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EXACT SOLUTION OF DOUBLE FILLED HOLE OF AN INFINITE PLATE

NAT KASAYAPANAND

The plane stress linear elastic solution to the problem of a circular disk embedded in a ring fitted into
a uniaxially loaded infinite plate is solved using Airy stress functions. This exact solution is validated
by reduction to the benchmark solutions: plate without hole, plate with a circular hole, plate with a
circular inclusion, and plate with a ring inclusion. Numerical results of stress distribution are presented
for changing material properties.

1. Introduction

It is well known that for a uniaxially loaded infinite plate with a hole a stress concentration of three
occurs at the point where the load direction is tangent to the hole boundary [Love 1944; Sokolnikoff
1956; Timoshenko and Goodier 1970; Little 1973; Ugural and Fenster 1994]. Savin [1961] extensively
examined the problem of stress concentrations in plates including those related to disk and ring inclusions.
The analytical solution for tension applied in one direction in an orthotropic plate with circular filled
center is conducted by Lekhnitskii [1968]. Recently, the current researches dealing with the elastic
inclusions problem are obtained numerically by Parhi and Das [1972], Greengard and Helsing [1998],
Liu et al. [2000], Fanzhong et al. [2002], and Wang et al. [2005]. However, there is no previous literature
relating to the exact stress in the double filled hole of an infinite plate (that is, a circular elastic inclusion
embedded into a reinforced hole in an elastic plane, and a reinforced ring is used) by different materials
to reduce the stress concentration around the hole of plate. This configuration is useful for designing of
the filled hole of plate systems in many engineering applications.

In this plane stress study, a linearly elastic disk embedded in an elastic ring is fitted into a hole of an
infinite plate, all with the same thickness. All surfaces are seamlessly bonded between three materials that
may be different. A proposed general solution without body forces is considered in terms of Airy stress
functions so that stresses, strains, and displacements may be calculated. For convenience, rectangular
Cartesian coordinates together with polar coordinates are used interchangeably.

Nomenclature

a constant
A constant
b constant
c constant
d constant

Keywords: stress function, stress concentration, plane stress, circular hole, inclusion.
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D domain
E modulus of elasticity, N/m2

r radius coordinate, m
s uniform uniaxial stress tension, N/m2

u component of displacement in radius direction, m
v component of displacement in tangential direction, m
x x-coordinate, m
y y-coordinate, m

Greek symbols

ε component of strain
8 stress function, N
ν Poisson’s ratio
θ angle, degree
σ component of stress, N/m2

2. Theoretical formulation

Figure 1 shows the plane stress problem of an infinite plate subjected to the uniform uniaxial tension s. A
disk (material 1) and a ring (material 2) having radius R1 and R2, respectively, are seamlessly embedded
into an infinite plate (material 3), all with the same thickness, and are assumed linear elastic, isotropic,
and homogeneous.

Let u and v be components of displacements in the radial, r , and tangential, θ , directions. If the
disk, ring, and plate, are labeled as 1, 2, and 3, respectively, then the regions in space occupied by them
denoted by Di ; i = 1, 2, and 3 are

D1 = ((r, θ) : 0 ≤ r ≤ R1, 0 ≤ θ ≤ 2π), D2 = ((r, θ) : R1 ≤ r ≤ R2, 0 ≤ θ ≤ 2π),

D3 = ((r, θ) : r ≥ R2, 0 ≤ θ ≤ 2π). (1)

Figure 1. Boundary conditions of the double filled hole of plate.
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The conditions at the interface of the disk, ring, and plate are

r = R1; u1 = u2, v1 = v2, σrr1 = σrr2, σrθ1 = σrθ2,

r = R2; u2 = u3, v2 = v3, σrr2 = σrr3, σrθ2 = σrθ3.
(2)

The two-dimensional Cartesian ton polar stress transform equations are

σrr = σxx cos2 θ +σyy sin2 θ +2σxy sin θ cos θ, σθθ = σxx sin2 θ +σyy cos2 θ −2σxy sin θ cos θ,

σrθ = − (σxx − σyy) sin θ cos θ + σxy(cos2 θ − sin2 θ). (3)

With corresponding equations of equilibrium in polar coordinates

∂σrr

∂r
+

σrr − σθθ

r
+

1
r

∂σrθ

∂θ
+ Fr = 0,

∂σrθ

∂r
+

2σrθ

r
+

1
r

∂σθθ

∂θ
+ Fθ = 0. (4)

The plane stress stress-strain relations are

εrr =
1
E

(σrr − νσθθ ), εθθ =
1
E

(σθθ − νσrr ), εrθ =
σrθ

E
(1 + ν), (5)

where the linear strain-displacement relations are given by

εrr =
∂u
∂r

, εθθ =
u
r

+
1
r

∂v

∂θ
, εrθ =

1
2

(
1
r

∂u
∂θ

+
∂v

∂r
−

v

r

)
. (6)

By following an Airy stress function (8) approach in which one assumes the body forces are negligible,
the governing equations reduce to

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2

)(
∂28

∂r2 +
1
r

∂8

∂r
+

1
r2

∂28

∂θ2

)
= 0, (7)

where the stress components are defined by

σrr =
1
r

∂8

∂r
+

1
r2

∂28

∂θ2 , σθθ =
∂28

∂r2 , σrθ = −
∂

∂r

(1
r

∂8

∂θ

)
. (8)

Consider the Airy’s stress function in polar coordinates, written as

8i = a0i + b0i ln r + c0ir2
+ d0ir2 ln r +

(
a2ir2

+ b2ir4
+ c2ir−2

+ d2i
)

cos(2θ). (9)
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From Equations (5)–(9), the general expressions for stresses and displacements can be obtained as fol-
lows:

σrri = 2c0i + d0i + b0ir−2
+ 2d0i ln r − (6c2ir−4

+ 4d2ir−2
+ 2a2i ) cos(2θ),

σθθ i = 2c0i + 3d0i − b0ir−2
+ 2d0i ln r + (6c2ir−4

+ 2a2i + 12b2ir2) cos(2θ),

σrθ i = (−6c2ir−4
− 2d2ir−2

+ 2a2i + 6b2ir2) sin(2θ),

ui =
1
Ei

((
−(1 + νi )b0ir−1

+ 2(1 − νi )c0ir − (1 + νi )d0ir + 2(1 − νi )d0ir ln r
)

+

(
2(1 + νi )c2ir−3

+ 4d2ir−1
− 2(1 + νi )a2ir − 4νi b2ir3

)
cos(2θ)

)
−A0i sin(θ) + A1i cos(θ),

vi =
1
Ei

(
4d0irθ +

(
2(1 + νi )c2ir−3

− 2(1 − νi )d2ir−1
+ 2(1 + νi )a2ir + 2(3 + νi )b2ir3

)
sin(2θ)

)
+A0i cos(θ) + A1i sin(θ) + r A2i . (10)

The constants a0i , b0i , c0i , d0i , a2i , b2i , c2i , and d2i ; i = 1, 2, 3 and A0i , A1i , A2i ; i = 1, 2, 3 are determined
using the interface, boundary, and mathematical conditions in Equation (2).

3. Mathematical implementation

The constants in the Airy stress function are obtained by the following considerations: substitution
of Equation (10) into Equation (6) reveals that all strain components are free from A0i , A1i , and A2i ,
meaning that these constants are related to rigid body motion. It is assumed that the translation and
rotational rigid body motions are zero, and that the origin of xy-coordinates is the reference point for
zero displacements, so that A0i , A1i , and A2i = 0. For the disk, the displacement at r = 0 must be finite,
so we must set b01, c21, and d21 = 0. Because polar coordinates are used, it is a requirement that at any
r stresses and displacements must be equal if θ is replaced by θ + 360◦. Thus, d01, d02, and d03 = 0.
Finally, the eighteen remaining constants: a01, c01, a21, b21, a02, b02, c02, a22, b22, c22, d22, a03, b03, c03,
a23, b23, c23, and d23 are determined by using the interface, boundary, and mathematical conditions.

The boundary conditions of the plate in polar coordinates are

σrr3 =
s
2
(1 + cos(2θ)), σθθ3 =

s
2
(1 − cos(2θ)),

σrθ = −
s
2

sin(2θ). (11)

At the plate, taking the limit r → ∞, the results are expressed as c03 =
s
4 , a23 = −

s
4 , b23 = 0.
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Therefore, at this stage, the stress and displacement components are reduced to

σrr1 = 2c01 − 2a21 cos(2θ), σrθ1 = (2a21 + 6b21r2) sin(2θ),

σrr1 = 2c01 − 2a21 cos(2θ), u1 =
1
E1

(
2(1 − ν1)c01r −

(
2(1 + ν1)a21r + 4ν1b21r3) cos(2θ)

)
,

v1 =
1
E1

(
2(1 + ν1)a21r + 2(3 + ν1)b21r3) sin(2θ),

σrr2 = 2c02 + b02r−2
− (6c22r−4

+ 4d22r−2
+ 2a22) cos(2θ),

σrθ2 =
(
−6c22r−4

− 2d22r−2
+ 2a22 + 6b22r2) sin(2θ),

u2 =
1
E2

((
−(1 + ν2)b02r−1

+ 2(1 − ν2)c02r
)

+
(
2(1 + ν2)c22r−3

+ 4d22r−1
− 2(1 + ν2)a22r − 4ν2b22r3) cos(2θ)

)
,

v2 =
1
E2

(
2(1 + ν2)c22r−3

− 2(1 − ν2)d22r−1
+ 2(1 + ν2)a22r + 2(3 + ν2)b22r3

)
sin(2θ),

σrr3 =
s
2

+ b03r−2
+

( s
2

− 6c23r−4
− 4d23r−2

)
cos(2θ),

σrθ3 =

(
−6c23r−4

− 2d23r−2
−

s
2

)
sin(2θ),

u3 =
1
E3

((
−(1 + ν3)b03r−1

+(1 − ν3)
s
2

r
)

+

(
2(1 + ν3)c23r−3

+ 4d23r−1
+ (1 + ν3)

s
2

r
)

cos(2θ)

)
,

v3 =
1
E3

(
2(1 + ν3)c23r−3

− 2(1 − ν3)d23r−1
− (1 + ν3)

s
2

r
)

sin(2θ).

(12)

Substitution of Equation (12) into the interface conditions (Equation (2)) yields

2c01 = 2c02 + b02 R−2
1 ,

2a21 = 6c22 R−4
1 + 4d22 R−2

1 + 2a22,

2a21 + 6b21 R2
1 = − 6c22 R−4

1 − 2d22 R−2
1 + 2a22 + 6b22 R2

1,

1
E1

(2(1 − ν1)c01 R1) =
1
E2

(
−(1 + ν2)b02 R−1

1 + 2(1 − ν2)c02 R1
)
,

1
E1

(
2(1 + ν1)a21 R1 + 4ν1b21 R3

1
)
=

1
E2

(
2(1 + ν2)c22 R−3

1 + 4d22 R−1
1

−2(1 + ν2)a22 R1 − 4ν2b22 R3
1

)
,
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Figure 2. Stress concentration distribution for various modulus of elasticity ratios.

1
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,
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s
2
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2 ,
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s
2
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2 ,
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(
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1
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(
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,

1
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s
2

R2

)
,

1
E2
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2)

=
1
E3

(
2(1 + ν3)c23 R−3

2 − 2(1 − ν3)d23 R−1
2 − (1 + ν3)

s
2
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)
.

There are three constants a01, a02, and a03 left undetermined. It is fortunate that these constants are
not used in the expressions of stresses and displacements. Hence, the problem is solved mathematically.
The appendix (available as an online supplement to this paper) details the values of all constants, and the
stress equations in polar coordinates for all materials.

4. Validations

To confirm that the obtained stress functions are acceptable, benchmark solutions are examined.

http://pjm.math.berkeley.edu/jomms/2008/3-2/p09.xhtml
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Figure 3. Circumferential stress at a hole in the function of radius ratio.

4.1. Plate without hole. For the case of a plate without a hole, the material properties of the disk, ring,
and plate are set to the same values. For a uniaxial load in the x-direction the stress components are:

σrr1 = σrr2 = σrr3 =
s
2
(1 + cos(2θ)), σθθ1 = σθθ2 = σθθ3 =

s
2
(1 − cos(2θ)),

σrθ1 = σrθ2 = σrθ3 = −
s
2

sin(2θ). (13)

They are exactly the same expressions as those for a linear elastic, homogeneous, isotropic plate loaded
by a uniform normal traction in the x-direction.

4.2. Plate with a hole. To investigate the case of plate with a hole, the material properties of the disk
and ring are set to zero. The problem becomes that of a plate with a hole of radius R2 subjected to a
uniform normal load in the x-direction. The stresses reduce to:

σrr3 =
s
2

(
1 −

( R2

r

)2
+

(
1 − 4

( R2

r

)2
+ 3

( R2

r

)4
)

cos(2θ)

)
,

σθθ3 =
s
2

(
1 +

( R2

r

)2
−

(
1 + 3

( R2

r

)4
)

cos(2θ)

)
,

σrθ3 =
s
2

(
−1 − 2

( R2

r

)2
+ 3

( R2

r

)4
)

sin(2θ),

σrr1 = σθθ1 = σrθ1 = 0, σrr2 = σθθ2 = σrθ2 = 0. (14)

Again reproducing known results of a plate with a hole.

4.3. Plate with a circular inclusion. Considering a circular inclusion in an infinite plate, this result of
doubly embedded elastic materials is reduced into the simple embedded composite material in a hole of an
infinite plate by assuming that the material properties of the disk and ring are the same, but different from
that of an infinite plate. Figure 2 shows the stress concentration factor distribution for various moduli of
elasticity ratios of inclusion and matrix materials. The stress concentration factor decreases quickly with
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Figure 4. Left: effect of Poisson’s ratio on the circumferential stress of plate at the
interface (θ = 90◦, R2 = 2R1, E1 = E2 = E3 = 100 GPa). Right: effect of modulus
of elasticity on the circumferential stress of plate at the interface (θ = 90◦, R2 = 2R1,
ν1 = ν2 = ν3 = 0.3).

an increase in the inclusion-matrix modulus ratio when the inclusion is softer than the matrix. When the
inclusion is harder than the matrix, the stress concentration factor increases again slowly. These results
coincide with those published previously [Lekhnitskii 1968; Fanzhong et al. 2002; Wang et al. 2005].

4.4. Plate with a ring inclusion. Figure 3 shows the results for the case of plate with a ring inclusion.
The circumferential stress at θ = 90◦ is found to decrease slowly. This tendency compares well with the
results by Savin [1961] (except that Savin examined a plate in plain strain), and a numerical study by
Parhi and Das [1972].

5. Results and discussion

Some numerical results of the circumferential stress distributions in the plate (see Equation (A15) of
the online supplement) at the interface r = R2 due to different combinations of material properties are
presented in Figure 4 for various values of E and ν, and for different materials. The results reveal that
the stresses σθθ3 are very sensitive to the material properties of E1, E2, E3, ν1, ν2, and ν3. For example,
to reduce of stress concentrations in bimaterial or trimaterial plates a compromise needs to be found
between the material properties of the disk, ring, and plate. Moreover, the ratio between R1 and R2

should also be considered because the maximum circumferential stress is significantly depended on the
radius ratio when the material properties are fixed.

6. Conclusion

The exact elastic solution of a circular disk embedded in a ring fitted in an infinite plate by different
materials is conducted in this study. The plane stress problem in elasticity is considered for a plate

http://pjm.math.berkeley.edu/jomms/2008/3-2/p09.xhtml
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subjected to uniaxial uniform load. Boundary, interface, and mathematical conditions are analyzed to
determine the solution of stress, strain, and displacement components. Thus, the Airy’s stress functions
are investigated for a disk, ring, and plate. Expressions in the solution are limited to the assumptions
that the three materials are linearly elastic, isotropic, and homogeneous, and the problem is solved by
the theory of infinitesimal linear elasticity.
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