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AN EXTENDED MECHANICAL THRESHOLD STRESS PLASTICITY MODEL:
MODELING 6061-T6 ALUMINUM ALLOY

BISWAJIT BANERJEE AND ANUP SATISH BHAWALKAR

The mechanical threshold stress plasticity model of Follansbee and Kocks was designed to predict the
flow stress of metals and alloys in the regime where thermally activated mechanisms are dominant and
high temperature diffusion effects are negligible. In this paper we present a model that extends the
original mechanical threshold stress to the high strain-rate regime (strain rates higher than 104 s−1) and
attempts to allow for high temperature effects. We use a phonon drag model for moderate strain rates
and an overdriven shock model for extremely high strain rates. A temperature dependent model for the
evolution of dislocation density is also presented. In addition, we present a thermodynamically-based
model for the evolution of temperature with plastic strain. Parameters for 6061-T6 aluminum alloy are
determined and compared with experimental data. The strain-rate dependence of the flow stress of 6061-
T6 aluminum is found to be in excellent agreement with experimental data. The amount of thermal
softening is underestimated at high temperatures (greater than 500 K) but still is an improvement over
the original model. We also find that the pressure dependence of the shear modulus does not completely
explain the pressure dependence of the flow stress of 6061-T6 aluminum alloy.

1. Introduction

With the advent of powerful computational machines and algorithms, it is now possible to simulate
processes such as the accidental impact of vehicles, high-speed machining, high- and hyper-velocity
impact and penetration, and explosive forming. These processes typically involve plastic deformations
at high strain rates (102 s−1 to 109 s−1) and often temperatures greater than 0.6 Tm (Tm is the melting
temperature of the material). Adiabatic shear banding often accompanies the process and provides zones
where fractures nucleate. A crucial component in the numerical modeling of plastic deformations under
these conditions is a model that describes the evolution of the flow stress under a large range of strain-
rates and temperatures.

The mechanical threshold stress (MTS) flow stress model [Follansbee and Kocks 1988; Goto et al.
2000; Kocks 2001] was originally developed with two assumptions:

(1) Thermally activated dislocation motion was dominant and viscous drag effects on dislocation motion
were small. This assumption essentially restricts the model to strain rates of 104 s−1 and less.

(2) High temperature diffusion effects (such as solute diffusion from inside the grains to grain bound-
aries) were absent. This assumption limits the range of applicability of the model to temperatures
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less than around 0.6 Tm (depending on the material). For 6061-T6 aluminum alloy this temperature
is approximately 450–500 K.

The aluminum alloy 6061 is composed of 97.5% aluminum, 1.0 % magnesium, 0.6 % silicon, 0.34 %
iron, 0.3 % copper, 0.2 % chromium, and around 0.04 % zinc and titanium by weight. The T6 hard-
ening treatment varies by manufacturer but usually involves a solution treatment at 810 K followed by
quenching in water and then aging for a few hours at around 450 K. The solution treatment leads to a
homogeneous supersaturated solid solution. The quenching step is performed to take the supersaturated
solution to a two-phase region of the phase diagram. In the aging step, the magnesium silicide (Mg2Si)
phase is precipitated in such a way that the precipitate is evenly distributed inside the grains. There is
also some precipitation of AlFeSi at the grain boundaries. The precipitates inside the grains impede dis-
location motion and make the alloy harder. The lightness, strength, weldability, and corrosion resistance
of the 6061-T6 alloy makes it ideal for heavy duty structures in marine applications (among other uses).
However, at about 550 K, the alloying Mg2Si precipitates start to diffuse toward the grain boundaries
and accumulate at the grain boundaries. As a result, 6061-T6 aluminum softens considerably at high
temperatures. More details about the processes involved can be found in [Epler 2002].

Simulations of high velocity sphere-cylinder impact experiments using a MTS model for an aluminum
alloy containing 1% magnesium [Puchi-Cabrera et al. 2001] showed that the model underestimated the
flow stress at strain rates greater than 105 s−1. Also, high temperature Taylor impact simulations using
the same model showed that the flow stress was significantly overestimated for temperatures greater than
450 K [Banerjee 2005b].

In this paper, we extend the MTS model so that it can be used for strain rates greater than 104 s−1 and
for temperatures greater than 450 K. To extend the model to the regime of high strain rates, we incorporate
a model for viscous drag controlled dislocation motion (which becomes dominant at strain rates greater
than 104 s−1). In addition, we incorporate a model for the overdriven shock regime (strain-rates greater
than 109 s−1). To account for the effect of thermally assisted diffusion of solutes, we incorporate an
empirical modification of the original model for thermally activated mechanisms.

The evolution of temperature with plastic strain can be quite important in some situations (such as
the development of adiabatic shear bands). We derive an expression for the Taylor–Quinney coefficient
from thermodynamic principles and postulate a temperature dependent model for the evolution of this
quantity.

The parameters of the extended MTS model are then fit using experimental stress-strain data for 6061-
T6 aluminum from the literature wherever available. The flow stress estimated from the model is then
compared with experimental data. Next, predictions of the model for a range of strain rates, temperatures,
and levels of plastic strain are discussed. Finally, some concluding remarks are given and potential areas
of future work are discussed.

2. The extended mechanical threshold stress model

The original mechanical threshold stress (MTS) model [Follansbee and Kocks 1988; Goto et al. 2000]
for the flow stress (σy) can be written as

σy(σe, ε̇, p, T ) = [τa + τi (ε̇, T ) + τe(σe, ε̇, T )]
µ(p, T )

µ0
, (1)
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where σe is an evolving internal variable that has units of stress (also called the mechanical threshold
stress), ε̇ is the strain rate, p is the pressure, T is the temperature, τa is the athermal component of the flow
stress, τi is the intrinsic component of the flow stress due to barriers to thermally activated dislocation
motion, τe is the component of the flow stress due to structure evolution (that is, strain hardening), µ is
the shear modulus, and µ0 is a reference shear modulus at 0 K and ambient pressure.

2.1. Athermal component. The athermal component of the yield stress is a function of grain size, dis-
location density, distribution of solute atoms, and other long range barriers to dislocation motion. This
component may either be constant or may evolve with deformation. A simple model for this component
can be written as [Zerilli and Armstrong 1987; Banerjee 2007]:

τa = τ0 +
k

√
d
, (2)

where τ0 is the component due to far field dislocation interactions and the second term represents contri-
bution due to the Hall–Petch effect where k is a material constant and d is the grain size.

2.2. Intrinsic component. In the MTS model, the intrinsic component of the flow stress is assumed to
be dependent only on thermally activated mechanisms in the absence of solute diffusion. This component
can be expressed in the phenomenological Arrhenius form given below (see [Kocks et al. 1975, Section
44], for an explanation)

τi = Siσi , Si :=

1 −

(
kbT

g0i b3µ(p, T )
ln

ε̇0i

ε̇

)1/qi
1/pi

, (3)

where σi is the intrinsic component of the mechanical threshold stress (flow stress at 0 K), kb is the
Boltzmann constant, b is the magnitude of Burgers vector, g0i is a normalized activation energy, ε̇0i is a
constant reference strain rate, and pi , qi are constants. The constant pi can take values between 0 and 1,
while qi can take values between 1 and 2.

In order to fit the high temperature data for 6061-T6 aluminum better, we have found that a better
relation for τi has the form

τi = σi

1 −


(

kbT

g0i b3µ(p, T )
ln

ε̇0i

ε̇

)1/qi


2


1/pi

. (4)

This relation is equivalent to using values of qi between 0.5 and 1. If we use such a value in the original
MTS model, the value of τi tends to become constant as the strain rate is increased. Recall that the
original MTS model does not account for the effect of viscous drag at high strain rates, and the model
predicts only a small increase in the flow stress with strain rate if qi is between 1 and 2. The small
reduction in the flow stress at high strain rates due to a value of qi between 0.5 and 1 is easily offset by
incorporating a simple model for viscous drag into the MTS model.

2.3. Viscous drag component. To incorporate viscous drag effects due to phonon damping, forest dis-
locations, and solute atoms, we add a term to the equation for τi of the form [Kumar and Kumble 1969;
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Frost and Ashby 1971]

τv =
2

√
3

B

ρmb2ε̇, (5)

where B is the drag coefficient, ρm is the mobile dislocation density, and b is the magnitude of the
Burgers vector. We assume that a good estimate of the value of the drag coefficient can be obtained if we
consider only damping due to phonon scattering [Wolfer 1999]. However, at low temperatures (< 50 K),
electron damping can dominate and a model for that should be used in addition to phonon damping (for
more details see [Nadgornyi 1988] p. 251–260).

The viscous drag coefficient can be written as [Kanel et al. 2001]

B ≈ λp Bp =
λpkbT ω2

D

π2c̄3 , (6)

where Bp is the phonon drag coefficient, λp ≥ 1 is a correction factor, ωD is the Debye frequency and c̄
is the average sound speed. The Debye frequency is given by

ωD =
2πkbθD

h
= 2π c̄

(
3ρ

4π M

)1/3

=

(
6π2ρ

M

)1/3

c̄, (7)

where θD is the Debye temperature, h is Planck’s constant, and M is the atomic mass. The average sound
speed is defined as

1
c̄3 =

1
3

(
2
c3

s
+

1

c3
l

)
, cs =

√
µ

ρ
, cl =

√
2µ(1 − ν)

ρ(1 − 2ν)
, (8)

where cs is the transverse sound speed, cl is the longitudinal sound speed, and ν is the Poisson’s ratio.
Assuming that the Poisson’s ratio is 1/3, we can get an approximation for c̄ in terms of the shear sound
speed as

c̄ ≈

(
24
17

)1/3

cs . (9)

Alternatively, we can use Liebfried’s model [Kumar and Kumble 1969; Brailsford 1970; Brailsford
1972; Wolfer 1999] for scattering of phonons by dislocations

B ≈ λp Bp =
λpq

10cs
〈E〉, (10)

where λp is a correction factor, q is the cross-section of the dislocation core per unit length and 〈E〉 is
the average internal energy density. From Debye theory, we have

〈E〉 =
3kbTρ

M
D3

(
θD

T

)
, θD =

hc̄

kb

(
3ρ

4π M

)1/3

, (11)

where the Debye function D3 is defined as

D3(x) :=
3
x3

∫ x

0

z3

exp(z) − 1
dz. (12)
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Note that the component of the flow stress due to viscous drag is both temperature and pressure dependent.
A closed form expression can be obtained for the Debye integral in terms of polylogarithms (see for
example [Truesdell 1945]). However, there is a singularity at z = 0 and analytic continuation methods
are needed to evaluate the polylogarithms for values of z > 0. Alternatively, expansions in terms of
Chebyshev polynomials [Ng et al. 1969; MacLeod 1996] may be used. For computational purposes, a
look-up table of values (for example [Stegun 1972]) is the most efficient.

The second variable that is needed to compute τv is the density of mobile dislocations (ρm). The
density of mobile dislocations depends on the prior strain history of a material and also on the strain, the
temperature, and the strain rate. A simple model for the evolution of mobile dislocations as a function
of plastic strain can be written as [Estrin and Kubin 1986; Barlat et al. 2002]

dρm

dεp
=

M1

b2

(
ρ f

ρm

)
− I2(ε̇, T )ρm −

I3

b
√

ρ f ,

dρ f

dεp
= I2(ε̇, T )ρm +

I3

b
√

ρ f − A4(ε̇, T )ρ f ,

(13)

where ρ f is the density of forest dislocations, b is the magnitude of the Burgers’ vector, M1 is a rate
of mobilization of dislocations, I2 is a rate of immobilization of mobile dislocations due to interactions
between mobile dislocations, I3 is another immobilization rate due to interactions with forest dislocations,
and A4 is the rate of annihilation of forest dislocations due to climb, cross-slip, or diffusion.

To solve the system of differential equations, Equation (13), we need initial values of ρm and ρ f . We
may also assume that the density of forest dislocations saturates at a value of ρ f s , that is, dρ f /dεp = 0
at ρ f = ρ f s . Since the density of forest dislocations is easier to measure than the rate of annihilation A4,
we use ρ f s to obtain the following expression for A4:

A4(ε̇, T ) = I2(ε̇, T )
ρm

ρ f s
+

I3

b

1
√

ρ f s
. (14)

The rate I2 and the saturation value ρ f s are, in general, temperature and strain-rate dependent. We assume
that the strain rate dependence of these quantities is negligible for aluminum alloys and only consider
temperature dependence. Based on the experimental observation that the temperature dependence of the
flow stress of aluminum alloys follows a sigmoidal curve [Rosenberg et al. 1986], we assume that I2 and
ρ f s have the following temperature dependence:

I2(T ) = I20

(
αI

1 + exp[−βI (1 − 2T̂ )]

)
, ρ f s(T ) = ρ f s0

(
1 −

α f

1 + exp[β f (1 − 2T̂ )]

)
, (15)

where I20 is the value of I2 at 0 K, ρ f s0 is the value of ρ f s at 0 K, T̂ = T/Tm where Tm is the melting
temperature, αI , α f are scaling factors, and βI , β f are constants that have values greater than 3.

2.4. Structure evolution component. The evolution of dislocation density could be used to determine
the component of the flow stress that depends on the evolution of the structure of a material (see for
instance [Barlat et al. 2002]). However, Equations (13) form a stiff system of differential equations and
are not ideal for numerical simulations, particularly explicit calculations needed for high rate processes.
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Instead, we use the approach originally suggested by Follansbee and Kocks [1988] and describe the
component of the flow stress due to structure evolution by

τe(σe, ε̇, T ) = Seσe, Se :=

1 −

(
kbT

g0eb3µ(p, T )
ln

ε̇0e

ε̇

)1/qe
1/pe

, (16)

where σe is an internal variable (the structure evolution component of the mechanical threshold stress)
that evolves with the deformation, g0e is a normalized activation energy, ε̇0e is a reference strain rate,
and pe, qe are constants.

The evolution of σe is assumed to be governed by the modified Voce rule

dσe

dεp
= θ0

1 −

(
σe

σes

)2
 , (17)

where θ0 is the initial hardening modulus and σes is the saturation value of σe. This equation can be
solved in closed form along a constant temperature and strain-rate path to get

σe(εp) = σes

[
Aσ exp(β) + 1
Aσ exp(β) − 1

]
Aσ :=

σei + σes

σei − σes
, β :=

2θ0εp

σes
, (18)

where σei is the value of σe at zero plastic strain and can be nonzero depending on the prior strain history
of the material. For the special case where σei is zero, we have

σe(εp) = σes

[
exp(β) − 1
exp(β) + 1

]
. (19)

The initial hardening modulus is assumed to be given by a relation of the form

θ0 = µ(p, T )

[
a0 + a1 ln

(
ε̇θ

ε̇

)
+ a2T̂ + a3T̂ ln

(
ε̇θ

ε̇

)]
, (20)

where a0, a1, a2, a3 are constants and ε̇θ is a reference strain rate, and T̂ = T/Tm where Tm is the melting
temperature. The value of θ0 is not allowed to be negative.

The saturation value of structure evolution stress is computed using an Arrhenius type relation of the
form

ln

(
σes

σ0es

)
=

(
kbT

g0esb3µ(ρ, T )

)
ln

(
ε̇

ε̇0es

)
, (21)

where σ0es is the saturation threshold stress for deformation at 0 K, g0es is a normalized activation energy,
and ε̇0es is a reference strain rate.

2.5. Overdriven shock regime. At strain-rates between 109 s−1 and 1012 s−1, the plastic wave overruns
the elastic precursor and produces a steeper shock front than is attainable due to adiabatic elastic com-
pression. Such a shock is called overdriven. In order to allow for overdriven shocks in our model, we
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follow the approach used in the Preston–Tonks–Wallace model [Preston et al. 2003]. The flow stress
under overdriven shock conditions (and assuming J2 plasticity) is given by

σys = σys0 + y1

(
ε̇

γ ξ̇

)y2

µ(p, T ), (22)

where σys0 is a lower limit on the flow stress, y1, y2 are material parameters, γ is a scaling factor, and ξ̇

is a reference strain rate. The reference strain rate is defined as

ξ̇ :=
1
2

(
4πρ

3M

)1/3

cs, (23)

where M is the atomic mass and cs is transverse sound speed. We assume that there is no hardening in
the overdriven shock regime.

2.6. Behavior after melting. After the temperature crosses the melting temperature (Tm), we have to
model the material as a liquid. Though, strictly speaking, the behavior of an aluminum alloy melt is
nonNewtonian, we use a Newtonian model of the following form to determine the deviatoric stress in
the material after it has melted:

σy = µv ε̇, (24)

where µv is the shear viscosity of the melt. The shear viscosity of aluminum alloys can be estimated
by first computing the viscosities of the constituent elements using the Andrade equation [da Andrade
1934; 1952] (alternative approaches can be found in [Kirkwood et al. 1949] and [Dinsdale and Quested
2004]). The viscosity of the alloy can then be calculated using the Moelwyn–Hughes model for binary
alloys [Moelwyn-Hughes 1961; Dinsdale and Quested 2004]. However, since we are not interested in the
details of the motion of the melt, we simplify our model by using a constant value of µv = 2.0×10−4Pa ·s
in our calculations.

2.7. The extended flow stress model. The final expression for the flow stress is

σy =

min

{[
τv + (τa + τi + τe)

µ

µ0

]
, σys

}
, for T < Tm,

µv ε̇, for T ≥ Tm .

(25)

2.8. Shear modulus, melting temperature, EOS, specific heat. To complete the model, we need an
expression for the shear modulus as a function of temperature and pressure. We have used a modified
form of the Nadal–LePoac model [Nadal and Le Poac 2003] in which the pressure dependence of the
shear modulus is determined by the generalized Guinan–Steinberg formula [Burakovsky and Preston
2005; Guinan and Steinberg 1975]:

µ(p, T ) =
1

J(T̂ , ζ )

[{
µ0 + p

∂µ

∂p

(
a1

η1/3 +
a2

η2/3 +
a3

η

)}
(1 − T̂ ) +

ρ

C M
kbT

]
, (26)

η :=
ρ

ρ0
, C :=

(6π2)2/3

3
f 2,
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where J is a scaling factor that allows for a smooth transition of the shear modulus to melt, T̂ := T/Tm ,
Tm is the melting temperature, ζ is a material parameter, µ0 is the shear modulus at 0 K and ambient
pressure, ∂µ/∂p is the slope of the shear modulus versus pressure curve at 0 K, a1, a2, a3 are material
constants, ρ0 is the mass density in the initial state, M is the atomic mass, f is the Lindemann constant,
and

J(T̂ , ζ ) := 1 + exp

[
−

1 + 1/ζ

1 + ζ/(1 − T̂ )

]
for T̂ ∈ [0, 1 + ζ ]. (27)

For situations where ρ/ρ0 < 0.95 (high hydrostatic tension), we set the shear modulus to the value
obtained for ρ/ρ0 = 0.95.

We use the Burakovsky–Greeff–Preston (BGP) model [Burakovsky et al. 2003] to determine the
melting temperature. This model improves upon the widely used Steinberg–Cochran–Guinan model
[Steinberg et al. 1980] which is also based on the Lindemann criterion. In the BGP model, the Grüneisen
gamma is modeled as

0(ρ) =
1
2

+
01

ρ1/3 +
02

ρq , (28)

where 01, 02, q are material constants and q > 1. This form of 0(ρ) leads to the following expression
for the melting temperature as a function of density:

Tm(ρ) = Tm0η
1/3 exp

{
601

(
1

ρ
1/3
0

−
1

ρ1/3

)
+

202

q

(
1

ρ
q
0

−
1
ρq

)}
, η :=

ρ

ρ0
, (29)

where Tm0 is the melt temperature when ρ = ρ0 .
The pressure is calculated using the Holzapfel equation of state [Holzapfel 1991a; 1991b; Burakovsky

and Preston 2005] which has the form

p(ρ) = 3B0
[
η5/3

− η4/3] exp
{

1.5(B
′

0 − 3)
[
1 − η−1/3]} , η :=

ρ

ρ0
, (30)

where B0 is the bulk modulus at p = 0 and B
′

0 is the slope of the pressure-density curve at p = 0.
We use an empirical temperature-dependent specific heat model and ignore the difference between

the values of specific heat at constant pressure and at constant volume. The specific heat model is of the
form [Bhawalkar 2006]

Cv =

{
A1 + B1T + C1T 2, for T < 273 K ,

A2 + B2T, for T ≥ 273 K ,
(31)

where A1, A2, B1, B2, C1 are constants.

3. Evolution of temperature due to plastic dissipation

To determine the increase in temperature due to plastic dissipation, we first assume that the deformation
gradient (F) can be split multiplicatively into elastic and plastic parts (F = Fe · F p). We also assume
that there is no volume change during the plastic part of the deformation.
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The elastic strain measure (Ee) (with respect to the intermediate configuration) and the plastic strain
rate (d p) are defined as (see [Wright 2002] for details)

Ee :=
1
2 [FT

e · Fe − 1], (32)

d p :=
1
2 [Fe · Ḟ p · F−1

p · F−1
e + F−T

e · F−T
p · ḞT

p · FT
e ]. (33)

The stress measure in the intermediate configuration (that is, work conjugate to Ee) is given by the
pull-back of the Cauchy stress by the elastic part of the deformation gradient:

S̃ =
ρ0

ρ
F−1

e · σ · F−T
e . (34)

Then the balance of energy can be expressed as

ρT η̇ = − ∇ · q + ρr + σ : d p −
ρ

ρ0

N∑
n=1

Qnq̇n, (35)

where η is the entropy density, ∇ · (•) denotes the divergence (with respect to the current configuration),
r is a internal heat source term, σ is the Cauchy stress, and qn is a set of internal variables. The quantities
Qn are work conjugate to the internal variables qn and are defined as

Qn := − ρ0
∂g

∂qn
, for n = 1 . . . N , (36)

where g(̃S, T, qn) is the specific Gibbs free energy (per unit mass) and ρ0 is the density in the intermediate
configuration (here assumed to be the same as that in the reference configuration).

The internal variable in the MTS model is σe, that is

q1 = σe, Q1 = − ρ0
∂g

∂σe
. (37)

Under adiabatic conditions which occur for high strain-rate deformations, the heat flux and internal
heat sources can be neglected. In that case, the energy equation takes the form

ρT η̇ = σ : d p + ρ
∂g

∂σe
σ̇e. (38)

Assuming that the entropy can be derived from the specific Gibbs free energy, it can be shown, after
some algebra, that [Wright 2002]

η̇ =
∂η

∂ S̃
:
˙̃S +

∂η

∂T
Ṫ +

∂η

∂σe
σ̇e =

1
ρ0

∂ Ee

∂T
:
˙̃S +

Cv

T
Ṫ −

1
ρ0

∂ S̃
∂T

: Ėe +
∂

∂T

(
∂g

∂σe

)
σ̇e. (39)

Substitution into the energy equation yields

ρCv Ṫ = σ : d p + ρ

[
∂g

∂σe
− T

∂

∂T

(
∂g

∂σe

)]
σ̇e. (40)
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It is conventional to use a factor χ (called the Taylor–Quinney coefficient) to relate the rate of change of
temperature to the plastic work Pp := σ : d p using the relation

Ṫ =
χσ : d p

ρCv

. (41)

Therefore, from Equation (40), we observe that

χ = 1 −

[
T

∂

∂T

(
∂g

∂σe

)
−

∂g

∂σe

](
ρσ̇e

σ : d p

)
. (42)

Clearly χ evolves with σe and T , and cannot be assumed to be around 0.9 as is usually the case. How-
ever, the functional form of the Gibbs free energy function is not obvious and we have to make certain
assumptions to obtain a function that matches experimental observations (see for instance [Hodowany
et al. 2000]).

If we make the assumption that σ : d p ≈ σy ε̇p, the expression in Equation (42) reduces to

χ = 1 −

[
T

∂

∂T

(
∂g

∂σe

)
−

∂g

∂σe

](
ρ

σy

)
dσe

dεp
.

Replacing the derivative of σe with Equation (17), we get

χ = 1 −

[
T

∂

∂T

(
∂g

∂σe

)
−

∂g

∂σe

](
ρθ0

σy

)1 −

(
σe

σes

)2
 . (43)

To model the specific Gibbs free energy g(̃S, T, σe), we follow the approach of Schreyer and Maudlin
[2005] in postulating the following form for the expression involving the derivatives of g (which can be
interpreted as a measure of the stored energy of cold work):

T
∂

∂T

(
∂g

∂σe

)
−

∂g

∂σe
= F1(T )F2(σe), (44)

where

F1(T ) =
Aχ

1 + exp
[
−Bχ (1 − 2T̂ )

], F2(σe) =
1
ρ0

(
βχ +

σe

σes

)1/2

, (45)

where Aχ>1, Bχ>1 are constants, T̂ =T/Tm , where Tm is the melting temperature, and 0<βχ<1 is a
factor that determines the value of χ at zero plastic strain. We can now calculate the rise in temperature
due to plastic dissipation and use that to determine the amount of thermal softening due to plastic defor-
mation. Note that a closed form expression for g that can be evaluated analytically cannot be derived
from Equation (44) and further investigation into possible forms of g is needed.

4. Parameter estimation for 6061-T6 aluminum

Before the parameters of the extended MTS model for 6061-T6 aluminum can be estimated, we need
the parameters of the shear modulus model. We also need the parameters of the associated melting
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temperature model, the equation of state model, and the specific heat model. A detailed exploration of
various models, their parameters, and comparisons with experimental data can be found in [Bhawalkar
2006]. The parameters of the models described by Equations (26), (27), (29), (30), and (31) are given in
Appendix A, where we also show comparisons with experimental data of the predicted shear modulus,
melting temperature, and specific heat.

4.1. Athermal component. In the ASM Handbook on nonferrous alloys [ASM 2002] we find that, for
quasistatic tensile loading, at 644 K the yield strength of 6061-T6 aluminum is 12 MPa. The ratio µ/µ0

for this temperature is 0.65. Hence, the maximum possible value of τa at 644 K is 18 MPa. Since this
component is athermal, that value must be an upper bound on τa . It is possible that the upper bound on τa

is even lower since the melting temperature of aluminum at ambient pressure is around 933 K. Therefore,
it is reasonable to assume that τa ≈ 10 MPa for 6061-T6 aluminum.

4.2. Intrinsic component. To compute the intrinsic component of the flow stress (τi ), we have to deter-
mine the parameters σ0i and g0i for a particular choice of ε̇0i , pi , and qi (see Equation (4)). From (25)
we see that in the low to moderate strain rate regime, the flow stress at zero plastic strain can be written
as

σy = τv + (τa + τi )
µ

µ0
. (46)

To determine τi , we need the viscous drag component τv and the experimentally determined initial yield
stress σy . Recent studies [Ogawa 2001; Sakino 2006] show that for strain rates less than 104 s−1, the vis-
cous drag component τv for 6061-T6 aluminum is small compared to the thermally activated component
τi . Because the experimental stress-strain data to which have access are for strain rates ranging from
10−5 s−1 to 8.0×103 s−1, we neglect τv during the process of computation of σi and g0i .

Then, from Equations (4) and (46), we have(
σy

µ
−

τa

µ0

)pi

=

(
σi

µ0

)pi

−

(
σi

µ0

)pi
(

1
g0i

)2/qi
(

kbT

b3µ
ln

ε̇0i

ε̇

)2/qi

,

which is of the form y = A − Bx2. A Fisher plot of the experimental data and the model fit is shown in
Figure 1. Details of the procedure used to obtain the experimental data and the sources of the data can be
found in [Bhawalkar 2006]. The best fit to the experimental data is obtained for pi = 0.75, qi = 1.0, and
ε̇0i = 5.0×108 s−1. The Boltzmann constant was taken to be kb = 1.38×10−23 J/K and the magnitude of
the Burgers’ vector was assumed to be b = 2.86×10−10 m [Wang et al. 1998].

The fit shown in the figure has an R2 value of 0.6, an F-statistic of 60.7 and Student’s t-values of 6.0
and 35.3 for the two coefficients. There are 81 data points. Using a t-value of 1.663 (corresponding to
the 95% interval), we get the following range of values for σi and g0i :

σi (low) = 343.7 MPa, σi (fit) = 366.6 MPa, σi (high) = 389.8 MPa,

g0i (low) = 0.51, g0i (fit) = 0.59, g0i (high) = 0.71.

4.3. Viscous drag component. The viscous drag component of the flow stress is given by Equation (5).
Two quantities have to be determined before τv can be computed: the drag coefficient B and the mobile
dislocation density ρm .
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Figure 1. Fisher plot used to determine σi and g0i for 6061-T6 aluminum alloy. The
solid line shows the model fit to the data. The dotted lines show the range of the model
for a confidence level of 95. The symbols represent experimental data. The sources of
the experimental data are ◦ [Hoge 1966]; � [Green and Babcock 1966; Eleiche 1972];
O [Davidson 1973]; ? [Rosenberg et al. 1986]; 4 [Yadav et al. 1995]; � [Brown et al.
1996]; × [Lee et al. 2000]; ∗ [Ogawa 2001]; G [Cady and Gray III 2001; Fish et al.
2005]; + [Lesuer et al. 2001; Jia and Ramesh 2004].

The drag coefficient can be estimated using either (6) or (10). Figure 2 shows the phonon drag
coefficients predicted by the two models. The constants used for the models are:

kb = 1.38 × 10−23 J/K, b = 2.86 × 10−10 m,

M = 26.98 amu, ρ0 = 2700 kg/m3,

h = 6.62 × 10−34 kg · m2/s, q = 3b.

Values of the Debye function (D3) were calculated using an algorithm given in [MacLeod 1996]. As
the pressure increases there is a decrease in Bp. However, the change is small and does not significantly
affect the value of τv. At temperatures below 50 K, electron drag effects become dominant. Note that is
this not reflected by the model in Equation (10). However, since that model predicts a lower value of Bp

at high temperatures, we have used (10) in subsequent calculations.
The evolution of dislocation density is harder to quantify. We have chosen parameters for Equation

(13) in such a way that, at high strain rates, the viscous drag component of the flow stress approximates
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Figure 2. Phonon drag coefficient (Bp) as a function of temperature. The upper curve
shows the prediction of the model in Equation (6) and the lower curve shows the values
predicted by the model in (10).

experimentally determined yield stress at room temperature. The parameters used for the model are:

b = 2.86 m−2, M1 = 4.14 × 10−7, I20 = 5.53 × 103,

I3 = 3.81 × 10−2, αI = 1.0, βI = 8.0,

ρ f s0 = 1.0 × 1014 m−2, α f = 0.4, β f = 4.0.

Using initial values of ρm = 1.0×109 m−2 and ρ f = 1.0×1010 m−2, we get the evolution of the dislocation
densities shown in Figure 3. A constant density of 2700 kg-m−3 has been used in the computation.

The saturation value of ρm is approximately 2×1011 m−2 at room temperature, which is three orders
of magnitude lower than that suggested by Estrin and Kubin [1986]. However, higher values of ρm lead
to unreasonably low values of the viscous drag component of the flow stress. Also, similar low values
of ρm are suggested by Kumar and Kumble [1969]. Note that the value of ρ f is close to the accepted
value of total dislocation density in aluminum and its alloys, on the order of 1.0×1014 m−2. It can
also be observed that the density of forest dislocations decreases with temperature while that of mobile
dislocations increases with temperature. Also, our model indicates that the rate of annihilation of forest
dislocations is greater than the rate of generation of mobile dislocations as the temperature increases (see
Figure 3).

The viscous drag component (τv) of the flow stress can now be computed using (5). Figure 4 shows
the variation of τv with strain rate and temperature (for a plastic strain of 0.2). We have used a value
of λp = 1 in the calculations. From the figure it is clear that the viscous drag becomes significant only
beyond strain rates of 105 s−1. Also, drag effects appear to be negligible at low temperatures.
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4.4. Structure evolution component. To determine the structure evolution component (τe) of the flow
stress we need to compute the evolution of the internal variable σe using equation Equation (19). This
equation requires two variables: the saturation value σes of σe and the initial hardening rate θ0.

To compute σes using (21), we need the parameters σ0es , g0es , and ε̇0es . Given a set of true stress
versus true plastic strain curves, the first step in the process of determination of these parameters is to
compute the temperature at each point on the curve (for experimental data that are not given in isothermal
form). The temperature is computed using (41) with the value of χ being obtained using:

χ = min{[0.019 − 0.089 ln(εp) + 9.23ε2
p], 0.9}, (47)

where εp is the true plastic strain. Equation (47) is a least squares fit to the experimental data for 2024-
T351 aluminum given in [Ravichandran et al. 2001]. The experimental σe versus true plastic strain curves
are then computed using the relation

σe =
1
Se

(
σy

µ0

µ
− τa − τi

)
.

Note that the quantity τi for each curve is the value used to compute the Fisher plot in Figure 1, unlike
the procedure used elsewhere [Goto et al. 2000; Banerjee 2007]. The parameters used to compute Se

(see (16)) are:

kb = 1.38 × 10−23 J · K−1, b = 2.86 × 10−10 m−2, ε̇0e = 109 s−1,

g0e = 3.0, pe = 0.75, qe = 1.0.

The density is assumed to have a constant value of 2700 kg·m−3 during deformation. Plots of σe versus
εp for all the stress-strain curves used in this work can be found in [Bhawalkar 2006].

After the σe versus εp curves have been computed, a quadratic polynomial is fit to each curve. The
saturation value of σe and the temperature at saturation are computed by determining the strain at which
the slope of the quadratic curve becomes zero. A Fisher plot can now be drawn to determine the values
of σ0es and g0es by writing Equation (21) in the form

ln(σes) = ln (σ0es) −
kbT

g0esb3µ
ln

(
ε̇0es

ε̇

)
.

To compute the Fisher plot we assume that ε̇0es = 108 s−1 and get the fit shown in Figure 5. The statistics
of the fit are: R2 = 0.41, F-statistic = 36.2, t-statistics = 6.0 and 157. There are 52 sample points.
Therefore, though the fit is poor, it is statistically significant. The range of values of σ0es and g0es from
the fit that are within the 95% confidence interval (corresponding to a t value of 1.675) are:

σ0es (low) = 122.3 MPa, σ0es (fit) = 149.5 MPa, σ0es (high) = 182.7 MPa,

g0es (low) = 0.235, g0es (fit) = 0.30, g0es (high) = 0.416.

To compute the initial hardening rate (θ0), we first compute the slopes (θ) of the σe versus εp curves
at each point on the curve. The slope θ is then plotted against 1 − (σe/σes)2 and a straight line with zero
intercept is fitted to the resulting curve. This model gives a better fit to the experimental data that the
more commonly used hyperbolic tangent hardening rule [Follansbee and Kocks 1988; Goto et al. 2000;
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Figure 5. Fisher plot used to determine σ0es and g0es for 6061-T6 aluminum alloy. The
solid line shows the model fit to the data. The dotted lines show the range of the model
for a confidence level of 95%. The symbols represent experimental data. The sources of
the experimental data are ◦ [Hoge 1966]; � [Green and Babcock 1966; Eleiche 1972];
O [Davidson 1973]; ? [Rosenberg et al. 1986]; 4 [Yadav et al. 1995]; � [Brown et al.
1996]; × [Lee et al. 2000]; ∗ [Ogawa 2001]; + [Cady and Gray III 2001]; G [Fish et al.
2005]; F [Lesuer et al. 2001; Jia and Ramesh 2004].

Banerjee 2007]. The slope of the straight line fit gives us the value of θ0 for each curve. A least squares
surface fit of θ0 as a function of strain rate and temperature (assuming that the parameter ε̇θ = 1010 s−1)
gives us the following parameters for Equation (20):

a0 = 0.147, a1 = − 2.4 × 10−3,

a2 = − 0.14, a3 = 3.3 × 10−3.

The spread of the data is quite large and the R2 value for the fit is 0.38. The F-statistic for the fit is 3.2
which implies that the fit may not be statistically significant. However, comparisons with experimental
data show that the predicted flow stresses are reasonable when we use the above parameters. For the
details of an alternative approach for modeling the hardening of 6061-T6 aluminum in the context of the
MTS model see [Bhawalkar 2006].

4.5. Overdriven shock regime. In the overdriven shock regime, we assume that the flow stress is given
by Equation (22) and that the material does not harden. The parameters of the model are determined
by fitting a curve to experimental data on 1100 aluminum and 2024 aluminum from [Tonks 1993]. We
assume that 6061-T6 aluminum also shows a similar behavior. The fit to the data is shown in Figure 6.
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Figure 6. Comparison of the yield stress predicted by the overdriven shock model, Equa-
tion (22), with experimental data. The solid line shows the predicted values. The circles
show experimental data for 1100 aluminum alloy while the squares show experimental
data for 2024 aluminum alloy.

The following parameters have been used in the calculation:

ρ0 = 2700 kg · m−3, ρ = 2710 kg · m−3, T = 298 K,

σys0 = 700 MPa, M = 26.98 amu, γ = 0.0001.

The parameters determined from the fit are: y1 = 3.54 × 10−3 and y2 = 0.5.

4.6. Taylor–Quinney coefficient. The Taylor–Quinney coefficient (χ ) can be computed using Equation
(43). To evaluate this equation we need the parameters Aχ , Bχ , and βχ in (45). We have determined these
parameters by comparing the predictions of our model with experimental data for 2024-T3 aluminum
from [Hodowany et al. 2000]. Figures 7 (left) and 7 (right) show the predicted values of χ for initial
temperatures of 300 K and 500 K, respectively. The parameters used for the plots are: Aχ = 0.2, Bχ = 12,
and βχ = 0.3. A constant mass density of 2700 kg m−3 was used for the calculations. Note that these
parameters will change if θ0 or σes are changed.

From Figure 7 (left) we observe that, at a temperature of 300 K, the values of χ are nearly the same for
strain rates between 0.001 s−1 to 3000 s−1. This is similar to the experimental observations in [Hodowany
et al. 2000]. However, the value of χ increases as the flow stress increases with increasing strain rate due
to viscous drag effects. This effect is similar to that observed in rate-dependent α-titanium in [Hodowany
et al. 2000]. Hence, our model behaves is a reasonable manner at room temperature. On the other hand,
the experimental data for 2024-T3 aluminum indicates that low values of χ (less than 0.5) are obtained
up to a plastic strain of around 0.3 while our model predicts such values only up to a plastic strain of
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Figure 7. Variation of the Taylor–Quinney coefficient (χ) with plastic strain and strain
rate: T= 300 K (left),T = 500 K (right). The circles show experimental data for 2024-T3
aluminum alloy from [Hodowany et al. 2000] for a strain rate of 3000 s−1 and at 300 K.
The solid lines represent predicted values for a strain rate of 0.001 s−1. The dashed lines
represent predicted values for a strain rate of 3000 s−1 and the dash-dot lines represent
predictions for a strain rate of 30,000 s−1.

0.05. The width of this zone depends on the initial hardening modulus (θ0) and on the saturation stress
(σes). The discrepancy between our model for 6061-T6 aluminum and the experimental data for 2024-T3
aluminum indicates that θ0 for 2024-T3 aluminum might be lower than that for 6064-T6 aluminum. It
is also possible that the saturation stress computed by our model is lower than should be expected.

At 500 K (see Figure 7 (right)), the value of χ is considerably higher than at 300 K. We do not have
any experimental data to verify that this behavior is reasonable. Experiments at high temperatures are
needed to arrive at the correct form of the function F1(T ) in Equation (44). As designed, our the model
predicts values of χ close to 1.0 at high temperatures. However, experiments are needed to verify that
this is indeed the case for metals and that the stored energy approaches zero at high temperatures.

5. Comparisons of model with experimental data

The verification of the extended MTS flow stress model presented in this paper can be pursued in a
number of ways. The strain rate dependence of the model can be verified by computing the flow stress
as a function of strain rate (at a constant temperature and plastic strain) and comparing the predicted
values with experimental data. A similar comparison of the flow stress as a function of temperature
(with the strain rate kept constant) can be used to verify the temperature dependence of the model.
Direct comparisons with uniaxial stress-strain curves can also be performed for various strain rates and
temperatures.
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Numerical simulation is necessary for a more comprehensive validation of the model. Examples
of such numerical validation tests have been provided in [Bhawalkar 2006]. Details of the numerical
algorithm and various validation tests will be discussed in a forthcoming publication.

5.1. Flow stress as a function of strain rate. Figure 8 shows a comparison of the flow stress predicted
by the extended MTS model with experimental data (as a function of strain rate). In the computations
performed, the evolution equations for dislocation density were not solved because of the excessive
computational cost involved. Rather, a constant value of ρm = 2.0×1011 m−2 and a scaling factor of λp

= 1.0 were used to compute the component of the flow stress due to viscous drag (τv). Adiabatic heating
is assumed for strain rates greater than 100 s−1.

Experimental data from [Yadav et al. 1995; Jia and Ramesh 2004; Sakino 2006] for 6061-T6 aluminum
alloy suggest that viscous drag effects are small for strain rates up to 3×104 s−1. This is in contrast with
data given in [Lesuer et al. 2001] which suggests that drag effects become important at strain rates of
104 s−1 or less. Sakino [2006] has shown quite convincingly that drag effects become important at lower
strain rates only in the annealed alloy 6061-O aluminum but not in the hardened 6061-T6 aluminum
alloy. Our model slightly overestimates the flow stress for strain rates less than 105 s−1 but matches quite
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Figure 8. The flow stress of 6061-T6 aluminum alloy as a function of strain rate (at
298 K and a plastic strain of 0.2). The solid line shows the prediction of the extended
MTS model. The dashed lines show the range of predicted flow stresses in the 95 %
confidence interval. The symbols represent experimental data. The sources of the exper-
imental data are ◦ [Hoge 1966]; � [Green and Babcock 1966; Eleiche 1972]; O [Tonks
1993]; 4 [Yadav et al. 1995]; × [Lee et al. 2000]; G [Cady and Gray III 2001]; + [Lesuer
et al. 2001; Jia and Ramesh 2004]; � [Sakino 2006].
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well with the available data for higher strain rates. The 95% confidence interval shown in the figure is
based on the low and high values of σi , g0i , σ0es , and g0es discussed earlier.

From Figure 8 we can also observe a change in slope of the flow stress-strain rate curve at a strain
rate of around 106 s−1. Experimental data are not available for the strain rate regime between 106 s−1

and 1010 s−1. The curves for the overdriven shock regime and the moderate strain rate regime can be
matched only if there is a change in slope as shown in the figure. A better model for the intermediate
strain rate regime can only be determined after experiments (or possibly numerical simulations) have
been performed for this regime. In the model that we have presented in this paper, we assume that
the viscous drag component of the flow stress saturates when σy reaches a value of 700 MPa and any
additional increase in the flow stress is due to shock effects as discussed in [Wallace 1981a; 1981b].

5.2. Flow stress as a function of temperature. Figure 9 shows comparisons between experimental data
and the flow stress predicted by our model as a function of temperature. At low strain rates (see Figure
9, left), the decrease in flow stress with temperature is predicted quite accurately by the model. Near the
melting temperature, the contributions of τi and τe are close to zero and the flow stress is determined by
the athermal component τa . Beyond the melting temperature, the stress is computed by the Newtonian
fluid model in Equation (24) and the stress is quite small at low strain rates. Adiabatic heat is assumed
for the high strain rate calculations.
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Figure 9. The flow stress of 6061-T6 aluminum alloy as a function of temperature. Left:
strain rate = 0.001 s−1 and plastic strain = 0.02. Right: strain rate = 1000 s−1 and plastic
strain = 0.1. The solid lines show the prediction of the extended MTS model. The
dashed lines show the range of values predicted if we use the low or high values of
the parameters σi , g0i , σ0es , and g0es . The symbols represent experimental data. The
sources of the experimental data are: ◦ [Hoge 1966]; � [Green and Babcock 1966;
Eleiche 1972]; � [Dike et al. 1997]; ? [Rosenberg et al. 1986]; 4 [Ogawa 2001].
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At a strain rate of 1000 s−1, our model predicts the flow stress quite well up to T/Tm = 0.6 (see
Figure 9, right). At higher temperatures, the flow stress is overestimated. The prediction of our model
is reasonable if we consider the full set of data used to arrive at the parameters. It is expected that
the predicted temperature dependence of our model can be improved at more experimental data at high
temperatures and high strain rates become available.

5.3. Flow stress as a function of pressure. Figure 10 shows the predicted pressure dependence of the
flow stress of 6061-T6 aluminum at a strain rate of 0.001 s−1. The increase in flow stress with increasing
pressure is underestimated by our model. Since the pressure dependence of the flow stress at low strain
rates is determined by the pressure dependence of the shear modulus, the figure shows that the pressure
dependence of the shear modulus is not enough to account for the pressure dependence of the flow stress.
We also observe that

∂σy

∂p
≈ 2

∂µ

∂p
.

This suggests that the pressure dependence of the flow stress in the Steinberg–Cochran–Guinan model
[Steinberg et al. 1980] (which is used widely for high strain rate calculations and assumes that ∂σy/∂p ≈

∂µ/∂p) is not correct. We have also observed a similar behavior for OFHC copper [Banerjee 2005a].
An explicit pressure dependence of the initial hardening modulus and the saturation stress is needed to
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Figure 10. The flow stress of 6061-T6 aluminum alloy as a function of pressure for a
strain rate of 0.001 s−1 and a plastic strain of 0.05. The solid lines show the predictions
of the extended MTS model. The symbols represent experimental data from [Davidson
1973] at the following temperatures range of values predicted if we use the low or high
values of � 300 K, O 367 K, ? 422 K, and ◦ 478 K.
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model the plastic behavior of metals under hydrostatic pressure. Such a dependence has to be based on
physical considerations and needs further research.

5.4. Uniaxial stress-strain curves. The predicted variation of the flow stress with plastic strain at a strain
rate of 0.001 s−1 is shown in Figure 11. The calculations were performed using a constant mass density
of 2700 kg·m3, and a constant mobile dislocation density of 2×1011 m−2. Isothermal conditions were
assumed.

Figure 11 (left) shows the predicted flow stress at ambient pressure. The flow stress predicted by our
model tends to saturate at a lower value than seen in the experimental data. Also the predicted initial
hardening modulus is lower than that suggested by the experiments at 367 K and 422 K and higher than
experiment at 589 K. However, the initial yield stress predicted by our model is remarkably close to
that seen in experiments considering the experimental variability that is observed (for further data on
experimental variability at a given temperature and strain rate see [Bhawalkar 2006]). The experimental
stress-strain curves show strain softening. A damage model that includes void nucleation and growth can
be used to predict that portion of the stress-strain curve. For the sake of simplicity, we do not discuss
damage models and their implications in this paper.

Figure 11 (right) shows the predicted flow stress at a pressure of 276 MPa. We notice that the initial
yield stress is predicted quite accurately by our model at this pressure for all the temperatures shown in the
figure. However, the hardening rate and the saturation stress are underestimated. The error decreases with
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Figure 11. The flow stress of 6061-T6 aluminum alloy as a function of true plastic strain
at a strain rate of 0.001 s−1. Left: Ambient pressure; right: pressure = 276 MPa. The
solid lines show the prediction of the extended MTS model. On the left side of the figure
the dashed lines represent the experimental data. On the right, the symbols represent
the experimental data. The data at 295 K are from [Fish et al. 2005]. The data at 300 K,
367 K, 422 K, and 478 K are from [Davidson 1973]. The data at 589 K are from [Green
and Babcock 1966; Eleiche 1972].
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increasing temperature. Similar plots at higher pressures show that the error increases with increasing
pressure at a particular temperature (see also Figure 10). As mentioned before, an explicit pressure
dependence of the initial hardening rate and the saturation stress is needed to improve our model.

Figure 12 shows the predicted stress-strain curves for strain rates greater than 1000 s−1. The change
in mass density due to large pressures that develop at such strain rates has been neglected in our com-
putations. To keep the computations efficient, we have not used the evolution equations for dislocation
density and have instead used a constant value of ρm = 2×1011 m−2. Adiabatic heating and the resulting
thermal softening has been assumed for all these computations.

From Figure 12 (left) we observe that the flow stress predicted by the extended MTS model matches
well with the experimental data for temperatures of 77 K and 298 K. At 473 K, the predicted flow stress
is higher than experiment and does not capture the strain softening due to accumulating damage in
the material. At 618 K, the predicted flow stress is considerably higher than experiments suggest. As
observed before, our model does not predict enough thermal softening of 6061-T6 aluminum at higher
temperatures– particularly at high strain rates. It is important to note here that 6061-T6 aluminum is a
precipitation hardened alloy containing magnesium and silicon as alloying elements. At about 550 K,
the solute molecules start to diffuse toward the grain boundaries and the alloy softens considerably.
Though the extended MTS model is an improvement over the original MTS model (see [Bhawalkar
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Figure 12. The flow stress of 6061-T6 aluminum alloy as a function of plastic strain
at moderately high strain rates. Left: strain rate = 1000–2000 s−1. Right: temperature
= 298 K. The solid lines show the prediction of the extended MTS model. The dashed
lines represent the experimental data. The sources of the experimental data are: strain
rate = 1000 s−1 from [Rosenberg et al. 1986], strain rate = 1500 s−1 from [Ogawa 2001],
strain rates = 2000 s−1 and 4000 s−1 from [Lee et al. 2000], strain rate = 29000 s−1 from
[Jia and Ramesh 2004].
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2006] for similar results with the original MTS model), the amount of thermal softening continues to be
overestimated by the extended model.

Figure 12 (right) shows that the experimental data does not show any significant strain rate dependence
at room temperature (at least up to a strain rate of 29,000 s−1). Our model predicts a small increase in
flow stress with strain rate and some thermal softening at strains greater than 0.2. However, the overall
match with experiment is quite good. Also the initial rate of hardening appears to be lower than that
predicted. However, stress-strain data from split Hopkinson pressure bar experiments are suspect for
strains less than 0.1 and conclusions cannot be drawn about the accuracy of our hardening model from
this figure.

6. Model predictions

In this section we discuss the predictions of our flow stress model for a large range of conditions. The
mass density is assumed to be constant (2700 kg·m−3) in our calculations. Since the phonon drag coef-
ficient increases with temperature, assuming a constant mobile dislocation density for all temperatures
gives unrealistic flow stresses at strain rates greater than 104 s−1. On the other hand, using the evolution
equations to determine ρm is not computationally efficient. Hence we have used the following equation
to determine ρm for our calculations in this section:

ρm ≈ ρm0(1 + T̂ )m,

where ρm0 is the dislocation density at 0 K, T̂ = T/Tm where Tm is the melting temperature, and m is a
constant. The values of these parameters that we have used are: ρm0 = 1.3494×1011 m−2 and m = 1.4114.
Using these parameters gives us a value of ρm = 2×1011 m−2 at 300 K and ρm = 3.5×1011 m−2 at 900 K.
The value of ρm is not allowed to vary with plastic strain.

Figure 13 (left) shows the flow stress predicted by our model as a function of strain rate at a plastic
strain of 0.2 and for a range of temperatures. From the figure we observe that at low strain rates, the
flow stress is strongly dependent on temperature. As the strain rate reaches around 105 s−1, the model
predicts that the temperature dependence of the flow stress decreases until the temperature has hardly
any effect.

Figure 13 (right) shows the flow stress as a function of strain rate at a temperature of 400 K and
for various levels of strain. In this case we observe that the flow stress saturates rather rapidly (at a
plastic strain of around 0.2). This indicates that the material exhibits little strain hardening. However,
simulations of Taylor impact tests (see [Bhawalkar 2006]) indicate that we underestimate the amount
of hardening in our model. A value of the initial hardening modulus (θ0) that is around 0.3 of the
value that we have used gives a more realistic amount of hardening. However, such a value leads to an
underestimation of the flow stress at low strain rates. A better hardening model than the one used is
clearly needed if we are to predict the saturation strain more accurately.

Figure 14 (left) shows the flow stress predicted by our model as a function of temperature at a plastic
strain of 0.2 and for a range of strain rates. At low strain rates the flow stress decreases rapidly with
temperature until it reaches the athermal value. For a strain rate of 103 s−1 and higher the initial decrease
of the flow stress with temperature is small. However, as the temperature reaches the melting temperature,
the flow stress drops abruptly to a small value (determined by the constitutive relation for a Newtonian
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fluid). In the absence of experimental data, it is not obvious whether this behavior of our model accurately
represents reality.

Figure 14 (right) shows the flow stress as a function of temperature at a strain rate of 8000 s−1 and for
various levels of strain. Once again, we see that the flow stress saturates at a plastic strain of about 0.2.
At low temperatures, the material hardens significantly before saturation. However, as the temperature
increases, the amount of hardening decreases until at around 850 K there is essentially no hardening.
This is reasonable behavior considering the fact that thermally activated dislocation motion is dominant
at a strain rate of 8000 s−1, and enough thermal energy is available at high temperatures to allow slip to
occur more readily. The convex nature of the curves shown in the figure also indicate that we are able to
capture some of the effects of high temperature solute diffusion in our model.

In Figure 15 (left) we have plotted the predicted flow stress as a function of plastic strain. The strain
rate is 8000 s−1 and the initial temperatures range from 50 K to 900 K. Adiabatic heating is assumed,
and the temperature increases with increasing strain. All the curves show a small amount of thermal
softening. We also observe that the initial rate of hardening decreases with temperature. Saturation is
reached at higher strains as the temperature increases. If we compare the flow stress at 300 K with those
shown in Figure 12 (right), we observe that there is hardly any strain rate dependence at these strain rates.
We also observe that the flow stress at 900 K is around 70 MPa which is high considering the fact that
the material is close to its melting point.

Figure 15 (right) shows stress-strain plots at various strain rates. The initial temperature of the material
is 400 K in these plots. Isothermal conditions were assumed for strain rates lower than 1000 s−1 and
adiabatic conditions otherwise. Interestingly, the only curve that shows an appreciable amount of thermal
softening is the curve at 1000 s−1. At a strain rate of 105 s−1, the increase in the drag coefficient with
temperature offsets the amount of thermal softening that occurs. The temperature dependence of the flow
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stress at a strain rate of 107 s−1 is negligible and hence there is no appreciable thermal softening with
increasing strain. The amount of strain that can be achieved at high strain rates is not clear and failure
will probably occur before a plastic strain of 0.6 is achieved.

7. Concluding remarks

One of the main shortcomings of the original mechanical threshold stress model was that it was not
accurate at strain rates greater than about 104 s−1. In this paper we have presented an extended mechanical
threshold stress model that is valid for strain rates at which viscous drag effects become dominant. The
model has also been extended to the overdriven shock regime. The original model of Follansbee and
Kocks was also designed for use in the temperature regime where solute diffusion and other thermally
activated diffusion effects could be neglected (typically less than 0.6 of the melting temperature). In
the extended model, we allow for higher temperatures by using a modified form of the equation for the
intrinsic component of the flow stress. The strain rate dependence of the flow stress is predicted quite
accurately by our model. However, the predicted temperature dependence is less accurate and could
be improved. Since the density of obstacles inside a crystal decreases with increasing temperature, the
activation energy should be a function of the temperature. It is possible that a temperature-dependent
model for the activation energy will improve predictions of the flow stress of 6061-T6 aluminum at
high temperatures. More high temperature–high strain rate data of the type provided by Rosenberg et al.
[1986] are essential before such a model can be developed.

We have provided a detailed description of the procedure for calculating the drag stress. Two meth-
ods for computing the viscous drag coefficient have been compared in the paper. We have found that
Liebfried’s theory provides an estimate of the viscous drag coefficient that better matches experiment.
We have also added a temperature dependence to the dislocation evolution equations of Estrin and Kubin
and determined new parameters for these equations that fit experimental data. Estrin and Kubin have
estimated that the mobile dislocation density is around 1014 m−2 at saturation. Our results suggest that a
more accurate estimate of this quantity is 2×1011 m−2.

The evolution equations of the internal variable (mechanical threshold stress) have been simplified and
a nondimensional form for the initial hardening modulus has been proposed. The simplified equations
allow for an exact expression for the internal variable as a function of plastic strain which can be evaluated
efficiently in a computational code. Alternatively, we could have used the equations for the evolution
of the dislocation density with the dislocation density as an internal variable. However, the system of
equations involved is very stiff and computationally expensive to solve for high strain rate problems. The
parameters for 6061-T6 aluminum alloy (needed for the evolution of the internal variable) that we have
determined in this paper lead to an underestimation of the saturation stress and the amount of hardening.
This effect is particularly noticeable for high hydrostatic pressures. Also, the pressure dependence of
the flow stress is not reflected completely by the pressure dependence of the shear modulus (for which a
model is presented in the paper). Explicitly pressure–dependent models for the hardening modulus and
the saturation stress are clearly needed.

In addition, we have developed an equation for the evolution of temperature with plastic strain based
on thermodynamic principles. An expression has been presented for the Taylor–Quinney coefficient as
a function of the mechanical threshold stress internal variable. This expression requires a functional
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are from [Desai 1987]. The solid line shows the prediction of the model in Equation
(31).

representation of the Gibbs free energy density. We have postulated a form of the derivatives of this
function that matches experimental data qualitatively. However, further research is needed to arrive at a
better form of the Gibbs free energy density function.

Important issues that have not been addressed in this paper are cyclic loading and kinematic hard-
ening models, deformation induced anisotropy in both the elastic and plastic behavior, the appropriate
form of the yield condition and the flow rule, and the modeling of void nucleation and growth and the
accompanying elastic and plastic damage. Also, in this paper, we have considered only one dimensional
analytical verification tests. Consideration of some of the above issues and detailed numerical validation
experiments using the material point method Sulsky et al. [1994; 1995] are in progress and will be the
subject of a subsequent paper.

Appendix A: specific heat, EOS, melting temperature, shear modulus

Experimental data indicate that the specific heat (at constant pressure) of aluminum increases by around
37% between room temperature and melting [Desai 1987]. A least squares curve fit to the experimental
data yields the following parameters for the model given in Equation (31):

A1 = − 11.73 J/kg-K, B1 = 6.28 J/kg-K2,

C1 = − 0.011 J/kg-K3, A2= 743.13 J/kg-K,

B2 = 0.51 J/kg-K2.

A plot of the fit is shown in Figure 16.
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Figure 17. Melting temperature of aluminum. The triangles show experimental data
from [Boehler and Ross 1997] and the circles show experimental data collected in [Bu-
rakovsky et al. 2000]. The solid line shows the prediction of the model in Equation
(29).

The shear modulus model given in Equation (26) requires a pressure. We use the equation of state
(EOS) in Equation (30) to compute the pressure for a given change in density. The parameters that
we have used for 6061-T6 aluminum are B0 = 76.3 GPa and B

′

0 = 4.29 [Burakovsky and Preston 2005].
Experimental data for 6061-T6 aluminum alloy [Vaidya and C. 1970], 2024-O aluminum alloy [McQueen
et al. 1970], and pure aluminum [Mitchell and Nellis 1981] are closely matched by the EOS model up
to a compression ratio (ρ/ρ0) of 1.4.

Though the alloying content can have a significant effect of the melting temperature of metals, we have
assumed in this paper that the melting temperature of 6061-T6 aluminum does not differ significantly
from that of pure aluminum. The parameters of the model of melting temperature given in Equation (29)
for 6061-T6 aluminum are taken to be

Tm0 = 933.6 K, q = 3.3,

01 = 0.84(gm/cc)1/3, 02 = 45.4 (gm/cc)q .

We also assume that for hydrostatic tensile states the melting temperature is equal to Tm0. The prediction
of the model of Equation (29) is compared with experimental data in Figure 17. An initial density of
2700 kg/m3 was used while computing the quantities in the figure. The model fits the data from [Boehler
and Ross 1997] quite well (triangles) but not the older data collected in [Burakovsky et al. 2000] (circles).
The accuracy of the Boehler and Ross data has been confirmed by more recent numerical experiments
by Vocadlo and Alfe [2002].
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Figure 18. Shear modulus of 6061-T6 aluminum alloy. Left: shear modulus vs. tem-
perature. Right: shear modulus vs. mass density at 0 K. At left, the triangles show
experimental data for pure aluminum from [Tallon and Wolfenden 1979] and the circles
show experimental data for 6061-T6 aluminum alloy from [Brown et al. 1996]. The
solid line shows the prediction of the model in Equation (26) at ambient pressure. The
dotted lines show predicted shear moduli under hydrostatic tension and compression. At
right, the circles show results from electronic structure calculations [Burakovsky et al.
2003] and the solid line shows the prediction of our model.

The shear modulus model in Equation (26) allows for a smooth transition to zero shear modulus
beyond melting. This feature is advantageous in numerical simulations for conditions where melting
might occur. The parameters of the shear modulus model for 6061-T6 aluminum are µ0 = 31.3 GPa,
∂µ/∂p = 1.8 [Guinan and Steinberg 1974], a1 = 0.53, a2 = 0.10, a3 = 0.37 [Burakovsky and Preston
2005], C = 0.049 [Nadal and Le Poac 2003], ζ = 0.1, and m = 26.98 amu. The predicted shear modulus
as a function of temperature is compared with experimental data in Figure 18 (left). An initial density
of 2700 kg/m3 was used for the calculations in the figure. Further details and comparisons with other
models can be found in [Bhawalkar 2006].

The density dependence of the shear modulus at 0 K is compared with computed results in Figure 18
(right). Since the pressure depends directly on the density in the equation of state, this plot may also
be considered to be a measure of the pressure dependence of the shear modulus. Our model predicts
the shear modulus quite accurately up to ρ/ρ0 = 2.2. Beyond this point the material undergoes a phase
transition to the bcc phase and our model overestimates the shear modulus with increasing pressure.
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