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NONLINEAR LOCAL BENDING OF FGM SANDWICH PLATES

JIE YANG, SRITAWAT KITIPORNCHAI AND KIM MEOW LIEW

This paper investigates the nonlinear local bending of a sandwich plate consisting of two composite
laminated face sheets and a graded core subjected to a lateral patch load. It is assumed that the material
composition of the graded layer varies symmetrically along the thickness direction according to a power
law distribution. The present analysis is based on the first order shear deformation plate theory and von
Karman nonlinear kinematics, with the interaction between the loaded face sheet and the graded core
being modeled as an elastic plate resting on a Vlasov-type elastic foundation. A perturbation technique
and Galerkin method are used to determine the nonlinear local bending response. Numerical results show
that compared with conventional sandwich plates with a homogeneous soft core, the use of a functionally
graded core can effectively reduce both the local deformation and interfacial shear stresses. A parametric
study is performed to show the influences of the volume fraction index, Young’s modulus ratio, thickness
of the graded core, boundary condition, and load position.

1. Introduction

Due to their high specific stiffness, light weight, exceptional impact energy absorption, and excellent
thermal and acoustical insulation characteristics, sandwich structures are widely used in many engineer-
ing applications such as infrastructures, marine constructions, automobiles, and the aerospace industry.
A typical sandwich structure consists of two stiff face sheets and a thick intermediate core of low-density
and low-modulus material sandwiched in between. One of the major concerns in using such a structure
is the so-called “interface problem” (possible crack and delamination at the face sheet/core interfaces
caused by the transverse shear stress concentration) that arises from large stiffness differences between
the face sheets and the core which may result in a significant deterioration in structure reliability.

Functionally graded materials (FGMs) constitute a new class of inhomogeneous composites whose
material composition and physical properties change continuously and smoothly in one or more spatial
coordinates so that the interface problem can be effectively mitigated or eliminated. Rapid advances
in manufacturing techniques have enabled the fabrication of bulk FGMs that can be used in large-scale
structural systems [Ichikawa 2001]. This provides an advantageous degree of freedom in incorporating
FGMs into a sandwich structure to achieve a smooth variation in the material property profile. Recent the-
oretical and experimental investigations [Apetre et al. 2002; Anderson 2003; Venkataraman and Sankar
2003; Venkataraman et al. 2004; Kirugulige et al. 2005; Pollien et al. 2005; Das et al. 2006; Apetre
et al. 2006; Zhu and Sankar 2007] have shown that the use of an FGM core can significantly reduce the
interfacial shear stresses.

Keywords: local bending, sandwich struction, functionally graded materials, nonlinear behavior, laminates.
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It is known that under a highly localized lateral load such as a point or a patch load, a sandwich struc-
ture tends to fail not by overall bending but more often by excessive bending deformation or indentation
into the soft core layer around the loaded area. In such a case, the local deformation can be regarded as
the relative deflection of the loaded face sheet against the unloaded face sheet. Quite a few theoretical
and experimental studies have been conducted to address this issue [Corbett and Reid 1993; Thomsen
1993; Thomsen 1995; Frostig and Baruch 1996; Abrate 1997; da Silva and Santos 1998; Polyakov 2001;
Koissin et al. 2004; Hohe and Librescu 2004; Carrera and Ciuffreda 2005], among many others. For
sandwich plate structures with a continuous core layer, the relative deflection can be determined by using
an approximate approach in which the core layer is modeled as an elastic foundation. Weissman-Berman
et al. [1996] treated the loaded face sheet as a Kirchhoff plate resting on a Winkler-type elastic foundation
whose equivalent foundation stiffness was dependent on the material properties of the core. For a thick
core whose shearing effect is important, Thomsen [1993; 1995] suggested a modified Vlasov-type elastic
foundation model and studied the local bending behavior of simply supported rectangular sandwich pan-
els with thin orthotropic face layers. By modeling the sandwich panel as an infinite orthotropic elastic
plate resting on a rigid-plastic foundation, Türk and Fatt [1999] investigated the local damage response of
a composite sandwich panel induced by static indentation of a hemispherical-nose indenter. It is noted
that all of the aforementioned studies were based on the linear displacement-strain relationship only
and did not take into account the geometric nonlinearity which is inevitable when a sandwich structure
is subjected to a localized load of high density. The only work including this effect was reported by
Yang et al. [2001] who presented a nonlinear local bending analysis of composite laminated sandwich
plates with a flexible core under a combination of lateral strip load and uniform edge forces by using the
classical plate theory and a differential quadrature based semi analytical method. Their results showed
that the nonlinear local bending response is considerably different from linear predictions.

This paper investigates the geometrically nonlinear bending response of a rectangular FGM sandwich
plate subjected to a lateral patch load within the framework of von Karman-type geometric nonlinearity
and the first order shear deformation plate theory. The sandwich plate consists of a thick symmetrically
graded core layer bonded by two composite face sheets. The Vlasov-type elastic foundation model is used
to describe the supporting action of the graded core to the loaded face sheet. The nonlinear governing
partial differential equations are first transformed into a group of linear equations through the use of a
perturbation technique and then solved by the Galerkin procedure. Illustrative examples are analyzed to
gain an insight into the effects of the Young’s modulus ratio, the thickness ratio, the boundary condition
as well as the load position on the nonlinear local bending response.

2. Analytical formulations

2.1. Vlasov-type elastic foundation model. Figure 1 shows a rectangular sandwich plate of length a
and width b consisting of an isotropic inhomogeneous thick core of thickness Hc and two composite
laminated face sheets of equal thickness H f . Let (x, y, z) be a set of coordinates with the x- and y-axes
located in the middle plane of the upper face sheet and the z-axis pointing upwards. The material profile
of the core changes continuously along the thickness direction according to a power law distribution and
is compositionally symmetric about its midplane. The effective Young’s modulus at an arbitrary point
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Figure 1. Schematic configuration of an FGM sandwich plate. 
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Figure 1. Schematic configuration of an FGM sandwich plate.

within the core layer can be determined by

Ecore =


(E1 − E0)

(
2

z + h
Hc

)n
+ E0 −h ≤ z ≤ −0.5H f ,

(E1 − E0)
(
−2

z + h
Hc

)n
+ E0 −h − 0.5Hc ≤ z ≤ −h,

(1)

where h = (Hc + H f )/2, n is the non-negative volume fraction index, E0 denotes the Young’s modulus
in the mid-plane of the core and is much smaller than the Young’s modulus E1 at the face sheet/core
interface. Poisson’s ratio is taken to be constant throughout the core (νcore = ν0 = ν1).

It is assumed in this study that

(1) the face sheets and the graded core are perfectly bonded so that no separation takes place,

(2) the graded core and the face sheet have the same Young’s modulus, that is, E1 = E f at the face
sheet/core interfaces to achieve a smooth variation in material properties, and

(3) a large value of n is used to obtain a graded soft core whose Ecore in the majority of the cross section
is much smaller than E f .

Suppose that the upper face sheet is subjected to a lateral patch load q(x, y)= q0ϕ(x, y) distributed
over a small area 2aq × 2bq with its center located at (xq , yq). q0 and ϕ(x, y) denote the magnitude
and the distribution function of the load. To take into account the shearing effect in the graded core, the
interaction between the loaded face sheet and the core layer is modeled by a Vlasov-type two-parameter
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foundation as

p = K1w(x, y)− K2∇
2w(x, y), (2)

where w (x, y) is the relative deflection of the upper face sheet against the lower face sheet, p is the
foundation reaction per unit area provided by the graded core, ∇

2
= ∂2/∂x2

+ ∂2/∂y2 is the Laplace
operator, K1 and K2 are the equivalent spring stiffness and shear stiffness of the foundation which can
be derived using Lagrange’s principle of virtual work [Selvadurai 1979] as

K1 =

−h f /2∫
−(h f /2+Hc)

Ẽ(z)
[1 − ν̃2]

(
dφ(z)

dz

)2

dz, K2 =

−h f /2∫
−(h f /2+Hc)

Ẽ(z)
4[1 + ν̃]

φ(z)2dz, (3)

in which Ẽ = Ecore/(1 − ν2
core), ν̃ = νcore/(1 − νcore), and φ(z) is the deformation distribution of the core

layer that is considered to be in the plane strain state and takes the exponential form

φ(z)=
sinh[1.5(Hc − z − h)/b]

sinh(1.5 Hc/b)
. (4)

It can be seen from the calculations based on Equations (3) and (4) that both K1 and K2 fall sharply and
then remain almost constant as the volume fraction index n and the modulus ratio E1/E0 increase. The
variation of K1 with the core thickness Hc follows almost the same pattern. The value of K2, however,
increases steadily as Hc increases, implying that the shearing effect of the core material tends to be more
important for sandwich plates with a thick core.

At the interface between the loaded upper face sheet and the graded core (z = −0.5H f ), the stress
components σz, τzx , and τzy can be calculated by

σz|z=−0.5H f = K1w(x, y)− K2∇
2w(x, y), (5a)

τzx |z=−0.5H f = K2 u(x, y,−0.5H f ), (5b)

τzy|z=−0.5H f = K2v(x, y,−0.5H f ), (5c)

where u and v are in-plane displacement components of the loaded face sheet at the interface.

2.2. Governing equations. The face sheet considered in this study may be one of the following: (1)
an antisymmetrically angle-ply laminated plate; (2) a symmetrically cross-ply laminated plate; or (3) a
symmetric angle-ply laminated plate with more than 15 plies. In these cases, the plate stiffness elements
A16 = A26 = D16 = D26 = 0. Both isotropic and orthotropic plates can be treated as special cases.

The first order shear deformation theory is used to account for the transverse shear deformation of the
face sheet. Hence, the displacement field (u, v, w) of the loaded face sheet takes the form

u(x, y, z)
v(x, y, z)
w(x, y, z)

 =


ū(x, y)
v̄(x, y)
w̄(x, y)

 + z


ψx(x, y)
ψy(x, y)

0

 , (6)

where (ū, v̄, w̄) are the displacements of a point on the midplane of the face sheet (z = 0) and (ψx , ψy)

are cross sectional rotations about the y- and x-axes, respectively.
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The partial differential equations governing the nonlinear flexural response of the loaded face sheet in
the sense of von Karman-type nonlinear kinematics [Liew et al. 2004] can be written in dimensionless
form as

L11(U )+ L12(V )+ L14(ψx)+ L15(ψy)+µL16(W,W )= 0, (7)

L21(U )+ L22(V )+ L24(ψx)+ L25(ψy)+µβL26(W,W )= 0, (8)

L33(W )+ L34(ψx)+ L35(ψy)+µ
2L36(W,W )+µL37[(U, V, ψx , ψy),W ] = λqϕ(x, y)/µ, (9)

L41(U )+ L42(V )− L43(W )+ L44(ψx)+ L45(ψy)+µL46(W,W )= 0, (10)

L51(U )+ L52(V )− L53(W )+ L54(ψx)+ L55(ψy)+µL56(W,W )= 0, (11)

where the linear partial differential operators L i j (i, j ≤ 5), the nonlinear partial differential operators
L i6 (i = 1, . . . , 5), and L37 are given in the Appendix. The dimensionless quantities in (7)–(11) are

ξ = x/a,

η = y/b,

β = a/b,

µ= H f /a,

(U, V,W )= (ū, v̄, w̄)/H f ,

(k1, k2)= (K1a2, K2)/A11,

λq = q0a/A11,

(γ1, γ2, γ3)= [A44, A45, A55]H 2
f /D11,

(γ11, γ12, γ13, γ14)= [A66, A12 + A66, A12, A22]/A11,

(γ15, γ16, γ17, γ18, γ19, γ110, γ111)= [B11, B16, B66, B12 + B66, B26, B22, B12]/(A11 H f ),

(γ41, γ42)= [D66, D12 + D66]/D11,

(γ43, γ44, γ45, γ46, γ47, γ48)= [B11, B16, B66, B12 + B66, B26, B22]H f /D11,

in which Ai j , Bi j and Di j are the stiffness elements of the face sheet

(Ai j , Bi j , Di j )=

NL∑
k=1

zk+1∫
zk

Q(k)
i j (1, z, z2)dz (i, j = 1, 2, 4, 5, 6), (12)

where Q(k)
i j are the reduced stiffnesses for the kth layer of the NL -ply laminated face sheet and are

functions of fiber orientation of that layer. Their expressions are available in many references; see, for
example, the book by Reddy [1997].

The edges of the loaded face sheet may be either simply supported or clamped with the boundary
conditions

W = 0, ψs = 0, Mn = 0, Nn = 0, Us = 0, (13a)

for a simply supported edge, and

W = 0, ψs = 0, ψn = 0, Un = 0, Us = 0, (13b)
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for a clamped edge. The subscripts n and s refer to the normal and tangential directions of the edge, and
Nn, Nns,Mn,Mns, Qn are the in-plane forces, moments, and transverse shear force, respectively.

3. Analytical methodology

3.1. Perturbation technique. To determine the local response of the loaded face sheet, a perturbation
technique [Yang et al. 2001; Yang and Shen 2003a; Yang and Shen 2003b] is used, and the unknown
displacement components (U, V,W, ψx , ψy) are expanded in an ascending power series up to the Rth
order for a small perturbation parameter λq as

(U, V,W, ψx , ψy)=

R∑
r

(λq)
r (U (r), V (r),W (r), ψ (r)x , ψ (r)y ). (14)

Following a standard perturbation technique, a set of equations can be obtained in terms of U (r), V (r),
W (r), ψ (r)x , and ψ (r)y :

L11(U (r))+ L12(V (r))+ L14(ψ
(r)
x )+ L15(ψ

(r)
y )= R(r)1 , (15)

L21(U (r))+ L22(V (r))+ L24(ψ
(r)
x )+ L25(ψ

(r)
y )= R(r)2 , (16)

L33(W (r))+ L34(ψ
(r)
x )+ L35(ψ

(r)
y )= R(r)3 , (17)

L41(U (r))+ L42(V (r))− L43(W (r))+ L44(ψ
(r)
x )+ L45(ψ

(r)
y )= R(r)4 , (18)

L51(U (r))+ L52(V (r))− L53(W (r))+ L54(ψ
(r)
x )+ L55(ψ

(r)
y )= R(r)5 , (19)

where

R(1)1 = R(1)2 = R(1)4 = R(1)5 = 0, R(1)3 = ϕ(x, y)/µ, (20)

R(r)i = −µ
i−1∑
s=1

L i6(W (r−s),W (s)) (r = 2, i = 1, 2, 4, 5),

R(2)3 = −µ2
i−1∑
s=1

L37[(U (r−s), V (r−s), ψ (r−s)
x , ψ (r−s)

y ),W (s)
],

R(r)3 = −µR(r)31 −µ2
i−1∑
s=1

L37[(U (r−s), V (r−s), ψ (r−s)
x , ψ (r−s)

y ),W (s)
] (r ≥ 3). (21)

Obviously, the right-hand terms R(r)i (i = 1, . . . , 5) have already been determined in the previous pertur-
bation step and can be treated as “pseudoloads” at the current step. In (21), the terms R(r)31 (r ≥ 3), up to
the fifth-order perturbation, are

R(3)31 =

(
∂2W (1)

∂ξ 2 + γ13β
2 ∂

2W (1)

∂η2

)(
∂W (1)

∂ξ

)2

+ 2γ11β
∂2W (1)

∂ξ∂η

∂W (1)

∂ξ

∂W (1)

∂η

+β2
(
γ13
∂2W (1)

∂ξ 2 +β2γ14
∂2W (1)

∂η2

)(
∂W (1)

∂η

)2

, (22)
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R(4)31 =

(
∂2W (2)

∂ξ 2 + γ13β
2 ∂

2W (2)

∂η2

)(
∂W (1)

∂ξ

)2

+ 2γ11β

(
∂2W (2)

∂ξ∂η

∂W (1)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (2)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (1)

∂ξ

∂W (2)

∂η

)

+β2
(
γ13
∂2W (2)

∂ξ 2 +β2γ14
∂2W (2)

∂η2

)(
∂W (1)

∂η

)2

, (23)

R(5)31 =

(
∂2W (1)

∂ξ 2 + γ13β
2 ∂

2W (1)

∂η2

)(
∂W (2)

∂ξ

)2

+

(
∂2W (3)

∂ξ 2 + γ13β
2 ∂

2W (3)

∂η2

)(
∂W (1)

∂ξ

)2

+ 2γ11β

(
∂2W (3)

∂ξ∂η

∂W (1)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (3)

∂ξ

∂W (1)

∂η
+
∂2W (1)

∂ξ∂η

∂W (1)

∂ξ

∂W (3)

∂η

+
∂2W (2)

∂ξ∂η

∂W (2)

∂ξ

∂W (1)

∂η
+
∂2W (2)

∂ξ∂η

∂W (1)

∂ξ

∂W (2)

∂η
+
∂2W (1)

∂ξ∂η

∂W (2)

∂ξ

∂W (2)

∂η

)

+β2
(
γ13
∂2W (1)

∂ξ 2 +β2γ14
∂2W (1)

∂η2

)(
∂W (2)

∂η

)2

+β2
(
γ13
∂2W (3)

∂ξ 2 +β2γ14
∂2W (3)

∂η2

)(
∂W (1)

∂η

)2

. (24)

3.2. Solution procedure. The solutions of the perturbation equations (15)–(19) under the associated
boundary conditions in (13) can be expanded in series form:

U (r)
=

M∑
m=1

N∑
n=1

a(r)mnŪm(ξ)Ũn(η), V (r)
=

M∑
m=1

N∑
n=1

b(r)mn V̄m(ξ)Ṽn(η), (25a)

W (r)
=

M∑
m=1

N∑
n=1

c(r)mnW̄m(ξ)W̃n(η), ψ (r)x =

M∑
m=1

N∑
n=1

d(r)mnψ̄xm(ξ)ψ̃xn(η), (25b)

ψ (r)y =

M∑
m=1

N∑
n=1

e(r)mnψ̄ym(ξ)ψ̃yn(η), (25c)

where (a(r)mn, b(r)mn, c(r)mn, d(r)mn, e(r)mn) are constants to be determined, (Ū (r)
m , V̄ (r)

m , W̄ (r)
m , ψ̄

(r)
xm, ψ̄

(r)
ym) and (Ũ (r)

n ,

Ṽ (r)
n , W̃ (r)

n , ψ̃
(r)
xn , ψ̃

(r)
yn ) are the analytical functions that satisfy boundary conditions at edges ξ = 0, 1 and

η = 0, 1, respectively. For example, when the face sheet is simply supported at ξ = 0, 1,

V̄ (r)
m (ξ)= W̄ (r)

m (ξ)= ψ̄ (r)ym(ξ)= sin(mπξ), Ū (r)
m (ξ)= ψ̄ (r)xm(ξ)= cos(mπξ), (26)

and when the face sheet is clamped at ξ = 0, 1,

Ū (r)
m (ξ)= W̄ (r)

m (ξ)= ψ̄ (r)ym(ξ)= Xm(ξ), V̄ (r)
m (ξ)= ψ̄ (r)xm(ξ)=

d Xm(ξ)

dξ
, (27)
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where

Xm(ξ)= sinµmξ − sinhµmξ − θm(cosµmξ − coshµmξ),

θm = (sinµm − sinhµm)/(cosµm − coshµm),

µm = (2m + 1)π/2.

Substituting (25) into the perturbation equations (15)–(19) and applying the Galerkin approach to
minimize the residual within the face sheet domain leads to a system of linear algebraic equations from
which the constants (a(r)mn, b(r)mn, c(r)mn, d(r)mn, e(r)mn) can be determined step by step. Finally, the nonlinear
load-deflection relationship for a given point p can be obtained by using the relationship in (14) as

Wp = λq W (1)
p + λ2

q W (2)
p + · · · + λR

q W (R)
p , (28)

where Wp refers to the dimensionless deflection at point p.

4. Numerical results and discussions

In the following computations, we use third order perturbation and the condition that M = N = 5 in
the solution series in Equation (25). These conditions were chosen based on the convergence study
implemented by means of varying the total number of series terms and increasing the perturbation order.

To validate the present analysis, the linear local bending of a clamped sandwich plate with a PVC core
and orthotropic face sheets subjected to a point load P = 1 kN at the plate center is considered. This
example was previously analyzed by Thomsen [1993] based on the classical plate theory as well. The
geometry and material properties are a = b = 500 mm, H f = 3 mm, E f

11 = 33.6 GPa, E f
22 = 8.4 GPa,

G f
12 = 3.1 GPa, ν f

12 = 0.32 for the orthotropic face sheet and Hc = 30 mm, Ec = 0.1 GPa, νc = 0.35
for the PVC core. Figure 2 displays the lateral deflection profile at the midspan (y = b/2) of the plate.
Severe deformation localization can be observed. The deflection reaches its peak value at the center of
the plate, and then decays steeply as the distance from the center increases. Good agreement is achieved
between the present solution and the finite element method (FEM) results [Thomsen 1993].

The second comparison example concerns the nonlinear bending of a simply supported functionally
graded square plate (a = b = 200 mm, h = 10 mm) under a uniform lateral pressure of intensity q.
The plate is made of a mixture of aluminum (E = 70 GPa, ν = 0.3) and zirconia (E = 151 GPa, ν =

0.3). Figure 3 presents the curves of dimensionless central deflection w0 =w/h versus load parameter
q∗

= qa4/Emh4 for plates with different material compositions where Em is the Young’s modulus of
aluminum. The FEM results [Reddy 2000] based on the higher-order shear deformation plate theory are
also provided for direct comparison. Again, good agreement is observed. The discrepancy in the above
comparisons is due to the different numerical solution methods used in the present analysis and existing
studies [Thomsen 1993; Reddy 2000].

Figures 4–9 give the numerical results for square sandwich plates with a symmetrically graded core and
4-layer (−45◦/45◦/− 45◦/45◦) antisymmetric angle-ply Kevlar/epoxy face sheets of equal ply thickness.
Unless stated otherwise, the plate is assumed to be simply supported at all sides and subjected to a
uniformly distributed patch load over an area (2aq , 2bq) = (2 × 0.05a, 2 × 0.05b) in the vicinity of
the center of the plate (xq , yq)= (0.5a, 0.5b). The material properties and geometrical parameters are:
E f

11 = 76 GPa, E f
22 = 5.5 GPa, G f

12 = 2.3 GPa, ν f
12 = 0.34, H f = 5 mm, a = b = 500 mm for the face
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Figure 2. Comparison of the linear deflection profile byw 5.0|
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Figure 2. Comparison of the linear deflection profile w|y=0.5b of an orthotropic loaded
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Figure 3. Nonlinear load-deflection curves of simply supported FGM square plates under uniform 
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Figure 4. Comparison of nonlinear local bending response of square sandwich plates with a 
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Figure 4. Comparison of the nonlinear local bending response of square sandwich
plates with a homogeneous core and a graded core: (left) deflection profile w0|y=b/2;
(right) interface shear stress τyz|y=b/2.

sheet, and E1 = 76 GPa, E1/E0 = 200, ν = 0.08, Hc/H f = 24, n = 50.0 for the graded core. The load
intensity is q = 20 MPa in Figures 4 and 9 and can vary up to q = 40 MPa in other examples. Numerical
results of normalized deflection w0 =w/H f and stresses (in MPa) at the loaded upper face sheet/graded
core interface are provided.

We first compare the local deflection profiles and interfacial transverse shear stress distributions of
sandwich plates with a graded core (E1 = 76 GPa, E0 = 0.38 GPa, n = 50.0) and with a homogeneous soft
core (E1 = E0 = 0.38 GPa) subjected to a patch load q = 20 MPa. Due to the symmetry in both structural
configuration and loading condition, only the deformed shape and shear stress τyz at the midspan y = b/2
on the left half of the plate are displayed in Figure 4 where nonlinear and linear results are represented by
solid and dashed curves, respectively. The local deflection and the interfacial shear stress τyz are maximal
at the plate center and decay rapidly towards the plate edge. It is important to note that both deflection and
interfacial shear stress τyz are greatly reduced when a graded core is used. This is because the equivalent
supporting stiffnesses K1 and K2 of the graded core are significantly higher than those of a homogeneous
core. This observation is of particular importance since it indicates that the structural performance of a
sandwich plate can be effectively improved through the use of a graded core that is capable of alleviating
the local deformation and lowering the interfacial shear stress responsible for debonding failure at the
face sheet/core interface.

Figure 5 displays the load-central deflection curves and the load-central interfacial stress curves for
sandwich plates with a homogeneous soft core (E1 = E0 = 0.38 GPa) and a graded core with varying
volume fraction index (E1/E0 = 200, E1 = 76 GPa, n = 20, 50). It should be noted that under the power
law defined in Equation (1), the graded core becomes stiffer as the volume fraction index n decreases,
while n = ∞ corresponds to a core that is roughly homogeneous. Because of this, the sandwich plate
with a graded core of n = 20 has the lowest central deflection. An increase in n leads to a higher τyz but
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Figure 5. Comparison of nonlinear local bending response of square sandwich plates with a 

homogeneous core and a graded core: (a) load-central deflection curves; (b) load-central interface 

stress curves. 
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Figure 5. Comparison of the nonlinear local bending response of square sandwich
plates with a homogeneous core and a graded core: (left) load-central deflection curves;
(right) load-central interface stress curves.

a lower σz . As can be observed in Figures 4 and 5, linear solutions greatly overpredict the deflection and
interfacial normal stress σz but on the other hand, considerably underestimate the interfacial shear stress
τyz . This discrepancy becomes even more significant when a graded core with a larger value of n is used.
Note that for the sandwich plate with n = 20, the load-central interfacial normal stress σz relationship is
basically linear. This is due to the fact that its load-central deflection curve is almost linear and the first
term in Equation (5a), which has a much higher weighing than the second term, is directly proportional
to the deflection.

To investigate the effect of modulus ratio E1/E0 of the graded core, the nonlinear load-central deflec-
tion and load-central interfacial stress curves for sandwich plates containing a graded core (n = 50) with
E1/E0 = 100, 500, and 1000 are given in Figure 6. The Young’s modulus at the face sheet/core interface
E1 is kept constant, while that at the core center E0 is varied. Therefore, a larger E1/E0 ratio in fact
indicates a softer graded core with a smaller E0. The nonlinear deflection and interfacial shear stress
τyz increase, whereas the interfacial normal stress σz decreases as the E1/E0 ratio is increased. It is
worth noting that the results for E1/E0 = 500 and 1000 are quite close, implying that the nonlinear local
response will almost not be affected by the change of E1/E0 beyond a certain value, say, E1/E0 ≥ 500
in this example.

Figure 7 examines the influence of the thickness ratio Hc/H f on the nonlinear local bending behavior
of FGM sandwich plates. It is assumed that only the core thickness Hc is changed, while the face
sheet thickness remains constant. Both the central deflection and central interfacial stresses follow a
nonmonotonic variation with the core thickness. A sandwich plate with Hc/H f = 30 has the greatest
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Figure 6. Nonlinear local bending response of square FGM sandwich plates with different 01 / EE  

ratios: (a) load-central deflection curves; (b) load-central interface stress curves. 
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Figure 6. Nonlinear local bending response of square FGM sandwich plates with dif-
ferent E1/E0 ratios: (left) load-central deflection curves; (right) load-central interface
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Figure 7. Nonlinear local bending response of square FGM sandwich plates with different fc HH /  

ratios: (a) load-central deflection curves; (b) load-central interface stress curves. 
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Figure 7. Nonlinear local bending response of square FGM sandwich plates with dif-
ferent Hc/H f ratios: (left) load-central deflection curves; (right) load-central interface
stress curves.

central deflections, but its central interfacial stresses are intermediate to those of the plates with Hc/H f =

10 and Hc/H f = 60. The reason is that as the graded core becomes thicker the spring stiffness K1 becomes
smaller but the shear stiffness K2 becomes larger, and the local bending behavior of the plate depends
largely on the combined effects of foundation stiffnesses K1 and K2.

The nonlinear local bending responses of FGM sandwich plates under different boundary conditions
are depicted in Figure 8 in which notations “SSSS”, “CCCC” and “SCSC” stand for, respectively, a simply
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Figure 8. Nonlinear local bending response of square FGM sandwich plates with different boundary 

conditions: (a) load-central deflection curves; (b) load-central interface stress curves. 
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Figure 8. Nonlinear local bending response of square FGM sandwich plates with differ-
ent boundary conditions: (left) load-central deflection curves; (right) load-central inter-
face stress curves.
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Figure 9. Effect of load position on: (a) the dimensionless central deflection profile 2/0 byw
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Figure 9. Effect of load position on: (left) the dimensionless central deflection profile
w0|y=b/2; and (b) the interface shear stress τyz|y=b/2 of a square FGM sandwich plate.

supported sandwich plate, a clamped sandwich plate, and a sandwich plate clamped at edges x = 0, a
and simply supported at edges y = 0, b. The results show that the boundary constraints have a significant
effect on the nonlinear local bending response. The fully clamped plate undergoes the lowest nonlinear
deflection and interfacial stresses. The nonlinear local responses of the SSSS and SCSC sandwich plates
are almost identical.

Figure 9 gives the deflection profiles and interfacial shear stress distributions for simply supported and
clamped FGM sandwich plates under a patch load q = 20 MPa centered some distance away from the
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plate center (xq = 0.1a, 0.3a, yq = 0.50b). As can be observed, both the deflection and interface shear
stress are affected by the load location. In particular, their peak values, which are of the greatest interest
in engineering design, are sensitive to both load location and the boundary conditions. As the load center
moves towards the support, both the deformed zone and the peak of interfacial stress distributions shift
towards the support accordingly.

5. Concluding remarks

The nonlinear local bending response of a composite sandwich plate containing a functionally graded
core under a lateral patch load is investigated based on the first order shear deformation plate theory and
von Karman type geometric nonlinearity. The analysis employs a Vlasov-type elastic foundation model
including the shear effect in the flexible core to model the interaction between the loaded face sheet
and the supporting core, and makes use of a perturbation technique and Galerkin approach to obtain the
numerical solutions. It is found that the deformation localization and interfacial transverse shear stress
concentration can be effectively reduced by using a core with smooth gradient in material properties. The
geometrical nonlinear effect is pronounced at high load levels and must be taken into consideration for
a reliable analysis. The use of a graded core with a smaller volume fraction index and a lower modulus
ratio E1/E0 helps suppress both the nonlinear local deflection and interfacial transverse shear stress but
leads to a higher interfacial normal stress. The nonlinear response is significantly influenced by the
thickness ratio in a nonmonotonic way and is sensitive to boundary conditions as well.

Appendix

Let κ =
5
6 be the shear correction factor. The linear and nonlinear partial differential operators in Equa-

tions (7)–(11) are

L11 =
∂2
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