functions which are then
expanded outside the circle into orthogonal Laurent series.

(iv) Finally, satisfying the boundary conditions (zero tractions for a hole, or zero displacements for
a rigid inclusion) gives the required system in the KM expansion coefficients. Due to the basis
orthogonality, a finite term mapping gives exactly a finite size system, with the closed form entries
linearly expressed through the Laurent mapping terms and integers [Vigdergauz and Cherkayev
1986; Vigdergauz 2006; 2007].

Both resulting shapes look like a slightly rounded square. For the optimal hole, the square is aligned
with the main stresses P, Q, whereas, for the optimal rigid inclusion, it is rotated from them by 45
degrees.

An elastic inclusion involves a second pair of the KM potentials, those inside the inclusion. Both pairs
are linked through the perfect contact conditions along the interface and hence are to be treated together.
It is well known, however, that no curve can have its inner and outer domains mapped simultaneously.
For this reason, the third step above becomes impossible and hence the whole scheme cannot be applied,
at least straightforwardly.

Shenfeld et al. [2005] proposed an alternative approach for use with a direct FEM solver with adaptive
meshing. They performed a reanalysis inside using a specially tailored conjugate gradient method. This
combination appears to perform well only for a hole or for a rather rigid inclusion; otherwise, the process
fails to converge. The genetic algorithm [Vigdergauz 2001], though highly effective for a hole, suffers
otherwise from the same drawback. Both schemes define the shape through a large number of equally
spaced nodal points, which are then taken as design variables.
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This suggests reconsidering the more economical representation achieved by the above mapping
scheme and adapting its third step for elastic inclusions. The untransformed potentials should be directly
expanded in their physical domains in a nonorthogonal basis, and the conformal mapping should serve
only to parameterize the shape. This modification alters the prior numerical performance in two ways,
both stemming from the allowed nonorthogonality. The resolving system remains infinite for a finite-term
mapping, but the closed forms for its coefficients now involve infinite sums. All other advantages of the
complex-variable approach remain. It permits developing a stable and sensitive optimization scheme that
is in line with the approach used for the limiting cases of a hole and a rigid inclusion. The corresponding
values of the energy minimum are used as a benchmark to control the computations. Importantly, both
cases converge rapidly after increasing the number of mapping terms: even the one term approximation
error is less than 0.36% (see Table 1 as extracted from [Cherkaev et al. 1998] and [Vigdergauz 2006]).
The error should decrease further for elastic inclusions having less contrast shear moduli. In other words,
the simplest possible configuration provides acceptable accuracy at rather low computational cost. For
these reason, we concentrate here on this one term scheme and obtain detailed optimization results for
all admissible values of the elastic parameters.

The paper is structured as follows. Section 2 formulates the elastostatic boundary value problem for
the matrix-inclusion layout. On this basis, the scheme for analytically assessing the energy increment
dependence of the inclusion shape is developed in Section 3 and Section 4 with some details moved
to Appendix A and Appendix B. Section 5 develops the optimization’s computational framework. In
Section 6, the proposed scheme is validated by comparing the simulation results with the limiting cases’
exact solutions. We present and discuss the numerical results in Section 7 and summarize the main
findings in Section 8.

2. Complex variable formulation of plane elasticity

2.1. The forward problem in a bimaterial structure. Figure 1 shows the two phase arrangement in
an infinite plate S with an interface L enclosing the origin of the Cartesian system (x, y). Here and
throughout, we use the indexes j = 1 and j = 2 to identify the inclusion the matrix, respectively. The
curve L divides the plate in two parts S1 and S2 = S−S1. To each we associate isotropic and homogeneous
phases with planar shear moduli µ j and Poisson ratios ν j .

To begin, remotely load the plane by an asymptotically uniform stress tensor σ∞ with components

σ∞

xx = P, σ∞

yy = Q, σ∞

xy = 0. (1)

Define z = x + iy to be the complex variable in the plane S. Then the inclusion distorted field σ =

{σxx , σyy, σxy} is linearly expressed at any point z ∈ S through the first two derivatives of the coupled
KM analytical potentials ϕ j (z) and ψ j (z), which are defined in the subdomains S j [Muskhelishvili 1975].
For z ∈ S j ,

Tr{σ(z)} = σxx(z)+ σyy(z)= 4<ϕ′

j (z),

Dev{σ(z)} = σyy(z)− σxx(z)= 2<[z̄ϕ′′

j (z)+ψ
′

j (z)],

σxy(z)= =[z̄ϕ′′

j (z)+ψ
′

j (z)].

(2)
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Figure 1. The problem schematic: an infinite plate with a perfectly embedded elastic
inclusion under uniform stresses. The cases P = Q and P = − Q correspond to remote
bulk and shear. The piecewise smooth hole boundary has a discrete rotational symmetry
and may have a finite number of angular points.

Across the interface L , the assumed continuity of the tractions and the displacements links the boundary
values of the KM potentials as [Muskhelishvili 1975]

ϕ1(t)+ t̄ϕ′

1(t)+ψ1(t)= ϕ2(t)+ t̄ϕ′

2(t)+ψ2(t),

λ1ϕ1(t)− t̄ϕ′

1(t)−ψ1(t)= µ12[λ2ϕ2(t)− t̄ϕ′

2(t)−ψ2(t)],
(3)

where µ12 = µ1/µ2, µ2 6= 0, and t ∈ L . Here

λ j =
3 − ν

(stress)
j

1 + ν
(stress)
j

, ν
(stress)
j ∈ [0, 1], for plane stress, (4)

λ j = 3 − 4ν(strain)
j , ν

(strain)
j =

ν
(stress)
j

1 + ν
(stress)
j

∈ [0, 0.5], for plane strain. (5)

The unobservable negative values of ν j are excluded from the numerical simulations (see Section 7).
Then both cases j = 1, 2 share the interval 1 ≤ λ j ≤ 3. The λ j , together with the shear moduli ratio µ12,
serve as unified elastic parameters of the problem.

In the limiting cases of a hole (µ12 = 0) or an infinitely rigid inclusion (µ12 → ∞), the contact
relations Equation (3) degenerate to one condition of zero tractions or zero displacements, respectively
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[Muskhelishvili 1975]:

ϕ2(t)+ t̄ϕ′

2(t)+ψ2(t)= 0, for a hole,

λ2ϕ2(t)− t̄ϕ′

2(t)−ψ2(t)= 0, for a rigid inclusion.

For reference, we note that the second goes into the first by formally putting λ2 = − 1. This is the
Dundurs correspondence [Jasiuk 1995]. This fact makes it possible to express the matrix side stresses
on L in a form not involving the second potential ψ2(t) [Vigdergauz 2007], as

σρρ(t)= (λ2 + 1)<ϕ′

2(t),

σθθ (t)= (3 − λ2)<ϕ
′

2(t),

σρθ (t)= (λ2 + 1)=ϕ′

2(t)),

(6)

where t = ρeiθ
∈ L . The local von Mises equivalent stresses σ 2

M = (σρρ +σθθ )
2
+σ 2

ρθ −3σρρσρρ at t can
also be combined from Equation (6) in similar fashion, so that

σ 2
M(t)= D1(λ)(<ϕ

′

2(t))
2
+ D2(λ)(=ϕ

′

2(t))
2,

D1(λ)= 7 − 6λ+ 3λ2,

D2(λ)= 3(1 + λ)2.

(7)

Of course, at λ2 = −1 the above relations transform into the traction-free conditions σρρ(t)= σρθ (t)= 0.
Finally, homogeneous loads (1) yield the far field asymptotics

ϕ2(z)= Bz + a(2)1 z−1
+ O(|z|−2),

ψ2(z)= 0z + b(2)1 z−1
+ O(|z|−2),

4B = Tr{σ∞
} = P + Q,

20 = Dev{σ∞
} = Q − P.

(8)

At the chosen bimaterial topology, the initial problem of finding the local stresses and strains is equivalent
to the homogeneous boundary value problem (3) in the analytic functions ϕ j (z), ψ j (z) with a nonzero
right hand side given by Equation (8).

The normalized energy increment has the form (see for instance [Jasiuk 1995])

δW = 2π f −1
1

(
20a(2)1 + Bb(2)1

)
, (9)

where f1 is the inclusion area. Because the stresses are linear in the far loading parameters P and Q, we
have

a(2)1 = Bα12 +0α11, b(2)1 = Bβ22 +0β21,

and hence δW possesses a convenient bilinear form in B, 0 given by

δW = 2π f −1
1

(
202α11 + B0(2α12 +β21)+ B2β22

)
, (10)

where α12, β22 and α11, β21 are computed at the unit trial loadings: for bulk B = 1, 0 = 0, and for
pure shear B = 0, 0 = 1, respectively. Though they can be extracted only from the full-scale solution
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to Equation (3) and Equation (8), such extraction requires less accuracy than optimizing, say, the local
stresses. Next, we will exploit this numerical advantage further by developing a scheme for minimizing
δW .

3. Developing the optimization scheme: analytical preliminaries

In our notation, the problem takes the following form:
Given the phase moduli λ1, λ2, and µ12, find the interface shape L that globally minimizes the energy

increment of Equation (10) for pure shear (B = 0, 0 = 1):

δW (λ1, λ2, µ12, L)−−−−−−−−−−→
{L}

min ≡ δWmin(λ1, λ2, µ12). (11)

Its numerical treatment requires a nontrivial preliminary analysis which is performed below to the max-
imum extent.

3.1. Integral criterion for the analyticity of a function. The following development is based on the
analyticity of the KM potentials, which can be represented in several equivalent forms. Most relevant here
is the set of regular integrals along L as we derived previously in [Vigdergauz 2001]. For convenience,
the result is presented here.

Let φ1(z) and φ2(z) be arbitrary analytic functions of z in S1 and S2 with φ2(z) linearly growing at
infinity, that is, φ2(z)= C1z + O(z−1). Then their boundary values along L obey the following identities
in the complementary domains [Gamelin 2001]:

J1(z)≡

∫
L

φ1(t)
t − z

= 0, for all z ∈ S2; J2(z)≡

∫
L

φ2(t)− C1t
t − z

= 0, for all z ∈ S1. (12)

By construction, Cauchy-type integrals such as Equation (12) are always analytic [Gamelin 2001]. The
Cauchy identity is commonly used for transforming functions into a boundary form with a singularity

J1(t0)=
1
2
φ1(t0)+

1
2π i

∫
L

φ1(t)
t − t0

dt = 0,

J2(t0)=
1
2
(φ2(t0)− C1t0)−

1
2π i

∫
L

φ2(t)− C1t0
t − t0

dt = 0,
(13)

where t0 ∈ L , and L is traversed counterclockwise. When L satisfies some minimal smoothness require-
ments, Equation (12) and Equation (13) are equivalent [Gamelin 2001].

To avoid the boundary singularity, we can use alternatively the analyticity property that implies J1(z)
and J2(z) remain zero everywhere if they vanish in the circular subdomains |t/z| < 1 for z ∈ S2 and
|z/t |< 1 for z ∈ S1. We expand the Cauchy kernel (t − z)−1 in the convergent powers series

1
t − z

= −
1
z

∞∑
k=0

tk

zk ,

∣∣∣∣ tz
∣∣∣∣< 1, z ∈ S2, (14)

1
t − z

=
1
t

∞∑
k=0

zk

tk ,

∣∣∣ z
t

∣∣∣< 1, z ∈ S1,
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and substitute Equation (14) into Equation (12). Requiring each term vanish yields equivalent sets of
resolving identities: ∫

L

φ1(t)tkdt = 0,
∫
L

φ2(t)t−k−1dt = C1δk,1, (15)

where k = 0, 1, 2, . . . and δ j,k is the Kronecker delta.
These regular integrals have numerical advantages over their more frequently used singular counter-

parts of Equation (13).

3.2. Inclusion shape representation.

3.2.1. A circular inclusion. The elastostatic problem of Equation (3) and Equation (8) has a unique
solution [Muskhelishvili 1975], at least for any piecewise smooth inclusion shape L . The shape is
therefore the only factor influencing the overall numerical difficulty. For instance, a circle |t | = 1, f1 = π

gives a finite form solution

ϕ1(z)=
µ12(λ2 + 1)

2µ12 + λ1 − 1
Bz, ψ1(z)=

µ12(λ2 + 1)
1 +µ12λ2

0z,

ϕ2(z)= Bz +0α11z−1, ψ2(z)= 0z + Bβ22z−1
+0α11z−3,

α11 =
µ12 − 1

1 +µ12λ2
, β22 =

µ12(λ2 − 1)− λ1 + 1
2µ12 + λ1 − 1

,

α21 = β12 = 0,

with the energy increment of Equation (10) becoming

δWcircle = 2B2µ12(λ2 − 1)− λ1 + 1
2µ12 + λ1 − 1

+ 402 µ12 − 1
1 +µ12λ2

. (16)

It is worth noting that the inclusion potentials ϕ1(z) and ψ1(z) are linear in z, and hence, in view of
Equation (2), both trial loadings induce a similar constant stress tensor inside a circle |z| ≤ 1. For bulk
loading,

Tr{σ∞
} = B = 1, Dev{σ∞

} = 0 = 0, (17)

H⇒ Tr{σ(z)} = 4
µ12(λ2 + 1)

2µ12 + (λ1 − 1)
, Dev{σ(z)} = 0, σxy(z)≡ 0, (18)

whereas, for pure shear,

Tr{σ∞
} = B = 0, Dev{σ∞

} = 0 = 1, (19)

H⇒ Tr{σ(z)} = 0, Dev{σ(z)} = 2
µ12(λ2 + 1)
1 +µ12λ2

, σxy(z)≡ 0. (20)

The similarity between the remote and inclusion fields is important in the optimization context. Due
to the isotropy of σ(z) in Equation (17), a circle provides the global minimum for δW under isotropic
bulk loading [Vigdergauz 1989]. In contrast, it remains unknown whether the full anisotropy of σ(z) in
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Equation (19) provides the energy minimum under anisotropic pure shear. Numerical evidence relevant
to this question is discussed in Section 7.

3.2.2. A general shape. Other shapes can be treated only numerically. Within the complex variable
formulation, a typical numerical scheme consists of four consecutive steps:

(i) transforming the problem Equation (3) with (8) into singular integral equations for the complex-
valued density function χ(t), t ∈ L along the material’s interface. Discussed by Greengard and
Helsing [1998], the idea dates back to Sherman [1959];

(ii) converting the equation into an infinite system of linear algebraic equations in the Fourier amplitudes
of χ(t):

χ(t)=

∞∑
k=1

ak tk
+ bk t−k

;

(iii) solving numerically the truncated system;

(iv) restoring the finite-term approximation for the potentials by integrating χ(t) and related quantities
over L . Here, the difficulties are transferred to stage (ii) because the system coefficients involve
hard-to-compute integrals of rapidly oscillating functions along L .

For stage (ii), Greengard and Helsing [1998] use the fast multipole method, an adaptive quadrature
technique, and other advanced procedures to achieve impressive results in computing the stress field
for a generally shaped interface. Clearly, the algorithm works much faster for a smooth shape when the
time-consuming integration over singularities can be simplified without loss of accuracy to the trapezoidal
rule.

In numerical experiments, Greengard and Helsing [1998] parameterize the interface shape using a
Fourier series over a unit circle γ :

t =

∞∑
k=1

gkξ
k
+ hkξ

−k, (21)

where t ∈ L , ξ = eiη
∈ γ , and 0 ≤ η ≤ 2π . This is exemplified by the nine-armed contour:

t = 0.36(1 + 0.36 cos 9η)eiη
= g1ξ + g10ξ

10
+ h8ξ

−8,

g1 = 0.36, g10 = h8 = 0.18,
(22)

where all other gi and hi vanish. Greengard and Helsing [1998] calculated numerically the integral-type
coefficients of the resolving algebraic system in stage (ii). However, for on-circle parameterizations such
as Equation (22), we can obtain the coefficients analytically, using the residue technique [Gamelin 2001].
This feature could save time in analyzing structures modified repeatedly. However, computations (not
reported here) show the optimization process has an instability caused by the simultaneous presence of
high positive and negative powers of the polar angle Fourier series such as those in Equation (22).

Matters can be substantially improved by presenting the inclusion shape through the boundary values
of an analytic mapping function ω(ζ ) that behaves asymptotically as Cζ + o(1) and has only negative
powers:

t = ω(θ)= Cτ +

∞∑
k=1

dkτ
−k . (23)
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ω(ζ ) maps conformally the region 62 : |ζ | ≥ 1 outside the unit circle onto the matrix domain S2 outside
L , with correspondence of the infinity point. Without loss of generality, we suppose that C = 1 and the
coefficients {dk} are real.

In Equation (21) and (23) we use different notations for the circle points to clarify the following. At
first glance, (23) might appear to be a only subset of (21) narrowed by dropping the coefficients gk for
k > 1. On the contrary, the complex analysis implies that any closed continuous curve can be written in
either of the two forms even though there is no pointwise correspondence between them. Actually, both
parameterizations are linked through the identity

t =

∞∑
k=1

gkξ
k
+ hkξ

−k
= τ(ξ)+

∞∑
k=1

dkτ(ξ)
−k,

using the transformation function τ = τ(ξ) and requiring |τ | = |ξ | = 1. Unfortunately, such τ(ξ) is not
easy to find, even for only one nonzero coefficient gk, k > 1, as in Equation (22). However this is not
our aim here. Instead, we truncate the representation (23) after M terms:

ω(ζ )= ζ +

M∑
k=1

dkζ
−k,

where |ζ | ≥ 1. The expansion coefficients serve as design variables in our previous papers [Vigdergauz
2006; 2007] for the limiting cases of a hole or rigid inclusion. This leads to a novel direct problem solver
which is rather fast and stable and can be repetitively used in a successive shape optimization algorithm
over the set CM(d1, . . . , dM) of the M-term conformal images of γ . An additional computational option
is a p-fold rotational symmetry of the inclusion ω(exp(2iπ/p)ζ )= exp(2iπ/p)ω(ζ ) in which only the
coefficients {dpk−1, k = 1, 2, . . .} differ from zero. Here,

ω(ζ )= ζ +

M∑
k=1

dpk−1ζ
−(pk−1). (24)

In these design variables, the mapping terms possess several useful properties that diminish the problem’s
computational burden. First, they are subject to successfully narrowing bilateral estimations

−
1

√
m

≤ dm ≤
1

√
m
, m = 1, 2, . . . , (25)

that follow from the nonnegativeness of the area f1 inside γ [Gamelin 2001]

f1 = π
(

1 − d2
1 − 2d2

2 − . . .− nd2
n

)
≥ 0.

Second, they are naturally ordered, in that the higher the coefficient, the lesser its global impact on
the inclusion shape (see Table 1). This argument parallels the fact that the set CM contains a diverse
pool of closed continuous curves even at very small values of M . For instance, the one-term mapping
ω(ζ )= ζ + d1ζ

−1 presents the full family of axes-aligned ellipses with eccentricity |d1| ≤ 1, a widely
modeled inclusion shape in elasticity studies. Their square symmetric counterparts are exemplified in
Figure 2. Finally, as already mentioned, the residue technique routinely gives the integrals of Equation
(15) in closed form.
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Figure 2. Square symmetric shapes generated from a circle by the one-term mapping
ω(ζ )= ζ + d3ζ

−3 for d3 = 0 (a), d3 = ∓0.21 (b, d, respectively), d3 = ∓1/3 (c, e). The
latter curves present the limiting case of 4-cusped hypocycloids with entrant angles.

In concluding, we note that the first derivative of a single-valued mapping can vanish only inside γ
[Gamelin 2001]. For the one-term function ω(ζ )= ζ + dmζ

−m , that ω
′

(ζ )= 1 − mdmζ
−m−1

= 0 only
for |ζ |< 1 implies that the inequalities in Equation (25) are sharpened to

−
1
m

≤ dm ≤
1
m
.

To our knowledge, this has not yet been noticed in the literature.

Hole [Cherkaev et al. 1998] Rigid inclusion [Vigdergauz 2006]
λ2 = − 1 λ2 = 3 λ2 = 2 λ2 = 1.4 λ2 = 1

N=1 3.6E-03 1.0E-04 4.5E-04 1.5E-03 3.6E-03
N=2 7.7E-04 6.2E-06 5.3E-05 2.6E-04 7.7E-04
N=3 2.5E-04 6.9E-07 1.1E-05 7.1E-05 2.5E-04
N=4 9.6E-05 9.9E-08 2.8E-06 2.0E-05 9.6E-05
N=5 3.1E-05 1.5E-08 6.5E-07 1.7E-06 3.1E-05

Table 1. The limiting cases: the relative error
(
δW (N )/δW (6)− 1

)
of the minimum

energy increment versus the number of the first nonzero mapping terms, N . The value
δW (6) is nearly exact. The outside error columns coincide due to the Dundurs corre-
spondence.
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4. The one-potential solving scheme

We are now in a position propose a scheme for solving the forward elastostatic problem. First, we note
that the previous section’s stage (i) for deriving the singular integral equation is redundant. The contact
conditions Equation (3) can be directly transformed into an infinite set of regular integrals along L that
involve only the first potentials ϕ1,2(t). This set serves as a pattern for obtaining a resolving system
algebraic equations such as those in stage (ii).

Here we use that, in contrast to ϕ1,2(z), the second potentials ψ1,2(z) appear in the boundary conditions
of Equation (3), and they are neither conjugated nor differentiated. This makes it possible to separate the
potentials and hence to economically find them in sequence rather than in parallel. In doing so, we first
exclude ψ1,2(z) from consideration. Solving the algebraic relations of Equation (3) for them, we have

(1 −µ12) ψ1(t)= (λ1 +µ12) ϕ1(t)− (1 −µ12) t̄ϕ
′

1(t)−µ12 (1 + λ2) ϕ2(t), (26)

(1 −µ12) ψ2(t)= (1 + λ2) ¯ϕ1(t)− (1 −µ12) t̄ϕ
′

2(t)− (1 + λ2µ12) ¯ϕ2(t). (27)

Inserting the right-hand sides of Equation (26) as integrands for the analyticity conditions in Equation
(15) and making use of Equation (8), we arrive at an infinite set of identities in ϕ1,2(z). In the second
step, we evaluate the resultant integrals involving the boundary values of ϕ1,2(z) and their first derivatives
multiplied by powers of t . With Equation (8), we simply expand the sought-for functions in converging
series inside and outside L:

ϕ1(z)=

∞∑
m=1

a(1)m zm, ϕ2(z)= B +

∞∑
m=1

a(2)m z−m(z). (28)

Their substitution results finally in the infinite system of algebraic equations in a(1,2)m , where only the
unknown a(2)1 is required for finding the energy increment δW at pure shear when, in conformity with
Equation (10),

δW = 4π f 1
1 0

2α11. (29)

Here again, α11 = a(2)1 at B = 0 and 0 = 1.
Some local characteristics of the resultant stress field can be evaluated without the second potential

ψ1,2(z). For instance, in view of Equation (2), the trace Tr{σ(t)} along the inclusion-matrix interface has
a form involving only the potential ϕ1,2(t). However, in contrast to the integral relation of Equation (29)
for δW , here the remaining unknowns a(1,2)k also enter in the resultant expressions through Equation (28).
Numerically, this manifests in high frequency oscillations about the true values (the Gibbs phenomenon)
as exemplified in Section 6.

In the optional final step, the second potential ψ1,2(z) can be immediately computed through Equation
(26), if we are interested in the individual local stresses of Equation (2).

5. The computational framework

In computational practice, the infinite resolving system is truncated to a finite size as(
−(λ2µ12 + 1)A(0)11 − (1 −µ12)A

(1)
11 (λ1 +µ12)A12

−µ12(1 + λ2)A21 (1 + λ2)A
(0)
22 − (1 −µ12)A

(1)
22

)
X = B, (30)
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where the Ai j are N × N matrices whose elements are linear in the boundary integrals

J (1)m,n =
1

2π i

∫
L

tm t̄n dt, J (2)m,n =
1

2π i

∫
L

tm+n t̄ dt, (31)

where m, n = ±1,±2, . . . and there are no elastic constants involved. The (2N )-element vector of
unknowns takes the form

X = (a(2)1 , a(2)2 , . . . , a(2)N , a(1)1 , a(1)2 , . . . , a(1)N ).

For pure shear, the right-hand side B has zeroes in all places but the first, which is equal to (1 −µ12).
When µ12 = 1, the homogeneous system Equation (30) returns all unknowns as zero. Physically, this is
because the far-field shear stress is not disturbed by any inclusion shape if both materials have the same
shear modulus. Further, when the moduli are almost the same with µ2 = µ1 + ε, ‖ε‖ � 1, the first order
ε-approximation of δW is independent of the inclusion shape, as proven analytically in Appendix A.

In the general case, the system Equation (30) must be treated numerically. Though only the first
unknown a(2)1 is required for finding the energy increment, we prefer finding the full vector X for control
purposes. We solve the system using the standard LU -decomposition with iterative refinement. This
requires 8N 3/3 + 2N 2

+ N operations which are performed for better accuracy in double-precision
arithmetic.

However, in the entire computation, the most time-consuming stage is evaluating the integrals of
Equation (31). As already mentioned, this is done analytically by summing the residues at the integrand
poles. Deriving the needed expressions involves complicated algebra, especially if the mapping has
multiple terms. As a technical simplification, we consider here only a one-term mapping as Equation
(24) for the p-fold rotational symmetry: ω(ζ )= ζ + dp−1ζ

−p+1. The optimization problem of Equation
(11) then becomes

δW (λ1, λ2, µ12, dp−1)−−−−−−−−−−−−→
{dp−1}

δWmin(λ1, λ2, µ12), (32)

where

f1 = 1 − (p − 1)d2
p−1, −

1
p − 1

≤ dp−1 ≤
1

p − 1
. (33)

Single-term expressions for the integrals are given in Appendix B. The shape optimization over dp−1 in
the interval in Equation (33) is then performed by the standard GA scheme with a 32-bit representation
of random numbers.

At first glance, the problem Equation (32) with Equation (33) is disappointingly simple compared to
the initial formulation in the Introduction. We emphasize again that our choice is justified quantitatively
by the accurate one-term results displayed in Table 1 for the limiting cases with the most contrasting
shear moduli. Though it does not capture the optimum’s fine details, already this approximation leads to
nontrivial results not yet reported in the literature.

6. Numerical validation of the optimization scheme

In this section, we assess the performance of the proposed approach by comparing it against the one-term
exact solutions. They are known for the limiting cases of the hole and rigid inclusion [Vigdergauz 2007].
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Apparently, the optimal shapes differ from circles only for square symmetry (p = 4):

δW3 =
λ2

(λ2 + d3)(1 − 3d2
3 )
, d(min)

3 =

√
λ2

2 + 1 − λ2

3
,

min
d3
δW3 =

9λ2

2(2λ2 +

√
λ2

2 + 1)(1 − λ2
2 + λ2

√
λ2

2 + 1)
,

ϕ2(τ )= −
τ 2

(λ2 + d3)(1 − d3τ 4)
, where τ = eiθ

∈ γ,

(34)

and where the negative value of the radical
√
λ2

2 + 1 is taken for the hole with λ2 = − 1.
We first use these analytical results to choose a compromise value for N in the truncated system of

Equation (30)), so that a reasonably accurate energy assessment can be obtained at a moderate com-
putational cost. As N increases, Table 2 shows the convergence to the exact value of min δW3. We
take N = 24 for further computations. This relatively large number is the price paid for using the
nonorthogonal expansions of Equation (28).

As could be expected, the local von Mises stresses Equation (7) are computed less accurately than
the energy increment because of the oscillations around the exact values (see Figure 3, Figure 4). These
oscillations are caused not only by the nonorthogonal expansion basis Equation (28) but also by truncat-
ing the resolving infinite system to a finite size. The net effect of the truncation on the oscillations is
nicely shown in [Cherkaev et al. 1998], where the transformed KM potentials are orthogonally expanded
outside a unit circle. We note that the oscillations are not eliminated completely by increasing N . Only
the analytical solution of the infinite system by finite differences [Vigdergauz 2006; 2007] yields in
the limiting cases the exact results of the type in Equation (34). Alternatively, the oscillations can be
mitigated using filter techniques (see, for example, Laverty and Gazonas [2006]). This subject deserves
a separate study.

Hole Rigid inclusion
λ2 = − 1 λ2 = 2 λ2 = 1.4

δW Erel δW Erel δW Erel

0.931980515 0.980355859 0.962041131

N = 6 0.916266066 < 1.7×10−2 0.980330084 < 2.6×10−5 0.960521619 < 1.6×10−3

N = 12 0.931497017 < 5.2×10−4 0.980355816 < 4.4×10−9 0.962031339 < 1.0×10−5

N = 18 0.931913140 < 7.2×10−5 0.980355859 < 1.3×10−10 0.962040784 < 3.6×10−7

N = 24 0.931967450 < 1.4×10−5 0.980355859 < 8.9×10−11 0.962041116 < 1.6×10−8

N = 30 0.931977621 < 3.1×10−6 0.980355859 < 5.0×10−14 0.962041131 < 2.4×10−10

Table 2. The limiting cases of a hole and a rigid inclusion: the energy minima and
their relative deviations from the exact value of Equation (34), as computed for different
half-sizes of the resolving system (30) for the one-term square symmetric mapping.
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Figure 3. The angular distribution of the von Mises stresses σM(t) along a quarter of
the δW -optimal hole shown in the inset. The computed values stand against the exact
result (the dotted line).

7. Numerical results

In the main body of the numerical simulations we detail the dependence of the energy minimum on the
elastic parameters of both materials, as seen the in the right hand side of Equation (32). To this end, we
replace the problem Equation (32) by the three-parameter subproblems (1 ≤ λ1,2 ≤ 3)

δW (λ1, λ2, µ12, dp−1)−−−−−−−−−−−−−−−−−→
min{λ1}, min{λ2}, min{dp−1}

δWm(µ12),

δW (λ1, λ2, µ12, dp−1)−−−−−−−−−−−−−−−−−→
max{λ1}, max{λ2}, min{dp−1}

δWM(µ12),
(35)

which are solved separately over the discrete set of values 0 < µ12 < 1 when the inclusion is softer
than the matrix, and 0 < µ21 ≡ µ−1

12 < 1 when the inclusion is harder than the matrix. It is of interest
that the computed minima of Equation (35) are attained at the endpoints of the interval for λ1,2. This is
displayed in Table 3, together with the reference points δWm,M(λ2, µ12) for µ12 = 0, 1,∞, which are
already known from Equation (34). Recall that λ1,2 = 1 describes an incompressible material.

µ12 = 0 0< µ12 < 1 µ12 = 1 µ12 ≥ 1 µ12 = ∞

δWm 0.931980515 . . . λ1 = 3, λ2 = 1 0.0 λ1 = 1, λ2 = 1 0.931980515 . . .
δWM 0.931980515 . . . λ1 = 1, λ2 = 3 0.0 λ1 = 3, λ2 = 3 0.990987403 . . .

Table 3. The parameters λ1,2 at which the extrema of Equation (35) are attained versus µ12.
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Figure 4. The angular distribution of the matrix-side von Mises stresses σM(t) along
a quarter of the δW -optimal rigid inclusion (shown in the inset). The computed values
stand against the exact result (the dotted line).
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Figure 5. The attainable region of δWmin from Equation (36) bounded by δWM(µ12)(a)
and δWm(µ12)(b). The evolution of the optimal inclusion shape is also shown by discrete
examples.
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Figure 6. The angular distribution of the matrix-side (1) and inclusion-side (2) stress-
tensor trace along a quarter of the δW -optimal inclusion (shown in the inset) at µ12 =

3, ν1 = ν2 = 0.

The tabled information is graphed in Figure 5, which depicts the attainable region for
δWmin(λ1, λ2, µ12) in the (δWmin, µ12) plane:

δWm(µ12)≤ δWmin(λ1, λ2, µ12)≤ δWM(µ12), (36)

where µ12 ∈ [0,∞) and λ1,2 ∈ [1, 3]. It would be interesting to know whether each point inside the
bounds in Equation (36) at a given µ12 corresponds to a pair of Poisson ratios ν1 and ν2. This question
is still open, though the affirmative answer seems ‘obvious’.

Finally, Figure 6 shows the distribution of the stress-tensor trace Tr{σ(t)} along the optimal inclusion
shape. We note that the found local optima are extremely stable against multiple starts of the GA solver.

Three distinctive features seen in the figures support our assumption that the one-term mapping works
practically for elastic inclusions.

First, Figure 5 shows that the energy bounds δWm(µ12), δWM(µ12) grow rapidly near the limit points
µ12 = 0,∞. In other words, even slightly low contrast materials significantly reduce the energy opti-
mization gain.

Next, the gain is vanishingly small in a reasonably wide vicinity of the point µ12 = 1 of the same
shear moduli so that very good accuracy is achieved with the first-order approximation of Equation (A.6)
in the small parameter (µ12 − 1). We note that the proposed algorithm is here surprisingly stable and
accurate in computing small differences between the energy values.

Finally, Figure 6 shows no oscillations in the stress distributions, as opposed to the limiting cases in
Figure 3 and Figure 4. This is because the scheme converges faster for low contrast shear moduli. Hence,
the local results are sufficiently accurate to conclude that the stress state inside the shear-optimal elastic
inclusion has a nonzero trace, in contrast to the circular inclusion as given by Equation (19). However,
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we cannot rule out that the trace gradually vanishes for multiterm mappings not considered here. Finally,
we note that the optimal shape’s large curvature points become less distinctive for low contrast materials
(see Figure 5) and that the shape turns by 45 degrees when passing the point µ12 = 1.

8. Concluding remarks

We present a novel numerical scheme for solving the elastic equations for a single-inclusion composite
model. This scheme has distinctive features making it highly competitive against other known approaches
in assessing the global strain energy and the related quantities.

First, the material interface is presented by a finite-term conformal mapping rather than by nodal
points. Regardless of the elastostatic specifics, this expedient enables one to form the initial pool of
shapes with a very small number of design variables and hence can be used for optimizing other physical
processes in plane two-phase structures.

Next, the KM potentials are computed sequentially rather than in parallel. Finally, the boundary
integrals involved are computed analytically (by the residuals) rather than numerically. This stage, though
computationally effective, is the most time-consuming part of the algorithm, especially for a multiterm
mapping. For this reason, repetitive calculation of the forward problem within an optimization process
can be troublesome. Matters can be simplified by using the minimal one-term map which is nevertheless
informative enough to provide nontrivial results not previously reported in the literature.

Appendix A: Perturbations of the energy for nearly equal shear moduli

To advance the analytical derivations, we now suppose that µ1 ≈ µ2 or, equivalently

µ12 = 1 + εµ + ε2
µ + . . . , (A.1)

where |ε| � 1. The continuous K , µ-dependence of the KM potentials allows us expand them also as
perturbation series in εµ

ϕ j (z)= ϕ j,0(z)+ϕ j,1(z)εµ + . . .

ψ j (z)= ψ j,0(z)+ψ j,1(z)εµ + . . . ,
(A.2)

where z ∈ S j , j = 1, 2. Substituting (A.1) and (A.2) into Equation (3) and equating the coefficients of
equal powers of ε on the left and right hand sides gives:

(i) At zeroth order, two chained, homogeneous problems in sectionally holomorphic functions
((λ1 + 1)ϕ1(z), (λ2 + 1)ϕ2(z)) and (ψ1(z), ψ2(z)). For t ∈ L ,

(λ1 + 1)ϕ1,0(t)= (λ2 + 1)ϕ2,0(t)

ψ1,0(t)−ψ2,0(t)= ϕ2,0(t)+ tϕ′

2,0(t)−ϕ1,0(t)− tϕ′

1,0(t)
(A.3)

with nonzero shear-type asymptotics of Equation (8). As |z| → ∞,

ϕ2,0(z)= O(|z|−1), ψ2,0(z)= 0z + O(|z|−1). (A.4)



80 SHMUEL VIGDERGAUZ

(ii) At the successive inhomogeneous higher orders, we have, for t ∈ L ,

(λ1 + 1)ϕ1,l(t)− (λ2 + 1)ϕ2,l(t)= F (l)(t)≡ λ2ϕ2,l−1(t)− tϕ′

2,l−1(t)−ψ2,l−1(t)

ψ1,l(t)−ψ2,l(t)= ϕ2,l(t)+ tϕ′

2,l(t)−ϕ1,l(t)− tϕ′

1,l(t),
(A.5)

for l = 1, 2, . . . and with ϕ2,l(z), ψ2,l(z) vanishing at infinity.

In view of (A.4), the unique solution of the homogeneous problem of (A.3) is an identically vanishing
ϕ j,0(z)≡ 0, for z ∈ S1 + S2 and j = 1, 2. Hence

ψ j,0(z)= 0z

for the same z and j . Substituting (A.4) into (A.5) at l = 1 yields the first-order boundary value problem
for ϕ1,2(z). For t ∈ L ,

(λ1 + 1)ϕ1,1(t)− (λ2 + 1)ϕ2,1(t)= −0t̄,

which is immediately solved through the Cauchy-type integral

(λ j + 1)ϕ j,1(z)= −
0

2π i

∫
L

t̄dt
t − z

;

for z ∈ S j . This permits finding the first-order approximation for the coefficient a(2)1 entering into the
energy increment expression Equation (9) as

a(2)1,1 = lim
z→∞

zϕ2,1(z)= lim
z→∞

0

2π i(λ2 + 1)

∮
L

t̄dt
1 − t/z

=
0

2π i(λ2 + 1)

∮
L

t̄dt

=
0

2π(λ2 + 1)

∮
L

(ydx + xdy)=
0

λ2 + 1
f1.

Taking this expression into Equation (9), we see that the first-order energy increment

δW1 =
402

(λ2 + 1)
(µ12 − 1) (A.6)

depends neither on the inclusion shape L nor the elastic parameter λ1. As expected, identity (Equation
(A.6) is consistent with the asymptotic expansion δWcircle in Equation (16). The L-dependence of the
energy thus first appears at second-order in (µ12 − 1).

Appendix B: Analytical evaluation of the integrals

Our aim here is show the technique for obtaining in closed form the coefficients of Equation (31) for
the resolving algebraic system Equation (30). With a finite-term mapping function t = ωn(τ ), τ ∈ γ , it
can be done using the binomial identities [Abramonwitz 1965] to expand the integrands into convergent
powers series in τ and integrating them term-by-term over a unit circle γ where the residue theorem
[Gamelin 2001] gives ∫

γ

τmdτ = 2π iδm,−1, (B.1)
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where m = 0,±1,±2, . . .. For concreteness, we consider next the one-term square symmetric mapping
ω(τ) = τ + d3τ

−3. Employing the generating polynomials for a nonnegative integer m = 0, 1, . . .
[Abramonwitz 1965], we use, for |x |< 1,

(
1 + x

)m
=

m∑
i=0

(
m
i

)
x i ,

(
1 + x

)−m−1
=

∞∑
i=0

(
−m

i

)
x i ,

where (
m
i

)
=

m!

i !(m − i)!
,

(
−m

i

)
= (−1)i

(m + i)!
m!i !

. (B.2)

We arrive at the basic expansions in powers of τ

(
1 + d3τ

±4)m
=

m∑
i=0

(
m
i

)
d i

3τ
±4i ,

(
1 + d3τ

±4)−m−1
=

∞∑
i=0

(
−m

i

)
d i

3τ
±4i . (B.3)

With Equation (B.1), substitution of (B.2)–(B.3) into Equation (31) yields separately for positive and
negative indices m, n

J (1)−m,−n =

∫
L

dt
t̄4n−3t4m−2 =

∫
L

τ 4(n−m)(1 − 3d3τ
−4)dτ

τ(1 + d3τ 4)4n−3(1 + d3τ−4)4m−2

= 2π i
(
S0 − 3d3S1

)
,

Sp =

∑
i=0,...,∞
j=0,...∞

s.t. n−m+ j−i=p

(
−(4m − 3)

i

)(
−(4n − 4)

j

)
d i+ j

3 , where p = 0, 1.

(B.4)

Also,

J (2)−m,−n =

∫
L

t̄dt
t4(m+n−1) =

∫
L

(1 + d3τ
4)(1 − 3d3τ

−4)dτ
τ 4(m+n−1)+1(1 + d3τ−4)

= 2π id3δm+n,2.

The remaining integrals are written similarly

J (1)m,−n =

∫
L

t4m−2dt
t̄4n−3 = 2π i

(
T0 − 3d3T1

)
,

Tp =

∑
i=0,...,4m−2

j=0,...,∞
s.t. m+n−i+ j=p+1

(
4m − 2

i

)(
−(4n − 4)

j

)
d i+ j

3 , where p = 0, 1, 2,
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and

J (1)m,n =

∫
L

t̄4n−1t4m−2dt = 2π i
(
V0 − 3d3V1

)
,

Up =

∑
i=0,...,4m−2
j=0,...,4n−1

s.t. m−n−i+ j=p

(
4m − 2

i

)(
4n − 1

j

)
d i+ j

3 , where p = 0, 1, 2.

Finally,

J (2)m,n =

∫
L

t4(m+n+1) t̄dt = 2π i
(
(1 − 3d2

3 )W0 + d3(W−1 − 3W1),

Wp =

∑
i=0,...,4m−2
j=0,...,4n−2

s.t. m+n−i− j=p+1

(
4m − 2

i

)(
4n − 2

j

)
d i+ j

3 , where p = 0,±1.
(B.5)

Though seemingly cumbersome, identities (B.4)–(B.5) are easily programmed. The infinite sums in-
volved are truncated to their first 16 terms because after that the remainder appears to be below the
machine precision (16 bits). To avoid the rounding errors that can occur by using large integers, we
employ double precision arithmetic and alternate multiplication with division to compute the binomial
coefficients and d3 powers.
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