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The variational-asymptotic method is used to obtain an asymptotically-exact expression for the strain
energy of a tapered strip-beam. The strip is assumed to be sufficiently thin to warrant the use of two-
dimensional elasticity. The taper is represented by a nondimensional constant of the same order as
the ratio of the maximum cross-sectional width to the wavelength of the deformation along the beam,
and thus its cube is negligible compared to unity. The resulting asymptotically-exact section constants,
being functions of the taper parameter, are then used to find section constants for a generalized Timo-
shenko beam theory. These generalized Timoshenko section constants are then used in the associated
one-dimensional beam equations to obtain the solution for the deformation of a linearly tapered beam
subject to pure axial, pure bending, and transverse shear forces. These beam solutions are then compared
with plane stress elasticity solutions, developed for extension, bending, and flexure of a linearly tapered
isotropic strip. The agreement is excellent, and the results show that correction of the section constants
using the taper parameter is necessary in order for beam theory to yield accurate results for a tapered
beam.

1. Introduction

According to Euler–Bernoulli beam theory for pure bending of a uniform beam made of isotropic material
with Young’s modulus E , the strain energy per unit length is given by

U =
1
2 E Iκ2,

where κ is the curvature of the beam neutral axis (the locus of cross-sectional area centroids) and I is
the cross-sectional area moment of inertia. The bending stiffness according to Euler–Bernoulli theory is
E I . For nonuniform beams it is typical that the bending stiffness is regarded as E I (x), with x being the
beam axial coordinate. For example, for a beam with narrow rectangular cross-section of width 2b and
thickness t , E I is given by

E I =
Et (2b)3

12
=

2Etb3

3
.

Customarily, this expression remains the same regardless of whether or not the beam is uniform. For
example, when b = b(x), one just replaces b with b(x); the local taper of the beam b′(x) = − τ(x) does
not further influence the local bending stiffness. [Boley 1963] showed that the accuracy of predictions
by beam theory, performed in the described manner, worsened as τ increased.

Keywords: beam theory, asymptotic methods, dimensional reduction, tapered beam.
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Figure 1. Contrast between a prismatic (left) and a tapered (right) beam.

In reality, taper introduces three-dimensional effects that cannot be accounted for by merely changing
the sectional width in this formula. For example, stress at the boundaries of a solid continuum must
conform to the traction-stress relationships from Cauchy’s formula. Let us now introduce the y-axis as
perpendicular to x along with unit vectors, ax and ay , parallel to x and y respectively. In Figure 1 a
prismatic beam is shown beside a linearly tapered beam. Comparing the two cases, one can easily see
that neglecting the local taper parameter τ is equivalent to regarding the local upper and lower surface
outward-directed normal vectors as parallel to ay , which is only true for beams with no taper. Instead,
the true outward-directed normal vectors feature a component parallel to ax , omission of which means
that the surface boundary conditions are erroneous. Cross-sectional analysis (for instance, solutions
for the elastic constants used in a beam analysis) of tapered beams performed without consideration of
taper would then be incorrect and thereby degrade results from one-dimensional beam analysis. The
questions that must be answered are (a) how significant is this effect, and (b) is its inclusion tractable?
Krahula [1975] obtained an exact plane stress elasticity solution for a tapered strip-beam undergoing
flexure. This solution, along with others developed by Timoshenko and Goodier [1970] for pure extension
and bending deformations, all three of which are included herein, provides a means to assess the error
associated with omission of taper from the cross-sectional analysis of engineering beam theories for this
simple configuration. It will also provide a means to assess the accuracy of more general cross-sectional
analyses for spanwise nonuniform beams.

Andrade and Camotim [2005] considered this effect on the lateral-torsional buckling of I-beams. It
was reported therein that taper can affect the local cross-sectional stiffnesses, expressions of which,
if accurate, demonstrate that its effects are not, in general, negligible. For finite element analysis of
linearly tapered I-beams, Vu-Quoc and Léger [1992] derived a flexibility matrix showing a dependence
on τ ; however, the basis of their derivation is, at best, only an approximation, in that they assumed
that the bending stress equation for a prismatic beam, σxx = My/I , remains valid in the presence
of taper. For tapered monosymmetric I-beams, Kitipornchai and Trahair [1975] introduced additional
section constants to account for taper while leaving the traditional section constants unaltered. Ronagh
et al. [2000] also employed this approach for tapered beams of arbitrary cross-sectional geometries. A
drawback of introducing additional constants is that it inevitably adds complexity to the beam analysis.
There is relatively little other information in the literature regarding the effect of taper on the local
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stiffness properties. On the other hand, beam analyses with stiffness (or flexibility) matrices formulated
for numerical computations in [To 1981; Karabalis and Beskos 1983; Banerjee and Williams 1986;
Cleghorn and Tabarrok 1992; Rajasekaran 1994; Tena-Colunga 1996] are only selected examples of the
immense body of research performed on the analysis of tapered beams that does not consider the effect
of taper on the cross-sectional constants and stress recovery relations.

Here the effect is examined from the point of view of an analytical treatment. In order to facilitate such
a treatment, a tapered strip-beam is analyzed as a plane stress problem undergoing in-plane deformation.

The variational-asymptotic method (VAM) was developed by Berdichevsky and first used in construc-
tion of two-dimensional shell theory by dimensional reduction from three-dimensional elasticity theory
(see [Berdichevsky 1979]). The VAM finds an asymptotically-exact approximation of the solution, to
any desired order of accuracy, in terms of specified small parameters. The suitability of VAM for devel-
opment of one-dimensional beam theory was shown by Berdichevsky [1981]. [Hodges 2006] and many
references cited therein provide sample derivations for applying the VAM to the analysis of beams.

In this paper the VAM is used in Section 2 to analyze the in-plane deformation of a thin strip-beam and
obtain its strain energy per unit length. In Section 3, this strain energy is repackaged into a generalized
Timoshenko framework. In Section 4, the resulting generalized Timoshenko theory, with its modified
bending and shear stiffnesses, is used to analyze the classical pure extension, pure bending, and flexure
problems associated with the in-plane deformation of a linearly tapered beam. In Section 5, three elas-
ticity solutions are presented for the pure extension, pure bending, and flexure problems. In Section 6,
the elasticity results are compared with the beam solution. Finally, conclusions are drawn.

2. Beam strain energy per unit length

Beam theory requires an expression for the strain energy per unit length in terms of generalized strains
that depend only on the axial coordinate. The process of finding this expression, to be rigorous, must
begin with the strain energy for the accompanying elasticity problem on which dimensional reduction is
being performed. As discussed in [Hodges 2006], and many papers cited therein (for example, [Cesnik
and Hodges 1997; Yu et al. 2002]), dimensional reduction is based on the identification and exploitation
of various small parameters, and may be rigorously carried out by asymptotic methods. The VAM of
[Berdichevsky 1979] allows one to work directly in terms of energy functionals and still take advantage
of small parameters.

In this section we develop the strain energy per unit length for a linearly tapered strip-beam such as
the one shown on the right side of Figure 1. The undeformed state is described following the methods
of [Hodges 2006], where the position vector to an arbitrary point in the undeformed beam is taken to be

r̂ = xax + yay = r + yay,

where the x-axis is the reference line of the undeformed beam, taken for convenience as the locus of
cross-sectional centroids. The position vector to an arbitrary point in the deformed beam can be written
as

R̂ = R + yTy + wx(x, y)Tx + wy(x, y)Ty, (1)

where R = (x + u)ax + vay , Tx is a unit vector tangent to the deformed reference line, and Ty is normal
to Tx in the plane. If we only keep linear terms, then Tx = ax + v′ay and Ty = − v′ax + ay . The
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displacement field is thus described in terms of beam variables u(x), v(x) along with warping functions
wx(x, y) and wy(x, y). For the dimensional reduction, the warping functions are unknown at the outset
but are solved for in the procedure. Two constraints on the warping are needed to make the displacement
field unique. These constraints are not unique, so we choose to follow [Hodges 2006] in letting〈

R̂
〉
= 2bR, (2)

where

〈(•)〉 =

∫ b(x)

−b(x)

(•)dy.

Equation (2) implies that
〈wx 〉 =

〈
wy

〉
= 0. (3)

The beam is assumed to be homogeneous and isotropic, and the entire development is linear throughout.
Under assumption of plane stress, appropriate for a thin body such as this one, twice the strain energy
per unit length is given by

2U =
Et

1 − ν2

〈
02

xx + 02
yy + 2ν0xx0yy +

(1 − ν)

2
02

xy

〉
, (4)

where ν is Poisson’s ratio. According to the displacement field spelled out in Equation (1), the two-
dimensional strain components are

0xx = ε − y κ + w′

x , 0yy = wy,y, 0xy = wx,y + w′

y, (5)

where ( )′ means the partial derivative with respect to x and ( ),y means the partial derivative with respect
to y. The one-dimensional generalized strains are ε and κ , both functions of x . Here κ = v′′(x) is the
usual curvature of the reference line of Euler–Bernoulli beam theory, and ε = u′(x) is the stretching
of the reference line. The one-dimensional generalized strains are taken as known in the dimensional
reduction procedure.

There are three small parameters that can be identified. First, the strain is small compared to unity.
It is straightforward to show that both ε and a κ are O(ε), where ε denotes the maximum strain, and
a = b(0) the maximum value taken on by y in the structure. The second small parameter is a/` where
` is the wavelength of deformation along the beam, such that ∂(•)/∂x = O(•/`). Finally, in this study
we select the nondimensional taper parameter τ as a small parameter. Because our problem is linear, the
strain will only enter the strain energy quadratically, so the smallness of strain has no real effect on the
formulation. For simplicity, we take a/` and τ to be of the same order, O(δ), and will ultimately ignore
δ3 compared to unity.

The VAM procedure is summarized as follows:

(i) Identify and remove all terms O(δ) and higher in the strain.

(ii) Use this resulting zeroth-order approximation of the strain to form the zeroth-order approximation
of the strain energy in terms of the warping.

(iii) Minimize the zeroth-order approximation of strain energy with respect to the warping to obtain the
zeroth-order approximation of the warping.
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(iv) Perturb the resulting zeroth-order warping by one order of δ and use the perturbed warping to
express the strain components to a sufficiently high order approximation so that the energy contains
all O(δ2) terms and all higher-order terms are dropped.

(v) Minimize this second-order approximation of the energy with respect to the warping function per-
turbations.

(vi) Substitute the result for the warping back into the original strain energy and discard all terms of
orders higher than O(δ2).

The result is the asymptotically-exact strain energy per unit length.
To begin we write twice the zeroth-order approximation of the energy, tantamount to ignoring δ alto-

gether, as

2U0 =

〈 Et
1 − ν2

[
( ε − y κ)2

+ 2νwy,y ( ε − y κ) +
(1 − ν)w2

x,y

2
+ w2

y,y

]
− 2λxwx − 2λywy

〉
,

where Lagrange multipliers λx and λy are used to enforce constraints on the warping. The warping field
that minimizes U0 can be found as

wx = 0, wy = − ν εy +
ν κ

2

(
y2

−
b2

3

)
.

Plugging this warping field back into the expression for 2U0, one obtains twice the zeroth-order energy
as

2U0 = 2Ebt ε2
+

2
3 Etb3 κ2, (6)

which is consistent with Euler–Bernoulli theory. Note that Equation (6) is derived without ad hoc as-
sumptions such as assuming the cross section to be rigid in its own plane or assuming that ν = 0. Such
assumptions are sometimes used to derive classical beam theory, but they are neither necessary nor
correct.

For the next approximation to the one-dimensional energy, we first perturb the above approximation
of warping to arrive at

wx = vx , wy = − νε̄y +
ν κ

2

(
y2

−
b2

3

)
+ vy,

where vx is the perturbation of wx , and vy is the perturbation of wy; vx and vy are of one order higher
in δ than wx and wy .

This new warping field is then substituted into the strain components from (5), at which point a new
expression for the two-dimensional strain energy arises from (4) by virtue of the new strain components.
Here one must be careful to retain all terms up through O(δ2) and drop all terms of higher order in the
energy, so now we find

2U2 =
Et

1 − ν2

{
1 − ν

2

〈[
ντb κ

3
− yν ε ′

+
ν

(
3y2

− b2
)

κ ′

6
+ vx,y

]2 〉
+

〈
v2

y,y + 2v′

x(1 − ν2)( ε − y κ )
〉}

.

Expressions for the perturbation variables, vx and vy , that minimize U2 subject to the constraints
in (3) must be found; the constraints are again enforced by use of Lagrange multipliers, 3x and 3y ,
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respectively. The stationary point of U2 is found by setting its first variation equal to zero, which leads
to the two Euler–Lagrange equations

∂U2

∂vx
−

(
∂U2

∂v′
x

)′

−

(
∂U2

∂vx,y

)
,y

= 3x ,
∂U2

∂vy
−

(
∂U2

∂vy,y

)
,y

= 3y, (7)

along with corresponding natural boundary conditions

∂U2

∂vx,y

∣∣∣∣
y = ± b(x)

= 0,
∂U2

∂vy,y

∣∣∣∣
y = ± b(x)

= 0. (8)

According to Saint-Venant’s principle, boundary conditions, the warping at the beam ends (not shown)
does not affect the behavior of the warping inside the beam and is not used in the solution of Equations
(7) and (8).

Although both the Euler–Lagrange equations and boundary conditions for vx and vy look almost
identical, the actual equations obtained are not. The Euler–Lagrange equation for vy , the second equation
of (7), reduces simply to vy,yy = 0; from this and the second equation of (8), which requires vy,y to vanish
at y = ± b, one obtains by inspection that 3x = vy = 0. On the other hand, the resulting Euler–Lagrange
equation in vx , the first part of Equation (7), can be simplified to

Et
[
(2 + ν)( ε ′

− y κ ′) + vx,yy
]
+ 2(1 + ν)3x = 0, (9)

and the natural boundary conditions simplify to

yτ ( ε − y κ)

b
+

2ν
(
τb κ − 3y ε ′

)
+ ν

(
3y2

− b2
)

κ ′
+ 6vx,y

12(1 + ν)

∣∣∣∣∣
y = ± b(x)

= 0. (10)

Solving Equations (9) and (10) simultaneously gives the Lagrange multiplier as

3x = Et
(

τ ε

b
− ε ′

)
,

and vx as

vx =
τ

3b

[
(1 + ν)

(
b2

− 3y2) ε + y(5ν + 6)b2 κ
]
+

1
6

{
ν

(
3y2

− b2) ε ′
+

[
y3(ν + 2) − y(5ν + 6)b2] κ ′

}
.

Note that the first term is O(τ ) and the second is O(a/`), so that the perturbation is indeed O(δ). It can
also be easily checked that the traction-free boundary conditions are satisfied asymptotically to the order
of the perturbation variables, O(δ).

With both perturbation variables now known, the second-order energy is also known. The strain energy
per unit length, asymptotically correct up to second order in δ, is then the sum of U0 and U2, and is equal
to

U = Etb
[

1 −
2
3
(ν + 1)τ 2

]
ε2

+
2Etντb2

3
ε ε ′

+
Etb3

9

[
3 + 2(14ν + 15)τ 2] κ2

−
4Etτ(8ν + 9)b4

9
κ κ ′

+
4Et (1 + ν)b5

15
κ ′2

+
2Et (11ν + 12)b5

45
κ κ ′′, (11)
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which is of the same form as the refined beam theory presented in [Hodges 2006], namely

2U = S ε2
+ 2G ε ε ′

+ A κ2
+ 2B κ κ ′

+ C κ ′2
+ 2D κ κ ′′, (12)

with A, B, C , D, S, and G being scalars identified from Equation (11); they are implicit functions of x
through the varying width b(x) and explicit functions of τ . It is easy to see that terms A and S without
τ correspond to those of Euler–Bernoulli theory. Terms with τ are the corrections from taper, and other
terms from which τ is absent (C and D) pertain to shear deformation of prismatic beams.

3. Transformation to generalized Timoshenko form

The strain energy function developed in the previous section is not suitable for use as an engineering
beam theory because of the presence of derivatives of ε and κ . It is known, however, that the form of
(11) can be transformed into a generalized Timoshenko theory, which is the main objective of this section.
Thus, the strain energy will be put into the form

2U∗
= Wκ2

+ 2Xκγ + Yγ 2
+ Zε2, (13)

where W , X , Y , and Z are scalars, and with W , X , and Z being functions of τ , while γ is the one-
dimensional beam engineering transverse shear measure. The shear strain measure γ turns out to be
one order higher in δ than the classical measures of strain; therefore the energy from (11), which is
second-order accurate, is sufficient to construct a generalized Timoshenko model. Note that after being
put in this form the energy will no longer be asymptotically correct, because information is lost in the
conversion process. Also, because γ is O(δ), Y will not have corrections from the taper parameter in
a second-order correct strain energy. By inspection of (12), extension ε is coupled only with its own
derivative, hence we expect it will not be coupled with any other strain measures in (13).

The major difference between classical and Timoshenko theories is that classical theory neglects trans-
verse shear strain while the generalized Timoshenko theory includes it, so the relationship between the
two theories is established here. (The term generalized is used to emphasize the fact that the theory is
not Timoshenko theory, nor is it based on any of the myriad assumptions of that theory. Moreover, the
present theory includes the bending-shear coupling effect embodied in X .) As depicted in Figure 2, Tx

x
T

y
T

y
B

x
B

g

Figure 2. Coordinate systems used for transverse shear formulation.
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and T y collectively represent the dyad associated with classical theory, whereas Bx and By represent the
dyad associated with generalized Timoshenko theory. T x and T y are aligned as parallel to and normal
to the beam reference axis respectively. Bx and By are then rotated clockwise by an angle from T x and
T y so that Bx is normal to the cross-sectional plane (which may be either defined as an average or at a
point), so that

Bx = T x − γ T y, By = γ T x + T y .

Following the procedure of [Hodges 2006], which assumes that the strain components are small, the
axial force strain measure is identical for the two theories so that ε = ε and the relationship of moment
strain between the two theories is given by

κ = κ + γ ′. (14)

Due to the presence of the derivatives in κ in Equation (12), we also mention that the derivatives are

κ ′
= κ ′

+ γ ′′, κ ′′
= κ ′′

+ γ ′′′, (15)

and that v′
= θ + γ , where θ is the total section rotation and κ = θ ′.

The derivatives of ε, κ , and γ must be written in terms of ε, κ , and γ , since the form of (13) contains
no derivatives. The approach for eliminating the derivatives adopted here is to make use of the equi-
librium equations. At each section the axial force (F), shear force (V ), and bending moment (M) are,
respectively,

F =
∂U∗

∂ε
= Zε, V =

∂U∗

∂γ
= Xκ + Yγ, M =

∂U∗

∂κ
= Wκ + Xγ.

In the absence of applied loading within the beam, the equilibrium equations are then

F ′
= Zε′

+ Z ′ε = 0,

V ′
= Yγ ′

+ Xκ ′
+ Y ′γ + X ′κ = 0,

M ′
+ V = Xγ ′

+ Wκ ′
+ (X ′

+ Y )γ + (W ′
+ X)κ = 0.

(16)

The above represents a system of equations which can be used to solve for ε′, γ ′, and κ ′ in terms of ε, γ ,
and κ . The higher derivatives can then be obtained, in terms of ε, γ , and κ , by directly taking derivatives
of (16). The resulting expressions are too lengthy to include here, but suffice it to say that the procedure
is not at all challenging for symbolic computational tools such as Mathematica.

The desired strain energy of the beam, in the form of (13), can now be obtained by substituting Equa-
tions (14) and (15), along with the described approach for eliminating derivatives, into (12). Comparing
the resultant second-order approximation to the strain energy with (13), one obtains the section constants
as

W =
2Etb3

3

[
1 +

(ν − 48)ν − 45
45(ν + 1)

τ 2
]

, X =
Et (5ν + 3)b2τ

9(ν + 1)
,

Y =
5Etb

6(ν + 1)
, Z = 2Etb

(
1 −

2τ 2

3

)
.

The terms involving τ = − b′(x) are the corrections from our having included taper. From these expres-
sions, we can observe that W is proportional to b3 and is a quadratic polynomial in τ , X is proportional
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to b2 and is linear in τ , Y is proportional to b and is independent of τ , and Z is proportional to b and is
a quadratic polynomial in τ 2.

According to Renton [1991] there is no consensus on the precise definition of shear stiffness; thus,
even though the expression for Y corresponds to results from [Washizu 1968; Young 1989; Renton 1991],
it may not match those of other definitions.

4. Beam analysis of classical elasticity problems

4.1. Pure extension. In pure extension, a beam of length l is loaded at each end by equal and opposite
axial tensile forces of magnitude T , depicted in Figure 3 for Q = 0. The potential of the applied loads
is thus

8 = − T [u(l) − u(0)] = − T
∫ l

0
u′dx = − T

∫ l

0
ε dx .

According to the principle of virtual work, the system is in equilibrium if and only if the variation of its
total potential is zero. Upon setting the variation of the total potential equal to zero without imposing
any geometric boundary conditions, one obtains∫ l

0
(Wκδκ + Xγ δκ + Xκδγ + Yγ δγ + Zεδε − T δε) dx = 0.

The above equation requires the internal axial force, F , to be F = Zε = T . One can easily see that the
elongation strain is

ε =
T
Z

, (17)

knowledge of which allows us to then integrate the kinematical differential equation u′
= ε to obtain

u(x) for any given spanwise variation of the section constant Z . According to the model obtained from
the VAM, the displacement u(x) can be related directly to the elasticity solution in terms of the average
axial displacement over the section.

T

T

x

Q

Q

l

Figure 3. Schematic of beam loaded for either pure extension or pure bending.



434 DEWEY H. HODGES, JIMMY C. HO AND WENBIN YU

4.2. Pure bending. To solve the pure bending problem, we use the kinematical differential equation
κ = θ ′ and apply equal and opposite moments of magnitude Q on the ends of the beam. Figure 3, with
T = 0, illustrates this case. This yields a potential of the applied loads of the form

8 = − Q[θ(l) − θ(0)] = − Q
∫ l

0
θ ′dx = − Q

∫ l

0
κ dx .

Equilibrium equations can then be found by minimizing the total potential subject to no geometric bound-
ary conditions. The result is∫ l

0
(Wκδκ + Xγ δκ + Xκδγ + Yγ δγ + Zεδε − Qδκ) dx = 0.

The resulting Euler–Lagrange equations require that the bending moment and shear force are, respec-
tively,

M = Wκ + Xγ = Q, V = Xκ + Yγ = 0.

Thus, eliminating γ = − Xκ/Y , one obtains(
W −

X2

Y

)
κ = Q.

The solution can then be written as

κ =
Q

W −
X2

Y

, (18)

which allows one to integrate the kinematical differential equation, θ ′
= κ , to obtain θ(x) for any given

spanwise variation of W , X , and Y . Unlike the prismatic case, even though Q is constant, κ is not.
Moreover, the transverse displacement v(x) can then be obtained by integration of another kinematical
differential equation, v′

= θ +γ = θ − Xκ/Y . It is clear that loading by pure bending produces transverse
shear deformation in a tapered beam.

4.3. Flexure. For the flexure problem, we load the beam with an equal and opposite transverse force P
at each end, and a moment Pl at the left end to counteract the moment of the force at the right end (see
Figure 4). For this loading the potential of the applied loads takes the form

8 = − P [v(l) − v(0)] + Plθ(0) = − P
∫ l

0

[
(v′

− θ) + (l − x)θ ′
]

dx = − P
∫ l

0
[γ + (l − x)κ] dx .

Equilibrium equations can then be found by minimizing the total potential subject to no geometric bound-
ary conditions. The result is∫ l

0
{Wκδκ + Xγ δκ + Xκδγ + Yγ δγ + Zεδε − P[δγ + (l − x)δκ]} dx = 0.

The resulting Euler–Lagrange equations and boundary conditions require that the bending moment and
shear force are, respectively,

M = Wκ + Xγ = P(l − x), V = Xκ + Yγ = P.
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Figure 4. Schematic of beam loaded for flexure.

Thus, one obtains

κ =
P

W Y − X2 [Y (l − x) − X ] , γ =
P

W Y − X2 [W − X (l − x)] , (19)

which allows one to integrate the same kinematical differential equations as in the pure bending case to
obtain the total section rotation θ(x) and the displacement of the neutral axis v(x) for any given spanwise
variation of W , X , and Y . Unlike the prismatic case, although the bending moment is linear, κ is not.
Also, although the shear force is constant, γ is not constant.

5. Solutions for classical elasticity problems

This section presents exact solutions for the purpose of comparing with the above beam solutions based
on a refined beam theory. These solutions are appropriately based on linear, plane stress elasticity theory
for a linearly tapered strip for problems of pure extension, pure bending, and flexure. For all three cases,
the components of the stress tensor are presented (σxx , σxy , and σyy). Components of the strain tensor
may then be obtained from the plane stress form of Hooke’s law. Lastly, the strains can be integrated to
obtain displacements, ux(x, y) and u y(x, y). In the formulae that ensue, the y-coordinate varies between
± b(x), where b = a − xτ , a is the half-width of the strip at x = 0, h = a − lτ > 0 is the half-width of
the strip at x = l, t is the thickness of the strip, l is its length (not to be confused with the wavelength `

that was previously used), and s = l − x .
We now set forth a way to extract information from the elasticity solutions so that the results can be

compared with those from the beam solutions. Let us denote the displacement fields from elasticity by
ux(x, y) and u y(x, y). These can be related to those from beam theory by making use of Equation (1),
yielding

ux = u − yv′
+ wx , u y = v + wy, (20)

where we have earlier approximated the warping displacements. Integrating both sides of Equation (20)
over y and using the constraints on the warping, one obtains

u =
1

2b
〈ux 〉 , v =

1
2b

〈
u y

〉
. (21)
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Multiplying both sides of the first part of Equation (20) by y and integrating allows us to identify

θ =
3

2b3 〈−yux 〉 , γ = v′
− θ =

3
2b3 〈ywx 〉 . (22)

Finally, the stretching and bending strain measures, ε = u′ and κ = θ ′, along with the shear strain measure
γ , can now be compared directly with results from applying the beam theory to a specific problem such
as pure extension, pure bending or flexure.

5.1. Pure extension. The solution for the deformation of a wedge described by polar coordinates r and
φ, presented in [Timoshenko and Goodier 1970, p. 110], is quite simple. The stresses for this case are

σφ = σrφ = 0, σr =
T cos φ

r t (α + cos α sin α)
,

where, referring back to Figure 3, Q = 0, T is nonzero, and

α = tan−1 τ, r =

√
y2 +

b2

τ 2 , φ = tan−1
( yτ

b

)
.

The stresses in the Cartesian system can be found as

σxx = σr cos2 φ − σrφ sin 2φ, σxy = − σrφ cos 2φ −
1
2 σr sin 2φ, σyy = σr sin2 φ + σrφ cos 2φ.

In terms of the geometric parameters and loads, the stresses finally become

σxx =
T τb3

(
τ 2

+ 1
)

t
(
b2 + y2τ 2

)2 [
τ +

(
τ 2 + 1

)
tan−1(τ )

] , σxy = −
T yτ 2b2

(
τ 2

+ 1
)

t
(
b2 + y2τ 2

)2 [
τ +

(
τ 2 + 1

)
tan−1(τ )

] ,

σyy =
T y2τ 3b

(
τ 2

+ 1
)

t
(
b2 + y2τ 2

)2 [
τ +

(
τ 2 + 1

)
tan−1(τ )

] .

5.2. Pure bending. This case is also shown in Figure 3, here with T = 0 and Q nonzero. The stresses
in polar coordinates are given by Timoshenko and Goodier [1970, pp. 112–13], as σφ = 0 and

σr =
2Q sin 2φ

r2t (2α cos 2α − sin 2α)
, σrφ = −

Q(cos 2φ − cos 2α)

r2t (2α cos 2α − sin 2α)
.

Making the above transformation to Cartesian coordinates, one may obtain the stresses as

σxx = −
2bQyτ 3

[
b2

(
2τ 2

+ 1
)
− y2τ 2

]
t
(
b2 + y2τ 2

)3 [
τ +

(
τ 2 − 1

)
tan−1(τ )

] , σxy = −
Qτ 4

[
b4

− 3y2
(
τ 2

+ 1
)

b2
+ y4τ 2

]
t
(
b2 + y2τ 2

)3 [
τ +

(
τ 2 − 1

)
tan−1(τ )

] ,

σyy =
2bQyτ 5

[
b2

− y2
(
τ 2

+ 2
)]

t
(
b2 + y2τ 2

)3 [
τ +

(
τ 2 − 1

)
tan−1(τ )

] .

To visualize the deformed shape, finite element analysis was performed using ABAQUS. The deformed
shape of the structure is shown in Figure 5. To eliminate rigid body motion, the geometric boundary
conditions were set as ux = u y = 0 at the point (x = 0, y = 0) and u y = 0 at the point (x = l, y = 0).
Modeling in ABAQUS was done using its CPS8R elements, and its results were validated with the
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Figure 5. Deformed shape of the tapered strip under pure bending.

l (m) a (m) τ t (m) E (GPa) ν Q (N-m)

20 3 0.1 0.1875 200 0.3 1

Table 1. Dimensions, material properties, and loading for the tapered strip evaluated for
ABAQUS calculations.

elasticity solution. The specific dimensions, material properties, and loading chosen are given in Table 1.
It is clear that κ increases as the width of the structure decreases.

5.3. Flexure. The stresses of this case, shown in Figure 4, are given in polar coordinates by Krahula
[1975], with σφ = 0 and

σr =
2P
r2t

[
r sin φ

sin 2α − 2α
+

(l − a cot α) sin 2φ

2α cos 2α − sin 2α

]
, σrφ = −

P(cos 2φ − cos 2α) cot α(a − l tan α)

r2t (sin 2α − 2α cos 2α)
.

(It is noted that several small printing mistakes in the paper had to be corrected in order to obtain this
result.) Making the transformation to Cartesian coordinates, one finds the stresses to be

σxx =
bPyτ 2

t
(
b2 + y2τ 2

)3

{
2h

[
b2

+
(
2b2

− y2
)
τ 2

]
τ +

(
τ 2 − 1

)
tan−1(τ )

−
b

(
τ 2

+ 1
) (

b2
+ y2τ 2

)(
τ 2 + 1

)
tan−1(τ ) − τ

}
,

σyy = −
Pyτ 4

t
(
b2 + y2τ 2

)3

{(
τ 2

+ 1
) (

b2
+ y2τ 2

)
y2(

τ 2 + 1
)

tan−1(τ ) − τ
+

2bh
[
b2

− y2
(
τ 2

+ 2
)]

τ +
(
τ 2 − 1

)
tan−1(τ )

}
,

σxy = −
Pτ 4

[
b5

− sτb4
− 4y2

(
τ 2

+ 1
)

b3
+ 3sy2τ

(
τ 2

+ 1
)

b2
− y4τ 4b − sy4τ 3

]
t
(
b2 + y2τ 2

)3
{

2τ tan−1(τ ) +
(
τ 4 − 1

) [
tan−1(τ )

]2
− τ 2

}
+

Pτ 3
(
τ 2

+ 1
) [

b5
− sτb4

− 2y2
(
τ 2

+ 2
)

b3
+ 3sy2τ

(
τ 2

+ 1
)

b2
+ y4τ 4b − sy4τ 3

]
tan−1(τ )

t
(
b2 + y2τ 2

)3
{

2τ tan−1(τ ) +
(
τ 4 − 1

) [
tan−1(τ )

]2
− τ 2

} .
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6. Comparison

In this section we wish to compare the beam section constants obtained by the VAM with results for
the same quantities extracted from our elasticity solutions. To do so, the one-dimensional displacement
and rotation variables u, v, and θ are extracted from the elasticity solutions above by averaging two-
dimensional displacements over y in accordance with Equations (21) and (22). Then these quantities
are differentiated with respect to x , leading to the values of one-dimensional generalized strains ε, γ ,
and κ . Finally, effective stiffnesses are found by dividing appropriate applied loads by corresponding
one-dimensional generalized strains. These effective stiffnesses are then compared directly with values
of the section constants determined from the VAM.

6.1. Pure extension. For pure extension, it is appropriate to compare the quantity T/ε using the stiffness
constants obtained from the VAM with an expansion of the elasticity solution in τ . The beam solution,
from Equation (17), and the second-order asymptotic expansion of the elasticity solution both agree that
this quantity is

T
ε

= Z = 2Etb
(

1 −
2τ 2

3

)
.

The term involving τ 2 represents the correction to taper. The perfect agreement of these two solutions
reflects that the strain energy from the classical model is asymptotically exact for this problem, which is
expected because shearing deformations are not involved in pure extension. For a section with a linear
taper of τ = 0.1763, which corresponds to 10◦ taper, and is not uncommon as local taper on rotor blades,
the axial stiffness is overpredicted by 2.12% if the taper effect is neglected.

6.2. Pure bending. The quantity to be compared for this problem is Q/κ . The beam solution, from
Equation (18) is

Q
κ

= W −
X2

Y
=

2Etb3

3
−

4Etb3(4ν + 9)τ 2

45
,

whereas the second-order asymptotic expansion of the elasticity solution yields

Q
κ

=
2Etb3

3
−

4Etb3(ν + 3)τ 2

15
.

For a linear taper of α = 10◦ and ν = 0.3, the taper effect reduces the bending stiffness by 4.28%
and 4.42% from the elasticity and beam solutions respectively. The relative difference between the beam
solution and the elasticity solution is 2ντ 2/15, with the beam solution being softer. This small difference
between the asymptotic expansion of the exact solution versus the beam results can be attributed to our
having approximated the asymptotically-exact energy, Equation (11), by forcing it into the mold of the
generalized Timoshenko model, Equation (13). Obviously, the correction due to taper is itself much
larger than the difference between the elasticity and beam solutions.

6.3. Flexure. For the flexure problem we compare the quantities P/κ and P/γ at x = l. The beam
solution, Equation (19), yields

P
κ

= X −
W Y
X

= −
5Etb2

(3 + 5ν)τ
+ O(τ ),

P
γ

= Y −
X2

W
=

5Etb
6(1 + ν)

+ O(τ 2) =
5Gtb

3
+ O(τ 2).
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An order of magnitude analysis shows that we cannot trust either of the correction terms to these results,
because we do not have sufficient data to ensure that we have all the contributions to them. That is to say,
the VAM solution would have to be extended to include terms of higher order in τ than we needed to
construct the beam model; in particular corrections of third-order to X and second-order to Y would be
needed. As expected, the elasticity solution is in agreement with the above P/γ result since it does not
involve taper. It should be noted, however, that there is more than one possible result from this exercise.
The method of [Yu and Hodges 2004] was used here. The result for P/κ does involve taper and is given
by

P
κ

= −
10Etb2

3(2 + 3ν)τ
+ O(τ ).

The beam solution differs from the elasticity solution by less than 4% for practical values of ν. Note that
this term tends to infinity as taper decreases and the beam approaches being prismatic.

7. Conclusion

A beam model is constructed using the variational-asymptotic method that is capable of handling exten-
sion, in-plane bending, and in-plane shear for a homogeneous, isotropic strip-beam, the width of which is
linearly tapered along the span. The resulting beam model reveals that (a) section constants are influenced
by the local taper such that b′(x) = − τ appears explicitly, and (b) bending and shear deformation are
coupled by τ in the resulting model. To validate the theory, solutions for the corresponding plane stress
elasticity problems for pure extension, pure bending, and flexure are presented, and the corrections caused
by τ 6= 0 are found. Excellent agreement is demonstrated between the elasticity solutions and the beam
solutions based on the constructed model.

Examples of this influence include a decrease in both axial and bending stiffnesses, the latter being
large enough that its neglect cannot be justified for tapered beams. To avoid errors, the taper effect must
be accounted for in the cross-sectional analysis prior to performing the beam analysis. The present results
will be of practical use in validating general cross-sectional analyses when they are eventually extended
to include the influence of taper. In particular, additional work is needed to account for this effect
in the cross-sectional analysis of spanwise nonuniform composite beams with arbitrary cross-sectional
geometries and to determine asymptotically-exact strain/stress recovery relations.
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