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ROLLING CONTACT WITH SLIP ON A THERMOELASTIC HALF-SPACE:
COMPARISON WITH PERFECT ROLLING CONTACT

LOUIS MILTON BROCK

A rigid cylinder rolls at constant speed on a thermoelastic half-space under a compressive load. Heat
flow across the contact zone is neglected, and the zone has a central region of perfect contact and two
edge regions of frictionless slip. A robust asymptotic inversion of the exact transform solution to a
related unmixed boundary value problem allows the mixed-mixed problem of rolling contact to be solved
analytically. The solution is compared with that for perfect rolling contact. Both show variations in
contact zone size and temperature change with rolling speed and load. Distinctions exist however: slip
zones preclude oscillatory solution behavior and are much smaller than zones of oscillation. Moreover,
perfect rolling contact may exaggerate the difference between imposed and effective angular velocity
due to surface deformation.

Introduction

Models for rolling contact that involve elastic bodies have been developed within the framework of
contact mechanics [Muskhelishvili 1975; Gladwell 1980; Johnson 1987; Hills and Barber 1993; Hills
et al. 1993] and empirical observation [Bayer 1994; Blau 1996]. The more basic models are generally qua-
sistatic, assume Hertzian contact, and are isothermal. However, more recent studies consider, variously,
thermoelastic contact and inertial effects [Hills and Barber 1986; Georgiadis and Barber 1993; Pauk and
Yevtushenko 1997; Barber 1999; Jang 2000; Pauk and Zastrau 2002; Andersson et al. 2005; Jang 2005].
In addition, studies of the mathematically-similar problem of the interface crack [Hills and Barber 1993;
Hills et al. 1993] address issues that also arise in contact. Two key issues are the oscillatory solution
behavior that occurs when perfect contact is modeled and a Hertzian contact zone stress distribution is
not assumed, and the role of critical speed in contact zone formation.

In light of these issues, Brock [2004a; 2004b] considered a rigid cylinder of infinite length rolling
at constant speed over a thermoelastic half-space. A dynamic steady state of plane strain was assumed,
and robust asymptotic solutions to the mixed-mixed problem were obtained analytically. These exhibited
clear variations with rolling speed and increases in contact zone temperature. The increase was prominent
when the compressive force on the cylinder was large enough to produce contact zone compressive stress
that neared values critical for yield.

The solutions also exhibited the aforementioned oscillation near contact zone edges. This is, of course,
typical of mixed-mixed problems [Muskhelishvili 1975], but the behavior violates the assumption of
nontensile contact zone stress. On the other hand, violation is confined to edge zones that are orders
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of magnitude smaller than the zone itself. These microzones can be interpreted to mean that slip must
occur at the contact zone edges.

For additional insight into their effects, this article imposes slip zones in the mixed-mixed problem
for rolling contact. For simplicity, friction is ignored, and the resultant force that keeps the cylinder in
contact with the surface acts through the cylinder axis. Jang [2000; 2005] has presented results for the
basic problem of transient thermoelastic contact. However, to allow comparison with [Brock 2004a],
coupled thermoelasticity governs here, but a dynamic steady state of plain strain is considered. Similarly,
while it will be seen that a thermoelastic Rayleigh speed produces critical solution behavior, rolling speed
is subcritical. Insight into behavior at supercritical speed can be found in work by Georgiadis and Barber
[1993] and Brock and Georgiadis [2000].

The study begins in the next section with the problem formulation. Subsequently, exact expressions
for the integral transform solution to a related unmixed problem are presented, and robust approximate
inversions extracted. An analytical result for coupled singular integral equations provides a candidate
solution. The solution itself follows by enforcing auxiliary conditions for rolling contact. Numerical
calculations of contact zone parameters are then compared with those presented in [Brock 2004a]. Al-
though similar, the two calculation sets illustrate distinctive behaviors. In particular, slip zones are orders
of magnitude smaller than zones of oscillation seen in the no-slip model.

Problem formulation

Consider a linear isotropic thermoelastic half-space defined by the Cartesian coordinates (x, y, z) as the
region y > 0. It is initially at rest at uniform (absolute) temperature T0 when a rigid cylinder of infinite
length and radius r is pressed into the surface with constant force (per unit of cylinder length) F and
rolled in the positive x-direction with constant subcritical speed v. It will be shown that this speed
corresponds to a thermoelastic Rayleigh speed. The process creates a zone of perfect contact between
the cylinder and the half-space that is bordered by two zones of slip (frictionless sliding contact). The
cylinder geometry is independent of coordinate z, so that the process is one of plane strain. Because
(r, F, v) are constant, it is also assumed that a dynamic steady state is achieved in which the perfect
contact and slip zones maintain constant widths.

It is convenient, then, to locate the Cartesian system origin below the cylinder axis (x = 0) and translate
it with the same speed v. The boundary conditions governing the half-space surface y = 0 can then be
written as [Brock 2004a]

∂yθ = 0 (all x), (σxy, σy) = 0 (x /∈ C), (1a)

σxy = 0, ∂x u y = −
x
r

(x ∈ C±), (1b)

∂x ux = −
U̇0

vr
−

x2

2r2 , ∂x u y = −
x
r

(x ∈ C0). (1c)

Here (ux , u y, θ) are the (x, y)-displacements and change in temperature from T0, and (σx , σy, σz, σxy)

are the tractions in plane strain. These quantities depend only on (x, y), and (∂x , ∂y) signify (x, y)-
differentiation. Constant U̇0 is the unknown tangential velocity of the contact zone directly below the
cylinder axis (x = 0). This is the point of maximum depression and has no normal velocity. Region C
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is the contact zone defined by L− < x < L+. Region C0, defined by l− < x < l+, is the zone of perfect
contact in C . Regions C± are slip zones defined by l+ < x < L+ and L− < x < l−. Lengths (L±, l±)

are unknown, but one can assume that

L− < l− < 0 < l+ < L+, l < L � r, (2)

L = L+ − L−, l = l+ − l−. (3)

The first condition in Equation (1a) imposes an assumption that heat flux through C is negligible. For a
half-space that obeys the Fourier model of coupled thermoelasticity, governing equations for y > 0 can
be written as [Brock and Georgiadis 2000; Brock 2004a]

∂xσx + ∂yσyx = c2∂2
x ux , ∂xσxy + ∂yσy = c2∂2

x u y, (4a)

h∇
2θ + c∂x

( ε

αv

1 + θ
)

= 0, (4b)σx

σy

σz

 = µ

m + 1 m − 1 1
m − 1 m + 1 1
m − 1 m − 1 1

  ∂x ux

∂yu y

−αvθ

 , (4c)

(σxy, σyx) = µ(∂yux + ∂x u y). (4d)

Equations (4b) and (4c) can be used to rewrite Equation (4a) in partly coupled form

(a∇
2
− c2∂2

x )1 − αv∇
2θ = 0, (∇2

− c2∂2
x )$z = 0. (5)

Here (1, $z) is the dilatation and rotation. Constants (m, a, h, ε, c) are given by

m =
1

1 − 2ν
, a = m + 1, h =

k
cv

√
µρ

, ε =
µT0

ρcv

α2
v, (6a)

c =
v

vr
, vr =

√
µ

ρ
. (6b)

Quantities (h, ε, vr ) are the thermoelastic characteristic length, dimensionless coupling constant and
rotational wave speed; (µ, ρ, ν, k, αv, cv) are, respectively, shear modulus, mass density, Poisson’s ratio,
conductivity, volumetric thermal expansion coefficient, and specific heat at constant strain. Various
sources [Sokolnikoff 1956; Chadwick 1960; Achenbach 1973; Davis 1998; Brock 1999] indicate that
Equation (6a) gives

ε ≈ O(10−2), h ≈ O(10−8) m. (7)

In addition to satisfying Equations (1)–(7), field quantities (ux , u y, ∇ux , ∇u y, θ) should be continuous
for y ≥ 0 and bounded above as

√
x2 + y2 → ∞. Smooth separation of the rolling cylinder and half-

space surface requires, in particular, that (∇ux , ∇u y) are finite at the zone edge x = (L±, l±). Contact
is also governed by the constraints

σy ≤ 0 (x ∈ C), (8a)∫
C

σydx = − F,

∫
C

xσydx = 0,

∫
C0

σxydx = 0. (8b)
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The unilateral constraint, Equation (8a), guarantees a nontensile contact zone stress. The first two condi-
tions in Equation (8b) specify that F is the resultant force on the cylinder and that its line of action
is through the cylinder axis. The last condition specifies that the cylinder axis does not accelerate.
The boundedness-continuity requirements, Equation (8a) and Equation (8b) give additional formulas
necessary to find the contact zone parameters (U ′

0, L±, l±).

Related problem: unmixed boundary conditions

The rolling contact problem is addressed by first considering the related problem of a half-space governed
by Equations –(7) and the same boundedness-continuity conditions. The constraint, Equation (8), is
relaxed, however, and Equation (1) for y = 0 is replaced by the unmixed conditions

∂yθ = 0, σy = σ(x), σxy = τ(x), (9a)

σ(x) ≡ 0 (x /∈ C), τ (x) ≡ 0 (x /∈ C0). (9b)

The traction σ is continuous for x ∈ C and vanishes at x = L±, while the traction τ is continuous for
x ∈ C0 and vanishes at x = l±. By following [Brock 2004a], an exact solution for the bilateral Laplace
transform in x for this related problem can be obtained, and analytical expressions for the inverse can be
derived that are valid for

√
x2 + y2 � h. In view of Equation (7), these expressions are robust and are

given for all y ≥ 0 by

∂x ux = −
Ay
π R

∫
C

σ

µ

[
T

(t − x)2 + A2 y2 +
2B2

(t − x)2 + B2 y2

]
dt

−
B

π R

∫
C0

τ

µ

[
2(t − x)

(t − x)2 + A2 y2 +
T (t − x)

(t − x)2 + B2 y2

]
dt,

∂x u y =
By
π R

∫
C0

τ

µ

[
2A2

(t − x)2 + A2 y2 +
T

(t − x)2 + B2 y2

]
dt

−
A

π R

∫
C

σ

µ

[
T (t − x)

(t − x)2 + A2 y2 +
2(t − x)

(t − x)2 + B2 y2

]
dt,

θ =
εc2

αvaε

1
π R

[
T

∫
C

σ

µ

Ay
(t − x)2 + A2 y2 dt + 2B

∫
C0

τ

µ

t − x
(t − x)2 + B2 y2 dt

]
.

(10)

In Equation (10), the quantities (A, B, T, R) are defined as

A =

√
1 −

c2

aε

, B =

√
1 − c2, T = c2

− 2, R = 4AB − T 2, (11a)

aε = a + ε. (11b)

The quantity R is a form of the classical [Achenbach 1973] Rayleigh function in the dimensionless
rolling speed c. It has roots c = ±cR (0 < cR < 1) and these correspond to the Rayleigh speed vR = cRvr .
Equation (10) exhibits critical behavior as R → 0, so rolling speed in this study is restricted to

0 < v < vR (0 < c < cR). (12)
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The critical nature of the Rayleigh speed is well-established in isothermal elastodynamic contact [Craggs
and Roberts 1967; Robinson and Thompson 1974; Georgiadis and Barber 1993]. Results for thermoe-
lastic sliding contact with friction for any constant sliding speed are found in [Brock and Georgiadis
2000].

Candidate solution

In view of Equation (9), (σ, τ ) correspond to the contact zone traction, and Equation (1a) and the first
condition in Equation (1b) are automatically satisfied by Equation (10). Enforcing Equation (1c) and the
second condition in Equation (1b), and using Equation (10), give integral equations for (σ, τ ):

−
c2 A
π R

(vp)

∫
C

σ

µ

dt
t − x

= −
x
r

(x ∈ C±), (13a)

N
R

τ

µ
−

c2 A
π R

(vp)

∫
C

σ

µ

dt
t − x

= −
x
r

(x ∈ C0), N = T + 2AB, (13b)

−
N
R

σ

µ
−

c2 B
π R

(vp)

∫
C0

τ

µ

dt
t − x

= −
U̇0

vr
−

x2

2r2 (x ∈ C0). (13c)

Here, (vp) signifies the Cauchy principal value, and use is made of the Dirac relation [Carrier and Pearson
1988],

η

ξ 2 + η2 → πδ(ξ) (η → 0+). (14)

To address Equation (13), we introduce the trial functions

σ

µ
= G± cos πυ± +

Q+

π
6± sin π±, (x ∈ C±), (15a)

σ

µ
= G0 cos πυ0 +

Q0

π
60 sin πυ0, (x ∈ C0), (15b)

6± = S0 + S∓ + (vp)S±, (x ∈ C±), (15c)

60 = S− + S+ + (vp)S0, (x ∈ C0). (15d)

Here, (υ0, υ±) are real-valued constants of magnitude |υ0, υ±| < 1, (G0, G±) are unknown functions,
and

S− =

∫
C−

G−

Q−

dt
t − x

, Q− =

(
l− − x
x − L−

)υ−
(

l+ − x
l− − x

)υ0
(

L+ − x
l+ − x

)υ+

,

S0 =

∫
C0

G0

Q0

dt
t − x

, Q0 =

(
x − l−
x − L−

)υ−
(

l+ − x
x − l−

)υ0
(

L+ − x
l+ − x

)υ+

,

S+ =

∫
C+

G+

Q+

dt
t − x

, Q+ =

(
x − l−
x − L−

)υ−
(

x − l+
x − l−

)υ0
(

L+ − x
x − l+

)υ+

.

(16)
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The trial functions have the property that

1
π

(vp)

∫
C

σ

µ

dt
t − x

= − G± sin πυ± +
Q±

π
6± cos πυ± (x ∈ C±), (17a)

1
π

(vp)

∫
C

σ

µ

dt
t − x

= − G0 sin π0 +
Q0

π
60 cos πυ0 (x ∈ C0). (17b)

Substitution of Equation (15a) and Equation (15c) into Equation (13a), in view of Equation (17a), leads
to the result

G± = ±
R

c2 A
x
r
, υ± = ∓

1
2

(x ∈ C±). (18)

In a similar manner, substitution of Equation (15b) into (13b) and (13c), in view of (17b), produces
coupled equations for (G0, τ ) that can be solved to give

τ

µ
=

R
c2 B

Q
π

(vp)

∫
C0

(
U ′

0 −
t2

2r2

)
dt

Q(t − x)
(x ∈ C0), (19a)

G0 = Q0
Q
π

(vp)

∫
C0

P0

Q
dt

t − x
, υ0 = 0 (x ∈ C0). (19b)

Equation (19) defines the quantities

Q =

√
l+ − x
x − l−

, P0 =
1

c2 AQ0

(
−R

x
r

−
N
2

τ

µ

)
+

1
π

(S+ + S−). (20)

Obtaining Equation (10) and Equations (18)–(20) completes construction of a candidate solution for the
rolling problem. The solution itself must be bounded and continuous for x ∈ C and satisfy auxiliary
condition (8).

Rolling contact solution

Equation (19a) is bounded at x = l−, and the last two conditions in (8b) are satisfied if

L± = ±
L
2

, l± = ±
l
2
, U̇0 = −

l2vr

16r2 . (21)

In view of Equations (18) and (19b), Equations (15a) and (15b) are bounded for all x ∈ C , and the first
condition in (8b) is satisfied when

π +
N

2c2 B
L
2r

[K (λ) − E(λ)] = 0, λ =
l
L

, (22a)

π R
c2 Ar2

[
Ll
2

+
5

32
(3L + l)(L − l)

]
=

F
µr

. (22b)

Here (K , E) are complete elliptic integrals of the first and second kind of modulus λ. The solution
to Equation (22) will give the contact zone length parameters (l, L), whereupon (L±, l±, Ú0) can be
obtained from Equation (21).
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Contact zone fields

Use of Equations (19b), (22), and a standard table [Gradshteyn and Ryzhik 1980] in Equations (15a),
(15b), and (19a), gives the contact zone traction

τ

µ
=

−R
4c2 B

x
r2

√
l2 − 4x2 (x ∈ C0), (23a)

σ

µ
=

RN
8πc4 AB

1
r2L

|4x2
− l2

|

√
L2 − 4x2

[
K (λ) − 5

(
l2

4x2 , λ

)]
(x ∈ C). (23b)

In a similar manner, the temperature change θC in the contact zone is

θC =
ε

αvaε

[
1

8r2 (8x2
− l2) −

σ

µ

]
(x ∈ C0), (24a)

θC =
ε

αvaε

[
1

8r2 (2x −

√
4x2 − 1)2

+
c2T

R
σ

µ

]
(c ∈ C±). (24b)

Here 5 is the complete elliptic integral of the third kind of modulus λ and parameter l2/4x2. In light of
the property that N ≤ 0, T < 0, R ≥ 0 for Equation (12), Equation (23b) satisfies the unilateral constraint
Equation (8a), and Equation (24) gives positive values. It can be shown that the maximum (compressive)
normal traction σ ∗ occurs at x = 0 and is given by

σ ∗

µ
= −

R
c2 A

l2

2Lr
K (λ)

K (λ) − E(λ)
. (25)

A useful measure of the thermal response of the contact zone is the average temperature change θ̃C .
Integration of Equation (24) gives this quantity as

θ̃C =
ε

2αvaεr2

[
1
B

(
L2

3
−

l2

2

)
−

πT r
AL

(
Ll +

5
16

(3L + l)(L − l)
)]

. (26)

Calculations: comparison with no-slip rolling contact results

Insight into the solution behavior can be gained by providing calculations for key results and comparing
them with those for the model of rolling contact with no slip. Expressions that correspond to Equations
(21)–(26) for that model can be found in [Brock 2004a] and are presented in the Appendix. The symbols
are altered to match those employed here. The properties for what was referred to as 4340 steel were
used for calculations. Under the updated classification schemes [Davis 1998], the properties are close to
those for ASTM-A36 structural steel and, in any event, are also used here for purposes of comparison:

ν =
1
3 , ρ = 7834 kg/m3,

µ = 75 GPa, vr = 3094 m/s,

vR = 2887 m/s, k = 34.6 W/m ·
◦ K,

αv = 89.6(10−6)1/◦K, cv = 448 J/kg ·
◦ K.
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For rolling contact with no slip, infinitely rapid oscillations in contact zone traction occur in regions
at zone edges defined by Equation (A.6) in the Appendix. Their existence may imply [Johnson 1987]
that slip should in fact occur. Thus |x | defined by Equation (A.6) plays the role of l/2, and a parameter
corresponding to that in Equation (22a) can be obtained:

λ = tanh
π

4ω
. (27)

Calculations in [Brock 2004a] show that Equation (27) behaves as λ ≈ 1−, and so λ in both Equation
(22a) and Equation (27) is written in terms of a dimensionless exponent χ :

λ = 1 − 10−χ . (28)

Thus χ and the dimensionless contact zone width, L/r , for the two models can be obtained from Equa-
tions (A.1), (A.6), and (22). These, in turn, give (l, L). Values of (χ, L/r) are given in Table 1 for the
dimensionless subcritical rolling speed c. Similarly, values for the tangential velocity U̇0 of the contact
zone at its maximum depression point, maximum normal stress σ ∗, and average change in contact zone
temperature θ̃C , are given in Table 2. The dimensionless normal force used in both tables is

F
µr

= 10−6.

Values of χ in Table 1 indicate that the ratio 1
2(1 − l/L) of oscillation zone to contact zone widths are

orders of magnitude smaller than unity, but that the ratio of slip zone to contact zone widths is orders of
magnitude smaller yet. In the latter case, Equation (2) and a computer algorithm [Abramowitz and Stegun
1972] for (K , E) allow Equations (22) to be treated essentially as polynomials in (χ, L/r). Table 1 also
shows that the ratios increase (χ decreases) markedly with dimensionless rolling speed c. Values of L/r

F
µr = 10−6

Rolling contact with slip Rolling contact (no slip)

c χ L/r χ L/r

0.1 63,444 0.000653 8.121 0.000128
0.2 61,784 0.00066 7.811 0.00013
0.3 58,557 0.0006732 7.442 0.000133
0.4 54,115 0.000694 6.926 0.000136
0.5 48,456 0.000725 6.246 0.000142
0.6 41,575 0.000774 5.408 0.000151
0.7 33,424 0.000857 4.407 0.000165
0.8 23,734 0.00103 3.203 0.000192
0.9 10,745 0.001793 1.594 0.000291

Table 1. Dimensionless exponent χ and contact zone width L/r .
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for the two cases in Table 1 are more comparable in magnitude, but those for perfect contact with slip
are larger.

Table 2 indicates that the magnitude of σ ∗ for rolling contact (no slip) is greater than that for rolling
contact with slip. Similarly, U̇0 can be orders of magnitude larger when slip does not occur, and the
difference grows with increasing c. Both velocities are in the direction opposite to that of cylinder travel.
Both models exhibit nominal increases in θ̃C . The increase for rolling contact with no slip is greater at
low (c → 0) rolling speed; that for rolling contact with slip is greater as rolling speed becomes critical
(c → cR).

In ideal (rigid-rigid) rolling contact by a cylinder of radius r over a stationary plane surface, the
single contact point (line parallel to the cylinder axis) has no velocity, so that the angular velocity is
v/r , where again v is the translational speed of the cylinder axis. In this study, the corresponding point
translates parallel to the deformable surface with velocity U̇0. Thus, the effective angular velocity 2̇ and
its percentage difference δ2̇ with v/r are, respectively,

2̇ =
1
r
(v − U̇0), δ2̇ = −

U̇0

v
(100%). (29)

The percentage difference is given in Table 3 for the data used in Tables 1 and 2. The values are all
positive and small. However, it is well-known [Johnson 1987; Hills and Barber 1993; Hills et al. 1993]
that this effective angular velocity behavior produces measured travel distances for rolling bodies that
are less than the distance predicted from the number revolutions performed. Although both are small, the
percentage changes for rolling contact with perfect contact in Table 3 are orders of magnitude larger than
those for the slip case. That is, the more artificial no-slip rolling contact model may serve to exaggerate
the difference between imposed and effective angular velocity.

F
µr = 10−6

Rolling contact with slip Rolling contact (no slip)

c U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K) U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K)

0.1 −8.24-E4 −0.03657 0.284 −3.20-E3 −0.07460 1.0858
0.2 −8.42-E4 −0.03618 0.2837 −6.71-E3 −0.07374 1.0691
0.3 −8.76-E4 −0.03547 0.2839 −0.01068 −0.07274 1.0450
0.4 −9.31-E4 −0.03431 0.2844 −0.01537 −0.07040 1.0291
0.5 −1.017-E3 −0.03291 0.2861 −0.02164 −0.06790 0.9788
0.6 −1.159-E3 −0.03083 0.2904 −0.03067 −0.06441 0.9204
0.7 −1.421-E3 −0.02785 0.3014 −0.04519 −0.05483 0.8423
0.8 −2.050-E3 −0.02319 0.3333 −0.07482 −0.05157 0.7239
0.9 −6.220-E3 −0.01331 0.5209 −0.20368 −0.03694 0.4776

Table 2. Tangential speed U̇0, maximum normal traction σ ∗, average temperature
change θ̃C . Note: ±M − E N ≡ ±M(10−N ).
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F
µr = 10−6

Rolling contact with slip Rolling contact (no slip)

c U̇0 (m/s) δ2̇(%) U̇0(m/s) δ2̇(%)

0.1 −8.24-E4 0.000266 −3.20-E3 0.001035
0.2 −8.42-E4 0.000136 −6.71-E3 0.001084
0.3 −8.76-E4 0.000094 −0.01068 0.001151
0.4 −9.31-E4 0.000075 −0.01537 0.001242
0.5 −1.117-E3 0.000066 −0.02164 0.001399
0.6 −1.159-E3 0.000062 −0.03067 0.001652
0.7 −1.421-E3 0.000066 −0.4519 0.002087
0.8 −2.050-E3 0.000083 −0.07482 0.003023
0.9 −6.220-E3 0.000223 −0.20368 0.007315

Table 3. Tangential speed U̇0, difference δ2̇ between effective and imposed angular
velocity. Note: ±M − E N ≡ ±M(10−N ).

Calculations for rolling contact with slip

Tables 4 and 5 give values of (χ, L/r, U̇0, σ
∗, θ̃C) for rolling contact with slip when the dimensionless

applied normal forces are, respectively,

F
µr

= 10−5,
F
µr

= 5(10−5).

These values show that increasing F decreases χ but increases the magnitudes of contact zone parameters
(L/r, U̇0, σ

∗, θ̃C). The increase involving U̇0 is essentially linear, those involving (L/r, σ ∗, θ̃C) are less
than linear, and the decrease in χ is greater than linear. Tables 1, 2, 4 and 5 also indicate that parameters
(L/r, U̇0) increase in magnitude with increasing c while parameter χ decreases. Parameter θ̃C however,
decreases for small c, reaches a minimum and then increases with increasing c. The variation with c for
σ ∗ is itself sensitive to F : Tables 2 and 4 exhibit decreases in the magnitude with increasing c, but Table 5
shows that the magnitude of σ ∗ actually increases for small c, reaches a peak, and then decreases. That
is, for small c, (σ ∗, θ̃C) vary inversely with each other. It should be noted that the maximum magnitude
of σ ∗ displayed in Table 5 is close to that for plastic yield under uniaxial loading [Davis 1998], and that
changes in θ̃C exhibited in Table 5 are nominal but not trivial.

General comments

The observations above are based on a two-dimensional dynamic steady-state analysis of two idealized
models for rolling contact. The one presented here allows slip zones at a contact zone edge, the one
considered in [Brock 2004a] involved only perfect contact. In both models, the rolling cylinder is rigid,
the resultant force on it is purely compressive and is directed through the cylinder axis, and heat flow
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F
µr = 10−5

c χ L/r U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K)

0.1 20,063 2.0644-E3 −8.24-E4 −0.11565 0.8980
0.2 19,538 2.0866-E3 −8.42-E4 −0.11442 0.8973
0.3 18,518 2.1286-E3 −8.76-E4 −0.11216 0.8976
0.4 17,113 2.1942-E3 −9.31-E4 −0.10881 0.8994
0.5 15,323 2.2938-E3 −1.017-E3 −0.10409 0.9047
0.6 13,147 2.4484-E3 −1.159-E3 −0.09751 0.9184
0.7 10,570 2.7104-E3 −1.421-E3 −0.08809 0.9530
0.8 7506 3.2560-E3 −2.050-E3 −0.07332 1.0536
0.9 3398 5.6712-E3 −6.219-E3 −0.04211 1.6472

Table 4. Dimensionless exponent χ and contact zone width L/r , tangential speed U̇0,
maximum normal traction σ ∗, average temperature change θ̃C . Note: ±M − E N ≡

±M(10−N ).

across the contact zone is neglected. In the model treated here, slip is frictionless and occurs only in two
edge zones.

Nevertheless, the observations are based on solutions that are generated from the mixed-mixed prob-
lems that arise in rolling contact. The solutions and calculations based on them exhibit four basic features.
The first is, of course, that solution oscillation does not occur when slip zones exist at the contact zone
edges. The second feature is that variation in size, average temperature change and maximum com-
pressive traction of the contact zone with parameters rolling speed and resultant compressive force is

F
µr = 5(10−5)

c χ L/r U̇0 (m/s) σ ∗ (GPa) θ̃C (◦K)

0.1 8973 4.616-E3 −4.120-E3 −0.23311 2.0079
0.2 8738 4.666-E3 −4.210-E3 −0.25588 2.0064
0.3 8282 4.760-E3 −4.381-E3 −0.25082 2.0072
0.4 7653 4.907-E3 −4.655-E3 −0.24332 2.0111
0.5 6853 5.129-E3 −5.087-E3 −0.23277 2.0230
0.6 5880 5.475-E3 −5.797-E3 −0.21807 2.0536
0.7 4727 6.061-E3 −7.103-E3 −0.19700 2.1310
0.8 3357 7.281-E3 −0.01026 −0.16401 2.3558
0.9 1520 0.012681 −0.03110 −0.09421 3.6833

Table 5. Dimensionless exponent χ and contact zone width L/r , tangential speed U̇0,
maximum normal traction σ ∗, average temperature change θ̃C . Note: ±M − E N ≡

±M(10−N ).
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important for both models. The third feature is that slip zones form essentially where the separation
of the cylinder and elastic body occurs. Their widths are orders of magnitude smaller even than the
extremely small slip zone widths implied by the oscillation zones in rolling contact without slip. This
phenomenon may well arise from the continuity of traction required everywhere in the contact zone. As
seen in Equation (23), this requirement enforces zero traction at points |x | = L/2 of the cylinder/half-
space separation but also gives zero traction at points |x | = l/2 of the perfect contact-slip transition.
Finally, the perfect rolling contact model may overstate the increase in effective angular velocity of
rolling above the rigid-rigid limit.

It is hoped that the results of this article, while limited in various aspects in comparison to the newer
contact analyses listed at the outset, does allow insight into aspects of rapid contact behavior. These
results are now forming the basis of dynamic studies that include thermal relaxation effects, heat con-
duction across a contact zone, and both dry and viscous friction.

Appendix

For the case of perfect contact over all C [Brock 2004a], the contact zone parameters (L , L±, U̇0) are
given by

L± = ±
L
2

, U̇0 =
L
4

[√
B
A

ω + (4ω2
− 1)

L
16r

]
vr ,( L

κr

)3
+ 3

( L
κr

)2
− 4

F
F0

= 0,
F0

µr
=

π B R
6c2 A2

(
4 +

1
ω2

)
.

(A.1)

The contact zone traction is

τ

µ
= −

P(x)

4Br2

√
L2 − 4x2 sin

(
φ − ω ln

L − 2x
L + 2x

)
(x ∈ C), (A.2a)

σ

µ
= −

P(x)

4
√

ABr2

√
L2 − 4x2 cos

(
φ − ω ln

L − 2x
L + 2x

)
(x ∈ C). (A.2b)

In Equations (A.1) and (A.2), the terms (P, φ, ω, κ) are given by

P(x) =

√
R

1 − AB

√
(2Br + ωAL)2 + 4ABx2, tan φ =

2
√

ABx
2Br + ωAL

,

ω =
1

2π
ln

c2
√

AB + N

c2
√

AB − N
, κ =

√
B

ω
√

A
.

Here, (R, N , A, B) are defined by Equations (11a) and (13b), and for the parameter ω > 0 in Equation
(12). The contact zone temperature change θC can be extracted from [Brock 2004a] as

θC =
ε

αvaε

[
x2

r2 + ω

√
B
A

L
2r

−
1
8
(1 − 4ω2)

L2

r2 −
σ

µ

]
(x ∈ C). (A.3)
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The maximum value of (A.2b) occurs at x = 0 and is given by

σ ∗

µ
= −

√
R

1 − AB

(√
B
A

+
ωL
2r

)
L
2r

. (A.4)

The average of (A.3) is obtained as

θ̃C =
ε

αvaε

[
F

µL
+ 2

ω
√

B
√

A

L
r

+
1
24

(12ω2
− 1)

L2

r2

]
. (A.5)

The oscillatory behavior exhibited by (A.2) as |x | → 0 implies that the condition of nontensile contact
stress does not hold everywhere in regions at the edges of C defined by

tanh
π

4ω
<

∣∣∣2x
L

∣∣∣ < 1. (A.6)
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