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GUNAWAN BUDI WIJAYA, TAM THANH BUI AND WORSAK KANOK-NUKULCHAI

A disastrous tsunami struck North Sumatra, Indonesia and many other countries on December 26, 2004.
In response to this disaster, we develop a two-dimensional numerical model to simulate tsunami propa-
gation on the open sea. Tsunami propagation — a process during which the wave has a relatively small
height compared to its breadth — is modeled using the shallow water equations. To solve these equations,
our model employs the characteristic-based split method first introduced by Zienkiewicz. Four case
studies are proposed to verify the numerical model, and our results show that the present numerical
model is both accurate and efficient. The numerical model is then used to model the propagation of the
tsunami of December 26, 2004, and gives a relatively close result.

1. Introduction

During the last decades, several tsunamis have occurred, striking coastlines and causing devastating
property damage and loss of life. The 1992 Flores Tsunami killed more than 264 people in Indonesia,
the 1993 Hokkaido tsunami in Japan killed 239 people. One of the worst on record is the December
26, 2004 tsunami, which struck North Sumatra, Indonesia and many other countries, killing more than
289,000 people.

Basically, tsunami can be generated when the sea floor abruptly deforms and vertically displaces
the overlying water. Earthquakes are the most frequent triggers, although in some cases a tsunami is
generated by a landslide, volcanic eruption, explosion, or the impact of a meteorite or asteroid. When
an earthquake occurs beneath the sea, it can cause the water above the deformed area to displace from
its equilibrium position. Waves are formed as the displaced water mass, under the influence of gravity,
moves to regain its equilibrium. When a large enough area of the sea floor suddenly changes elevation,
a tsunami forms.

Tsunami propagation on the open sea is characterized as a shallow-water wave with long period and
small height compared to its breadth. Shallow-water waves move at a speed that is equal to the square root
of the product of the acceleration of gravity (9.8 m/s2) and the water depth. Thus, the deeper the water,
the faster the wave. And since waves lose energy at a rate inversely related to their wavelength, tsunami
can travel at high speeds for long periods of time, losing very little energy in the process. As a tsunami
leaves the deep water of the open ocean and travels into shallower water near a coast, it transforms.
The tsunami’s energy flux, which is dependent on both its wave speed and wave height, remains nearly
constant. Consequently, as the tsunami travels into the shallower water, its speed is reduced and its height
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grows. As a result, tsunamis grow to be several meters or more in height near the coast, and may appear
as a rapidly changing tide, a series of breaking waves, or even a bore.

When a tsunami reaches land, it will start to lose some energy due to reflection from the shore, bottom
friction, and turbulence. Although there are energy losses, many tsunami waves don’t break. They simply
surge, flooding low-lying areas, and destroying vegetation, houses, and other coastal structures before
rebounding off of cliffs or hills. Often, this flow back into the ocean causes as much damage as the initial
onslaught.

This physical phenomenon of tsunami propagation can be mathematically modeled using the Shallow
Water Equations (SWE), which are based on the Navier–Stokes equations. In the early days of using
computers to find the numerical solutions of fluid flows, finite difference methods were the main tools
used by researchers. Various finite difference models have been developed for tsunami wave propagation
analysis, such as FUNWAVE, which was developed based on the extended Boussinesq model [Wei and
Kirby 1995], TUNAMI which uses linear shallow water theory in a spherical coordinate system [Ima-
mura 1996], SWAN, a model for shallow water and long waves, ZUNI, which uses a two dimensional
incompressible Navier–Stokes formulation, and SOLA-3D, a three dimensional incompressible Navier–
Stokes model for solving water wave problems of all types. Numerous examples and discussion on the
applications of SWAN, ZUNI and SOLA-3D models are presented in [Mader 2004].

In recent years, finite element methods have been widely considered as an alternative choice to finite
difference methods because of their flexibility in accurately representing arbitrary topography and com-
plex boundary conditions. Several finite element models have been formulated to study shallow water
wave propagation. Grotkop [1973] presents a space-time finite element model for long-period water wave
analysis, however this model requires more computer storage and running time than an explicit difference
model. For tsunami analysis, Houston [1978] uses a hybrid finite element method to study the interaction
of tsunamis with the Hawaiian Islands. Sklarz et al. [1979] simulated the November 29, 1975 tsunami
that hit the Hawaiian Islands. Considerable effort has been devoted to improving the performance of
finite element models. In the realm of time integration techniques, Kawahara et al. [1978] implemented
a two step explicit method which is modified from the Lax–Wendroff finite difference method. Malone
and Kuo [1981] proposed semiimplicit time integration schemes that allow the choice of a time step based
on accuracy, rather than some Courant-type restriction. Peraire et al. [1986] presented a general explicit
formulation which requires little computer storage and can be used on mini- and microcomputers.

The main difficulty of using finite element methods for flow problems is due to the convection terms
in the governing equations of fluid. The solutions of convection-dominated problems are often destroyed
by spurious oscillations if certain parameters exceed a critical value. Severe mesh and time step refine-
ment are required to remove these oscillations. Zienkiewicz and Codina [1995] introduced a new finite
element algorithm which precludes oscillations without the requirement of mesh or time step refinement.
This finite element algorithm is named the characteristic-based split (CBS) method, and combines the
characteristic Galerkin method to deal with advection-dominated flows with a splitting technique to make
the system equations become self-adjoint. Such a system of equations can be solved optimally by using
the Galerkin formulation. In semiimplicit form, the algorithm requires a critical time step dependent only
on the current velocity rather than on the wave celerity. Many studies using the CBS method have been
conducted to solve more general fluid problems [Zienkiewicz et al. 1999; Nithiarasu et al. 2004; Ortiz
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et al. 2004]. Here, the CBS method is used to develop a two-dimensional numerical model to simulate
the propagation of the December 26, 2004 tsunami.

2. Review on shallow water equations

The governing equations for general fluid dynamics problems are the Navier–Stokes equations, which
are derived from fluid’s characteristic conservation of mass and momentum, as shown below:

Continuity Equation:
∂ρ

∂t
+

∂

∂xi
(ρui ) = 0 (1)

Momentum Equation:
∂(ρui )

∂t
+

∂

∂x j
[(ρui )u j ] −

∂

∂x j
[τ j i ] +

∂p
∂xi

+ Qi = 0, (2)

where i, j = 1, 2, 3 represent the coordinate directions, ρ is the water density, ui is the velocity vector,
p is the water pressure, and Qi is a source vector term that includes Coriolis force, surface and bottom
shear stresses, and atmospheric gradient.

2.1. Shallow water flow characteristic. Shallow water flow is a nearly horizontal flow. This allows
a considerable simplification in the mathematical formulation and numerical simulation allowing the
assumption that the pressure distribution is hydrostatic. However, shallow water flow is not exactly two-
dimensional. Density stratification due to differences in temperature or salinity cause variations in the
vertical direction. In many shallow water flows, these three-dimensional effects are not essential and it
is sufficient to consider the depth-averaged form, which is two-dimensional in the horizontal plane.

The basic assumption in shallow-water theory is that vertical scales are much smaller than horizontal
ones. The vertical parameters include the water depth H , the variation in the bottom level, and the
variation in water height h. The horizontal ones include the physical dimensions of the basin (length,
width) and the wavelength λ (Figure 1). From linear wave theory, the ratio of water depth to wavelength
must be less than about 0.05 [Le Méhauté 1976]. This can be considered as the upper limit of shallow
water theory. In shallow water flow, the horizontal velocities are of primary importance, and are defined

Figure 1. Shallow water flow profile.
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Figure 2. Velocity distribution of shallow water flow.

as the average velocity: ∫ η

−H
ui dx3 = Ui (H + η) = Ui · h, (3)

where Ui is the average velocity vector (Figure 2).
In general shallow water flow, there are two types of boundary conditions governing the fluid at its

top and bottom:

• A kinematic boundary condition, which states that water particles cannot cross either boundary,
further requires that,

◦ along the solid bottom (z = −H ), velocities normal to the surface must vanish:

−u1
∂ H
∂x

− u2
∂ H
∂y

− u3 = 0, (4a)

◦ along the free top surface (z = η), since the surface must not move away from itself, the fluid’s
relative normal velocity must vanish:

∂η

∂t
+ u1

∂η

∂x
+ u2

∂η

∂y
− u3 = 0. (4b)

• A dynamic boundary condition, which defines the forces acting at each boundary:

◦ Along the bottom, it is assumed that the viscous fluid sticks to the surface (no slip condition):

u1 = u2 = 0. (4c)

◦ Along the top, it is assumed that the stress in the fluid just below the free surface is the same
as that in the air just above, namely the atmospheric pressure:

p = pa. (4d)

2.2. Shallow water continuity equation. The equation for the free surface is derived by an integration
of the continuity equation (1) over the depth coordinate x3:∫ η

−H

∂u1

∂x
dz +

∫ η

−H

∂u2

∂y
dz +

∫ η

−H

∂u3

∂z
dz = 0. (5)
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By using the Leibniz rule of integrals, Equation (5) can be written as

∂h
∂t

+
∂(hU j )

∂x j
= 0. (6)

With j = 1, 2, Equation (6) can also be written as

∂h
∂t

+
∂(hU1)

∂x
+

∂(hU2)

∂y
= 0. (7)

2.3. Shallow water momentum equations. In shallow water flow, the vertical velocity (u3) is very small,
and the corresponding acceleration can be neglected. So the vertical momentum equation becomes:

1
ρ

∂p
∂x3

+ g = 0. (8)

After integration, we can determine the pressure as

p = ρg(η − z) + pa. (9)

The other momentum equations for horizontal velocities are also integrated over the depth:∫ η

−H

[
∂(ui )

∂t
+

∂

∂x j
(ui u j ) +

1
ρ

∂p
∂xi

−
1
ρ

∂τ j i

∂x j
− Qi

]
dx3 = 0. (10)

Using the definition of p from Equation (9), and with i = 1, 2, Equation (10) can be written as the
conservative form of the depth-averaged equations:

∂(hUi )

∂t
+

∂

∂x j

[
(hUiU j ) + δi j

1
2

g(h2
− H 2)

]
+

∂

∂x j

[
−

h
ρ

τ̄ j i

]
+

[
−

1
ρ

(
τ s

3i
− τ b

3i

)
− h f i − g(h − H)

∂ H
∂xi

+
h
ρ

∂ Pa

∂xi

]
= 0. (11)

The term τ s
i j is the surface shear stress which is caused by the wind stress. The magnitude and direction

of the wind stress on the sea surface are determined by the flow in the atmosphere. A semiempirical
formula to calculate the magnitude of the wind stress is given by Gill [1982] as

τ s
i j = cd · ρ · W 2

i , (12)

where

cd = drag coefficient and Wi = wind speed.

The term τ b
i j is the bottom shear stress due to the no-slip boundary condition. This stress is influenced

by the roughness of the bottom layer. A simple approximation to calculate this bottom stress is given by
Groen and Groves [1962] as

τ b
3 j = c f · ρ · |U |Ui , (13)

where

|U | =

√
UiUi and c f = standard friction coefficient.
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The term ∂ Pa/∂xi is the atmospheric pressure gradient. This may be important for the simulation of storm
surges [Heaps 1967]. The value of this gradient can be obtained, for example, from a meteorological
forecast.

2.4. Shallow water equations. From the continuity and momentum equation, the complete form of the
Shallow Water Equations can be written in the conservative forms as

∂8

∂t
+

∂ Fi

∂xi
+

∂Gi

∂xi
+ Q = 0, (14)

where

8 =

 h
hU
hV

 = independent variable vector,

Fi =

 hUi

hUUi + δ1i
1
2 g(h2

− H 2)

hV Ui + δ2i
1
2 g(h2

− H 2)

 = convective flux vector,

Gi =

 0
−(h/ρ)τ̄1i

−(h/ρ)τ̄2i

 = diffusion fluxes,

Q =


0

−h f̂ V − g(h − H)
∂ H
∂x

−
h
ρ

∂ Pa
∂x

−
1
ρ

τ s
31 + c f · U

√
U 2 + V 2

h f̂ U − g(h − H)
∂ H
∂y

−
h
ρ

∂ Pa
∂y

−
1
ρ

τ s
32 + c f · V

√
U 2 + V 2

 = source terms.

For a general shallow water flow, the value of the stress τ̄ j i , the surface stress τ s
i j , the bottom stress τ b

i j ,
and the atmospheric pressure gradient ∂ Pa/∂xi are very small and can be neglected, so the shallow water
equations can be simplified as

1
c2

∂p
∂t

+
∂Ui

∂xi
= 0,

∂Ui

∂t
+

∂

∂x j
(u jUi ) +

∂p
∂xi

+ Q = 0, (15)

with

Ui = average velocity over the depth,

p =
1
2
(h2

− H 2) = pressure,

c =
√

gh = wave celerity,

Q = −g(h − H)
∂ H
∂xi

+ fi = source term,

in which fi is the Coriolis force.
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3. Review on characteristic-based split method

The numerical method used in this study is the characteristic-based split (CBS) algorithm, which was
first proposed by Zienkiewicz and Codina [1995]. It can be applied to solve both compressible and
incompressible flows, and is efficient and accurate. The main concept of this method is to split the
shallow water equations into two parts:

• A set of simple scalar equations of convective-diffusion type that can be solved using a much bigger
time step.

• A set of equations that are self-adjoint and can be discretized optimally by the Galerkin procedure,
which can be solved implicitly and is unconditionally stable.

3.1. CBS time discretization. The time discretization in this scheme will treat the pressure gradient of
the momentum equation (15)2 as a source term, and will evaluate it differently in t = tn

+ θ1t at time
increments 1t as shown below:

∂p
∂xi

n+θ2

= (1 − θ2)
∂p
∂xi

n
+ θ2

∂p
∂xi

n+1
. (16)

This equation yields

1Ui = 1t
[
−

∂

∂x j
(u jUi ) − Q +

1t
2

uk
∂

∂xk

(
∂

∂x j
(u jUi ) + Q

)]n

− (1 − θ2)1t
[

∂p
∂xi

−
1t
2

uk
∂

∂xk

(
∂p
∂xi

)]n

− θ21t
[

∂p
∂xi

]n+1

. (17)

This can be split into two parts:
1Ui = 1U∗

i + 1U∗∗

i , (18)

where

1U∗

i = 1t
[
−

∂

∂x j
(u jUi ) − Q +

1t
2

uk
∂

∂xk

(
∂

∂x j
(u jUi ) + Q

)]n

, (19)

1U∗∗

i = −(1 − θ2)1t
[

∂p
∂xi

−
1t
2

uk
∂

∂xk

(
∂p
∂xi

)]n

− θ21t
[

∂p
∂xi

]n+1

= −1t
[
∂pn

∂xi
+ θ2

∂1p
∂xi

]
+ (1 − θ2)

1t2

2
uk

∂

∂xk

∂pn

∂xi
,

(20)

1p = pn+1
− pn. (21)

With the same procedure, the shallow water continuity equation can also be discretized in time as( 1
c2

)n
1p = −1t

[
∂Ui

∂xi
+ θ1

∂1Ui

∂xi

]
= −1t

[
∂Ui

∂xi
+ θ1

∂1U∗

i

∂xi
+ θ1

∂1U∗∗

i

∂xi

]
. (22)

Neglecting third-order terms, this can be written as( 1
c2

)n
1p = −1t

[
∂Ui

∂xi
+ θ1

∂1U∗

i

∂xi
− 1tθ1

(
∂2 pn

∂xi∂xi
+ θ2

∂21p
∂xi∂xi

)]
. (23)
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This algorithm can be applied to both explicit and semiimplicit schemes, and depends on the selection
of the values θ1 and θ2. The stability criteria will depend on the scheme selected. For the fully explicit
scheme, we have

1/2 ≤ θ1 ≤ 1, θ2 = 0. (24)

Stability is obtained when the time increment is less than the time limit, defined as

1t ≤ 1tσ =
a

c + |u|
, (25)

where

a = element size, c =
√

g · h = wave celerity, |u| =

√
UiUi .

In semiimplicit form, the quantities of θ1 and θ2 are defined as

1/2 ≤ θ1 ≤ 1, 1/2 ≤ θ2 ≤ 1. (26)

This algorithm is conditionally stable. Three time limits have to be considered to assure stability:

1t ≤ 1tσ =
a
|u|

, 1t ≤ 1tν =
a2

2ν
, 1t ≤

1tσ · 1tν
1tσ + 1tν

, (27)

where ν = kinematic viscosity.

3.2. CBS spatial discretization. The finite element methods (FEM) is used to discretize the space. FEM
is an approximate method for solving differential equations of boundary and initial value problems. The
basic concept of FEM is to divide a continuum into many smaller elements of convenient shapes —
triangle, quadrilateral, and so on. Choosing suitable points (‘nodes’) within the elements, the variable
in the differential equation is written as a linear combination of appropriately selected interpolation
functions describing the variable. The governing equations are then transformed into a set of finite
element equations for each element, and assembled into a global system based on the connectivity of the
nodes. The nodal values of the variable are determined from this system of equations.

The spatial discretizations used in these formulations are

Ui = N (Ūi ), 1Ui = 1U∗

i + 1U∗∗

i = N (1Ū∗

i ) + N · (1Ū∗∗

i ), p = N · ( p̄), (28)

where

Ūi =
[
Ū 1

i Ū 2
i · · · Ū k

i

]
= Nodal velocities of a k-node element,

Ni =
[
N 1 N 2

· · · N k
]
= Galerkin shape function of a k-node element.

Equations (19), (20) and (23) are then discretized in space using the standard Galerkin finite element
method. By writing the pressure p in terms of total water height h, these equations can be solved in
three steps, as illustrated by Figure 3.
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Figure 3. CBS solution algorithm.

Step 1: Intermediate momentum equation. We have∫
�

N · 1U∗

i d� = 1t
[
−

∫
�

N
∂

∂x j
(u jUi )d� −

∫
�

N · Qi d� −
1t
2

∫
�

∂

∂xk
(uk N )

∂

∂x j
(u jUi )d�

+
1t
2

∫
�

(uk · N )
∂ Qi

∂xk
d� +

1t
2

∫
∂�

(N · uk)
∂

∂x j
(u jUi )nkd0

]n

, (29)

whose solution is

1Ū∗

i = −M ·
−1 1t

[
C · Ū + 1t · KuŪ − ( f + 1t · fs) − 1t · Kb,

]n
, (30)

where

M =

∫
�

N T Nd�, f =

∫
�

N T Qd�,

C =

∫
�

N T ∂

∂x j
(u j N )d�, fs = −

1
2

∫
�

∂

∂xi
(ui N T )Qd�,

Ku =
1
2

∫
�

∂

∂xk
(uk N T )

∂

∂x j
(u j N )d�, Kb =

1
2

∫
∂�

(uk N T )
∂

∂x j
(u j N )nkd0.
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Step 2: Total water depth calculation.∫
�

N (1h)d� + 1t2θ1θ2

∫
�

∂ N
∂xi

(c̃2)
∂(1h)

∂xi
d�

= − 1t
[ ∫

�

N
∂U n

i

∂xi
d� + θ1

∫
�

∂ N
∂xi

(
1U∗

i − 1t (c2)n ∂hn

∂xi

)
d�

−θ1

∫
∂�

N
[
1U∗

i − 1t
(

(c2)n ∂hn

∂xi
+ θ2(c̃2)

∂(1h)

∂xi

)]
ni d0

]
, (31)

whose solution is

1h̄ = (M̃ + 1t2
· θ1θ2c̃2(H − Qb))

−11t

×

[
Q(−U i + θ11U

∗

i ) − 1tθ1c2 H · h̄ + θ1(1t · c2 Qbh̄ − Mb1U
∗

i )
]n

, (32)

where

M̃ =

∫
�

N T Nd�, Mb =

∫
∂�

N T N · ni · d0,

Q =

∫
�

∂ N
∂xi

T
N · d�, H =

∫
�

∂ N
∂xi

T ∂ N
∂xi

· d�, Qb =

∫
∂�

∂ N
∂xi

T
N · ni d0.

Step 3: Velocity correction.∫
�

N1U∗∗

i d� = −1t · (1 − θ2)

∫
�

N (c2)n ∂hn

∂xi
d� − 1tθ2

∫
�

N (c2)n+1 ∂hn+1

∂xi
d�

− (1 − θ2)
1t2

2

∫
�

∂ N
∂xk

uk

(
(c2)n ∂hn

∂xi

)
d� − (1 − θ2)

1t2

2

∫
�

N
∂uk

∂xk

(
(c2)n ∂hn

∂x j

)
d�

+ (1 − θ2)
1t2

2

∫
∂�

Nuk

(
(c2)n ∂hn

∂x j

)
· ni · d0. (33)

The solution of Equation (33) is

1(U i )
∗∗

= −M ·
−11t ·

[
QT [

(1 − θ2)(c2)n h̄n
+ θ2(c2)n+1h̄n+1]

+
1t
2

P(c2)n h̄n
−

1t
2

Pb(c2)n h̄n
]
, (34)

where

M =

∫
�

N T Nd�, P = (1 − θ2)

∫
�

∂

∂xi
(ui N T )

∂ N T

∂xi
d�,

Q =

∫
�

∂ N
∂xi

T
N .d�, Pb = (1 − θ2)

∫
∂�

(uk N T )
∂ N T

∂xi
nkd0,

and where i, j, k = 1, 2, and N is the standard finite element shape function. The variable c̃ is the
average value of the celerity over the time step, while � is the flow domain bounded by ∂�, and nk is
the outward normal of the boundary ∂�. Step 1 and Step 3 can be solved explicitly, while Step 2 needs
to be solved implicitly. The velocity is computed in two stages by the characteristic Galerkin method as
shown in Step 1 and Step 3. In Step 2, the pressure, or elevation of the free surface, is solved from a
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self-adjoint Laplacian-type equation, which can be discretized optimally by the Galerkin procedure. In
this semiimplicit form, the algorithm’s time step depends only on the current velocity, rather than on the
wave celerity. By now it should be clear why the CBS method is very efficient.

4. Review on exact solution

The exact solution for water elevation is achieved by solving the continuity equation above. By defining
η as the water elevation, we can get

η(x, t) =
H
2

cos(kx − σ t), (35)

where

k =
2π

L
= the wave number, (36)

σ 2
=

2π

T
= gk ∗ tanh(kh) = the circular frequency, (37)

c =
σ

k
=

2π/T
2π/L

=
L
T

= the wave celerity. (38)

For shallow water waves, where kh is very small (kh < π/10), the hyperbolic function tanh(kh) can be
approximated as kh. With this simplification, the dispersion relationship for shallow water reduces in
such a way that the wave celerity for shallow water wave can be defined as

σ 2
= gk ∗ tanh(kh) = gk2h,

σ 2

k2 = c2
= gh, c =

√
gh. (39)

From the linearized frictionless momentum equations, we have

∂U
∂t

= −g
∂η

∂x
. (40)

Substituting Equation (35) into Equation (40), we get

∂U
∂t

= g
H
2

k sin(kx − σ t),

or

U = g
H
2σ

k cos(kx − σ t) =
c
h
η. (41)

If we further examine the change in wave height due to changes in water depth and channel width, we
find that

H2 = H1

(
h1

h2

)1/4(b1

b2

)1/2

, (42)

where subscript 1 indicates the location at the reference point, and subscript 2 indicates the location at
the examined point. For a special case where the channel width is uniform (b1 = b2), this relationship is
called Green’s Law. This formula implies that a change in water depth or channel width can change the
water height.
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5. Model verification and demonstration

The element used in this study is a standard linear triangular element with three unknowns to be solved in
each node, as shown in Figure 4. These unknowns are h, U , and V which determine the water elevation
and the mass flow in x and y directions. The area and line integrations are calculated numerically using
one Gauss point, as show in Figure 5.

Figure 4. Triangular element.

The wave parameters will be defined based on the characteristic of shallow water wave states where
the ratio of the vertical scale h to the horizontal scale L is very small. Our shallow water condition is:

h/L < 0.05 or kh < π/10. (43)

In this study, water depth is kept constant at the level h = 0.5 m. Using this water depth, we can compute
the wave celerity simply by using Equation (39):

c =
√

gh = 2.214 m/s. (44)

Numerical Area integration Numerical Line integration

∫
�

N1d� =
∫
�

N2d� =
∫
�

N3d� =
1
3 ∗ Area

∫
∂�

N1d0 =
∫
∂�

N2d0 =
1
2 ∗ Length∫

∂�
N3d0 = 0

Figure 5. Numerical integration.
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Parameter: Symbol Value used

Water depth H 0.5 m
Wave amplitude A 0.02 m
Wave period T 10 s
Time stepping parameter θ1 and θ2 0.5
Time increment 1t 0.0625 s
Lumping parameter B 0.9

Table 1. Parameters used in this study.

Using Equations (36) and (38) with k = 2π/L and L = c · T , we can compute the wave period by

kh <
π

10
→

2π

c · T
h <

π

10
→ T > 4.52 s. (45)

To satisfy this condition, the wave period is set to 10 s, and the wave amplitude is set at 0.02 m. The
wavelength is computed using Equation (38) and is equal to 22.14 m. For the sake of stability, the time
stepping parameters θ1 and θ2 are set to 0.5, following the Crank–Nicolson scheme. The time step
increment, 1t , is set to be 0.0625 s, and the lumping parameter β is set at 0.9. These parameters, used
throughout this study, are summarized in Table 1.

The model will be verified and demonstrated by solving and analyzing four case studies. The analysis
is done by performing a convergence test and, where possible, comparing the numerical results with exact
solutions and laboratory experiments. In cases where the exact solution is not available, the analysis is
based only on the physical characteristics of the water flow. These cases serve as demonstrations of the
capability of the model.

Case 1: Flow in rectangular channel with constant depth. A simple experiment of shallow water wave
propagation is done in a frictionless channel with a length and depth of 50 m and 10 m respectively. The
purpose of this case is to verify that the FEM solution for water elevation, velocity, and pressure converge
well as our mesh gets finer. Other wave parameters will also be verified.

A series of waves are generated on one side, such that they will propagate to the other side and reflect
back. The boundary conditions we apply to the model are the normal velocity on the boundary B-C,
C-D, and A-D is assumed to be zero, while a sinusoidal wave is imposed on the boundary A-B with an
amplitude of 0.02 m and a period of 10 s.

Figure 6. Rectangular profile with constant depth.
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Figure 7. Four types of mesh used in Case 1.

We will study convergence of solutions across four successively refined meshes, as shown in Figure 7.
The convergence test is conducted at regular 5 m intervals within the channel. Figure 8 compares water
elevations in the FEM and exact solutions, at time = 20 s and x = 5, 10, 15, 20, 25 and 30 m.

Looking to Figure 8, we see that the FEM solution using meshes 2, 3, and 4 give results close to the
exact solution. The exact solution given here is for a wave in a steady state. Looking to our results, the
error seems to be increasing as x increases. This can be explained by the fact that, when the wave is
generated, it will first propagate in a transient state, only reaching the steady state after quite some time.
Furthermore, the exact solution gives no wall boundary condition around the channel. If we look at the
steady state region, x ≤ 15 m, the FEM with mesh 4 gives pretty good results. By contrast, at x = 50 m
we see a clear difference between the FEM and exact solutions. The wave in the numerical solution has
yet to arrive, while the wave in the exact solution is already in its steady state. Results from successively
refined meshes do not converge very well, and sometimes the least error is found with a mesh other than
mesh 4, which is the most refined mesh. This is likely the result of the irregular shape and location of
the triangles used in the meshing scheme.

To further confirm our method, we examine the accuracy of the physical results got using mesh 4.
Looking to Figure 9, which shows the wave at time = 25 s, we see that the amplitude of the wave

Figure 8. Water elevation result of Case 1 at time = 20 s.
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Figure 9. Wave properties at time = 25 s.

Figure 10. Velocity in x-direction of Case 1 at time = 20 s.

is consistently 0.0203 m. This is a 1.5% error relative to the initial amplitude of 0.02 m. The FEM
wavelength is computed to be 21.57 m, which is 2.58% in excess of the exact solution 22.14 m. When
the wave hits the wall (at time ≈ 25 s), the maximum water elevation will double, to 0.04 m. The FEM
solution gives this elevation as 0.0420 m, a 5.00% error.

Since the water pressure is derived directly from water elevation (p = 0.5g(h2
− H 2)), it has exactly

the same behavior as water elevation. The velocity in the x-direction for both FEM and exact solutions at
time = 20 s are presented in Figure 10. The convergence test is again conducted at the same 5 m intervals.

The behavior of the velocity is similar to that of the water elevation. FEM solutions of velocity using
meshes 3 and 4 give results close to the exact solution in the steady state region, x < 15 m. Velocity in
the y-direction is zero for all time throughout the channel. This is as expected, as the imposed wave is
symmetrical. Again, the results converge poorly due to the irregular triangular meshing. The maximum
velocity in the x-direction is 0.0952 m/s which has 7.25% error from exact solution 0.0883 m/s.

Case 2: Flow in rectangular channel with irregular depth. Next, we pursue a variation on Case 1, a
rectangular channel with irregular depth as shown in Figure 11. Again, we assume no normal velocity
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Figure 11. Channel profile of Case 2.

along boundaries B-C, C-D, and A-D, with a sinusoidal wave imposed on boundary A-B. The wave’s
amplitude is 0.02 m and its period of 10 s. The water elevation will be computed on the edge of the channel
(y = 14 m) at four different points (x I = 11.5 m, x I I = 23.5 m, x I I I = 29.5 m, and x I V = 35.5 m).

We compare the results of this case study with experimental data, and other numerical result previously
done by Cheng and Kawahara [1991] using the combination of the explicit and quasi explicit standard
Galerkin finite element method.

The water elevations at our four reference points are plotted against time in Figure 12. The dotted line
shows observed experimental data, the solid line shows the numerical result using the standard Galerkin
finite element method, and the dashed line is the numerical result using the CBS method. From the figure

Figure 12. Numerical results of Case 2.
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we see that the values obtained using the CBS method are the better of the numerical results, closer to
the experimental data.

Snapshots of the three-dimensional view of water elevation are shown in Figure 13. From the simula-
tion, it can be seen that when the wave enters the shallower area, its height increases. This corresponds
with the characteristic of tsunami propagation.

Figure 13. Water elevation of Case 2 at various time steps.
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Figure 14. Channel profile for Case 3.

Case 3. Flow passing a solid barrier. In Case 3, a cylindrical barrier with a diameter of 4 m is placed in
the middle of the channel at x = 30 m, as shown in Figure 14. The purpose of this case is to model and
study the behavior of the tsunami wave passing a solid barrier, such as an offshore structure. Again, we
set the normal velocity along boundaries B-C, C-D, and A-D to zero, and propagate a sinusoidal wave
with an amplitude of 0.02 m and a period of 10 s from boundary A-B.

Snapshots of the wave’s elevation at two times are plotted in Figure 15. The solid lines show the water
elevation in the middle of the channel (y = 5 m), while the dashed lines show the water elevation in the
edge of the channel (y = 0 m).

If we look at Figure 15, at time = 15 s there is a difference in water elevation between the water in
the middle of the channel (y = 5 m), which starts to hit the barrier, and the water on the edge of the
channel (y = 0 m), which still propagates with the same amplitude. At time t = 25 s, the maximum
water elevation at the wall is about 0.035 m. In Case 1 where there is no barrier, the maximum water

Figure 15. Water elevation of Case 3 at t = 15 s and t = 25 s.
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Figure 16. Water elevation, pressure, and velocity of Case 3 at t = 25 s.

elevation at the wall is 0.04 m. So in this case, it is shown that the barrier has reduced the maximum
water elevation by up to 12.5%.

Figure 16 shows the water elevation as a three-dimensional view, along with water pressure and also
velocity in x and y directions. From this figure, we can see that the velocity and pressure propagate in the
same manner as the water elevation, which means the higher the water elevation, the higher the velocity
and the pressure. The only difference appears at the wall boundary condition. The water elevation and
pressure are maximized due to the reflecting wave, but the velocity is zero.

Case 4: Flow in circular channel with constant depth. Tsunami propagation due to an earthquake on
the open sea is modeled using a circular channel with a diameter of 50 m and constant depth of 0.5 m, as
shown in Figure 17. The land surrounding the sea is modeled by assuming the normal velocity around
the channel to be zero. The earthquake is modeled by imposing a sinusoidal wave with amplitude of
0.02 m and period of 10 s in a small circular area with a radius of 1 m in the center of the channel.

Figure 18 represents the water elevation in the middle of the channel (y = 0 m) where we can see that
the initial bottom deformation of 0.02 m generates an initial wave with amplitude of 0.02 m. The wave
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Figure 17. Channel profile of Case 4.

Figure 18. Water elevation of Case 3 in the middle of the channel (y = 0 m) at t = 15 s
and t = 215 s.

then propagates symmetrically with a decreased amplitude. When the first wave reaches the wall around
the circular channel, the maximum water elevation is only 0.012 m. This means that while propagating
out to a radius of 25 m, the wave loses up to 70% of its height, or about 2.8% per meter travelled.
Three-dimensional snapshots of the water elevation, pressure, and velocity are shown as Figure 19.

6. Tsunami simulation

In this section, we use the presented finite element method to model the propagation of the December
26, 2004 tsunami. Figure 20 presents the tsunami propagation model in the domain of 10◦ S − 20◦ N and
80◦ E − 100◦ E.

To be able to perform analysis of real tsunami propagation, appropriate wave sources for tsunamis must
be employed. These wave sources will have to be derived from earthquakes that occur in the problem
domain. An appropriate wave source model for tsunami propagation problems is still in development.
To illustrate the capability of the present finite element model in predicting tsunami wave traveling time,
our simulation uses a simple wave source in the form of sinusoidal wave with an amplitude of 1 m and
period of 300 seconds.
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Figure 19. Water elevation, pressure, and velocity of Case 4 at t = 25 s.

Figure 21, left, shows the first simulation, estimating wave speed in deep water. In deep water, tsunami
waves move at a speed that is equal to the square root of the product of the acceleration of gravity and
the water depth. In the studied domain, with an average water depth of 6000 m, the analytical tsunami
wave speed is calculated as 240 m/s. The simulation is conducted up to 6000 seconds with the sinusoidal
wave at the left boundary as shown in the same figure. As derived from wave’s ultimate translation, our
model estimates a deep water tsunami wave speed of 225 m/s.

The second simulation serves as a tool to predict tsunami wave traveling time to the shoreline. The
sinusoidal wave source is excited at the island shown in Figure 21, right. From numerical simulation,
the time of tsunami wave traveling from the excited island to Phuket area in the figure is 1 hour and
14 minutes. The result is relatively close to the real observation obtained from the December 26, 2004
Tsunami. This important feature of the present model has been implemented in the Tsunami tracking
and alert system currently under development at Thailand’s Asian Institute of Technology, School of
Engineering and Technology.
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Figure 20. Finite element model for the propagation of the December 26, 2004 tsunami.
Left: mesh created for the domain; middle: bathymetry data; right: composite of both.
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7. Conclusions

This paper presented the characteristic-based split as a method for the solution of the shallow water
equations. The main advantages of this method are its efficiency and accuracy. The efficiency is obtained
from the split procedure, which enables us to solve some equations explicitly. From the numerical results
in Case 2, it is shown that the CBS solution is very accurate, giving results closer to the experimental
data than those given by the standard Galerkin method. The numerical model can also be used to model
tsunami propagation passing a solid barrier, as shown in Case 3, and tsunami propagation due to an
earthquake on the open sea, as shown in Case 4. Using these case studies, we showed the method’s
facility in modeling the characteristics of real tsunami propagation, namely that water elevation increases
as a tsunami enters shallower areas, and that, in general, the higher the water elevation, the higher the
water velocity and pressure. The exception to this correspondence between water velocity and water
elevation appears at the wall boundary, where the water elevation doubles and the wave is reflected from
the wall with zero velocity. Finally, the propagation of the December 26, 2004 tsunami is modeled using
the CBS method. The numerical simulation gives relatively close results compared to actual data from
the event. However, this correspondence is limited due to the lack of an appropriate wave source. The
result using an arbitrary wave source is designed to illustrate the capability of the model, and motivate
its use when appropriate wave sources can be supplied. This analysis of a truly real tsunami will be
addressed in a future paper, after the development of a wave source model for tsunami propagation is
complete.
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