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HOMOGENIZATION RELATIONS FOR ELASTIC PROPERTIES OF TWO-PHASE
COMPOSITES USING TWO-POINT STATISTICAL FUNCTIONS

GHAZAL SAHELI, HAMID GARMESTANI AND ARUN GOKHALE

In this research we focus on studying the effect of anisotropy on the homogenization technique based on
two-point statistics. We will investigate how the one-point and two-point statistical information from the
microstructure can contribute in the calculation of elastic properties of isotropic and anisotropic compos-
ites. For this purpose, the homogenization relations will be studied in detail and the technique will be
applied to two samples of anisotropic Al-SiC composite that were fabricated through extrusion with two
different particle size ratios (PSR). The results show that two-point statistics is capable of capturing the
effect of clustering of SiC particles in evaluating elastic properties for anisotropic composites. Although
the two samples have the same volume fraction (difference less than 1%), the calculated elastic constants
for both samples are different. The validity of the results will be investigated by direct comparison with
experimental results.

1. Introduction

Materials science always looks for establishing a relationship between the internal structures of materials
and their properties. In polycrystals, internal structure refers to the size and shape of crystallites (grains),
the distribution of their crystallographic orientations (texture), and the spatial correlations between these
geometrical and crystallographic features. However, in composites, internal structure refers to spatial
correlations between geometrical features of the two phases.

The prediction of mechanical properties from details of the microstructure such as phase, crystalline
grain orientation distribution, and microstructural morphology has received a special attention in the
mechanics and materials community [Torquato and Stell 1982; Adams et al. 1987]. The mathematical
description of heterogeneity has received some breakthroughs in the last few decades with the works
[Beran 1968; Kröner 1972; 1977]. More progress has been achieved in calculating the effective proper-
ties by making simple assumptions about the microstructure distribution (random, isotropic, and periodic
microstructures) or the shape of the second phase (spherical, ellipsoidal, etc.). These studies have relied
primarily on the one-point probability functions (number or volume fractions of individual states within
the microstructure), which ignored shape and geometric characteristics of the microstructure. It was
realized that in order to use the measured materials’ heterogeneity it is necessary to incorporate two
and higher order probability functions. Progress was hindered due to lack of experimental techniques
to obtain two and three-point correlation functions. These techniques are now available, which makes
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it possible to measure individual crystalline orientation in polycrystalline materials. Extension of this
effort to nonrandom microstructures requires proper definition of n-th degree statistical correlation func-
tions. For a detailed description of the theoretical discussion and the derivations please refer to [Adams
et al. 1987; 1989; Beran et al. 1996; Garmestani et al. 1998b; 2001; Garmestani and Lin 2000; Saheli
et al. 2004]. A statistical continuum mechanics approach for both elastic and inelastic deformation of
composites was introduced earlier [Garmestani et al. 1998b; 1998a; 2001; Garmestani and Lin 2000]. In
this research, the elastic formulation for the isotropic distribution will be extended to include anisotropy.

In this work a microstructure will be represented by a set of two-point correlation functions for a
variety of states. In a polycrystalline material, each orientation is considered a different state and an
n-dimensional space is then formulated for the homogenization relation [Garmestani et al. 2001; Adams
et al. 2002]. However, a two-phase composite that consists of only two phases and the n-dimensional
space is reduced to a two-dimensional state, assuming that the anisotropy within each phase is ignored. It
is clear that such a construction that uses volume fraction of the second phase can only present a limited
description of the composite. In this paper, two-point correlation functions are used as additional param-
eters for the description of a composite. Two-point statistics can incorporate not only the distribution
and interaction of the two phases but also information on the shape and morphology of each individual
phase.

The orientation distribution function (ODF) is a one-point statistical distribution function that only
considers volume fractions (or number fractions) of crystallites with the same orientation. Two-point
statistical functions can be used as a first order correction to the average (volume fraction) representa-
tion. Two-point correlation functions [Torquato and Stell 1982; Adams et al. 1987; Garmestani et al.
1998b; 1998a; 2001; Garmestani and Lin 2000; Lin et al. 2000] provide information about near neighbor
and far field effects and allow the defect sensitive properties to be incorporated in the analysis. The
composite formulation will be markedly enhanced by the use of empirical or spectral form of the two-
point correlations [Corson 1974a; 1974b; Torquato and Stell 1982; Garmestani et al. 1998b; 2001].

Recent improvements in electron microscopy and image analysis have led to new techniques for
analyzing the structure of polycrystalline materials at the scale of the crystalline grains. Orientation
imaging microscopy (OIM) provides information on the spatial arrangement of lattice orientations in
polycrystalline structures and is based on Kikuchi diffractometry [Garmestani et al. 1998a]. Measure-
ments of the local orientation and misorientation of polycrystalline materials are now possible. However,
for the composite, if the orientation of each phase is ignored, the correlation functions can be measured
using imaging techniques (optical, SEM, etc.). The use of OIM for the measurement of orientation for
a multiphase composite can introduce a large amount of detail and complexity. Higher order statistical
formulations will be needed to incorporate such information for each phase as well as the interaction of
the two phases.

For two-phase composite structures, the application of two-point statistics requires two different sets
of probability functions. The first set can be chosen to describe the probability distribution functions
for the interaction of the two phases. This reduces the problem to a composite formulation ignoring the
crystalline phase for each component. The two phases can then be taken as isotropic (or anisotropic)
phases, and the effect of texture can be incorporated in the anisotropy parameters in the constitutive
relations. The second set can consist of the probability distribution functions for the individual crystalline
phases. This means incorporating the effect of orientation for each phase.
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2. Two-point distribution functions

The statistical details of a microstructure can be represented by an n-point probability distribution func-
tion. Volume fraction vi is a one-point probability distribution function that is usually used to give an
estimate of the effective properties. The details of the shape and morphology of the microstructure, includ-
ing the interaction of the second phase in the composite and orientation distribution of crystallographic
grains (texture), can only be realized by using higher order distribution functions [Corson 1974a; 1974b;
Torquato and Stell 1982; Mason and Adams 1999]. A two-point distribution function can be defined as
a conditional probability function when the statistics of a three-dimensional vector r is investigated once
attached to each set of random points in a particular microstructure (One-point and two-point statistics
functions are defined in Appendix A).

The exponential form of the distribution function, as proposed by [Corson 1974a; 1974b], has been
shown to be appropriate for random microstructures. It is represented as

Pi j (r) = αi j + βi j exp(−ci jrni j ), (1)

where αi j and βi j are components including volume fraction of phases. For a polycrystalline microstruc-
ture, i and j can vary from 1 to M . M is the total number of grains (or states); for a two-phase composite
i and j correspond to phases 1 and 2. This reduces the number of two-point functions to four, P11(r),
P12(r), P21(r), and P22(r), in the case of two-phase composites where normality relations require that
only P11 be treated as an independent variable. The values of αi j and βi j are summarized for a two-phase
composite in Table 1.

In this equation r can generally be a vector which has been thrown in the microstructure to measure
two-point probability functions. The other constants ci j and ni j are also microstructure parameters:
ni j = 1 [Tewari et al. 2004], and ci j is a scaling parameter representing the correlation distance. These
empirical coefficients can be reformulated into an anisotropic form [Saheli et al. 2004],

ci j (θ, A) = c0
i j (1 + (1 − A) sin φ), (2)

where A is a material parameter that represents the degree of anisotropy in a microstructure, such that
A = 1 corresponds to an isotropic microstructure and c0

i j is the reference empirical coefficient. φ repre-
sents the angle of the vectors thrown in the microstructures to measure two-point probabilities in different
directions. The present form of Equation (1) is sufficient for a two-phase composite when the statistical
information is uniform in all directions. However, a three-dimensional form of the distribution can also
be introduced when the microstructure includes anisotropy. This requires data from a variety of sections
through the sample.

i = 1; j = 1 i = 1; j = 2 i = 2; j = 1 i = 2; j = 2

αi j v1v1 v1v2 v2v1 v2v2

βi j v1v2 −v1v2 −v2v1 v1v2

Table 1. The empirical coefficients in Corson’s equation for a two-phase composite.
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An alternative form of the probability function was suggested in [Torquato 2002] for random and
homogeneous systems of impenetrable spheres:

P11 = 1 − ρV (r) + ρ2 M(r),

P12 = P21 = v1 − P11,

P22 = v2 − v1 + P11,

(3)

where ρ is the number density of spheres, v1 and v2 are the volume fractions of phases, r is the distance
between two points, and V (r) and M(r) are functions of r as defined in Appendix B.

In Figure 1 Corson’s equation and the Torquato equation are compared to real data of two-point
statistics for a random microstructure.

3. Homogenization relations for elastic properties of composites

In the following section, the full homogenization relations for an elastic medium are reviewed for a
representative volume element. The equilibrium equation is defined by

σi j, j = 0, (4)

where σi j (x) is the local stress field. The elastic constitutive relations are satisfied locally throughout the
heterogeneous medium as

σi j (x) = ci jkl(x)εkl(x); (5)

ci jkl(x), σi j (x), and εi j (x) are local values of stiffness, stress and strain respectively. Let us define an
effective elastic modulus Ci jkl such that [Beran et al. 1996; Garmestani and Lin 2000],

〈σi j 〉 = Ci jkl〈εkl〉. (6)

 
 
 
 
 
 
 
 
 
 
 
 

 

P11 

 

P12 

 

Figure 1. Comparison of different models for two-point probability functions for a two-
phase composite with random distribution of the second phase. Note that ci j and ni j are
fitted to the measured (real) data in Corson’s equation.
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Symbol 〈h〉 denotes the ensemble average over grains (phases, components, etc.) at state h. Assuming
ergodic hypothesis, the average of the local stiffness 〈ci jkl〉 is defined as [Kröner 1972]

〈ci jkl〉 = 〈ci jkl(x)〉 =
1
V

∫
V

ci jkl(x)dV . (7)

The same definition is applicable for stress, strain and compliance. The local moduli and compliance,
as well as the local stress and strain, can be defined as a perturbation from the average values 〈 · · · 〉 by
defining a new parameter

(
∼

···

)
as in [Beran et al. 1996; Garmestani and Lin 2000]

ci jkl(x) = 〈ci jkl〉 + c̃i jkl(x),

si jkl(x) = 〈si jkl〉 + s̃i jkl(x),
(8)

σi j (x) = 〈σi j 〉 + σ̃i j (x),

εi j (x) = 〈εi j 〉 + ε̃i j (x),
(9)

where c̃i jkl(x), s̃i jkl(x), σ̃i jkl(x), and ε̃i jkl(x) are, respectively, the deviation from the mean value at each
point of stiffness, compliance, stress and strain. Therefore, the following are satisfied:

〈c̃i jkkl(x)〉 = 0, 〈s̃i jkl(x)〉 = 0, (10)

〈σ̃i jkl(x)〉 = 0, 〈ε̃i jkl(x)〉 = 0.

In the following, statistical continuum mechanics analysis is applied to a two-phase composite for
the prediction of elastic properties. A theoretical framework has already been developed for isotropic
distributions in composites, by [Garmestani et al. 1998b; Garmestani and Lin 2000], and for a textured
polycrystalline material, by [Beran et al. 1996]. Here, a brief discussion is provided for the calculation of
the effective elastic constants for isotropic distribution and will be extended to anisotropic distributions
in later sections.

Substituting local moduli (Equation (9)) in the equilibrium equations (Equation (4)) and rewriting the
equation as a function of displacement, the following equations will be obtained:

〈ci jkm〉
∂2ũk

∂x j∂xm
+

∂

∂x j
[c̃i jkm(x)εkm(x)] = 0. (11)

The solution for this PDE can be written as an integral equation using the Green’s function, defined
by the PDE

〈ci jkm〉
∂2Gkp(x, x ′)

∂x j∂xm
+ δi pδ(x − x ′) = 0, (12)

where δ(x − x ′) is the Dirac’s delta function for the vector relating any two points in the microstructure,
and the term δi pδ(x − x ′) represents the i-th component of a unit force acting parallel to the direction
p for a fixed point, p [Kröner et al. 1987; Willis 1965]. Green’s function in the case of isotropy can be
defined by a closed form, and for the case of anisotropy has to be calculated numerically. The details
of the calculations of Green’s functions for both cases are presented in Appendix C [Bacon et al. 1980;
Mason and Adams 1999]. Substituting the values of local stress and strain in Equation (5), after some
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manipulation, the effective elastic constants (in Equation (6)) can be calculated as (for details see paper
by [Garmestani and Lin 2000])

Ci jkl = 〈ci jkl〉 + 〈c̃i jmn(x)amnkl(x)〉, (13)

where amnkl is a matrix defined to show the heterogeneity in the strain field as [Garmestani and Lin 2000,
Equation (4)]

ε̃kl = amnkl〈εkl〉. (14)

By substituting local stress from Equation (5) into the equilibrium Equation (4) an equation for dis-
placement is obtained. Differentiating this equation and multiplying the result by ci jkl , the second term
in Equation (13) can be derived as [Saheli 2006], (details in Appendix D)

〈c̃i jku(x)akurs(x)〉 =

∫
V

∂
[
Kkpu(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉

]
∂x ′

md X ′

−

∫
V

Kkpum(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉d X ′, (15)

where x and x ′ are two different positions in the media, d X ′ is the volume integral on the volume element
around position x ′, and Kkpu and Kkpum are calculated through

Kkpu =
(Gkp,u + Gup,k)

2
,

Kkpum =
(Gkp,um + Gup,km)

2
.

(16)

Gkp,u and Gup,km are, respectively, the first and the second derivative of the Green’s function that solves
Equation (12).

The two-point correlation function is defined through the equation

〈c̃i jku(x)c̃pmrs(x ′)〉 =

∫∫
c̃i jku(x)c̃pmrs(x ′)P2(x |h, x ′

|h′)dhdh′, (17)

where P2 is a correlation function for two states of h and h′, and is defined in Appendix A. Equation
(17) can be derived for composites by the relationship

〈c̃i jku(x)c̃pmrs(x ′)〉 = c̃1
i jku c̃1

pmrs P11 + c̃1
i jku c̃2

pmrs P12 + c̃2
i jku c̃1

pmrs P21 + c̃2
i jku c̃2

pmrs P22, (18)

where c1, c2 are the local elastic moduli for the two individual phases.

4. Analytical procedure

It was shown earlier that the effective modulus C can be calculated through Equation (13), which includes
the correlation term (Equation (15)). This term will be analyzed analytically in this section to observe
the effect of one-point and two-point statistics. This term is composed of two parts, or

〈c̃i jku(x)akurs(x)〉 = I 1
i jrs + I 2

i jrs, (19)



HOMOGENIZATION RELATIONS FOR ELASTIC PROPERTIES OF TWO-PHASE COMPOSITES 91

where the first term is

I 1
i jrs =

∫
V

∂
[
Kkpu(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉

]
∂x ′

md X ′
, (20)

and can be converted to a surface integral by applying Gauss’ theorem (for additional information see
mathworld.wolfram.com/DivergenceTheorem.html). Gauss’ theorem converts the volume integral in a
sphere with infinite radius to a surface integral with the boundary of this sphere. The resulting surface
integral requires evaluation on a surface at infinity and on a surface enclosing the singularity of Kkpu at
x = 0.

Choosing both surfaces as spheres and applying Gauss’ theorem, the following integral is obtained:

I 1
i jrs =

(∫
〈c̃i jkl(x)c̃pmrs(x ′)〉Kkpud

_

Am

)
x−x ′→0

+

(∫
〈c̃i jkl(x)c̃pmrs(x ′)〉Kkpud

_

Am

)
x−x ′→∞

. (21)

To calculate the two surface integrals, the correlation term shown by 〈c̃i jku(x)c̃pmrs(x ′)〉 has to be
evaluated when x − x ′

→ 0 and x − x ′
→ ∞. When x − x ′

→ 0 , then the correlation will be a constant
and independent of x , and when x − x ′

→ ∞ there will be no correlation between two points. This can
be proven for the case of a two-phase composite using Equation (18)

x − x ′
→ 0 H⇒


P11 → v1

P12 → 0

P22 → v2

H⇒ 〈c̃i jku(x)c̃pmrs(x ′)〉 → constant,

x − x ′
→ ∞ H⇒


P11 → v2

1

P12 → v1v2

P22 → v2
2

H⇒ 〈c̃i jku(x)c̃pmrs(x ′)〉 → 0.

(22)

Therefore the second term in Equation (21) will be equal to zero, and the components of the first
integral, I 1

i jrs , can be calculated by

I 1
i jrs = (c̃1

i jku c̃1
pmrsv1 + c̃2

i jku c̃2
pmrsv2)K ckpum, (23)

where

K ckpum =

∫
Kkpud Âm, (24)

and is evaluated as

K ci i i i = −
(16/15K̄ )

8µ̄
,

K ci j i j = K c j i j i =
(4/3 − 4/5K̄ )

8µ̄
,

K ci j j i = K c j i i j = K ci i j j = K c j j i i = −
(2/3 + 2/15K̄ )

8µ̄
,

(25)
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where K̄ is the average property of two phases

K̄ =
λ̄ + µ̄

λ̄ + 2µ̄
. (26)

Note that i and j can vary from 1 to 3, but there is no summation on the indices in Equation (25).
Although a two-point correlation function shows up in the integral I 1

i jrs , this integral is the result of the
contribution of one-point statistics since the only variables contributed in the calculations of Equations
(25) and (26) are volume fractions of two phases.

The second term in Equation (19) can also be found using

I 2
i jrs = −

∫
V

Kkpum(x, x ′)〈c̃i jku(x)c̃pmrs(x ′)〉d X ′. (27)

This integral can be shown to be zero for isotropic composites. In isotropic composites the correlation
term will be only a function of r (F(r)). On the other hand, by assuming the definition of isotropic
Green’s function [Kröner et al. 1987], Kkpum is derived as

Kkpum =
1

8πµ̄

{[
K̄ δukδpm + (K̄ − 1)(δpuδkm + δumδpk)

]/
|r |

3

+
[
(3 − 3K̄ )(rmrkδpu + rmruδkp)δukδpm − 3K̄ (rmrpδku + rnrpδkm + rkrpδum + rkrnδpm)

]/
|r |

5

+
[
15K̄ (rprmrurk)

]/
|r |

7} . (28)

Therefore, the integrand of the Equation (27) can be integrated with respect to r , separately. Some
components of the integral of I 2

i jrs are evaluated here as an example:

I 2
1111 =

1
8πµ̄

∫
r

∫
θ

∫
φ

F(r)
[
(3K̄−2) sin φ+(6−18K̄ ) cos2 θ sin3 φ+15K̄ cos4 θ sin5 φ

]/
rdrdθdφ=0,

I 2
1212 =

1
8πµ̄

∫
r

∫
θ

∫
φ

F(r)
[

K̄ sin φ − 3K sin3 φ + 15K̄ sin2 θ cos2 θ sin5 φ
]/

rdrdθdφ = 0,

I 2
1122 =

1
8πµ̄

∫
r

∫
θ

∫
φ

F(r)
[
(K̄ − 1) sin φ + (3 − 3K̄ ) sin2 θ sin3 φ − 3K̄ cos2 θ sin3 φ

+15K̄ sin2 θ cos2 θ sin5 φ
]/

rdrdθdφ = 0.

For more details on the integration please refer to [Saheli 2006]. This can be shown in a general form

I 2
i i i i = I 2

i j i j = I 2
i i j j = 0, (29)

where i and j vary from 1 to 3, indicating the three directions in spherical coordinates. Note that there
is no summation on the indices in Equation (29). Therefore I 2

i jrs has been shown analytically to be
zero for isotropic distributions found in [Beran 1968] and [Kröner 1977]. This is in agreement with
the numerical results that Beran et al. [1996] obtained in their work. In this work, as the oxygen free
electronic (OFE) alloy 101 copper plates were nearly isotropic, it was observed numerically that the
contribution of the second integral is almost zero in the calculation of elastic properties. Hence the effect
of spatial arrangement of the crystals was not observed.
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Also note that in the previous works by Garmestani and Lin [2000] only an isotopic composite was
considered. Therefore the effect of morphology and spatial arrangement of the features in the microstruc-
ture on properties was not completely evident; however, in the following section of this research, it will
be shown that the contribution of two-point statistics is very significant in anisotropic composites.

5. Numerical analysis

In the last section it was shown that I 2
i jrs is zero for isotropic composites; however, it is nonzero and

should be evaluated by Equation (27) in anisotropic composites. The numerical integration has been done
using Simpson’s rule (see mathworld.wolfram.com/SimpsonsRule.html). For this purpose, a sphere is
divided into nr × nθ × nϕ units, where nr is the number of sections for variable r (radius) and nθ and nϕ

are the number of sections for variables 0 < θ < 2π and 0 < ϕ < π , respectively, in spherical coordinates.
The variable r also changes between 0 and ∞. There are two issues to be taken into account to perform
the integration. One is the singularity of the Green’s function at r = 0 and the other is the definition of
∞ for r in the integration. Empirical forms of the probability density functions were introduced earlier.
It can be shown that for all physically realizable forms of the probability density functions for a random
media, they merge to a constant value at large r (as shown schematically in Figure 2).

The correlation function defined in Equation (18) becomes zero when the probabilities P11, P12, P21,
and P22 reach their limits. Therefore the coherence radius, (Rc), is defined as the limiting value of the
probability functions. This value should be used as an upper limit (or ∞) for r in the volume integral
(I 2

i jrs). Since the Green’s function is undefined at r = 0, the integral can be divided into two parts with
respect to variable r , (0 to rmin) and (rmin to Rc). For infinitesimally small values of r (0 to rmin) the
correlation does not change, so the correlation term can be taken out of the integral, and therefore the
term ∫

V
Kkpum(x, x ′)d X ′

 
 
 
 
 

|r|

P
11

V
1

P
12

V
1

2

V
1
V

2

 

Figure 2. Schematic representation of two-point probability functions (P11 and P12

merge to their limiting values as the dimension of vector r increases).
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has to be calculated. Similar to the case of isotropic composites, this integral can be shown to be zero.
Therefore the integral, I 2

i jrs , needs to be evaluated between rmin and Rc for anisotropic composites. On
the other hand, rmin should be chosen as a small nonzero value in such a way as to be small enough to
bring the contribution of two-point correlations for small radius and large enough to pass the singularity.
For this purpose, a numerical procedure should be adopted that calculates a rmin by reducing r until a
saturation is reached for the value of the integral, not reaching infinity. Therefore the volume integral
needs to be calculated from rmin to Rc. Furthermore, time of operation is another aspect that has to
be considered. For instance, in the case of Al-Pb composites [Saheli et al. 2004], if rmin = 0.03 and
1r = 0.1 it takes about 20 minutes for the codes to calculate one elastic constant in a Pentium IV
machine, 2.4 MHZ. However, if rmin is chosen the same and 1r = 0.01 then it takes about 2 hours and
35 minutes to calculate one elastic constant. The difference between the two results is about 0.04 percent.
In contrast, for rmin = 0.003, 1r = 0.01 it takes about 20 hours, where the difference in the calculation
compared to the first case is less than 0.5 percent.

6. Applications

It was shown that two-point statistics does not contribute in the evaluation of elastic properties of isotropic
composites. However, it has a considerable effect in the case of anisotropy. The key to this approach
is the correct representation of the microstructure. In the previous works [Garmestani and Lin 2000;
Saheli et al. 2004] a simplified empirical form of the two-point probability function was used for the
microstructure representation, whereas in this work the statistical information has been measured directly
from the microstructure and used as a database.

In this section, the statistical continuum mechanics model presented earlier as a homogenization
technique will be studied in anisotropic composite materials. For this purpose, elastic properties of
Al-SiC composite will be calculated by using the two-point statistical homogenization technique, and
the contribution of two-point statistics will be discussed. The results of the simulation will be compared
with experiments to validate the theory.

6.1. Al-SiC samples. An Al-SiC composite was fabricated by extrusion by varying the distribution of
two different sizes of Al particles mixed with SiC particles. The difference in the initial particle sizes
of SiC reinforcement phases and Al-alloy matrix results in the heterogeneity of the microstructure. The
micrographs of the two samples with different PSR are shown in Figures 3 and 4. The particles of SiC
are clustered in the sample with PSR = 8:1, therefore they introduce more anisotropy in the extrusion
direction. However, the microstructure with PSR = 2:1 seems to have a smaller anisotropy. The validity
of this interpretation will be studied by computing the elastic properties of the two samples. Note that
the anisotropy of the microstructure has been considered in 1-3 or 2-3 plane (Figure 5). The distribution
of the two-point correlation functions in these microstructures is symmetric with respect to the extrusion
axis (Figure 5). Therefore the extrusion axis is chosen as the vertical axis. The probability distribution
function changes with orientation ϕ and the magnitude of the vector r in each section. However, these
probabilities are the same for all planes with different θ which include extrusion (vertical) axis. Therefore
the measurements of this composite on any section including the vertical axis provides the same statistical
information within which the statistics may be anisotropic and would be sufficient for the simulation (θ
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Figure 3. Micrograph of Al-SiC composite, PSR = 2:1.

 
 
 
 
 
 

 

Figure 4. Micrograph of Al-SiC composite, PSR = 8:1.
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Figure 5. Representation of symmetry in samples of Al-SiC.

and ϕ are respectively the angles with axis 1 and axis 3 in spherical coordinates). Therefore the two-
point probability functions are measured directly from the microstructure for a different range of ϕ on
any plane including extrusion axis, which can be averaged as [Tewari et al. 2004]

〈Pi j (r)〉 =

∫ ϕ2
ϕ1

[Pi j (r, ϕ)]V dϕ∫ 2π

0 dϕ
. (30)

As an example the measured values of P11 are shown in Figure 6 as a function of r and ϕ in each section
containing extrusion (shown in Figure 5). In addition, Corson’s equation is used to measure values of P11

in Figure 7. It is observed that the measured values show an exponential trend which follows Corson’s
equation (Equation (1)), and empirical factor n in Corson’s equation is calculated near 1, in agreement
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Figure 6. Measurement of two-point statistics in a vertical section (P11) of two samples
for different angles.
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with results by Tewari et al. [2004]. P11 for two samples at 40 < ϕ < 45 are shown in Figure 8. The
value of P11 (defined in Equation (1)) reaches its limit v2

1 = 0.4761 for the case of PSR = 2:1 faster than
it reaches its limit v2

1 = 0.4489 for the case of PSR = 8:1.
Using the measured two-point probabilities and preparing the simulation code based on the homog-

enization relations described in previous sections, one can calculate elastic stiffness matrices for each
sample. The mechanical properties of each phase are assumed as (based on previous experimental data)

E(Al) = 69 GPa, ν(Al) = 0.33, (31)

E(SiC) = 393 GPa, ν(SiC) = 0.19. (32)

In this simulation both integrals in Equation (19) are calculated, as the samples are considered anisotro-
pic. Therefore the effect of anisotropy as introduced by clustering is studied in the estimation of elastic
properties of these two samples.
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Figure 8. Measured P11 for two samples.
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C Upper Bound C (statistical model) One-point Two-point Lower Bound

C1111 229.86 205.08 −15.85 8.92 139.81
C1313 72.43 71.95 −2.70 −2.23 36.18

Table 2. Contribution of one-point (Equation (19)) and two-point (Equation (26)) statis-
tics in calculation (Equation (13)) of elastic constants of Al-SiC sample (PSR = 8:1).

6.2. Results. Calculating both integrals in Equation (19), the results show that the contribution of the
second integral is about 30 and 50 percent in the calculation of Ci i i i and Ci j i j respectively. 1 and 3
indicate transverse and longitudinal (extrusion) directions. For example, when i = 1, Ci i i i refers to
C1111. Some of the components of effective elastic constants for an 8:1 sample are shown in Table 2.

Using the simulated values of the longitudinal elastic modulus, the linear behavior of the stress-strain
curve in the elastic region is shown in Figures 9 and 10. The enlarged elastic region of stress strain curves
obtained through mechanical testing is also shown in the graphs. In addition, upper bound [Voigt 1889]
and lower bound [Reuss 1929], Hashin–Shritkman upper and lower bound [Hashin and Shtrikman 1962;
1963], and self-consistent approximation [Hill 1965] are calculated and shown in the figure as well as in
Table 3 for comparison to the simulation and experimental results. The linear elastic modulus calculated
from the statistical simulations represented the best slope for the experimental stress-strain curves in the
elastic region.
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Figure 9. Stress-strain curve for Al-SiC PSR = 2:1.
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E REUSS HS-LB Statistics Experiment SC HS-UB VOIGT

PSR = 2:1 95.67 175.2 143.12 151.51 102.99 175.61 176.72
PSR = 8:1 98.43 185.65 161.29 156.82 106.63 186.04 184.07

Table 3. Comparison of calculated longitudinal elastic modulus of two samples with
different models.

The error is estimated to be between 0.07% and 20%, where 20% error relates to the points that
have the largest deviation from experimental data in elastic region. The elastic moduli in two different
directions (longitudinal and transverse) are shown for two samples in Figure 11. It was observed from
the micrographs that clustering in the sample with PSR = 8:1 introduces more anisotropy in the elastic
modulus than the other sample. This verifies the results of the simulation in Figure 11.

The volume fraction of the second phase (SiC) in two microstructures with PSR = 2:1 and PSR = 8:1
is estimated to be 31% and 33%, respectively. Although the volume fractions are very close, it shows
a different degree of anisotropy (about 15% in the two samples). The upper Hashin–Shritkman bounds
for the two samples shown in this figure are not able to represent the anisotropy in the system properly.
It shows an identical slope for the two cases, whereas the statistical calculations predict different elastic
properties in the two directions.
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Figure 10. Stress-strain curve for Al-SiC PSR = 8:1.
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Figure 11. Comparison of longitudinal elastic modulus and transverse elastic modulus
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7. Summary

Statistical continuum mechanics modeling has been extended to include anisotropy in the calculation of
elastic properties of composites. The effect of one-point and two-point statistics on the calculation of
elastic properties of composites was studied in detail. It was shown analytically that two-point statistical
information does not contribute in the calculation of elastic properties of isotropic composites, whereas
it plays a major role for anisotropic materials. The homogenization technique was then applied to an Al-
SiC composite with two different PSR’s. In this simulation two-point statistical functions were measured
directly from the microstructures, and the statistical formulation uses the two-point probability functions
to incorporate the effect of the microstructure distribution. Applying statistical continuum mechanics
analysis, the effective properties of the two samples of Al-SiC composite were estimated and compared
with the experimental data, the upper (Voigt) and lower bounds (Reuss), Hashin–Shtrikman bounds, and
self-consistent approximations. Although the microstructures of the two composite samples have very
similar volume fractions, this analysis results in different values of the effective elastic properties and
predicts different anisotropy levels for them. Therefore the results show that the statistical analysis can
provide a good estimate for the elastic effective properties, considering the spatial distribution of the
phases.

Appendix A: Definition of one-point and two-point statistics functions

One-point probability functions. To measure a one-point probability function, a random number of
points (N ) have to be inserted in the microstructure (Figure 12). The number of points located in one
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Figure 12. Schematic representations of one-point statistics measurement in a two-
phase composite microstructure.

phase with respect to the total number of points (N ) indicates a one-point probability

P(φ1) = P1 =
n1

N
= v1

P(φ2) = P2 =
n2

N
= v2,

(A.1)

where phase one and phase two have been considered as matrix and particles respectively, and the nor-
malization relationship

P(ϕ1) + P(ϕ2) = 1. (A.2)

is always satisfied.

Two-point probability functions. A two-point probability function can be defined as a conditional prob-
ability function when the statistics of a three-dimensional vector r are investigated once attached to each
set of the random points in a particular microstructure (Figure 13). Two-point statistics can be calculated
by the probability of a specific phase at the head of the vector given the phase at the tail of the vector,
and can be shown by P(r | {1, 2}, {1, 2}).

The following normalization relationship is valid for all the functions:

P11 + P12 = v1

P22 + P21 = v2

P11 + P12 + P21 + P22 = 1. (A.3)

As it is observed from the above normalization relationship, P11 is the only independent variable.
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Appendix B: Torquato probability functions

Functions V (r) and M(r) in Equation (3) are defined as

V (r) =
4π

3

[
1 +

3r
4

−
r3

16

]
, r < 2,

V (r) =
8π

3
, r > 2,

(B.1)

and

M(r) =

[
−

16
9

+
r3

3
−

r4

10
+

r6

1260

]
π2

+
16π2

9
, 0 ≤ r < 2,

M(r) =

[
256
35r

−
128
9

+
32r
5

−
5r3

9
+

r4

10
−

r6

1260

]
π2

+
16π2

9
, 2 ≤ r < 4,

M(r) =
16π2

9
, r ≥ 4.

(B.2)

Note that r in general is a vector; however, for an isotropic two-phase composite, r is considered to be
a scalar.

Appendix C: Green’s function definition

Green’s function for the case of isotropic materials is defined by the closed form equation as in [Kröner
et al. 1987]

Gkp(x, x ′) =
1

8µ̄π |r12|

{
2δkp −

λ̄ + µ̄

¯̄λ + 2µ̄

(
δkp −

r12kr12p

|r12|2

)}
, (C.1)

where λ̄ and µ̄ are the average values of Lame’s Constants in the composite.

 
 
 
 
 
 
 
 
 

 

Figure 13. Schematic representations of two-point statistics measurement in a two-
phase composite microstructure.
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However in the case of anisotropy and texture, there is no closed form equation, and it can be written
in the numerical form [Bacon et al. 1980]

Gi j (x − x ′) =
1

8π2|x − x ′|

∮
|z|=1

(zz)−1
i j ds, (C.2)

where

(zz)i j = Cki jl zkzl, (C.3)

(zi j )
−1

=
εismε jrw(zz)sr (zz)mw

2εpgn(zz)1p(zz)2g(zz)3n
. (C.4)

T is the unit vector in the direction of the line connecting two position x and x ′. The general expression
for the n-th derivative of the Green’s function is given by

Gi j,s1···sn = (x − x ′) =
(−1)N Tk1 · · · TkN

8π2|x − x ′|N+1 ×

∮
|z|=1

∂ N
[(zz)−1

i j zs1 · · · ZsN ]

∂ Zk1 · · · ∂ ZkN

ds, (C.5)

Gi j,s(x − x ′) =
1

8π2|x − x ′|2
×

∮
|z|=1

[Ts(zz)−1
i j − zs Fi j ]ds, (C.6)

Gi j,sr (x − x ′) =
1

8π2|x − x ′|3
×

∮ [
2Ts Tr (zz)−1

i j − 2(zs Tr + zr Ts)Fi j + zszr Ei j
]
ds, (C.7)

where

Fi j = (zz)−1
im (zz)−1

k j [(zT )mk + (T z)mk], (C.8)

Ei j = [(zT )mk + (T z)mk][Fim(zz)−1
k j + (zz)−1

im Fk j ] − 2(zz)−1
im (zz)−1

k j (T T )mk . (C.9)

The resulting integral is a line integral on a circle defined in a perpendicular plane to T with a unit radius
(Figure 14).
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Figure 14. Schematic representation of different vectors in calculating Green’s function
for anisotropic case ( ET ≡ Er).



104 GHAZAL SAHELI, HAMID GARMESTANI AND ARUN GOKHALE

Appendix D: Derivation of homogenization relations

Substituting the stress definition from Equation (5) into Equation (4), using the definition of local stress
and strain, and finally substituting strain field by displacement field, the equilibrium equation can be
solved by Equation (10). For this purpose the Green’s function was used to solve the PDE. The strain
field is finally obtained as

ũk(x) =

∫
V

Gkp(x, x ′)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′, (D.1)

where d X ′ is the volume integral on the volume element around position x ′,
By differentiating the above equation, ε̃ku(x) is calculated by

ũk,u(x) =

∫
V

Gkp,u(x, x ′)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′

+

0︷ ︸︸ ︷∫
V

Gkp(x, x ′)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l∂xu
d X ′ . (D.2)

It is observed that the second term is zero, since the term [c̃plrs(x ′)εrs(x ′)] is just a function of x ′,
whereas the derivative is with respect to x . Therefore, the strain can be calculated as

ε̃ku =

∫
V

1
2
[Gkp,u(x, x ′) + Gup,k(x, x ′)]

∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′. (D.3)

Defining the first derivative of the Green’s function as

Kkpu =
(Gkp,u + Gup,k)

2
, (D.4)

multiplying the strain in Equation (D.3) by the value of the local moduli c̃i jku(x), and averaging with
respect to x ,

〈c̃i jku(x)ε̃ku(x)〉 =

∫
V

∫
V ′

Kkpu c̃i jku(x)
∂[c̃plrs(x ′)εrs(x ′)]

∂x ′

l
d X ′d X, (D.5)

is found, where d X is the volume integral on the volume element around position x . Substituting the
local strain field from Equation (8), the above equation can be rewritten by

〈c̃i jku(x)ε̃ku(x)〉 =

∫
V

∫
V ′

Kkpu
∂[c̃i jku(x)c̃plrs(x ′)]

∂x ′

l
d X ′ d X〈εrs(x)〉

+

∫
V

∫
V ′

Kkpu
∂
[
c̃i jku(x)c̃plrs(x ′)ε̃rs(x ′)

]
∂x ′

l
d X ′ d X. (D.6)

Showing the integral over the variable x as an ensemble average, the above equation is reduced to

〈c̃i jku(x)ε̃ku(x)〉 =

∫
V

Kkpu
∂〈c̃i jku(x)c̃plrs(x ′)〉

∂x ′

l
〈εrs〉d X ′

+

∫
V

Kkpu
∂
[
〈c̃i jku(x)c̃plrs(x ′)ε̃rs(x ′)〉

]
∂x ′

l
d X ′. (D.7)
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In the above equation 〈c̃i jku(x)c̃pmrs(x ′)〉 is called a two-point correlation function, and can be calculated
using Equation (18). It is observed that the second term is a three-point correlation function. At this time
the calculation is truncated up to a two-point probability function. For this research the second term is
neglected. Therefore to get the microstructural information and correlate them to properties, one needs
to calculate the first integral in Equation (D.7). A fourth ran tensor 〈a〉 was introduced as the deviation
in the strain field,

〈ε̃ku〉 = 〈akurs〉〈εrs〉. (D.8)

Substituting the above equation in Equation (D.7) and omitting 〈εku〉 from both sides, the equation is
reduced to

〈c̃i jku(x)akurs〉 =

∫
V

Kkpu
∂〈c̃i jku(x)c̃plrs(x ′)〉

∂x ′

l
d X ′. (D.9)

Applying integration by parts to the above equation, it can be rewritten as

〈c̃i jku(x)akurs(x)〉 =

∫
V ′

∂
[
Kkpu〈c̃i jku(x)c̃plrs(x ′)〉

]
∂x ′

l
d X ′

−

∫
V ′

Kkpul(x, x ′)〈c̃i jku(x)c̃plrs(x ′)〉d X ′.

(D.10)
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