
Journal of

Mechanics of
Materials and Structures

NUMERICAL IMPLEMENTATION OF A CONSTITUTIVE MODEL
FOR SOIL CREEP

M. A. K. M. Madurapperuma and U. G. A. Puswewala

Volume 3, Nº 10 December 2008

mathematical sciences publishers





JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 10, 2008

NUMERICAL IMPLEMENTATION OF A CONSTITUTIVE MODEL FOR SOIL
CREEP

M. A. K. M. MADURAPPERUMA AND U. G. A. PUSWEWALA

We discuss the numerical implementation of a creep constitutive model to facilitate the modeling of long-
term soil creep. Multidimensional soil creep models are generalized from the one-dimensional soil creep
model proposed by Bjerrum in 1967, which was based on field test data and was later modified for tran-
sient loading conditions by Vermeer et al. in 1998. Here this differential form of one-dimensional creep
model is extended to two- and three-dimensional states of stress and strain by incorporating concepts
from viscoplasticity. The devised multidimensional creep model takes into account both volumetric and
deviatoric creep strain, with creep deformation of the soil defined by several material parameters. The
model is incorporated as a plane strain element subroutine in a nonlinear, time-incrementing finite ele-
ment program, along with iterative corrections within each time step. Numerical analyses are conducted
to demonstrate soil creep by using published experimental data. The verified computer code will be a
useful research tool for estimating settlements in structures founded on soils exhibiting creep.

1. Introduction

Many theories have been proposed to explain the time-dependent deformation of soils under load. Bjer-
rum [1967], in his study of settlement of 3000 years old deposits of Norwegian clay, proposed the
concept that deformation of such soils can be decomposed into two parts: “instant compression” and
“delayed compression”, or soil creep. This was a departure from the view where soil is understood to
undergo “primary consolidation” followed by “secondary consolidation or compression” [Terzaghi 1931].
Bjerrum’s argument was that under constant load, creeping soils continue to experience strain with time,
thus causing an increase of its critical pressure. The term critical pressure is used to define a specific
effective pressure (preconsolidation pressure) in the classical void ratio versus log pressure graph for a
soil medium [Balasubramaniam and Brenner 1981]. Thus if the soil is allowed to creep under a particular
load over a long period and if the load is suddenly increased thereafter, the soil behaves as if it had been
subjected to a much greater pressure than the previous maximum pressure it physically sustained.

Bjerrum gave examples of buildings founded on Norwegian clay undergoing creep settlements. Similar
creep settlements can take place under other structures like roads, river embankments and dams, built
on creeping media. Apart from the foundation-related problems usually considered, creep plays an
important role in slope stability; gradual geometric changes due to creep and the associated reduction of
strength due to the smoothening of soil particles may then lead to slope slides. The different problems
that relate to soil creep have made it necessary to develop a stress-strain relation that takes two- and
three-dimensional situations into account.

Keywords: constitutive model, finite element analysis, soil creep, numerical simulation, soil-structure interaction.
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As mentioned, Bjerrum’s original creep model was a comprehensive one-dimensional model based
on the behavior of Norwegian clays with a sedimentation history of 3000 years. It was based on an
expression for creep rate for constant effective stress; it was modified for transient loading conditions
by Vermeer et al. [1998] and later generalized to three dimensions [Vermeer and Neher 1999]. However,
the generalized constitutive model is not in a form that can be implemented in finite element formulation
for numerical simulation of soil creep. Adachi and Okano [1974] proposed a rate-formulated elastovis-
coplastic constitutive model, later generalized in [Adachi and Oka 1982] based on the overstress type
viscoplastic theory. However, this model has not been verified for predicting the time-dependent long-
term behavior of soft soils. [Borja and Kavazvjian 1985] proposed a constitutive model to describe time
dependent elasto-plastic strains based on Bjerrum’s concept. The validity of this model was not properly
verified through realistic experimental approaches and its long-term predictive capability has not been
comprehensively reported in the literature.

On the other hand, numerical implementation by using the finite element method has taken into ac-
count creep of soil using nonlinear constitutive equations; see, for example, [Iizuka and Ohta 1987;
Stolle et al. 1997; Brinkgreve 2002]. A detailed description of numerical implementation of advanced
constitutive models is presented in [Stolle et al. 1997; Wheeler et al. 2003]. The long term prediction
of soft soil settlement is dependent on the constitutive model that describes the soil creep behavior and
the finite element formulation which involves solution algorithms, iteration schemes, time increments
and numerical stability. Therefore, a simple creep model that could describe all aspects of actual field
behavior to sufficient accuracy would be highly useful and suitable for practical applications. Based on
an extensive literature review, we found the constitutive model proposed by Vermeer et al. [1998] based
on Bjerrum’s one-dimensional model to be one of the most appropriate for generalization and numerical
implementation. Its ability to predicting long-term time-dependent soil behavior and the evaluation of
model parameters through conventional tests in the laboratory are the main reasons to select this model.

Here we extend the model of [Vermeer et al. 1998] to multidimensional state of stress and strain by
incorporating concepts of viscoplasticity. A nonlinear, time incrementing finite element program, with
iterative corrections within each time step, developed earlier to model creep in geomaterials [Puswewala
et al. 1992], is modified to incorporate the present model as an element subroutine under conditions of
plane strain. Numerical analyses are conducted for two soil-structure interaction problems by using this
program and published experimental data to demonstrate the creep behavior of soils predicted by the
model.

2. The differential form of one-dimensional creep model

In his Rankine Lecture, Bjerrum [1967] described the compression of clays exhibiting creep under con-
stant effective stress. Building on this work, Garlanger [1972] proposed a creep equation of the form

e = ec−Cα log
τc+ t ′

τc
, (1)

where e is the void ratio, ec is the void ratio at the end of consolidation, t ′ > 0 is the effective creep time,
and Cα is the slope of the e versus log time curve. The time scale parameter τc depends on the history
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of compression and the geometry of the sample. Janbu [1969] developed a construction for evaluating
τc from experimental data.

This expression was later modified by Butterfield [1979] to fit into the framework of critical state soil
mechanics. He introduced the concept of logarithmic strain. The expression of the total volumetric strain,
εv, is

εv = ε
c
v +µ

∗ ln
τc+ t ′

τc
, (2)

where the deformation during primary consolidation is given by εc
v and consists of the elastic settlement

and a part of the delayed settlement, following Bjerrum. The modified secondary compression index µ∗

describes the secondary compression per logarithmic time increment. Equation (2) can be rewritten by
including the components of εc

v as

εv = ε
c
v + ε

cr
v = k∗ ln

σ ′

σ ′0
+ (λ∗− k∗) ln

σ ′pc

σ ′p0
+µ∗ ln

τc+ t ′

τc
, (3)

where

• εv is the total volumetric strain due to an increase in mean effective stress from σ ′0 to σ ′ in a time
period of (τc+ t ′),

• σ ′p0 and σ ′pc represent the preconsolidation pressure corresponding to before-loading state and end-
of-consolidation state respectively,

• k∗, λ∗, µ∗ are the Modified Clam Clay Model parameters [Roscoe and Burland 1968], called re-
spectively the (modified) swelling index, compression index and creep index, and having the values

λ∗ =
Cc

2.3(1+ e0)
, k∗ ≈

3
2.3

(1− ν)
(1+ ν)

Cr

1+ e0
, µ∗ =

Cα
2.3(1+ e0)

, (4)

where Cr is the slope on an e versus log σ ′ diagram of the compression line from σ ′0 to σ ′c, Cc is
the slope of the instant line, Cα is the slope of the e versus log time curve, ν is the Poisson’s ratio,
e0 is the initial void ratio and σ ′c is the preconsolidation pressure [Vermeer et al. 1998].

Equation (3) is valid for a constant mean effective stress, but for transient or continuous loading problems
it is necessary to formulate a constitutive law in differential form. Moreover there is still the question of
how to express the time scale parameter τc analytically. By adopting Bjerrum’s concept that the secondary
compression increases the critical pressure (preconsolidation pressure), by eliminating σ ′pc and τc from
(3), Vermeer et al. proposed a differential form of expression that accounts for creep of soft soil, of the
form

ε̇v = ε̇
e
v + ε̇

c
v = κ

∗
σ̇ ′

σ ′
+
µ∗

τ

(
σ ′

σ ′p

)(λ∗−κ∗)/µ∗
in which σ ′p = σ

′

p0 exp
εc
v

λ∗− κ∗
, (5)

where the parameter τ , which is not the same as τc, is introduced to provide a time scale and an additional
degree of freedom in the soil creep model. For example, in the conventional consolidation test each load
is kept for one day and at the end of the day the isotropic consolidation line with σ ′p = σ

′ is obtained
(overconsolidation ratio = 1). Therefore, in the case of conventional consolidation test the time scale
parameter τ can be taken as precisely 1 day. The quantity εc

v is the accumulated volumetric creep strain.
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3. Generalization of the one-dimensional model to three dimensions

The expression for volumetric creep strain rate (ε̇c
v) in (5) is extended for a general state of stress and

strain. Well-known stress invariant quantities are adopted for pressure p and deviatoric stress q as p= σoct

and q = 3τoct/
√

2, where σoct and τoct are the octahedral normal stress and octahedral shear stress. In
terms of the principal stresses σ1, σ2, σ3, the pressure p and the deviatoric stress q can be expressed as

p = 1
3 (σ1+ σ2+ σ3) and q =

√
1
2

(
(σ1− σ2)2+ (σ2− σ3)2+ (σ3− σ1)

)2
. (6)

The extension of (6) to a state of general stress and strain yields

p = 1
3 (σi i ) and q =

√
3
2 (si j si j ), (7)

where summation is implied over the indices i, j = 1, 2, 3 and si j denotes the deviatoric stress tensor in
terms of multidimensional states of stress quantities as

si j = σi j −
1
3σi iδi j , (8)

where δi j is Kronecker’s delta. The invariants p and q [Roscoe and Burland 1968] can be used to define
a new stress measure [Vermeer and Neher 1999]

peq
= p+

q2

M2 p
, (9)

called equivalent pressure and having the dimension of pressure. The soil parameter M represents the
slope of the critical state line and can be computed by using the critical state friction angle (φcs) as

M =
6 sinφcs

3− sinφcs
. (10)

(see [Vermeer et al. 1998]). For principal stress quantities yield function is defined as

f = peq
− peq

p , (11)

where peq
p is the apparent equivalent preconsolidation pressure. The yield function f in (11) can be

described as ellipses in p-q space when the principal stress quantities are used to calculate p and q in
(6). The equivalent pressure peq is constant on ellipses and the peaks of the ellipses are located on the
critical state line which is given by the model of [Roscoe and Burland 1968] in p-q space.

Together with p and q in (7), the equivalent pressure peq in (9) leads to

peq
=

1
3σi i +

9 si j si j

2 M2σi i
. (12)

By considering the volumetric creep strain rate part (ε̇c
v) in (5) and introducing the new equivalent pres-

sure peq and the apparent equivalent preconsolidation pressure peq
p the expression for volumetric creep

strain rate can be written as

ε̇c
v =

µ∗

τ

(
peq

peq
p

)(λ∗−κ∗)/µ∗
, with peq

p = peq
p0 exp

εc
v(t)

λ∗− κ∗
, (13)



NUMERICAL IMPLEMENTATION OF A CONSTITUTIVE MODEL FOR SOIL CREEP 1861

where εc
v(t)denotes the accumulated volumetric creep up to the current time t . The coefficient of lateral

earth pressure K NC
0 is used to estimate the initial value of equivalent preconsolidation pressure peq

p0 using
initial preconsolidation pressure σp0 as given in [Vermeer and Neher 1999; Vermeer et al. 1998].

4. Formulation of the soil creep problem

The basic concept used here is that the total strain vector consists of an elastic strain component and a
creep strain component:

ε(t)= εe(t)+ εc(t), (14)

where ε(t) is the current total strain vector, εe(t) the current elastic strain vector, εc(t) the current creep
strain vector, and t denotes the current time. The elastic strain component can be related to the stress
vector σ (t) through the use of a constitutive matrix D as

εe(t)= D−1σ (t). (15)

In the present analysis D is composed of Young’s modulus E and Poisson’s ratio ν, which implies that
the elastic strain is related to stress according to isotropic linear elasticity. In order to introduce general
creep strain, one can adopt the view that creep strain is simply a time-dependent plastic strain. Then it
is logical to assume a flow rule for the creep rate component and equivalent pressure peq is introduced
as the plastic potential function [Vermeer et al. 1998]. Assuming the same yield function as in (11) the
total strain rate can then be obtained as

ε̇(t)= D−1σ̇ (t)+ λ
∂peq

∂σ (t)
, (16)

where the plastic multiplier λ can be eliminated from (16) by adopting the concept that the creep strain
rate is proportional to partial derivative of the plastic potential function with respect to the corresponding
stress component, i.e.,

λ=
ε̇c
v

α
, (17)

where λ can be evaluated for multidimensional situation as

ε̇c
v = ε̇

c
11+ ε̇

c
22+ ε̇

c
33 and α =

(
∂peq

∂σ11
+
∂peq

∂σ22
+
∂peq

∂σ33

)
. (18)

Equations (14)–(18) yield

ε̇c(t)=
ε̇c
v

α

∂peq

∂σ (t)
. (19)

By combining(13) and (19) we obtain

ε̇c(t)=
1
α

µ∗

τ

(
peq

peq
p

)(λ∗−κ∗)/µ∗ ∂peq

∂σ (t)
, with peq

p = peq
p0 exp

εc
v(t)

λ∗− κ∗
. (20)

Note that the subscript 0 is used in the equations to denote initial conditions and that εc
v = 0 for time

t = 0. The derivative quantities of peq and the components of strain rate vector ε̇c are given in the Online
Supplement.
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5. Finite element algorithm for creep model

A finite element algorithm was developed for the purpose of incorporating the devised creep model
under plane strain conditions, based on [Puswewala et al. 1992]. At any point within a material domain
of volume V and surface S, discretized by finite elements, the displacement vector field will be denoted
by u, the strain vector by ε, and the stress vector by σ . From the principle of virtual work, equilibrium
of the material domain at the time tk , which is reached after the accumulation of k time steps starting
from t = 0, can be expressed as ∫

v

BTσ kdv+ f k = 0, (21)

where f k is the known force vector consisting of body forces and surface traction forces. Vectors B, u,
ε and the nodal displacement vector a hold the following relationships, i.e.,

ε = Lu, u = Na and ε = L Na = Ba, (22)

where N is the shape function matrix and L is a differential operator matrix. It is necessary to evaluate
ak+1 and σ k+1 at the end of the next time interval 1tk , provided εk, akand σ k at the time tk are known.
In order to evaluate the accumulated volumetric creep strain (εc

v) at the time tk , Equations (14) and (15)
are used since εk, D−1and σ k are known quantities at the time tk . Together with (14), (15) and (22), the
expression for the difference between the stress vectors σ k+1 and σ k can be obtained as

ψk+1 ≡ σ k+1− σ k − DB {ak+1− ak}+ D1tkβ(σ k+θ )= 0. (23)

In the above, the following relationship has been used

εc
k+1− ε

c
k = β(σ k+θ )1tk, (24)

where β denotes the strain rate vector given by (20), and

σ k+θ = (1− θ)σ k + θσ k+1, where 0 6 θ 6 1. (25)

For θ > 1
2 (i.e., to have a unconditionally stable scheme), Newton–Raphson procedure is used to iterate

within the time interval 1tk for the unknowns σ k+1 and ak+1. The iterate number is denoted by a super-
script numeral. After successive iterations, the iteration cycle n can be reached, while the convergence
criterion may not yet be satisfied. At this point, (21) and (23) can be written using the appropriate current
stress and displacement values, but these expressions would now not reduce to zero since convergence has
not yet been achieved. Using the curtailed Taylor expansion on the latter expressions, the following two
equations are obtained to yield the unknown incremental corrections 1σ n

k+1 and 1an
k+1 upon solution

(this is the (n+ 1)-th iterate):

1σ n
k+1 = Dn [B

(
1an

k+1+ an
k+1− ak

)
− D−1 (σ n

k+1− σ k
)
−1tkβ

(
σ n

k+θ
)]
, (26)∫

v

BT Dn B 1an
k+1 dv

=

∫
v

BT Dn {D−1 (σ n
k+1− σ k

)
− B

(
an

k+1− ak
)
+1tkβ

(
σ n

k+θ
)}

dv−
∫
v

BTσ n
k+1dv, (27)
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where σ n
k+θ is obtained from (25) by replacing σ k+1 with σ n

k+1, and

Dn
=
[

D−1
+1tk Snθ

]−1
, (28)

where the matrix

Sn
=

(
∂β

∂σ

)
, (29)

is evaluated for σ n
k+θ . In (27) the right-hand side does not include provisions for increasing body forces. If

convergence occurs at the above (n+1)-the iterate, we set σ k+1= σ
n+1
k+1 (note that σ n+1

k+1 = σ
n
k+1+1σ

n
k+1)

and ak+1 = an+1
k+1, and proceed to the next time step; otherwise iteration is continued. The components

of the matrix Sn and the expressions for the element stiffness matrix and the stress increments are given
in the Online Supplement.

There are several possibilities that can be followed for convergence study, depending on the values
of θ and n (for example, θ 6= 0 and n = 1). The value of θ used in the analysis is 1

2 , which guarantees
the numerical stability of the algorithm. As an approximation has already been incorporated at the stage
of writing (24), the iteration solution is generally curtailed after one or two cycles. Use of sufficiently
small time steps would compensate for these approximations. As per the constitutive model in (20), the
solution process is initiated by obtaining the instantaneous elastic deformation and stress distribution at
the time of application of the initial load (t = 0). These displacement and stress vectors are used to
obtain the incremental displacement and stress vectors during the first time interval 1t0 by solving (26)
and (27). The solution process is repeated for each time interval, until the termination of analysis. The
flow diagram for FEM algorithm is given in Figure 1.

6. Numerical analysis and discussion

The sensitivity analysis of material parameters used in the model is carried out by simulating a concrete
strip foundation on a soil layer. Numerical analyses were carried out by a finite element mesh composed
of 40 eight-node serendipity elements representing an 8 m deep layer of soft soil underlain by a hard
surface like rock (Figure 2). The simulation was done under simplified plane strain conditions, with the
top of the surface subjected to a uniform load of 120 kPa applied over the strip footing. The strip footing
materials were selected as concrete and the basic material properties of the soil were selected similar to
Haney clay investigated by Vaid and Campanella [1977], and the corresponding material parameters are
as follows:

Foundation material parameters: Young’s modulus E = 2.1× 107 kPa; Poisson’s ratio ν = 0.23

Soil properties for the problem configuration in Figures 2 and 6:
E = 2.1× 104 kPa, ν = 0.25, σp0 = 350 kPa, φcs = 32.1,
κ∗ = 0.016, λ∗ = 0.105, µ∗ = 0.004 τ = 1 day

(30)

Figure 3 shows the settlement behavior at the center of the foundation predicted by the constitutive
model for different combinations of Young’s modulus and Poisson’s ratio. The settlement reduces when
Poisson’s ratio is equal to 0.45, which is as expected since incompressible behavior is represented by the
case where Poisson’s ratio equals 0.5. The figure shows the significant effect of parameters E and ν on
the time dependent deformation of the creeping soil medium, implying that these parameters indicate the
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Figure 1. Flow diagram for FEM algorithm.

overall stiffness of the soil modeled as a solid continuum in this work. The effect of modified secondary
compression index, µ∗, on the settlement is shown in Figure 4; the settlement with time at the center point
under the surface load of 120 kN/m2 is shown for three different values of µ∗, with all other parameters
as given in (30). Figure 4 clearly indicates that the settlement increases with the increase of modified
secondary compression index. The effect of preconsolidation pressure (σp0) on the settlement is shown
in the Figure 5; the settlement with time at the center point under the surface load of 120 kN/m2 is
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Figure 2. Finite element mesh and loading arrangement for the problem considered for
sensitivity analysis.

 

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000

Time (days)

Se
ttl

em
en

t (
m

m
)

E1, v1

E1, v2

E1, v3

E2, v1

E1 = 21000 kPa, E2 = 42000 kPa

v1 = 0.25,  v2 = 0.35,  v3 = 0.45

Figure 3. Settlement behavior of the center point with Young’s modulus and Poisson’s ratio.

shown for three different values of σp0, with all other parameters as given in (30). With the decrease
of preconsolidation pressure, the figure indicates higher settlements which confirm Bjerrum’s. If the
preconsolidation pressure is less than the applied pressure then the settlement could be appreciable, but
the problem does not work for those values due to numerical complications inherent in the model.

Another soil-structure interaction problem, where a strip footing is placed on a thick clay stratum, is
considered for numerical simulation. The simulation is carried out by a finite element mesh composed
of 445 eight-node serendipity elements under simplified plane strain conditions (Figure 6). Load is
transferred to the soil through a wall of thickness 0.4 m on a foundation 2.4 m wide and 0.4 m high.
The configuration has symmetry, and the far boundaries of the soil domain are considered at distances
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Figure 5. Settlement behavior of the center point with preconsolidation pressure.

sufficiently far from the foundation to render the boundary effects on the interaction problem insignificant.
A structural load of 300 kN/m is assumed to act along the wall, equivalent to a load of 125 kPa transferred
to the soil through the foundation. The wall and the footing materials were selected as concrete and the
material properties of the soil are given in (30).

The problem configuration shown in Figure 6 deals with a soil-structure interaction that can often
exist in the real field. By taking L as the ratio of distance to the point from the center of the loaded
area to the half the total foundation width (1.2 m), the total settlement with time is shown in Figure 7
for three selected points at the foundation base level. According to this figure, the rate of settlement
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Structural load

Soil depth = 11.9 m
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depth = 0.4 m

Half of the clay layer
width = 9 m

Half of the
wall = 0.2 m

Figure 6. Finite element mesh and loading arrangement for the problem considered for
numerical simulation.

decreases, whereby during the first year it has a rate of 4 mm per year while after eight years it has a
rate of 1mm per year. The settlement of the foundation base with time is shown in Figure 8, which
indicates that delayed settlement is several times the instant settlement. The predicted instant (elastic)
settlement is about 7.5 mm and delayed settlement is about 29 mm underneath the loaded foundation
after approximately eight years.

The vertical average normal stress distribution in the soil along vertical sections at distances of 0.1 m,
0.5 m, 1.1 m and 2.1 m away from the centerline with time are shown in Figures 9–12, respectively.
Figures 9–11 show the time dependent variation of vertical average normal stress in the creeping material
along three vertical sections underneath the loaded foundation, and indicate that stresses increase with
time along the depth, towards the applied average stress at the base. This is equivalent to the geological
phenomena whereby rocks undergoing creep over time reach lithostatic states of stress in the long term.
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Figure 9. Average normal stress distribution at a distance of 0.1 m from the centerline
(underneath the foundation) with time.
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Figure 10. Average normal stress distribution at a distance of 0.5 m from the centerline
(underneath the foundation) with time.

The stress distribution at a vertical section outside the foundation width is shown in Figure 12. The
time dependent average shear stress distributions in the soil along vertical sections at distances of 0.5 m
and 1.1 m away from the centerline are shown in Figures 13 and 14, respectively. A general reduction
in average shear stress with time underneath the loaded foundation can be seen (under the ultimate
lithostatic state expected, shear stress tend to vanish). Figures 12, 13 and 14 show that the far field
effects are insignificant in the general case. A similar trend is shown by the elastic solution indicated
on Figures 9, 10 and 11. However, under the loaded patch, the normal vertical stress in the soil medium
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Figure 11. Average normal stress distribution at a distance of 1.1 m from the centerline
(underneath the foundation) with time.
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Figure 12. Average normal stress distribution at a distance of 2.1 m from the centerline
(outside the foundation) with time.

keeps on increasing with time towards the magnitude of the pressure applied on the footing as a result
of the creep of the material, regardless of the depth of the far boundary.

It is noted that the numerical values presented in this analysis are dependent on the selected material
parameters which are similar to Haney clay [Vaid and Campanella 1977]. However, the numerically
predicted results of the present research compares well with those monitored in the field as reported by
Bjerrum [1967]. The numerically predicted results for the soil-structure interaction problem (given by
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Figure 13. Average shear stress distribution at a distance of 0.5 m from the centerline
(underneath the foundation) with time.
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Figure 14. Average shear stress distribution at a distance of 1.1 m from the centerline
(underneath the foundation) with time.

Figure 6) are shown in Figure 15, which depicts the time-dependent settlement under the mid-point of
the foundation. This time-settlement curve in this last figure shows a behavior qualitatively similar to
the monitored behavior of two buildings: Skoger Sparebank Building, Norway and Konnerud Gate 16
Building, Norway, given by Bjerrum [1967], and reproduced approximately in Figure 16.
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Figure 15. Settlement predicted for the mid-point of foundation depicted in Figure 5 by
the finite element analysis.
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Figure 16. The monitored settlement behavior of the Skoger Sparebank Building, Nor-
way and the Konnerud Gate 16 Building, Norway. From Bjerrum [1967, Figures 23, 25].

7. Conclusion

The modified soil creep model of Bjerrum [1967] has been generalized to multidimensions and imple-
mented in a time-incrementing, iterative, nonlinear finite element code. Analyses were conducted for
two cases of a loaded strip footing placed on a clay stratum, under the assumption of simplified plane
strain conditions. The sensitivity of settlement predicted by the model to various material parameters is
demonstrated. The model predicts that delayed (creep) settlement can be several times the instant (elastic)
settlement. The vertical normal stresses under the loaded foundations increase with time towards the
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applied vertical pressure magnitude and the shear stress under the loaded foundation decreases with time.
This predicted behavior is in confirmation with the tendency of a creeping material to reach a lithostatic
state of stress in the long term. The predicted numerical values, while dependent on the selected magni-
tudes of material parameters, compare qualitatively with reported field data given by Bjerrum. Due to
the complications of nonlinear relationships involved in the model, the numerical algorithm experiences
some difficulties if arbitrary material parameters are selected. The developed model can be extended by
incorporating nonlinear elasticity for elastic strains which was not considered in the present study. But
it was seen to function and yield results that capture the essential trends shown by test data for valid
material parameters. The computer code developed here, when further developed and verified with field
data, would be a useful research tool for estimating settlements in structures founded on soils exhibiting
creep.
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