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JOHN CODRINGTON, ANDREI KOTOUSOV AND SOOK YING HO

The out-of-plane stress and displacement fields are investigated analytically for mode I through-the-
thickness cracks in an infinite plate of finite thickness within the first-order plate theory. The developed
method is based on the distributed dislocation approach and an earlier derived three-dimensional solu-
tion for an edge dislocation. Numerical results are obtained through application of Gauss–Chebyshev
quadrature for both finite length and semiinfinite crack cases. The calculated stress and displacement
fields are found to be in good agreement with already published experimental and finite element studies.
Further results for the averaged through-the-thickness stress intensity factor are given and again found
to be in good agreement with previous finite element values. The developed solutions can therefore be
used in experimental techniques for the assessment of the stress intensity factor using the out-of-plane
displacement measurements, for example by the interferometry method.

1. Introduction

The investigation of geometric singularities like edges or cracks in engineering structures requires an
understanding of the complicated three-dimensional stress field surrounding the singularity. Over the past
fifty years, analytical and numerical investigations in fracture mechanics have mainly focused on two-
dimensional or axisymmetric geometries. This is due to the much needed simplifications that the classic
two-dimensional theories of elasticity bring to the mathematical analysis. Three-dimensional effects
are often acknowledged in these studies as the true crack tip stress field is always triaxial. However,
the relationship between the actual three-dimensional distribution and the results obtained within the
two-dimensional theories is still not completely understood. For that reason, three-dimensional crack
problems have been identified as a critical area where further research is needed [Erdogan 2000].

The three-dimensional crack-front stress and displacement fields have been investigated by many re-
searchers including Cruse [1970], Burton et al. [1984], Yang and Freund [1985], Nakamura and Parks
[1988], Leung and Su [1995] and Nevalainen and Dodds [1995], to name only a few. In particular, Har-
tranft and Sih [1970] proposed an approximate three-dimensional theory and studied the effects of plate
thickness on the stress intensity factor. A comprehensive literature review on the earlier investigations
of three-dimensional crack problems is provided by Kwon and Sun [2000].

The triaxial stress state in the vicinity of a crack tip in a sufficiently brittle material has been found to
have a significant influence on fracture behavior [Kong et al. 1995]. Yang and Freund [1985] and Yuan
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and Brocks [1998] have shown that the specimen thickness significantly effects the crack tip stress and
displacement fields, which play a crucial role in the initiation and propagation of cracks [Guo 2000].

A number of experimental investigations have been undertaken to determine the three-dimensional
stress and displacement fields in the vicinity of the crack tip for a range of cracked geometries. In an
experimental study by Rosakis and Ravi-Chandar [1986], the method of caustics by transmission and
reflection was employed to determine the extent of the three-dimensional crack tip region. They found
that plane stress conditions are recovered at a radial distance of around half the plate thickness, which
confirms the analytical results of Yang and Freund [1985]. Similar conclusions were made by Pfaff et al.
[1994] and Humbert et al. [2000] who utilized interferometry to determine the out-of-plane displacement
field surrounding a mode I crack.

Theoretical investigations of three-dimensional crack tip stress and displacement fields have mainly
utilized finite element (FE) techniques. Several researchers, including Nakamura and Parks [1988] and
She and Guo [2007b], have provided detailed analyzes of the crack tip region for mode I and mixed mode
(I–II) semiinfinite cracks, respectively. It was shown that the out-of-plane stress and displacement fields
exhibit significant three-dimensional effects within a radial distance from the crack tip of about half the
plate thickness and converge with the plane stress solutions at around 1.5 times the plate thickness. The
FE results of Nakamura and Parks [1988] were found to be in reasonable agreement with the experimental
study by Pfaff et al. [1994].

The purpose of this paper is to present an analytical method for calculating the stress and displacement
fields at the tip of a through-the-thickness crack using the first order plate theory. This theory was previ-
ously utilized by Yang and Freund [1985] for investigating three-dimensional effects for a semiinfinite
crack though only qualitative comparison with experimental results was provided in their work. The
methods developed in the current paper are based on the distributed dislocation technique (DDT) and
the solution for an edge dislocation in a plate of arbitrary thickness [Kotousov and Wang 2002]. Both
semiinfinite and finite length cracks are investigated covering almost all geometries considered in the
previous studies. The calculated results compare well with the previously published data. These solutions
can therefore be used in experimental techniques for the assessment of the stress intensity factor using
the out-of-plane displacement measurements, for example by the interferometry method.

In this paper, a brief review of the DDT for semiinfinite cracks is first given followed by the results for
the out-of-plane constraint factor. In the next section, the formulation of the finite length crack problem
is presented along with the results for the out-of-plane displacement.

2. Semiinfinite crack in a finite thickness plate

We will begin by providing an outline of the DDT as applied to a straight semiinfinite crack in a plate
of thickness 2h. A full description of the technique has already been given by Codrington and Kotousov
[2007]; however, a brief review will be presented here for completeness. It is assumed that a through-
the-thickness crack lies along the x axis (−∞ < x < 1) in an infinite plane and is subjected to a remotely
applied mode I stress intensity factor K . If the crack is replaced with a continuous distribution of
dislocations along the x axis then the y-stress field is given by the superposition principle as the singular
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integral equation [Hills et al. 1996]

σyy(x, y) =
1
π

∫ 1

−∞

By(ξ) G yy(x − ξ, y) dξ . (1)

In Equation (1), By(ξ) is the unknown dislocation density function; it is related to the separation of the
crack faces g(ξ) by By(ξ) = −dg(ξ)/dξ . The function G yy(x, y) is the dislocation influence function,
which forms the singular kernel of the system. The influence functions depend on the geometry of the
problem under investigation and various solutions are available in the literature. A comprehensive review
is provided by Hills et al. [1996]. In the case of a plane stress or plane strain analysis, the y direction
influence function for a dislocation in an infinite plane is given by Hills et al. [1996] as

G yy(x, y) =
2µ

(κ + 1)

x
ρ4 (x2

+ 3y2), (2)

where µ is the shear modulus, κ is Kolosov’s constant being either (3 − ν)/(1 + ν) for plane stress or
3 − 4ν for plane strain, with ν being Poisson’s ratio, and ρ2

= x2
+ y2.

Three-dimensional geometry effects will be considered for the case of a finite thickness plate by ap-
plying the solution for an edge dislocation in an infinite plate of thickness 2h [Kotousov and Wang 2002].
The developed influence functions are based on first-order plate theory [Kane and Mindlin 1956] whereby
it is assumed that the out-of-plane strain is uniform in the thickness direction. Namely, generalized plane
strain conditions are assumed to exist. In addition, the simplification is made that the dislocation Burgers
vector and each of the triaxial stress components are uniform across the thickness of the plate and are
equal to the average through-the-thickness values. Results obtained from this theory have been shown to
be in good agreement with the through-the-thickness averages from careful three-dimensional FE studies
[Berto et al. 2004; Kaèianauskas et al. 2005; She and Guo 2007a]. The y direction influence function
for the case of a finite thickness plate is determined by Kotousov and Wang [2002] as

G yy(x, y) = −
E

4(1 − ν2)

x
ρ2

[
−(1 − ν2) +

4ν2

(λρ)2 − 2ν2K0(λρ) −
2ν2 (2 + (λρ)2) K1(λρ)

λρ

]
, (3)

where E is Young’s modulus, K0(·) and K1(·) are the modified Bessel functions of the second kind of
order 0 and 1, respectively, and the parameter λ is given by

λ =
1
h

√
6

1 − ν
.

To solve the integral equation (1) via Gauss–Chebyshev quadrature, we need first to introduce the
coordinate transformations

x =
2t

t + 1
, ξ =

2s
s + 1

, (4)

which give rise to the transformed integral equation

σ̄yy(t, y) =
2
π

∫ 1

−1
B̄y(s)Ḡ yy(t − s, y)

ds
(s + 1)2 . (5)
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By applying Gauss–Chebyshev quadrature to (5), the integral is reduced to a linear series in n unknowns,
φ̄(si ), such that

σ̄yy(t, y) =
2
n

n∑
i=1

1
si + 1

φ̄(si ) Ḡ yy(t − si , y), (6)

where n is the number of integration points and

si = cos
(2i − 1

2n
π

)
, i = 1 · · · n.

Along the length of the crack, where x < 1 and y = 0, the summation (6) is only valid at the discrete
collocation points, which are

tk = cos
(k

n
π

)
, k = 1 . . . n − 1.

Outside of the crack interval, where x > 1 or y 6= 0, Equation (6) may be evaluated at any point.
The nonsingular function φ̄(s) is related to the dislocation density by

B̄y(s) = φ̄(s)(1 + s)1/2(1 − s)−1/2. (7)

It is assumed in Equation (7) that the stress field and, similarly, the gradient of the crack opening dis-
placement are square root singular at the crack tip, where x = s = 1. Furthermore, the singularity is taken
as being uniform across the entire thickness of the plate. This is due to the averaging nature of the first-
order plate theory employed in the dislocation solution, which assumes a constant Burgers vector and
uniform stresses across the plate thickness. Other singularities that are associated with three-dimensional
geometry are, as a result, unable to be described in the analysis, for example the corner singularity found
at the intersection of the crack front and the free surface of the plate [Benthem 1980]. As x → −∞

or s → −1, the gradient of the crack opening displacement approaches zero and this has also been
incorporated into Equation (7).

The through-the-thickness average crack tip stress intensity factor can be determined directly from an
asymptotic analysis of the crack tip opening displacement or stress field near the crack tip. In the case
of the plane stress or plane strain analysis, this gives

Ktip = lim
r→0

√
2πr

2µ

κ + 1
∂ ĝ(r)

∂r
=

√
2π

2µ

κ + 1
φ̄(1), (θ = π) (8)

and for the case of a finite thickness plate

Ktip = lim
r→0

√
2πr σ̂ yy(r, 0) =

√
2π E

4(1 − ν2)
φ̄(1). (9)

Here, ĝ(r) = g(x) for θ = π or 0, σ̂yy(r, θ) = σyy(x, y) and the conversion between Cartesian and polar
coordinates can be made via the transformations x = r cos(θ) + 1 and y = r sin(θ). From inspection of
Equation (9), it can be seen that the stress intensity factor for the finite thickness plate is simply the plane
strain form of (8). However, it should be noted that the stress state is actually generalized plane strain, in
accordance with the first-order plate theory, not plane strain as (9) suggests. The function φ̄ has only been
defined at each of the integration points; therefore, φ̄(1) may be found using the extrapolation formula
obtained by Krenk [1975] and Hills et al. [1996]. In most cases it is generally sufficient to approximate
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φ̄(1) by φ̄(s1), since the computations for the exact value of φ̄(1) are quite lengthy. In a similar manner,
the side condition of a stress intensity factor, Kfar, applied remotely from the crack tip can be written as

φ̄(Sn) =
Kfar
√

2π

κ + 1
2µ

(10)

for the cases of plane stress and strain. In the finite thickness plate analysis, it is assumed that plane stress
conditions will prevail remotely from the crack tip [Yang and Freund 1985] and therefore the plane stress
form of (10) is employed.

Use is now made of the requirement that the crack faces must remain traction free, which means that
σyy(x, 0) = 0 along the crack length or simply σ̄yy(tk, 0) = 0. This constraint, together with Equation
(6), provides a system of n − 1 linear equations in n unknowns φ̄(si ). Depending on whether a plane
stress/strain analysis or a finite thickness plate analysis is undertaken, the choice of the kernel function
G yy(x, y) as either (2) or (3) respectively is made. The nth equation which completes the set of linear
equations is given by the condition of the remotely applied stress intensity factor (10). The set of n linear
equations in n unknowns can now be solved via any standard method.

3. Results for the out-of-plane stress

In this section, results for the out-of-plane stress field are presented for a semiinfinite crack in a plate of
finite thickness. The effect of the out-of-plane stresses are commonly described in the literature by the
out-of-plane constraint factor

_

Tz(r, θ) = Tz(x, y) =
σzz(x, y)

ν[σxx(x, y) + σyy(x, y)]

where the stress components σxx(x, y) and σzz(x, y) are found in a similar manner to (6) by replacing
the kernel with

Gxx(x, y) =
E

4(1 − ν2)

x
ρ2

[
(1 − ν2) +

4ν2

(λρ)2 − 2ν2K0(λρ) −
4ν2K1(λρ)

λρ

]
,

Gzz(x, y) =
Eν

2(1 − ν2)

λx
ρ

K1(λρ),

respectively [Kotousov and Wang 2002].
Results for the out-of-plane constraint factor crack are shown in Figure 1, for a semiinfinite, as a

function of the radial distance from the crack tip to plate thickness ratio r/2h with θ = 0. FE results
by Nakamura and Parks [1988] and She and Guo [2007b] for semiinfinite cracks are also provided
as a comparison. Both the mid-thickness (MT) and through-the-thickness average (AV) FE values are
given. It can be seen that the mid-thickness results are in better agreement with the present values than
the average results are. This is due to the different modeling assumptions made in each of the studies.
Namely, the current investigation makes the simplification of generalized plane strain conditions in the
vicinity of the crack tip. Furthermore, FE techniques are limited by the finite mesh size in representing
the singular stress field near the crack tip. Figure 1 shows that at the crack tip the conditions reach near
plane strain while at approximately r/2h = 1.5 the plane stress solution is recovered. In these and all
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Figure 1. Out-of-plane constraint factor as a function of the ratio r/2h for a semiinfinite
crack (θ = 0◦).

subsequent calculations, Poisson’s ratio is taken as ν = 0.3 though any variation of ν has minimal effect
on the constraint factor. Approximately 250 integration points are required to reach a convergence in the
solution.

Figure 2 shows the results for the out-of-plane constraint factor as a function of θ for various r/2h.
Again a semiinfinite crack model has been used. The mid-thickness FE results by She and Guo [2007b]
are given and they show a good agreement with the present results. Results for the ratio of the average
crack tip stress intensity factor to the far-field stress intensity factor are shown in Figure 3 as a function of
Poisson’s ratio. The crack tip stress intensity factor for the case of a finite thickness plate is determined
by Equation (9). The present results are identical to the through-the-thickness average of the values
presented by She and Guo [2007b] and Nakamura and Parks [1988] for semiinfinite cracks.
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Figure 2. Out-of-plane constraint factor as a function of θ for various r/2h for a semi-
infinite crack.
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Figure 3. Ratio of the average crack tip stress intensity factor to the far-field stress
intensity factor as a function of Poisson’s ratio for a semiinfinite crack.

4. Results for the out-of-plane displacement

The out-of-plane displacement for the case of a semiinfinite crack can be determined at any point within
the plate by the function

_uz(r, θ, z) = uz(x, y, z) =
z

πh

∫ 1

−∞

By(ξ) Guz(x − ξ, y) dξ,

where the plate mid-thickness is at z = 0 and the plate surfaces are at z = ±h. The displacement kernel
for the finite thickness plate analysis is given by Kotousov and Wang [2002] as

Guz(x, y) = −
νhλ

2
x
ρ

[
1
λρ

− K1(λρ)

]
and in the case of plane stress is

Guz(x, y) = −
νh
2

x
ρ2 .

The formulation of the finite length crack problem is very similar to that of the semiinfinite crack as
outlined in Section 2 and thus most details are omitted. It is assumed that a through-the-thickness crack
of length 2a lies within −a < x < a on the x axis in an infinite plane and is subjected to remotely applied
stress, σ∞

yy (x). The governing singular integral equation therefore becomes [Hills et al. 1996]

σyy(x, y) =
1
π

∫ a

−a
By(ξ) G yy(x − ξ, y) dξ + σ∞

yy (x). (11)

Solution to the integral equation (11) follows via application of Gauss–Chebyshev quadrature in a similar
manner as for the semiinfinite crack case. The transformations (4), however, are replaced with the new
transformations:

x = at, ξ = as,
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Figure 4. Normalized out-of-plane surface displacement as a function of r/2h in the
case of a semiinfinite crack.

and the nonsingular function φ̄(s) is now related to the dislocation density by

B̄y(s) = φ̄(s)(1 + s)−1/2 (1 − s)−1/2.

Here it is assumed that the dislocation density function is square root singular at both s = − 1 and s = 1
since there is a singularity in the displacement gradient and stress fields at each of the crack tips.

The out-of-plane displacement for the finite length crack may be determined by

_uz(r, θ, z) = uz(x, y, z) =
z

πh

∫ a

−a
By(ξ) Guz(x − ξ, y) dξ −

ν

E
z σ∞

yy (x),
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Figure 5. Normalized out-of-plane surface displacement as a function of r/a in the case
of a finite length crack (θ = 0◦).
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where the extra term is due to the uniform lateral contraction of the infinite plate loaded by the remote
tensile stress σ∞

yy (x). The conversion between Cartesian and polar coordinates is then made by y = r sin θ

and x = r cos θ + a.
Results for normalized out-of-plane surface displacement along the line of the crack are presented in

Figure 4 in the case of a semiinfinite crack. The empirical fit by Pfaff et al. [1994] to the FE results by
Nakamura and Parks [1988] is also given as a comparison. The difference between the finite element
results and the present ones could be explained by the mesh refinement issues at the crack tip in the FE
model. Figure 5 displays the results for the normalized out-of-plane displacement ahead of the crack tip
for the case of a finite length crack. The present results are in good agreement with the experimental
values of Humbert et al. [2000]. The difference is less than 10% and can be partially explained by the
presence of the process zone at the crack tip where the material is subjected to inelastic deformations.

5. Conclusion

An analytical method is presented for calculating the out-of-plane stress and displacement fields in plates
of finite thickness. The developed method is based on the DDT and the three-dimensional solution for
an edge dislocation in plates of arbitrary thickness. Numerical results are obtained for both finite length
and semiinfinite crack models through application of Gauss–Chebyshev quadrature. Results for the
normalized out-of-plane constraint factor and the out-of-plane surface displacement are presented. The
present values are compared with finite element and experimental results and found to be consistent.
Further results for the ratio of the crack tip stress intensity factor to the applied stress intensity factor are
given. A comparison with the through-the-thickness average values from previous finite element studies
shows a very good agreement. These solutions can therefore be used in the experimental techniques for
the assessment of the stress intensity factor using the out-of-plane displacement measurements.
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