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ADVANCED POSTBUCKLING AND IMPERFECTION SENSITIVITY OF THE
ELASTIC-PLASTIC SHANLEY–HUTCHINSON MODEL COLUMN

CLAUS DENCKER CHRISTENSEN AND ESBEN BYSKOV

The postbuckling behavior and imperfection sensitivity of the Shanley–Hutchinson plastic model col-
umn introduced by Hutchinson in 1973 are examined. The study covers the initial, buckled state and
the advanced postbuckling regime of the geometrically perfect realization as well as its sensitivity to
geometric imperfections.

In Section 1, which is concerned with the perfect structure, a new, simple explicit upper bound for
all solutions to the problem is found when the tangent modulus at bifurcation vanishes compared to
the linear elastic (unloading) modulus. The difference between the upper bound and the solution to an
actual problem is determined by an asymptotic expansion involving hyperbolic trial functions (instead of
polynomials) which fulfill general boundary conditions at bifurcation and infinity. The method provides
an accurate estimate of the maximum load even if it occurs in an advanced postbuckling state. Finally, it
is shown that the maximum load is often considerably larger than the bifurcation load.

Section 2 presents a new asymptotic expansion which is utilized to study the imperfection sensitivity
of the Shanley–Hutchinson elastic-plastic model column. The method is mainly characterized by three
novel features. Firstly, unlike other expansions which are performed around one or maybe two points,
ours takes the total postbuckling path of the geometrically perfect structure as its basis, that is, the equilib-
rium of an imperfect path is written as the postbuckling path of the perfect structure plus an asymptotic
contribution. Secondly, the expansion parameter is chosen as the buckling mode amplitude minus its
value at initiation of elastic unloading. In this connection, the asymptotic expansion of initiating elastic
unloading to the lowest order given by Hutchinson serves as a kind of boundary value for the asymptotic
expression. Thirdly, a new and more suitable set of base functions is introduced to enhance the accuracy
of the asymptotic expansion for large imperfection levels without compromising the asymptotic behavior
for small imperfections. If an asymptotically exact postbuckling solution for the perfect structure around
the maximum load has been obtained by some method, be it numerical or asymptotic, then the prediction
of the imperfection sensitivity is asymptotically correct.

Introduction

Today, elastic-plastic stability of structures, including their imperfection sensitivity, may be examined
by means of numerical methods. Such procedures may, however, suffer some major disadvantages. A
complete analysis of the behavior of a perfect or a geometrically imperfect structure often becomes very
time consuming, and in the vicinity of singularities, for example bifurcation, the equilibrium equations
may become numerically unstable which might lead to divergence. This is one reason why analytical
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investigation of stability problems is still important. Another, maybe even more important, ground for
the interest in analytic methods is the desire to better understand elastic-plastic stability and imperfection
sensitivity. It is therefore important to establish an analytic method for treatment of plastic stability.

For more than half a century, Koiter’s general asymptotic theory of initial postbuckling and imper-
fection sensitivity of elastic structures has been available [Koiter 1945]. Development of a similar and
as widely applicable theory of stability in the plastic range presents more difficulties, mainly due to the
fact that, contrary to the case of elastic structures, the maximum load of a geometrically perfect elastic-
plastic structure rarely occurs at bifurcation. To date, the most successful method has been established
by Hutchinson [1973b]. However, as pointed out by Hutchinson himself, the method has a rather limited
range of applicability for certain types of structures (see also [Hutchinson 1974]).

A short survey of plastic buckling. The history of analytical treatment of elastic-plastic stability is only
a little more than one hundred years old, beginning with the work of Engesser [1889], who proposed
a formula for the plastic bifurcation load, later known as the tangent modulus load, of a column. His
formula was subjected to criticism and Engesser derived another formula under the tacit assumption that
bifurcation occurs under constant load, the so-called reduced modulus load. It appears that over the next
60 years almost any professor of structural mechanics had his own formula for plastic column buckling.
In retrospect it seems clear that these formulas are just weighted averages of the two loads mentioned
above, and sometimes the Euler buckling load is also included in the weighting. Based on experiments on
aluminum columns and by analyzing the initial postbifurcation behavior of a simple model column, which
we refer to as the Shanley column, Shanley [1947] showed that the tangent modulus load was indeed the
most meaningful of the previously suggested plastic buckling loads and that at that load, bifurcation
takes place under increasing load. Soon after, Duberg and Wilder [1952] introduced imperfections in the
Shanley model column, and later Hill [1957] established the minimum energy criterion of stability for a
rigid plastic body.

While the works mentioned above were mainly concerned with determination of the correct plastic
bifurcation load and to some extent also with the initial postbifurcation behavior, analytic determination
of the maximum load-carrying capacity of geometrically perfect and imperfect structures received much
less attention. Not until the work by Hutchinson [1973b], and the survey article [Hutchinson 1974]
was an asymptotic method in the spirit of Koiter established. Hutchinson introduced terms of fractional
powers in the asymptotic expansion in order to handle elastic unloading. Hutchinson’s method and ideas
were further explored by, among others, Needleman and Tvergaard [1976] and van der Heijden [1979].

Hutchinson [1972; 1973a] and van der Heijden [1979] prescribe that elastic unloading initiates at
bifurcation for the perfect structure. The point of initiating elastic unloading of the imperfect structure
is determined by a simple one-term elastic asymptotic expansion. Hutchinson uses this point as basis for
an asymptotic expansion similar to the one he suggested for the perfect structure, while van der Heijden
also uses the point of initiating elastic unloading to construct solutions in the spirit of his perfect solution.
Both these solutions tend to be considerably more complicated than their perfect counterparts but suffer
the same shortcoming: relatively accurate estimates of the load-carrying capacity is only found when
the maximum load occurs very close to bifurcation. This is, however, rarely the case in plastic stability
problems. Note that neither of the solutions predicts asymptotically correct maximum loads for small
imperfections.
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Hutchinson and Budiansky [1976] discovered that when the critical load of an elastic-plastic structure
coincides with the reduced modulus load the maximum loads in the presence of imperfections sometimes
coincide with the maximum loads of the hypoelastic comparison structure, and a theory rather similar to
the simpler elastic asymptotic Koiter theory yields exact asymptotic estimates of these maximum loads.
Needleman and Tvergaard [1976] suggested that even when the maximum load of the imperfect structure
is found after initiating elastic unloading a hypoelastic theory may still yield sufficiently precise results.
They base their idea on the fact that the larger the imperfections the less significant elastic unloading be-
comes. Comparison with numerical results shows that when the equilibrium of the geometrically perfect
structure is not significantly influenced by plasticity this method estimates the imperfection sensitivity
extremely well, but when the added stiffness of the elastic unloading zone dominates postbuckling a
hypoelastic theory cannot be used for accurate estimates.

Thus, when plasticity is included the imperfection sensitivity analysis becomes even more complex,
partly because the maximum load of both the perfect and the imperfect structure may be far from bifur-
cation, and partly due to the fact that each equilibrium path of the imperfect structure has a singularity
where elastic unloading initiates. Probably for these reasons it seems that very few new approaches
to analytic treatment of plastic postbuckling and imperfection sensitivity have been proposed since the
above mentioned studies and none appears to have led to much improvement over the existing methods.
Thus, a simple and universally accurate method for handling imperfection sensitivity of plastic structures
has not yet been established. In this connection it may be worth mentioning that Ming and Wenda
[1990] postulated to have improved Hutchinson’s asymptotic method by choosing a different perturba-
tion parameter. However, a closer examination of their work reveals that they determine the asymptotic
coefficients correctly, but that their asymptotic plots do not match these coefficients at all. The correct
curves do not approximate the maximum load any better (or worse) than Hutchinson’s did. The article
by Scherzinger and Triantafyllidis [1998] is concerned with an asymptotic analysis of stability of elastic-
plastic structures, but their expansion parameter ε describes the slenderness of the beams investigated
rather than a displacement variable, as is the case in the present study.

Since the Sixties, great effort has been spent on nonlinear numerical investigations of more realistic
elastic-plastic structures. In spite of their own merits, numerical investigations rarely lead to a deeper
understanding of the phenomenon of elastic-plastic buckling, at least not unless a large number of com-
putations are carried out.

Main objectives. The maximum loads, denoted Pmax, of the analytical methods mentioned above are all
fairly well predicted when the maximum load occurs very close to the point of bifurcation, even though
the matching buckling amplitude is sometimes rather poorly determined. When Pmax lies far from the
point of bifurcation the accuracy deteriorates rapidly. The main reason for including elastic unloading is
the enhanced load-carrying capacity in postbuckling. Thus, an accurate determination of the postbuckling
load reserve is of great importance, in particular when the maximum load becomes considerably higher
than the bifurcation load.

In order to reduce the complexity of the problems as much as possible without loss of plastic character-
istics, Hutchinson [1974] used a slightly modified version of the Shanley column which only differs from
the original by being supported by a continuous row of springs and a nonlinear spring at the top in order
to introduce various kinematic nonlinearities; see Figure 1. In the present paper we investigate both
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Figure 1. The continuous Shanley–Hutchinson column: (a) geometrically perfect; (b)
geometrically imperfect.

the geometrically perfect and the geometrically imperfect version of the Shanley–Hutchinson Column
and develop analytic methods which predicts the load-carrying capacity of the geometrically imperfect
Shanley–Hutchinson elastic-plastic model column (see Figure 1(b), and for the the maximum load of its
geometrically perfect counterpart, see Figure 1(a)) and concentrate on cases where Pmax does not occur
close to bifurcation.

The ultimate goal of the investigation of plastic stability is, of course, to allow plastic stability to be
included in maximum load calculations for more realistic structures, but that is not within the scope of
the present paper.

1. Geometrically perfect model column

1.1. Preliminary analysis. In order for a solution to the plastic postbuckling problem to be considered
satisfactory, we require that its prediction of the maximum load be accurate compared to the postbuckling
load reserve and that the results be stable in the sense that the solution should be valid for all relevant
cases. Furthermore, it is important that the solution be relatively simple and straightforward to apply to
real structures.

Before 1970 the models considered—for example, the original Shanley column—were so simple that
it was possible to give explicit solutions, but with the continuous Shanley–Hutchinson column and other
more realistic models the complexity of the solutions made this impossible. We emphasize that by an
explicit solution we do not necessarily mean the exact equilibrium, rather explicit is used in the sense of
an approximation which does not invoke incremental steps. By this definition Hutchinson’s and van der
Heijden’s solutions are also explicit. Such explicit solutions are subject to some limitations with regard
to generality which will also be present in this paper:
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• No other singularity can be present after the bifurcation singularity and before maximum load (for
example, mode interaction, extension of the unloading zone all the way through the cross-section,
Bauschinger effects, etc.).

• Unloading must start at bifurcation, which it will do in most relevant stability cases; see, for example,
[Hutchinson 1974], and certainly for the Shanley–Hutchinson column.

The first limitation can be overcome by splitting the solutions into parts between singularities. The
latter problem rarely occurs because unloading usually starts at bifurcation.

Before we proceed the search for a solution valid far from bifurcation, we discuss the merits of the
most important existing methods.

Hutchinson’s asymptotic expansion. The asymptotic expansion for initial postbuckling in the plastic
range due to Hutchinson [1974] is the foundation for later asymptotic approaches to plastic stability. It is
the natural, albeit not as obvious, extension of the elastic asymptotic theory by Koiter [1945] except for
the fact that fractional powers are present in the expansions. It accounts for elastic unloading and material
nonlinearities, but is still, like its elastic counterpart, fairly straightforward to apply to structural problems.
The disadvantage of the method and the reason that new analytic plastic methods are still interesting is
that it furnishes rather crude estimates of the maximum load and its associated displacements, unless
the maximum occurs very close to bifurcation. This fact was already pointed out by Hutchinson [1974].
Later, van der Heijden [1979] showed that expanding Hutchinson’s method further often produces less
accurate approximations of the maximum load due to the unpredictable range of convergence for ordinary
asymptotic methods.

The reduced modulus solution by van der Heijden. In his study, van der Heijden [1979] recognized that
it was not the behavior in the vicinity of bifurcation, but the behavior close to the maximum load that con-
trols the imperfection sensitivity. This led him to give an asymptotic estimate of the possible maximum
loads close to the reduced modulus load thereby gaining knowledge about the approximate asymptotic
behavior at maximum load. He then matched the asymptotic expansion established by Hutchinson with
his own and ended up with an approximate expression for the equilibrium from bifurcation to maximum
load. For maximum loads close to bifurcation this yields excellent predictions, but further away from
bifurcation the accuracy decreases considerably, yet slightly less than Hutchinson’s, as it appears from
van der Heijden’s comparison with numerical results [van der Heijden 1979]. The implementation of
van der Heijden’s method is lengthy in that three asymptotic expansions must be established, and the
matching procedure is not straightforward and therefore hard to extend to higher degrees of asymptotic
expansions as well as to generalize to other kinds of structures.

The hypoelastic imperfection sensitivity studies by Hutchinson and Budiansky and by Tvergaard and
Needleman. The hypoelastic approach used by Hutchinson and Budiansky [1976] and by Needleman
and Tvergaard [1976] suppresses the elastic unloading branch making it possible to analyze a nonlinear
comparison version of plastic structures asymptotically in the spirit of Koiter’s well-known linear elastic
approach [Koiter 1945]. However, the similarity between the plastic structure and its associated compar-
ison model in postbuckling strongly depends on the extent of the unloading zone and its added stiffness.
This approximation will therefore only be satisfactory when elastic unloading is of minor importance.
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Parameters of the solution. The postbuckling solution depends on the parameters of the material non-
linearity represented in the stress-strain relation and on the parameters of the kinematic nonlinearity
concentrated in the nonlinear spring at the top of the column; see Figure 1(a). To fully understand the
plastic behavior in postbuckling of the column, it is therefore crucial to investigate the influence the
parameters of the model on the location of the maximum load point.

As presupposed in Section 1.2 the column unloads linearly elastic with a constant Young’s modulus
E . The larger E , the more elastic unloading dominates and makes the maximum load move away from
bifurcation. The basic expressions (9) and (10) do not depend on the shape of the stress-strain relation
before bifurcation, only on the values of E and Et , where Et denotes the tangent modulus, which, in
general, depends on the strain.

As in most other buckling and postbuckling studies we assume that the tangent modulus Et decreases
with strain and approaches zero at infinite strain. The smaller the rate of decrease of Et , the further from
bifurcation the maximum load is.

The spring K (see Figure 1(a)) provides a destabilizing nonlinearity in order to make the structure
imperfection sensitive and ensure the existence of a maximum load after bifurcation. The smaller the
rate of increase of the kinematic nonlinearity the further from bifurcation the maximum load is going to
be.

The stress-strain relation is mainly important close to bifurcation because, as Et approaches zero, K
will totally dominate the equilibrium equations. Since it is known that existing methods work well close
to bifurcation it is particularly interesting to examine the behavior as the locus of maximum moves away
from the point of bifurcation. This means that an investigation where K as well as the rate of decrease in
Et is small, while E is large, is particularly relevant to perform. For the sake of studying plastic effects
on stability it is especially important that accurate results are obtained when Ec

t /E is small, where Ec
t

designates the value of Et at bifurcation.
We shall try not to exploit features that are particular to the Shanley–Hutchinson-model in our deriva-

tions in the hope that the method developed here is applicable to a broader variety of structures.

General idea. It is evident from the above that when examining plastic postbuckling behavior, one has to
include elastic unloading. To keep it simple and straightforward, we would like to avoid the complications
and limitations inherent in the reduced modulus approach, yet we would like to utilize the knowledge
about the equilibrium when far from bifurcation in order to determine maxima in the advanced postbuck-
ling regime. Hutchinson’s general, simple and excellent concept of a Koiter-like asymptotic expansion
[Hutchinson 1974] does not cover advanced postbuckling states due to the fact that the postbuckling fields
were expanded in (fractional) powers of the buckling mode amplitude. Therefore, focus was centered
on the immediate neighborhood of bifurcation. It is a well-known fact that the range over which an
asymptotic expansion yields sufficiently accurate results is hard to predict, in fact, the range can be
extremely small and may very well decrease with the number of terms in the asymptotic expansion, but
choosing a set of more suitable trial functions, if available, may improve convergence. Below, we show
that use of other trial functions that behave in a globally correct way may indeed extend the validity to
cover advanced postbuckling states.
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In order to improve the approximation of the correct equilibrium by the asymptotic expansion sug-
gested by Hutchinson [1973b; 1974] and thereby obtain reliable results even when the maximum sup-
ported load does not appear close to bifurcation, we shall first examine carefully the general behavior
of the Shanley–Hutchinson column in advanced postbuckling. Subsequently, we will use the acquired
knowledge to choose suitable trial functions and make an asymptotic match at bifurcation between the
new expansion and the original one by Hutchinson.

1.2. Basic equations. Throughout this paper a superscript c or a subscript c denotes a value taken at
bifurcation. Superscript o or subscript o refers to Hutchinson’s original values with dimensions, while
nondimensional quantities are left unmarked for convenience.

In order to isolate the kinematic nonlinearities in the top spring shown in Figure 1(a), Hutchinson used
the approximation sin(θ)≈ θ , and gave the top spring response as

Ko(θo)= kioθ
i+1
o , i ∈ {1, 2, 3, . . .} (1)

where we note that positive values of kio imply destabilizing. Since the lowest power of θo is 2, asymmet-
ric postbifurcation of the kind experienced by the so-called Roorda Frame is not covered; see [Roorda
1965] and [Koiter 1966] for the elastic version, and [Byskov 1982–83] for the elastic-plastic version.
In the purely elastic case, symmetric postbuckling like the one typical of many shell structures may be
modeled by letting k1o > 0. In the following examples we do not cover the case k2o 6= 0 because it is
rather trivial, but, as we shall see, for a special reason, address the one with k3o > 0.

Together, Figure 1(a) and Figure 2 define the geometry. Note that the quantity Eeff, which is intro-
duced below, designates the immediate effective tangent modulus, that is, it is Et for loading and E for
unloading, and that s is the stress. We keep as close to Hutchinson’s original notation as possible, but
introduce the following nondimensional quantities:

x =
xo

L
P =

Po

Pc
o

s =
so

2sc
o

θ =
L̃
L
θo u =

L̃

L2 uo ε =
L̃

L2 εo

Eeff =
3Eo

eff

2Ec
to

ki =
L i+2

Pc
o L̃ i kio θ̄ =

L̃
L
θ̄o (2)

u

x

θ

Postbifurcation

Prebifurcation

Fig. II.2. Definition of the kinematic variables u and θ.Figure 2. Definition of the kinematic variables u and θ .
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where θ̄ signifies a geometric imperfection; see Section 2.1, Figure 10.
The lowest bifurcation load is given by Hutchinson as

Pc
o =

2Ec
to L3

3L̃
,

which, by the way, is the same as the bifurcation load of the nonlinear elastic comparison model. The
following nondimensional quantities evaluated at bifurcation are used extensively in the following:

Pc = 1, sc =
1
2
, Ec

t =
3
2
. (3)

Utilize the nondimensional quantities introduced in Equation (2) to obtain the nondimensional equilib-
rium equations of the geometrically perfect realization of the model column:

P =

∫ 1

−1
sdx, P(θ)+ K (θ)=

∫ 1

−1
sxdx, (4)

where, in analogy with Equation (1), the nondimensional spring stiffness is

K (θ)= kiθ
i+1, i ∈ {1, 2, 3, . . .},

and the strain-displacement relation of the continuous spring support is

ε = u + θx . (5)

When linear-elastic unloading is included, the stress increment ṡ is given as

ṡ = Eeff ε̇, (6)

where

Eeff =

Et(ε), for
(
(s = smax)∧ (ṡ ≥ 0)

)
,

E, for
(
(s < smax)∨

(
(s = smax

)
∧ (ṡ < 0)

))
,

(7)

and where a dot indicates an increment, and s > 0 implies compression.
The incremental equilibrium equations are readily obtained by differentiation of Equation (4) and the

use of Equation (6).
The zone of elastic unloading spreads from the edge of the column support and extends to the point

d , where no sign reversal of the strain rate has occurred, that is, ∂ε/∂θ = ∂u/∂θ + d = 0, and thus

d = −
∂u
∂θ
. (8)

When d <−1, there is no elastic unloading. Elastic unloading always initiates at the lowest bifurcation
load of the perfect Shanley–Hutchinson column [Hutchinson 1974]. After introduction of the constitutive
equation (7) the incremental equilibrium equations of the geometrically perfect model column may be
written:

∂P
∂θ

=

∫ d

−1
E
(
∂u
∂θ

+ x
)

dx +

∫ 1

d
Et

(
∂u
∂θ

+ x
)

dx (9)
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and
∂P
∂θ

θ + P +
∂K
∂θ

=

∫ d

−1
E
(
∂u
∂θ

+ x
)

xdx +

∫ 1

d
Et

(
∂u
∂θ

+ x
)

xdx . (10)

1.3. General behavior of the equilibrium. Before the postbuckling equations (9) and (10) can be solved,
the constitutive relation, given by E and the expression for Et(ε) after buckling, as well as the kinematic
nonlinearity in terms of K (θ) must be chosen. The study of plastic postbuckling mainly differs from the
elastic in that, in the plastic case it is necessary to consider the effect of stiffening by unloading with the
modulus E . In order to examine the influence of the stiffening, we therefore keep the postbuckling up-
loading stress-strain relationship and the kinematic nonlinearities fixed only allowing the initial Young’s
modulus E to vary. An upper bound for the equilibrium is found when the unloading modulus approaches
infinity, that is, when Ec

t /E = 0. When the initial slope of the postbuckling equilibrium is negative, that
is, when (∂P/∂θ)c ≤ 0, a lower bound with Pc as the maximum is characterized by Ec

t /E = 1. After
the bounds have been established we are furnished with a firm frame for our further investigations: all
other solutions are limited to this area and are furthermore not allowed to cross each other.

Upper bound. When E → ∞ ⇒ Ec
t /E → 0 and it is assumed that |P|<∞ and |∂P/∂θ |<∞, Equations

(9) and (10) simplify substantially in that the introduction of Ec
t /E = 0 provides

0 =

∫ d

−1

(
∂u∞

∂θ
+ x

)
dx and 0 =

∫ d

−1

(
∂u∞

∂θ
+ x

)
xdx . (11)

Superscript ∞ or subscript ∞ denotes the upper bound. Insert d given by Equation (8) to solve (11). The
only possible solution is

∂u∞

∂θ
= 1 H⇒ u∞ = θ + uc, (12)

which means that the unloading zone does not progress into the cross-section, but is limited to one edge
of the support. Express E by P and u in Equation (9) as

E =

∂P
∂θ

−

∫ 1

d
Et

(
∂u
∂θ

+ x
)

dx∫ d

−1

(
∂u
∂θ

+ x
)

dx
,

and insert this expression and Equation (12) in Equation (10) to determine the load P∞(θ) associated
with the upper bound

(1 + θ)
∂P∞

∂θ
+ P∞

=

∫ 1

−1
Et(x + 1)2dx −

∂K
∂θ
,

identified as a first order linear differential equation, which, when the boundary condition P∞(0)= 1 is
applied, has the solution

P∞(θ)=
1

1 + θ

(
−K (θ)+

∫ 1

−1
shypo(x + 1)dx

)
. (13)
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Here, shypo is the nondimensional nonlinear hypoelastic postbuckling stress found independent of elastic
unloading. For some choices of constitutive relations the integral may be computed explicitly when the
stress-strain relationship is chosen.

The upper bound solution is particularly interesting because it covers the solutions where the maximum
load appears as far from bifurcation as possible. This provides an ideal basis for the selection and fitting
of asymptotic trial functions which provide reliable solutions far from bifurcation.

Lower bound. When Et , as supposed, is a decreasing function of ε, the plastic model is able to carry
higher loads than the related hypoelastic comparison model because of the stiffening of the elastically
unloaded region. Thus, the comparison model provides an absolute lower bound for the plastic solutions.
As mentioned above, in the plastic regime the maximum load usually does not occur at bifurcation. It
is the case under the usual conditions that the stress-strain relation is continuous and that E is larger
than Ec

t , otherwise the structure will not feel unloading as a stiffening. Furthermore, it is assumed that
bifurcation does not take place at a sharp bend in the stress-strain relation. If, as an experiment, we
choose Ec

t /E ≥ 1 in the buckling model the usual conditions mentioned above are violated and it may
be realized that the initial postbuckling stiffness will be smaller than that of the comparison model. The
value of ∂Pc/∂θ of the comparison model is always smaller than or equal to zero when no stabilizing
kinematic nonlinearities are present and therefore the plastic model with Ec

t /E = 1 has a maximum at
bifurcation. From this we deduce the important information that, as Ec

t /E decreases from 1 to 0, the
maximum load will move from the bifurcation point to the maximum of P∞ given by Equation (13).
Since s is monotonically increasing from x = − 1 to x = 1 for θ > 0, the right side of Equation (4)
will always be positive. This provides an absolute minimum for the solution of Equation (4) (right) and
therefore a lower bound for any plastic solution with Ec

t /E < 1:

P ≥
−K (θ)
θ

= Plower. (14)

1.4. Hyperbolic asymptotic method. It may be shown that, as θ approaches infinity and Et approaches
zero, the integral in the upper bound solution Equation (13) loses significance compared to K (θ) yielding
the far field solution

lim
θ→∞

P∞
→

0, K (θ)= 0,

−
K (θ)
1 + θ

, K (θ) 6= 0.

Compare the above equation to the absolute minimum solution Equation (14) and notice that they are
approximately parallel to each other with a limited distance less than 1 when θ is large. Furthermore,
we find that the solutions are asymptotically similar, that is, P∞

∼ Plower for θ → ∞. Any arbitrary
solution lies between the upper and lower bound and must therefore also behave asymptotically like the
upper bound at infinity with a distance less than 1. In order to use the knowledge of the upper bound and
the relative shape of other solutions it seems obvious to concentrate on an asymptotic expansion of the
difference 1P∞

≤ 0 between the upper bound P∞ and the solution P; see Figure 3.

1P∞
= P − P∞. (15)
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Upper bound Ec

t
/E = 0

P

θ

1

Lower bound Ec

t
/E = 1

Exact solution

θ

P∞

∆P∞

Admissible region

Fig. II.3. The hyperbolic asymptotic method and the admissible region.Figure 3. The hyperbolic asymptotic method and the admissible region.

This choice has the convenient feature that it predicts both the maximum load and its associated dis-
placement well when the solution lies close to the upper bound, even when the maximum load occurs
far from bifurcation. The usual polynomial asymptotic trial functions are, however, not suited for the
expansion of 1P∞ because they do not in general fulfill the above-mentioned conditions of parallelism
and negativity. Hyperbolic functions1 not only satisfy these conditions, but have the property that their
lowest order terms dominate the general behavior, that is, not only for small, but for all values of θ .
The basic idea is to establish an hyperbolic approximation H(θ) using the characteristics of 1P∞ and
matching these terms with the first few nonvanishing asymptotic terms of the series of Hutchinson [1974];
see Appendices A and B. Since 1P∞ in general only vanishes relative to P∞ at infinity, we choose the
leading power of the denominator to be only fractionally higher than that of the numerator. The lowest
order asymptotic term is then given by the numerator, while the next terms are used in the denominator
to restrain the growth of the expression. In practice, applying the first two terms of the denominator
proves to furnish a sufficiently accurate first approximation

1P∞
≈ H(θ)= a∞

1 H(θ)= a∞

1
θ

3
2

(1 + h1θ
1
2 + h2θ)2

.

Notice that H(θ) will always be negative because, according to Equation (B.3); see Appendix B, and
the above equation, a∞

1 = a12 < 0. If further exploration is desired, H(θ) provides a basic trial function
for a hyperbolic asymptotic method

1P∞
= a∞

1 H(θ)+ a∞

α H(θ)α + a∞

β H(θ)β + O(H(θ)γ ), 1< α < β < . . . < γ. (16)

When H(θ) is chosen to match the first three nonvanishing asymptotic terms, a∞
α and α may be deter-

mined from the fourth term and so forth. The general expansion Equation (16) still behaves globally
correct. It approaches zero at infinity and higher order asymptotic terms of H(θ) become increasingly
less significant compared to lower order terms for large values of θ .

1Here, we use the term hyperbolic in a somewhat generalized sense.
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Hyperbolic asymptotic expansion coefficients. In order to determine a∞

1 , h1, h2, a∞
α , α, etc., we match

the hyperbolic expansion Equation (16) with that of Hutchinson [1974]. An asymptotic expansion carried
to a higher degree in θ than Hutchinson’s is given in Appendix A; see Equations (A.1), (A.2), (A.6) and
(A.7). The extension of the method is straightforward, but rather lengthy. The polynomial expansion of
H(θ) is

H(θ)= θ
3
2 − 2h1θ

2
− (2h2 − 3h2

1)θ
5
2 + (6h1h2 − 4h3

1)θ
3
+ O(θ

7
2 ).

Insert the above equation into (16) and compare with Equation (B.2) to obtain expressions for the hyper-
bolic coefficients

a∞

1 = a12 , h1 =
a13

−2a12
, h2 =

a14
−2a12

+
3
2 h2

1,

where a1i are the polynomial asymptotic coefficients given in Equation (B.3). When a∞

1 , h1 and h2 are
determined from the three initial asymptotic terms, α must be equal to 2 for the θ3-term to match. Thus,

α = 2: a∞

α = a∞

2 = a15 − a12 (6h1h2 − 4h3
1).

Although we have found no case where it was necessary to determine the β-term of Equation (16), we
mention that the value of β is 7

3 . Carrying out the expansion to cover this is, however, so lengthy and
complicated that it may not be worth the while.

Finally, inserting Equation (16) into (15) provides the total solution for P .
The fact that we have chosen other trial functions than the usual polynomials does not change the

asymptotic behavior of the initial postbuckling path, that is, for small values of θ . The new asymptotic
expansion will therefore be no worse than the original one when Ec

t /E is increased and the maximum
load approaches bifurcation as shown in the lower bound solution. This indicates that the use of our
hyperbolic trial functions will produce accurate maximum loads for all 0 ≤ Ec

t /E ≤ 1. When P is
determined, the displacement u may be found after P has been inserted into Equations (9) and (10).

1.5. Constitutive relation. Traditionally, a Ramberg-Osgood type stress-strain relation has often been
employed in elastic-plastic buckling studies, such as the important ones by Hutchinson [1974] and by
van der Heijden [1979]. For our purpose, this constitutive model has the disadvantage of expressing the
strain in terms of the stresses instead of the other way around implying numerical integrations. As far
as possible, we prefer analytic manipulations and therefore propose another constitutive model, which
provides an explicit formula for the tangent modulus Et in terms of the added strain 1ε after bifurcation
and a shape parameter ρ:

Et =
Ec

t

1 + ρ1ε
=

3
2(1 + ρ1ε)

. (17)

When ρ and the ratio Ec
t /E are varied, this relation may cover a wide variety of constitutive behavior

and may be considered as versatile and valid as the Ramberg-Osgood type formula [Hutchinson 1974]:

ε

εy
=

s
sy

+ψ

(
s
sy

)n

, (18)

where εy and sy = Eεy are effective initial yield values, n is the hardening parameter, and ψ is a shape
parameter.
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In Example 1 below we wish to compare results obtained by our improved method with those found
by Hutchinson [1974] and by van der Heijden [1979]. Therefore, we need to examine the differences
between the two constitutive relations for a certain set of parameters. Both Hutchinson [1974] and van der
Heijden [1979] take (n, ψ)= (3, 0.2). Numerical experiments show that the tangent modulus decrease
rate ρ = 3.0 in Equation (17) produces a constitutive law very similar to the one used by Hutchinson and
van der Heijden; see Figure 4, where the relative difference between the values of the tangent modulus Et

found by the two constitutive relations is plotted over a very large interval of 1ε. It may be worthwhile
noticing that for n = 10 the proper value of ρ is about 25.

Stress-strain relation and the upper bound. In Equation (13) the postbuckling stress-strain relation is
represented by shypo. To avoid a numerical calculation of the integral, we therefore chose Et as an
explicit function of ε; see (17). Now, (17) may yield the following expression for shypo:

shypo =
Ec

t

ρ
ln(1 + ρ1ε)+

1
2

=
3

2ρ
ln(1 + ρ1ε)+

1
2
. (19)

At the upper bound, straightforward use of Equation (12) provides 1ε = (1 + x)θ. Introduce this ex-
pression into (19) and exploit this in Equation (13) to get an explicit nondimensional expression for the
upper bound:

P∞
= 1 +

1
1 + θ

[
−θ − K (θ)+

3
2ρ

(
1
ρθ

− 1 +

(
2 −

1
2(ρθ)2

)
ln(1 + 2ρθ)

)]
. (20)

Example 1: comparison with previous results. As a demonstration of the improved accuracy of our
new method, we compare the postbifurcation equilibrium with the asymptotic solution of Hutchinson
[1974] and with the approximate solution by van der Heijden [1979] and utilize numerical results to
judge the accuracy for a case which was found to be particularly demanding by Hutchinson [1974] and
van der Heijden [1979], namely the case where Ec

t /E = 0.459. Furthermore, the example covers cases
where the maximum load occurs close to bifurcation and where it lies close to the upper bound maximum.

∆ε

∆Et/Et

21.751.51.2510.750.50.250

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

Fig. II.4. Relative difference between Et found by the Ramberg-Osgood
constitutive law (I.27) with (n, ψ) = (3, 0.2) and by (I.26) with
ρ = 3.

Figure 4. Relative difference between Et found by the Ramberg-Osgood constitutive
law Equation (18) with (n, ψ)= (3, 0.2) and by Equation (17) with ρ = 3.
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van der Heijden 1979

2 Hyperbolic terms
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E
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E
= 0
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Fig. II.5. Postbuckling equilibria of the hyperbolic asymptotic method
compared with numerical results, (n, ψ) = (3, 0.2), ρ = 3.0,
ki = 0. Hutchinson’s and van der Heijden’s results are only
plotted for Ec

t/E = 0.459.

Figure 5. Postbuckling equilibria of the hyperbolic asymptotic method compared with
numerical results, (n, ψ)= (3, 0.2), ρ = 3.0, ki = 0. Hutchinson’s and van der Heijden’s
results are only plotted for Ec

t /E = 0.459. Here, the dotted line shows Hutchinson
1973, dot-dashed line, van der Heijden 1979, thin dashed line, 2 Hyperbolic terms, thick
dashed line, 1 Hyperbolic term and solid line, Numerical.

Figure 5 contains plots of the postbuckling path determined by our hyperbolic asymptotic solution with 1
and 2 terms and by numerical computations, respectively. For purpose of comparison, the upper bound
solution Ec

t /E = 0 is also indicated.
A good measure of the effect of some hyperbolic asymptotic term, cH(θ)k , on the solution is its

maximum value. In each example, define H̃ such that its maximum value is 1. Then, the hyperbolic
asymptotic expressions (15) and (16) yield:

Ec
t

E
= 0.1: P = P∞

− 0.16H̃ − 0.01H̃ 2, H̃ ≡
17.2θ

3
2

(1 + 0.13θ
1
2 + 3.01θ)2

,

Ec
t

E
= 0.459: P = P∞

− 0.33H̃ − 0.04H̃ 2, H̃ ≡
22.5θ

3
2

(1 + 0.35θ
1
2 + 3.39θ)2

,

Ec
t

E
= 0.8: P = P∞

− 0.36H̃ − 0.06H̃ 2, H̃ ≡
45.0θ

3
2

(1 + 0.75θ
1
2 + 5.00θ)2

.

(21)

Notice that the maximum (coefficient) value of the second asymptotic term is small compared to the
maximum of the first asymptotic term even when Ec

t /E is much greater than 0 and the solution lies
far from the upper bound. This indicates that the solution is relatively accurate even with only one
asymptotic term. Still, the ratio between the first and the second asymptotic coefficient does not drop
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significantly for increasing ratios of Ec
t /E , which indicates that more than one asymptotic term is needed

for satisfactory results when the solution lies far from the upper bound.
From Figure 5, it is clear that the one-term hyperbolic solution provides excellent agreement with

the numerical results when Ec
t /E is small. As Ec

t /E is increased and the solution moves away from
the upper bound, the accuracy becomes less good. Employment of a second hyperbolic term makes the
hyperbolic solution almost identical to the numerical one for θ / θ∞

max ≈ 0.46 both when Ec
t /E = 0.1

and Ec
t /E = 0.459. For Ec

t /E = 0.8 the maximum load and its neighborhood are determined accurately
because of their proximity to bifurcation, but the solution is so far from the upper bound that the general
hyperbolic asymptotic postbuckling path starts to deviate from the numerical one from θ ≈ 0.1. This is
in agreement with what was deduced from Equation (21).

As expected, the two-term hyperbolic solution is considerably closer to the general numerical equi-
librium than Hutchinson’s and van der Heijden’s solutions for Ec

t /E = 0.459 and the maximum load is
more precise. Both Hutchinson’s and van der Heijden’s methods are basically polynomial asymptotics
emanating from the ordinate axis, and therefore their solutions tend to deteriorate rapidly with increasing
θ . Of the solutions investigated by Hutchinson and by van der Heijden, the case with Ec

t /E = 0.459,
ki = 0 exhibits the greatest ratio between the maximum load and the critical load and the largest θ -value
at maximum load. From Figure 5 it is seen that other equilibria have maxima that occur significantly
further from the bifurcation point and it is for such cases the hyperbolic method has its real raison d’être.

Even though the maximum load is determined with excellent accuracy by a two-term hyperbolic
expansion, the value of θ at maximum may not be as precise.

Example 2: maximum loads. As stated earlier, our real interest lies in a precise determination of the
maximum load. Previously, we have discussed the impact of the different parameters of the model on the
location of maximum load relative to the critical load. The implementation of the postbuckling uploading
stress-strain relation Equation (19) reduces the number of independent parameters in the determination
of P∞(θ) to the kinematic nonlinearities, ki , the rate of decrease in tangent modulus ρ and the level of
plasticity Ec

t /E .
The parameters, ki , control the fundamental overall shape of the equilibrium. Three basically different

shapes may be distinguished:

(i) ki = 0: no destabilizing kinematic nonlinearity is present. The maximum load will be far from
bifurcation.

(ii) k1 6= 0: a rapid initial drop in load-carrying capacity will occur and the maximum load is close to
bifurcation.

(iii) ki 6= 0, i large: if i is sufficiently large the ki -term will not be felt at the present stage of Hutchinson’s
asymptotic expansion Equation (B.2). The third spring constant, k3, is the lowest level of kinematic
nonlinearity not to appear in the terms of the Hutchinson asymptotic expansion used to determine
the first 2 hyperbolic asymptotic terms. On the other hand, in the application of our method it enters
through the expression (20) for P∞. To have any noticeable influence on the maximum load, k3

must be relatively large. When θ = 0.5, the value k3 = 12 furnishes a kinematic nonlinearity equal
the nonlinearity associated with k1 = 3.
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ρ = 10.0
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ρ = 1.0

ρ = 0.3

ρ = 0.0
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Fig. II.6. Stress-strain relations for ρ-values used in the maximum load

plots. Unloading paths are not shown.
Figure 6. Stress-strain relations for ρ-values used in the maximum load plots. Unload-
ing paths are not shown.

Figures 7, 8 and 9 show the maximum load for each of these cases as a function of the level of plasticity
Ec

t /E for the tangent modulus decrease rate, ρ, varying between no decrease ρ = 0 and infinitely rapid
decrease ρ → ∞, as illustrated in Figure 6. As is clear from the figure, a wide spectrum of stress-strain
relations are covered by the constitutive equation Equation (17).

Because of the different nature of each of the plots in Figures 7–9, we shall first examine each plot
separately and then draw a more general conclusion. Note that, in order to make it possible to differentiate
between the curves found by the hyperbolic method and by numerical computations, the plots in Figures
7–9 are scaled differently.

Numerical
Asymptotic

(Ec
t /E)1/2

∆P̃
max

10.0

3.0

1.0

ρ = 0.3

10.8750.750.6250.50.3750.250.1250

1.25

1

0.75

0.5

0.25

0

Fig. II.7. Maximum loads approximated with 2 asymptotic terms, K(θ) =
0.

Figure 7. Maximum loads approximated with 2 asymptotic terms, K (θ)= 0.
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Numerical
Asymptotic
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ρ = 0.0
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0.5

0.4

0.3

0.2

0.1

0

Fig. II.8. Maximum loads approximated with 2 asymptotic terms, K(θ) =
3θ2.

Figure 8. Maximum loads approximated with 2 asymptotic terms, K (θ)= 3θ2.

• Figure 7, ki = 0: In this case, the kinematic nonlinearity is as weak as possible in that the only
kinematically nonlinear effect is the one which provides bifurcation. Therefore, the maximum load
curve for ρ = 0.0 does not exist for finite θ . This means that when ρ is close to 0, the 2-term
hyperbolic expansion does not provide a maximum because it is too far from both the upper bound
and bifurcation.

Apart from the above-mentioned exception, the added load-carrying capacity in postbuckling,
1Pmax , is found with only a small relative error of less than ≈ 10% everywhere.

The plot shows that 1Pmax is often significant compared to Pc as it for ρ ≤ 0.3 becomes as large
as 125% of Pc (recall that Pc = 1). For ρ → 0 the upper bound solution yields a 1Pmax of 400%
of Pc.

• Figure 8, k1 = 3: Here, the kinematic nonlinearity is strong and, as a consequence of this, all
maximum loads are extremely well approximated independently of the distance from the bifurcation
point. This hinges on the fact that every solution is close to both the upper bound and the bifurcation
point at maximum. Observe that, even when the first order kinematic nonlinearity, k1 = 3, is large,
the column has a considerable load-carrying reserve in postbuckling of up to ≈ 50% of Pc when ρ
and Ec

t /E are small.

• Figure 9, k3 = 12: As mentioned above, this is a case where ki only enters through the formula
for 1P∞. Therefore, the approximations by the hyperbolic expansion could be expected to be
inaccurate.

However, except for fairly large values of Ec
t /E and small values of ρ, the difference between

the predictions of the hyperbolic expansion and those obtained by numerical computations is small.
Though not as precise as in the above cases, the hyperbolic expansion curves still yield satisfactory
accuracy, generally under 15% relative error on the postbuckling load reserve, except very close to
linear elastic, kinematically linear behavior.
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Fig. II.9. Maximum loads approximated with 2 asymptotic terms, K(θ)=
12θ4.Figure 9. Maximum loads approximated with 2 asymptotic terms, K (θ)=12θ4.

In this case, the Hutchinson asymptotic expansion is here identical to the expansion for ki = 0.
For ρ large the maximum loads are almost not influenced by the kinematic nonlinearity and they
equal the loads for ki = 0 in Figure 7.

Our method has thus proved to be capable of handling effects that are not included in the Hutchin-
son asymptotic expansion, simply because of the influence from 1P∞.

We emphasize that the precision of the postbuckling load reserves determined by the hyperbolic as-
ymptotic method is generally satisfactory when 2 terms are used. Only very close to linear elasticity
combined with no dominating destabilizing kinematic nonlinearities (where the postbuckling load reserve
is insignificant) may a third term be necessary to ensure sufficient accuracy.

From our plots we conclude that the model column is often able to carry loads which are much larger
than the critical load, even without kinematically stabilizing effects in postbuckling. It is therefore impor-
tant to have an accurate method for advanced postbuckling calculations, and the hyperbolic asymptotic
method is found to fulfill this demand.

It may be argued that some of the large maximum loads are found at extreme values of the angle θ that
would never be allowed in a design situation. Yet those loads are interesting because the maximum load-
carrying capability will serve as an energy absorber of extreme unpredicted influences or imperfections
and thereby prevent sudden collapse of stability. Also, since we are not studying a real structure, but a
model column, the values of θ must not be taken too literally.

Conclusion. A hyperbolic asymptotic method for initial as well as advanced postbuckling analysis of
Hutchinson’s plastic model column is derived. The simple explicit solution for Ec

t /E = 0 (the upper
bound) is found and it is shown that any other solution must approach it asymptotically to lowest order
at infinity. The difference between the upper bound and the actual solution is estimated by an asymptotic
expansion with hyperbolic trial functions that vanish at infinity.
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It is shown that maximum loads are often obtained far from bifurcation, which creates the need for
a method which is precise also in the advanced postbuckling regime. Comprehensive comparison to
numerical results proves our method accurate both close to and far from bifurcation.

We are confident that the principle of the hyperbolic asymptotic method will prove applicable to a
wide range of structures. Though the upper bound may not always be as easily obtained, the correct
global behavior of the asymptotic trial functions can still be investigated and used through knowledge
of the postbuckling equilibrium between or close to bounds, for example, the upper bound, a simple
expansion of the lower bound close to bifurcation, the elastic solution, an expansion at infinity, etc.

2. Geometrically imperfect model column

2.1. General concept. When the amplitude of the imperfection approaches zero, the equilibrium path
of the imperfect structure approaches the postbuckling equilibrium path of the perfect one. Therefore,
if the postbuckling equilibrium of the perfect model column has been determined, the equilibrium path
of the imperfect structure may be found from an asymptotic expansion in a characteristic imperfection
amplitude, which for the Shanley–Hutchinson column is the initial rotation θ̄ mentioned in Section
1.2; see Figure 10. A closer investigation of Hutchinson’s asymptotic expansion at the onset of elastic
unloading may provide useful knowledge on which to base the expansion mentioned above.

2.1.1. Hutchinson’s asymptotic expansion at onset of elastic unloading. The equilibrium equations of
the imperfect model exhibit singular behavior when elastic unloading initiates, and solutions including
linear elastic unloading cannot be extended into the (hypo-)elastic zone. Asymptotic expressions for θ̂ ,
P̂ and û are given by Hutchinson [1973a]:

θ̂ = θ̂1θ̄
1
2 + O(θ̄) , P̂ = 1 + p̂1θ̄

1
2 + O(θ̄) , û = uc + û1θ̄

1
2 + O(θ̄) (22)

where

θ̂1 =

(
ω

apla
1 − aela

1

)1
2

, p̂1 =

(
2aela

1 − apla
1

)( ω

apla
1 − aela

1

)1
2

, û1 =
L

3L̃
pe

1.

u uu

x xx

θ̄ + θ̂

P̂

θ̄ + θ

Pθ̄

P = 0

ϕ

θ̂

Fig. II.10. Definition of the kinematic variables θ, θ̂, ϕ and u as well as
various values of the load. The hat (̂) indicates values at the
onset of elastic unloading.

Figure 10. Definition of the kinematic variables θ , θ̂ , ϕ and u as well as various values
of the load. The hat̂ indicates values at the onset of elastic unloading.
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Here, aela
1 and apla

1 are the initial slopes of the elastic and plastic equilibrium paths of the geometrically
perfect structure, respectively. The formula for ω is given by [Hutchinson 1974, Equation (2.52)]2

ω =

(
1 −

L Ec′

t

3Ec
t

L

L̃

)−1

, apla
1 =

3L̃
L
, aela

1 = −
3ωk1 L̃

2L
.

Note that Equation (22) gives the onset of elastic unloading for the imperfect column as the onset of elastic
unloading for the perfect column at bifurcation plus additional asymptotic terms in the imperfection θ̄ .

2.1.2. Asymptotic expansion for the imperfect column in the plastic domain. In order to utilize Hutchin-
son’s asymptotic expansion of the onset of unloading as a bound, or boundary state, of an asymptotic
expansion of the equilibrium of the imperfect column after unloading has initiated, our expansion must
match Hutchinson’s expansion at the onset of unloading. Therefore, the fundamental form of the asymp-
totic expansion for the geometrically imperfect structure is taken to be

θimp(θ̄)= θper +1θi = θper + θ1θ̄
1
2 + O(θ̄),

Pimp(θ̄)= Pper +1Pi = Pper + p1θ̄
1
2 + O(θ̄),

uimp(θ̄)= uper +1ui = uper + u1θ̄
1
2 + O(θ̄).

(23)

For brevity only the dependence on θ̄ is indicated. Subscripts per and imp refer to equilibrium of the
perfect and the imperfect structure, respectively.

When the perfect column starts unloading θ increases from 0, and boundary conditions for the asymp-
totic functions θ1, p1 and u1 given by Equation (22) yield

θ1

∣∣∣
θper=0

= θ̂1, p1

∣∣∣
θper=0

= p̂1, u1

∣∣∣
θper=0

= û1.

One of the functions, θ1, p1 or u1, in Equation (23) may be chosen independently as long as the boundary
conditions given above are fulfilled, and all equilibrium states of the imperfect structure states may be
reached. Since θper ∈ [0; ∞[ and θimp ∈ [θ̂1θ̄

1
2 + O(θ̄); ∞[ a valid, simple choice of independent variable

is
θimp(θ̄)= θper + θ̂1θ̄

1
2 + O(θ̄), (24)

which for a given imperfection is just a transformation of θ as demonstrated in Figure 11. Note that
when θper ≥ 0 the solutions for the perfect and the imperfect column both lie in the plastic domain.

This asymptotic approach to the plastic imperfection analysis has some advantages which are not
present in earlier expansions:

(i) it proves to be fairly simple;

(ii) the accuracy of the imperfection sensitivity analysis will be good even for large ϕ ≡ θ − θ̂ if the
solution for the geometrically perfect structure is accurate;

(iii) it allows utilization of either a numerical or an asymptotic solution to the geometrically perfect
column, which can be of great advantage since a numerical solution that is accurate even for large
values of θ may be obtained for most structures.

2Hutchinson [1974] uses ρ instead of ω, but for consistency with Section 1, where ρ is used for another purpose, we use ω.
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Fig. II.11. The asymptotic method for the imperfect structure.Figure 11. The asymptotic method for the imperfect structure.

2.2. Asymptotic solution for the imperfect structure. Equilibrium for the geometrically imperfect model
column is controlled by Equations (9) and (10). These equations must be transformed in such a way that
they depend only on θper and θ̄ . Let a dot denote differentiation with respect to θper:

˙( )≡
∂( )

∂θper
.

Since, according to Equation (24), θ̇imp = 1 holds everywhere, by insertion of Equations (23) and (24),
Equations (9) and (10) are transformed into

Ṗimp =

∫ 1

−u̇imp

E imp
t (u̇imp + x)dx +

∫
−u̇imp

−1
E(u̇imp + x)dx (25)

and

Ṗimp(θper + θ̂1θ̄
1
2 + O(θ̄)) + Pimp + (i + 1) ki (θper + θ̂1θ̄

1
2 + O(θ̄))i

=

∫ 1

−u̇imp

E imp
t (u̇imp + x) xdx +

∫
−u̇imp

−1
E(u̇imp + x) xdx .

(26)

2.2.1. Expansion of the tangent modulus. In the vicinity of the solution for the geometrically perfect
column the tangent modulus Et can be given in terms of a Taylor expansion in the strain εimp. For a
given value of θper the expansion becomes:

E imp
t (θ̄ , θper, x)= Eper

t (θper, x)+
(
εimp − εper

)
Eper′

t (θper, x)+ O
(
(εimp − εper)

2).
where prime ( ′ ) denotes differentiation with respect to ε, and the dependence of εimp and εper on the
kinematic variables is not indicated. Insert ε as given by Equation (5) together with (23) and (24) and
get:

E imp
t (θ̄ , θper, x)= Eper

t (θper, x)+ θ̄
1
2
(
u1(θper)+ θ̂1x

)
Eper′

t (θper, x)+ O(θ̄). (27)
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Notice that Eper
t (θper, x) and Eper′

t (θper, x) are known from the solution to the problem for the geometri-
cally perfect structure alone.

2.2.2. The governing equations. Introduce E imp
t given by Equation (27) and Pimp and uimp given by

Equation (23) in the equilibrium equations (25) and (26) for the imperfect column and obtain the equa-
tions of the asymptotic expansion in θ̄

Ṗper + ṗ1θ̄
1
2 =

∫ 1

dper

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)(

u̇per + u̇1θ̄
1
2 + x

)
dx +

∫ dper

−1
E(u̇per + u̇1θ̄

1
2 + x)dx

+

∫ dper

dper−u̇1θ̄
1
2

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)
(u̇per + u̇1θ̄

1
2 + x)dx

+

∫ dper−u̇1θ̄
1
2

dper

E(u̇per + u̇1θ̄
1
2 + x)dx + O(θ̄) (28)

and

(
Ṗper + ṗ1θ̄

1
2
)(
θper + θ̂1θ̄

1
2
)
+ Pper + p1θ̄

1
2 + (i + 1)ki

(
θ i

per + iθ i−1
per θ̂1θ̄

1
2
)

=

∫ 1

dper

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)(

u̇per + u̇1θ̄
1
2 + x

)
xdx

+

∫ dper

−1
E
(
u̇per + u̇1θ̄

1
2 + x

)
xdx

+

∫ dper

dper−u̇1θ̄
1
2

(
Eper

t + θ̄
1
2 (u1 + θ̂1x)Eper′

t
)(

u̇per + u̇1θ̄
1
2 + x

)
xdx

+

∫ dper−u̇1θ̄
1
2

dper

E
(
u̇per + u̇1θ̄

1
2 + x

)
xdx + O(θ̄). (29)

Eliminate the solution for the perfect structure, which is given by the terms of order zero in θ̄ , and utilize
that ∫ c+1

c
f (x)

(
(x − c)−1

)
dx = −

1
2

f (c)12
+ O(13),

which proves that the last two integrals of both Equation (28) and Equation (29) are of order O(θ̄). The
asymptotic equilibrium equations (28) and (29) therefore simplify to

θ̄
1
2 ṗ1 = θ̄

1
2
(
u̇1 f1 + u1 f2 + θ̂1 f3

)
+ O(θ̄),

θ̄
1
2 ( ṗ1θper + p1)= θ̄

1
2
(
u̇1 f4 + u1 f3 + θ̂1 f5

)
+ O(θ̄),

(30)
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where the functions f1, . . . , f5 are associated with the solution for the geometrically perfect column and
are:

f1(θper)= E(1 − u̇per(θper))+

∫ 1

dper

Eper
t (θper, x)dx,

f2(θper)=

∫ 1

dper

Eper′
t (θper, x)

(
u̇per(θper)+ x

)
dx,

f3(θper)=

∫ 1

dper

Eper′
t (θper, x)

(
u̇per(θper)+ x

)
xdx,

f4(θper)=
1
2

E(u̇2
per(θper)− 1)+

∫ 1

dper

Eper
t (θper, x)xdx,

f5(θper)=

∫ 1

dper

Eper′
t (θper, x)

(
u̇per(θper)+ x

)
x2dx −

(
Ṗper + (i + 1)ikiθ

i−1
per

)
.

(31)

In Appendix C, expressions for fi , (C.5), which do not contain integrals, are computed but fi may also
be computed directly by inserting the stress-strain relation and the solution for the geometrically perfect
structure.

2.2.3. The first order imperfection sensitivity problem. To establish the lowest order problem for the
imperfect column gather terms of order θ̄

1
2 in the perturbed problems Equation (30) to get

ṗ1 = u̇1 f1 + u1 f2 + θ̂1 f3, ṗ1θper + p1 = u̇1 f4 + u1 f3 + θ̂1 f5. (32)

The asymptotic procedure has reduced the problem of the equilibrium of the imperfect structure to be
linear in that Equation (32) consists of two linear first order differential equations, which are easily solved
by a numerical method using the boundary conditions at θper = 0. A solution to Equation (32) yields the
exact asymptotic equilibrium of the geometrically imperfect structure for all values of θper, including the
particularly interesting exact asymptotic maximum load of the imperfect structure.

2.3. Approximate determination of asymptotic functions. To simplify the solution for the first order
imperfection sensitivity problem Equation (32), we exploit the fact that p1 and u1 vary slowly with θ
after the onset of elastic unloading to construct an approximate solution required to provide accurate
estimates of the exact asymptotic maximum load. It was shown by van der Heijden [1979] that although
the second derivatives of u and P are infinite only at initiating elastic unloading for the perfect structure,
they become extremely large for small imperfections. This implies rapid variation of the derivatives of
u and P which makes them unfit for asymptotic expansion close to initiating elastic unloading.

It will be shown in Section 2.4 that the exact asymptotic maximum load of the geometrically imperfect
structure is found at θper=θ

m
per where the maximum load of the perfect structure occurs. Here, superscript

m indicates a quantity calculated at the maximum load. Expand p1 and u1 asymptotically around θper =

θm
per to determine the asymptotic behavior of the first order imperfection problem at maximum load of

the imperfect structure.
Because the asymptotic equation (32) consists of two first order differential equations two boundary

conditions are needed to fix our solution. The only directly accessible asymptotic boundary conditions
for p1 and u1 are found at initiating elastic unloading where p1 = p̂1 and u1 = û1.
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2.3.1. Asymptotic expansion of the first order imperfection problem around maximum load. Approximat-
ing polynomials for p1 and u1 around θm

per may be written as:

p1 = p1
1 + p2

11θ +
1
2

p3
1(1θ)

2
+ · · · ,

u1 = u1
1 + u2

11θ +
1
2

u3
1(1θ)

2
+ · · · ,

(33)

where 1θ = θper − θ
m
per, 1θ ∈

[
−θm

per; 0
]

and the total asymptotic solution for the imperfect structure is

Pimp = Pper + θ̄
1
2

(
p1

1 + p2
11θ +

1
2

p3
1(1θ)

2
+ · · ·

)
+ O(θ̄),

uimp = uper + θ̄
1
2

(
u1

1 + u2
11θ +

1
2

u3
1(1θ)

2
+ · · ·

)
+ O(θ̄).

The lowest order imperfection problem is linear in both p1 and u1 and their derivatives. Hence, it
follows that pi

1 and ui
1 may be given as linear functions of p1

1 and u1
1 when Equation (32) is expanded

asymptotically around θm
per

fi (1θ)= f m
i +1θ ḟ m

i + O(1θ2). (34)

The functions, fi and ḟi , are given in Appendices C and D, respectively. The functions f m
i and ḟ m

i
are then found by inserting θm

per in Equation (31). Assume that f m
i and ḟ m

i have been determined and
insert Equations (33) and (34) in Equation (32) to get the asymptotic equations at the maximum load by
gathering terms of the same order in 1θ .

Zeroth order in 1θ :
p2

1 = u2
1 f m

1 + u1
1 f m

2 + θ̂1 f m
3 ,

p2
1θ

m
per + p1

1 = u2
1 f m

4 + u1
1 f m

3 + θ̂1 f m
5 .

(35)

First order in 1θ :
p3

1 = u3
1 f m

1 + u2
1( f m

2 + ḟ m
1 )+ u1

1 ḟ m
2 + θ̂1 ḟ m

3 ,

p3
1θ

m
per + 2p2

1 = u3
1 f m

4 + u2
1( f m

3 + ḟ m
4 )+ u1

1 ḟ m
3 + θ̂1 ḟ m

5 .
(36)

This procedure may be extended to any order in1θ , but our experience shows that it is not necessary to go
beyond the order used here, see below. Because the first order imperfection sensitivity problem Equation
(32) is linear in p1 and u1, the above asymptotic equations of any order, Equations (35), (36), etc., are
linear in the asymptotic coefficients pi

1 and ui
1. As mentioned earlier the problem always entails two

unknowns more than the number of equations because the first order imperfection sensitivity problem
consists of two first order differential equations. To obtain the two additional equations required to
determine pi

1 and ui
1, assume that the asymptotic expansions of p1 and u1 around maximum furnish

accurate results at initiating elastic unloading. This provides two boundary conditions at 1θ = − θm
per,
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that is, θper = 0:

p̂1 = p1
1 + p2

1(−θ
m
per)+ · · · +

1
n

pn+1
1 (−θm

per)
n,

û1 = u1
1 + u2

1(−θ
m
per)+ · · · +

1
n

un+1
1 (−θm

per)
n.

The asymptotic equations of order 0 to n, Equations (35), (36), etc., plus the general boundary condi-
tions given above constitute 2(n + 1) linear equations with 2(n + 1) unknown asymptotic coefficients to
determine the approximate asymptotic polynomials of degree n.

In practice it turns out that linear approximations yield good results, while parabolic approximations
provide excellent accuracy for the maximum load because of the slow variation of p1 and u1. Thus,
the problem of investigating imperfection sensitivity is reduced to solving 4 (linear approximation) or 6
(parabolic approximation) linear equations with 4 or 6 unknowns, respectively.

2.4. The maximum load. Only if the solution p1(1θ) is found exactly are we able to determine the
maximum load asymptotically correct. On the other hand, if we have a good approximation of p1(1θ)

near the maximum load of the perfect column, a good estimate of the asymptotic maximum load may be
obtained. Close to the maximum load of the perfect structure, Pper may asymptotically be given as

Pper(1θ)= Pm
per +

1
2
1θ2 P̈m

per + O(1θ3),

because the first derivative Ṗm
per of the load equilibrium for the perfect structure vanishes.

Expand Pimp in Equation (23) as

Pimp(1θ)≈ Pm
per +

1
2
1θ2 P̈m

per + θ̄
1
2 (p1

1 + p2
11θ +

1
2

p3
11θ

2)+ O(θ̄ ,1θ3). (37)

When the first order imperfection sensitivity problem Equation (32) is solved approximately by (33) pi
1

in (37) coincides with pi
1 in (33). In order for Pimp to attain a maximum (or minimum)

1θm
imp = −

p2
1 θ̄

1
2

P̈m
per

+ O(θ̄),

which after insertion in Equation (37) furnishes the following approximate expression for the maximum
load of the imperfect column

Pm
imp = Pm

per + p1
1 θ̄

1
2 + O(θ̄).

Note that, like in the elastic case, the maximum load-carrying capacity of the elastic-plastic imperfect
structure compared to that of the perfect structure is controlled by only one parameter, namely p1

1, the
lowest order term in the approximation to p1.

2.5. Asymptotic results and comparison. In Figures 12 and 13 the applicability of the approximate as-
ymptotic method developed above is demonstrated by comparison with numerical results for two column
geometries and two constitutive relations which entailed the least accurate asymptotic predictions in the
studies by Hutchinson [1974] and by van der Heijden [1979] for the structures of Figures 13 and 12,
respectively. The results of these studies were obtained by use of a Ramberg-Osgood type constitutive
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Asymptotic
Imperfect, numerical

Perfect, numerical

θ̄ = 0.5

θ̄ = 0.1

θ̄ = 0.01

θ̄ = 0.001

θ

P

0.750.6250.50.3750.250.1250

1.25

1

0.75

0.5

0.25

0

Fig. II.12. Comparison between numerical results and the approximate
asymptotic method for (n, ψ, sc/sy) = (3, 0.2, 1.4), ρ = 3.0. No
kinematic nonlinearities, i.e. ki = 0.
The dash-dot straight line indicates lowest order asymptotic
prediction of initiation of linear elastic unloading.

Figure 12. Comparison between numerical results and the approximate asymptotic
method for (n, ψ, sc/sy) = (3, 0.2, 1.4), ρ = 3.0. No kinematic nonlinearities, that
is, ki = 0. The dash-dot straight line indicates lowest order asymptotic prediction of ini-
tiation of linear elastic unloading. Here, the thick solid line represents perfect numerical,
the thin solid line, imperfect numerical and the dashed line, asymptotic.

relation Equation (18). As shown in Section 1 the constitutive model Equation (17), which is better
suited for our derivations, may predict a constitutive behavior very close to that of Equation (18) for
the postbifurcation regime of the geometrically perfect column provided that the value of ρ is chosen
appropriately. Both plots support the idea that our approximate asymptotic expansion for the imperfect
column developed above does indeed approximate the exact solution very well in that our asymptotic
curve almost coincides with both the shape and the values of the numerical curve for small imperfection
amplitudes, that is, θ̄ . 0.001.

In Figure 12 the maximum load-carrying capacity of the imperfect structure is approximated well
even at the large imperfection θ̄ = 0.1. However, for larger imperfection amplitudes our asymptotic
expansion fails to predict the point of initial unloading accurately. For cases where the maximum load is
located very close to initial unloading the maximum load is therefore not as well approximated for larger
imperfections as it was in Figure 12. This is demonstrated by Figure 13 where for imperfections above
approximately θ̄ = 0.1 the numerical maximum load is obtained before the asymptotic method predicts
initial unloading. Thus, for large imperfection amplitudes and maximum load close to initial unloading,
our asymptotic method fails to predict the maximum load accurately because the point of initial unloading
is poorly predicted by the nonlinear elastic asymptotic imperfection theory of the comparison model, as
it was also pointed out by van der Heijden [1979].

In general, our asymptotic expansion to the lowest order of the equilibrium for the elastic-plastic
imperfect column provides better estimates of maximum loads than its elastic counterpart. This is due
to the fact that, in contrast to an elastic structure, a geometrically perfect plastic structure obtains its
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Asymptotic
Imperfect, numerical

Perfect, numerical

θ̄ = 0.1

θ̄ = 0.01

θ̄ = 0.001

θ̄ = 0.1

θ̄ = 0.01
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θ
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Fig. II.13. Comparison between numerical results and the approximate
asymptotic method for (n, ψ, sc/sy) = (10, 0.2, 1.2), ρ = 25.
Kinematic nonlinearity given by k1/E = 1.
The dash-dot straight line indicates lowest order asymptotic
prediction of initiation of linear elastic unloading.

Figure 13. Comparison between numerical results and the approximate asymptotic
method for (n, ψ, sc/sy) = (10, 0.2, 1.2), ρ = 25. Kinematic nonlinearity given by
k1/E = 1. The dash-dot straight line indicates lowest order asymptotic prediction of ini-
tiation of linear elastic unloading. Here, the thick solid line represents Perfect numerical,
the thin solid line, Imperfect numerical and the dashed line, Asymptotic.

maximum load at some finite distance from its lowest bifurcation load, where the asymptotic method
provides better load estimates for an imperfect structure since it is further from the singular point of
bifurcation. However, in order to obtain more accurate maximum load predictions for large imperfection
amplitudes we need a better approximation by the nonlinear elastic asymptotic method of the point of
initial unloading.

2.6. Enhancement of the asymptotic solution. Christensen and Byskov [2007a] establish a new expres-
sion, which is valid for the kinematically nonlinear equilibrium of an elastic, geometrically imperfect
structure. It matches the traditional asymptotic expansion for an imperfect structure for buckling ampli-
tudes θ 6= 0, and for all imperfection amplitudes θ̄ it fulfills the boundary condition that θ = 0 when the
load P = 0. Christensen and Byskov [2007b] provide an example of the accuracy of this expression for
the Euler column.

By comparison with numerical results it may be shown that, for relatively small θ , the kinematically
nonlinear elastic equilibrium of an imperfect realization of the column shown in Figure 12 may be
approximated in the following way

P = 1 −
ρθ̄

θ + ρθ̄
,

∂P
∂θ

=
ρθ̄

(θ + ρθ̄)2
, (38)

where the value of ρ depends on the parameters constitutive relation.
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Because of extremely large derivatives of the elastic-plastic stress-strain relation relatively close to
the critical stress, the preunloading path of the elastic-plastic imperfect column of Figure 13 is only
approximated well when a higher order asymptotic expression for imperfection sensitivity is employed.
Such an expansion has been developed by Christensen and Byskov [2007a].

To construct a simple enhancement of the solution for the imperfect structure, adopt the assumption
that the nonlinear elastic path of the imperfect structure given by Equation (38) also describes the entire
path of the elastic-plastic imperfect column well up till the asymptotic straight line emanating from
the bifurcation point and separating the unloading and the nonunloading zone; see Figure 12. Let the
enhanced asymptotic solution, which is in no way asymptotically more exact than the original one, be
given as a higher order term of θ̄ added to the original solution

Pe
imp = Pper + p1(θper)θ̄

1
2 +1p(θ̄), θ e

imp = θper + θ̂1θ̄
1
2 +1θ(θ̄),

where superscript e indicates the enhanced asymptotic solution, and 1p(θ̄) and 1θ(θ̄) are additions to
the original asymptotic expansion which do not depend on θper and are both functions of order θ , leaving
this expression asymptotically equivalent to the original asymptotic expansion. Note that(

1p(θ̄),1θ(θ̄)
)
∼ O(θ̄).

To fully fix 1p and 1θ , use the boundary conditions such that

(i) the asymptotic solution passes through the point of initiating unloading as determined by the crossing
between the straight boundary and the enhanced preunloading expression (38);

(ii) at the asymptotic straight boundary between no unloading and unloading, the derivative of the load
P is continuous with respect to θ , as shown by van der Heijden [1979].

In Figure 14 the added precision of the enhanced approximate asymptotic method is demonstrated for
the column of Figure 12, for which the previous asymptotic methods failed to provide reliable results
for moderate and large imperfection levels. The asymptotic solution enhanced by better approximation
of preunloading and the use of slope boundary conditions at initial asymptotic unloading for the column
in question provides very close approximations to the numerical results both at maximum load and at
initial unloading even at the large imperfection of θ̄ = 0.5, which corresponds to an angle of 27◦.3

Also, comparison with the original asymptotic expansion shows that the equilibrium prediction has been
enhanced considerably, especially for the larger values of θ̄ .

Conclusion. An asymptotic expression for the equilibrium of the imperfect realization of the Shanley–
Hutchinson continuous model column is derived in the main body of this paper. The method hinges
on the fact that for decreasing imperfections the equilibrium path of the imperfect structure approaches
that of the perfect one, and that the expression for the path of the geometrically imperfect structure may
be written as the postbuckling path of the perfect structure plus a small contribution which is expanded
asymptotically to the lowest degree in the imperfection amplitude. The asymptotic coefficient associated
with the lowest order imperfection amplitude is given by a linear, second order differential equation,
which may be solved numerically. A simple polynomial approximation of the asymptotic coefficient
function is derived based on its slow variation.

3For a model structure, such as the present one, the concept of large or small rotations is somewhat uncertain.
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Fig. II.14. Comparison between numerical results, the approximate

asymptotic method, and the enhanced approximate method ap-

plied to the column of Fig. II.12.

The dash-dot straight line indicates lowest order asymptotic

prediction of initiation of linear elastic unloading.

Figure 14. Comparison between numerical results, the approximate asymptotic method,
and the enhanced approximate method applied to the column of Figure 12. The dash-dot
straight line indicates lowest order asymptotic prediction of initiation of linear elastic
unloading. The thick solid line represents the perfect, numerical, the thin solid line, im-
perfect, numerical, the dotted line, enhanced asymptotic and the dashed line, asymptotic
results.

For a numerically determined postbuckling path, the approximate asymptotic equilibrium is deter-
mined for the column which in the study by van der Heijden [1979] proved to yield the most inaccurate
estimates with his method. By our method, the approximation of the maximum load of the imperfect
model column is excellent for small imperfections, and an asymptotic expansion which utilizes an en-
hanced approximation of initial unloading, provides very precise estimates of the entire equilibrium of
the imperfect structure, even for large imperfections.

Appendix A: a study of Hutchinson’s asymptotic method

Hutchinson [1973b; 1974] showed that Pper(θ) and uper(θ) can be developed asymptotically in the spirit
of Koiter’s elastic theory [Koiter 1945] when extra terms containing fractional powers of θ are added.
Hutchinson determined the form of the perturbation expansion for the Shanley–Hutchinson column to
be

P = 1 +1P = 1 + a1θ + a2θ
3
2 + a3θ

2
+ a4θ

5
2 + a5θ

3
+ a6θ

7
2 + O(θ4), (A.1)

u = uc +1u = uc + b1θ + b2θ
3
2 + b3θ

2
+ b4θ

5
2 + b5θ

3
+ b6θ

7
2 + O(θ4), (A.2)

and calculated the first three constants of each expression. Here we determine two additional constants
for both P and u. Knowing that elastic unloading starts at bifurcation we get

−d(θ = 0)=
∂u
∂θ
(θ = 0)⇒ b1 = 1. (A.3)
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Expansion of the tangent modulus. In order to be able to carry out the integrations in Equation (9) and
Equation (10) we expand Et in Taylor series around x = 0. Use of ε given by Equation (5) provides
Et = Et(u)+ (θx)E

′

t(u)+
1
2(θx)2 E

′ ′

t (u)+ · · · where

( )′ ≡
∂( )

∂ε
.

Compute the integrals of the equilibrium equations (9) and (10) to transform them into ordinary differ-
ential equations:

∂P
∂θ

=

(
−

1
2

(
∂u
∂θ

)2

+
∂u
∂θ

−
1
2

)
E+

(
+

1
2

(
∂u
∂θ

)2

+
∂u
∂θ

+
1
2

)
Et(u)+

(
−

1
6

(
∂u
∂θ

)3

+
1
2
∂u
∂θ

+
1
3

)
θE

′

t(u)

+

(
+

1
12

(
∂u
∂θ

)4

+
1
3
∂u
∂θ

+
1
4

)
θ2

2
E

′ ′

t (u)+ O(θ3),

and

∂P
∂θ
θ + P +

∂K
∂θ

=

(
+

1
6

(
∂u
∂θ

)3

−
1
2
∂u
∂θ

+
1
3

)
E +

(
−

1
6

(
∂u
∂θ

)3

+
1
2
∂u
∂θ

+
1
3

)
Et(u)

+

(
+

1
12

(
∂u
∂θ

)4

+
1
3
∂u
∂θ

+
1
4

)
θE

′

t(u)

+

(
−

1
20

(
∂u
∂θ

)5

+
1
4
∂u
∂θ

+
1
5

)
θ2

2
E

′ ′

t (u)+ O(θ3),

where

E (i)t (u)= Ec(i)
t +1uEc(i+1)

t +
1u2

2
Ec(i+2)

t + O(θ3),

with (i), (i + 1) and (i + 2) indicate the order of differentiation.

A.0.1. The governing equations. Employ the perturbation series for P and u given by Equations (A.1)
and (A.2), respectively, and exploit the fact that b1 = 1 (see Equation (A.3)) in order to establish the
asymptotic equations:

0 = − a1 −
3
2a2θ

1
2 − 2a3θ

1
−

5
2a4θ

3
2 − 3a5θ

2
+ E

(
−

9
8 b2

2θ
1
− 3b2b3θ

3
2 − ( 15

4 b2b4 + 2b2
3)θ

2
)

+Ec
t

(
2 + 3b2θ

1
2 + ( 9

8 b2
2 + 4b3)θ

1
+ (3b2b3 + 5b4)θ

3
2 + (15

4 b2b4 + 2b2
3 + 6b5)θ

2
)

+

(
θEc′

t + θ
3
2 b2 Ec′

t + θ2(b3 Ec′

t +
1
2 Ec′ ′

t )

)(
2 + 3b2θ

1
2 + ( 9

8 b2
2 + 4b3)θ

1
)

+

(
θEc′

t + θ2 Ec′ ′

t

) (2
3 −

3
8 b2

2θ
1)

+ θ2 1
3 Ec′ ′

t + O(θ
5
2 ), (A.4)
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and

0 = +1 − 1 − 2a1θ −
5
2a2θ

3
2 − 3a3θ

2
−

7
2a4θ

5
2 − 2k1θ − 3k2θ

2

+
(
E − Ec

t
)(9

8 b2
2θ

1
+ (3b2b3 +

9
16 b3

2)θ
3
2 + ( 15

4 b2b4 +
9
4 b2

2b3 + 2b2
3)θ

2

+( 9
2 b2b5 + 5b3b4 +

45
16 b2

2b4 + 3b2b2
3)θ

5
2
)

+
(
θEc′

t + θ
3
2 b2 Ec′

t + θ2(b3 Ec′

t +
1
2 Ec′ ′

t )+ θ
5
2 (b4 Ec′

t + b2 Ec′ ′

t )
)

( 2
3 −

9
8 b2

2θ
1
− (3b2b3 +

9
16 b3

2)θ
3
2
)

+
(
θEc′

t + θ2 Ec′ ′

t + θ
5
2 b2 Ec′ ′

t
)(2

3 + b2θ
1
2 + ( 4

3 b3 +
9
8 b2

2)θ
1
+ ( 5

3 b4 +
9
8 b3

2 + 3b2b3)θ
3
2
)

+θ2 1
5 Ec′ ′

t + O(θ3). (A.5)

Gather terms containing θ of the same order in Equations (A.4) and (A.5) and introduce the assumption
that Equations (A.1) and (A.2) fulfill the equilibrium equations in a small area around θ = 0. The
polynomial identification theorem then gives us two sets of equations to determine the constants ai and
bi . The first 5 terms in Equations (A.4) and (A.5) furnish

θ0: a1 = 3,

θ
1
2 : a2 = 3b2,

θ1: a3 =
1

E − Ec
t

(
2 − k1 − Ec′

t

)
− 3 − k1 + 2Ec′

t ,

θ
3
2 : a4 = 3b4 −

6
5(E − Ec

t )b2b3 + 2Ec′

t b2,

θ2: a5 = 3b5 −
(
E − Ec

t )(
5
4 b2b4 +

2
3 b2

3
)
+ Ec′

t (2b3 + b2
2)+

2
3 Ec′ ′

t ,

(A.6)

and

θ0: 0 = 0,

θ
1
2 : 0 = 0,

θ1: b2
2 =

16
9(E − Ec

t )

(
3 + k1 −

2
3 Ec′

t

)
,

θ
3
2 : b3 =

1
3(E − Ec

t )

(
2 − k1 − Ec′

t

)
,

θ2: b4 =
4(a3 + k2)

5(E − Ec
t )b2

−
8b2

3

15b2
−

3
5 b2b3 −

8Ec′

t b3

15(E − Ec
t )b2

−
8Ec′ ′

t

25(E − Ec
t )b2

,

θ
5
2 : b5 =

7a4

9(E − Ec
t )b2

−
10b3b4

9b2
−

5
8 b2b4 −

2
3 b2

3 −
Ec′

t (−
1
8 b3

2 +
14
27 b4)

(E − Ec
t )b2

−
14Ec′ ′

t

27(E − Ec
t )
.

(A.7)

These equations give us a1 explicitly. The remaining constants ai and bi are found by alternately inserting
the known quantities into Equations (A.6) and (A.7).
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Appendix B: asymptotic expansion of 1P∞

In order to determine the coefficients for the new hyperbolic solution Equation (16), the ordinary poly-
nomial expansion of 1P∞ is needed. Subtracting the asymptotic polynomial of P∞ from that of the
enhanced Hutchinson solution Equation (A.1) provides the desired polynomial.

The regular expansion of P∞ (see Equation (20)) may be found as

P∞
= 1 + 3θ − (k1 + 3ρ+ 3)θ2

+
( 16

5 ρ
2
+ 3ρ+ k1 − k2 + 3

)
θ3

+ O(t4).

Recall Equation (3) and realize that from Equation (17) we may find ρ = −
Ec′

t

Ec
t
, ρ2

=
Ec′′

t

2Ec
t
, then

P∞
= 1 + 3θ − (3 + k1 − 2Ec′

t )θ
2
+

(
3 + k1 − k2 − 2Ec′

t +
16
15 Ec′′

t

)
θ3

+ O(t4). (B.1)

Introduce an asymptotic expansion of 1P∞:

1P∞
= a11 θ + a12 θ

3
2 + a13 θ

2
+ a14 θ

5
2 + a15 θ

3
+ O(θ

7
2 ). (B.2)

Recall the definition of 1P∞ (Equation (15)), the expansion for the total load P (see Equation (A.1)),
utilize the results for a j obtained in Equation (A.6), and compare the two ensuing expansions for 1P∞

to get the following expansions for a1j :

a11 = 0, a12 = a2,

a13 = a3 + 3 + k1 − 2Ec′

t , a14 = a4,

a15 = a5 − 3 − k1 + k2 + 2Ec′

t −
16
15 Ec′ ′

t . (B.3)

Appendix C: determination of fi

We exploit the fact that the integrals of f1 and f2 can be computed directly when the solution for the
geometrically perfect column is established∫ 1

dper

Eper
t dx =

1
θper

∫ x=1

x=dper

Eper
t dεper =

sper
∣∣
x=1 − sper

∣∣
x=d

θper
,

∫ 1

dper

Eper′
t (u̇per + x)dx =

1
θper

([
Eper

t (u̇per + x)
]1

dper
−

∫ 1

dper

Eper
t dx

)

=
Eper

t
∣∣
x=1 (u̇per + 1)

θper
−

sper
∣∣
x=1 − sper

∣∣
x=d

θ2
per

,

(C.1)

which by insertion in Equation (31) gives us f1 and f2. The remaining functions are given as functions
of f1 and f2 when we use the perfect equilibrium and its derivatives with respect to θper

Pper =

∫ dper

−1
E(u̇per + x)dx +

∫ 1

dper

Eper
t (u̇per + x)dx = u̇per f1 + f4 (C.2)
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and

P̈per =

∫ dper

−1
Eüperdx +

∫ 1

dper

(Eper
t üper + Eper′

t (u̇per + x)2)dx = üper f1 + u̇per f2 + f3 (C.3)

and

P̈perθper + 2Ṗper + (i + 1)ikiθ
i−1
per =

∫ dper

−1
Eüperxdx +

∫ 1

dper

(Eper
t üper + Eper′

t (u̇per + x)2)xdx

= üper f4 + u̇per f3 + f5 + Ṗper + (i + 1)ikiθ
i−1
per .

(C.4)

The expressions for fi can now be determined directly as functions of θper alone given by the solution
for the geometrically perfect column problem. From Equations (C.1)–(C.4) and Equation (31), we get:

f1 = E(L − u̇per)+
sper
∣∣
x=1 − sper

∣∣
x=d

θper
, f2 =

Eper
t
∣∣
x=1 (u̇per + 1)

θper
−

sper
∣∣
x=1 − sper

∣∣
x=d

θ2
per

,

f3 = P̈per − üper f1 − u̇per f2, f4 = Ṗper − u̇per f1,

f5 = P̈perθper + Ṗper − üper f4 − u̇per f3. (C.5)

Appendix D: determination of ḟi

While f3, f4 and f5 are straight forward to differentiate given Equation (C.5), the derivatives of fi with
respect to θper, that is, ḟ1 and ḟ2 are slightly more difficult to calculate:

ḟ1 = − üper(E − Eper
t
∣∣
x=d)+

∫ 1

dper

Eper′
t (u̇per + x)dx = − üper(E − Eper

t
∣∣
x=d)+ f2,

and

ḟ2 =

∫ 1

dper

(Eper′ ′
t (u̇per + x)2 + üper E

per′
t )dx

=
1
θper

([
Eper′

t (u̇per + x)2
]1

dper
− üper

(∫ 1

dper

Eper′
t 2(u̇per + x)dx + Eper

t
∣∣
x=d − Eper

t
∣∣
x=1

))
=

1
θper

(
üper

(
Eper

t
∣∣
x=1 − Eper

t
∣∣
x=d − 2 f2

)
+ Eper′

t

∣∣∣
x=1

(u̇per + 1)2
)
.

Finally, differentiation provides the remaining ḟi

ḟ3 =
...
Pper −

...
u per f1 − üper( ḟ1 + f2)− u̇per ḟ2,

ḟ4 = P̈per − üper f1 − u̇per ḟ1,

ḟ5 =
...
Pperθper + 2P̈per −

...
u per f4 − üper( ḟ4 + f3)− u̇per ḟ3.
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